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0. Introduction

Let P be the set of the points of (m— l)-dimensional projective space defined
over a finite field Fq with q elements. The projective special linear group PSL
(ny q) acts doubly transitively on the set Pvia the natural action. In [14], H.
Zassenhaus completely determined transitive extensions (=primitive extensions
of rank 2) of the permutation groups (PSL(n, q), P) . (Cf. [1].) In this note we
will completely determine primitive extensions of rank 3 of the permutation
groups (PSL(n, q), P) in the case where q are even. Our main result is the
following

Theorem 1. Let (w,/)Φ(2, 1) andΦ(2, 2). Then the permutation groups
(PSL(ny 2f), P) , w>2, have no primitive extensions of rank 3.

We hope to treat the remaining cases where q are odd in the next paper.
The paper [11] by T. Tsuzuku which determined primitive extensions of

rank 3 of the natural representation of the symmetric group was useful to the
author in setting about this work. After the most part of this work was
accomplished, the paper [8] by S. Montague has been published, which uses a
similar strategy as ours but the obtained results are different from ours.

In concluding the introduction we give a brief sketch of the proof of
Theorem 1: if (©, Ω) is a primitive extension of rank 3 of the permutation group
(PSL(n, q)y P) , then ®a (αGίl) has three orbits {a}, A(a) and Γ(α), and we
may assume that (PSL(n> q), P)^(@ α , A(a)) as a permutation group. In § 1 we
derive some numerical relations (most of which are due to D. G. Higman) which
must be satisfied by k= \ A(a) | and /= | T(a) | (see Propositions 1.1~ 1.6). After
the consideration of some subgroups of PSL(n> q), we prove in § 2 that L=®a b

(ieΓ(α)) must be of very restricted type, that is, only one of the Cases 1^6
stated at the beginning of § 3 must hold for w>5. In § 3, for n > 5, we derive

This is a revised form of a part of the Master's thesis of the author at University of Tokyo
in Feb. 1970. The author thanks Professor N. Iwahori and Mr. H. Enomoto for the
discussions we had.
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a contradiction for every L in Cases 1^6, either by using the numerical relations
given in § 1 or by calculating the number of elements in © which are conjugate
to an elation τx in PSL(n, q), and we complete the proof of Theorem 1 for w>5.
Finally for τz<4, we also complete the proof of Theorem 1 by using the similar
method as in the case of w>5 together with some additional adhoc
considerations.

1. Preliminary results

A) Results on primitive permutation groups of rank 3.
Here we collect for the later use some results on primitive permutation

group of rank 3 due to D. G. Higman [4] and [5].
The following notation will be fixed throughout the present note. Let

(©, Ω) be a primitive extension of rank 3 of the permutation group (PSL(n, q), P).
That is to say,
1) © is primitive of rank 3 on the set Ω, and
2) there exists an orbit A(ά) of the stabilizer (3a (αeΩ), and that (®a, Δ(α)) is
faithful and isomorphic to (PSL(n, q), P) as a permutation group.

Let k be the length of the orbit Δ(α), and let / be the length of another
nontrivial orbit T(a) of ©Λ. Clearly k=(qn— l)/(q— 1). Let λ, μ be the
intersection numbers for ® defined by

|Δ(β)nΔ(*)|={λ if
μ if

Then the relation μl=k(k—\ — \) holds.
Now, the following Propositions 1.1^1.4 are immediately obtained from

[4], [5] and the theorem of W. A. Manning [13, Th. 17.7], by noting that (@Λ,
Δ(α)) is doubly transitive. (Here we assume that q is an arbitrary power of any
prime).

Proposition 1.1. λ = 0 .

Proposition 1.2. &</<&(&— 1) and l\k(k—l).

Proposition 1.3. l=k(k— 1) implies £ = 2 , 3 , 7 or 57, and this implies
(II, ?)=(2, 2), (3, 2), or (3, 7).

Proposition 1.4. d=(X—μ)2+4(k—μ)=Ak-\-μ2—4μ is a square, and \J~d
divides b=2k+(X—μ)(k+l)=2k—μk—μl.

Moreover we easily have the following propositions.

Proposition 1.5. ^ ^ f
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) 2

 H m c e > t 0 p r o v e^4)0.2)^6)
256 256 4k-\-μ — 4μ

w //o£ αw integer, we have only to prove that — is not an integer, and
V d d

moreover we have only to prove that a=^ ^ ^-^ ^-^——— is not an integer.
4k+2 4

Proposition 1.6. // we set u=—( = ), then
k\ μ )

d_k2+(4u2-4u-2)k+4u+l

B) Results on some subgroups of the group PSL(n, q) and PGL(n> q). (Here

q need not be even.)

The following Proposition 1.7 has been proved in E. Bannai [2, Lemma

1]. The proof depends heavily on the papers [9 and 10] by F. C. Piper which

characterizes the group PSL(n> q) from a geometric view point.

Proposition 1.7. Let H be a proper subgroup of index m of the group PSL

(n, q) with τ*>4, and let qn~2Xm. Then H fixes some complete subspace of the

projective space ^(n—l, q).

By slightly modifying the proof in [2], we immediately have the following

Proposition 1.8. Let H be a subgroup of index m of the group PGL(n, q)

with τz>4, and let qn~2 Xm. Then either HΏPSL(n, q) or H fixes some complete

subspace of the projective space ^B{n—\, q).

Now let us consider subgroups of the group PGL(2, 2f). Note that PGL

(2, 2f)=PSL(2y 2f).

Proposition 1.9. (due to L. E. Dickson and others.) (For the proof, see

[6] page 213.) If' H is a maximal subgroup of PGL(2, 2f), then H is conjugate to

one of the following subgroups A, B,C> DP or Z3:

1) A=lx'2^ x<=GL{2y 2-0, x=(l 2 ) ] . (A is a semi-direct product of an

elementary abelian group of order 2f by a cyclic group of order 2f—1.)

2) B=\x\ x<=GL(2, 2-0, * = ( j J ) or x=(9 jY (B is a dihedral group of

order 2(2 '-1) . )

3) C=dihedral group of order 2(2'+1), for / > 2.

4) Z) y={*;*eGL(2,2')£GL(2,2')}. (DJ^PGL(2y V))

1) Strictly speaking, all Dj are not maximal.
2) x • x denotes the natural projection mapping GL(2, q) • PGL(2, q).
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5) Z3 {cyclic group of order 3), only for f= 1.

As an easy corollary of Proposition 1.9 we have the following

Proposition 1.10. Let H be a subgroup of PGL(2, 2-Q whose index m divides
2 / (2 / +l) and is smaller than it~ Then H is conjugate to one of the following
subgroups:

1) PGL(2,2f),m=\,
2) A, m=2'+l
3) B9m=2'(2f+l)l2
4) D//2 (only for f even), m=2"2(2f+l),
5) Z3 (only for f=\), m=2.

We omit the proof of Proposition 1.10, since it is straight forward and easy.
Now let us consider subgroups of the groups PSL(3, 2*) and PGL(3, 2/).

Proposition 1.11. (due to R. W. Hartley.) If H is a maximal subgroup
of the group PSL(3y 2-̂ ), then H is conjugate to one of the following subgroups^
listed in 1)~6):

1) stabilizers of a point,
2) stabilizers of a line,
3) stabilizers of a triangle,
4) PSL(3,V\j\fandj<f.
5) PSU(3,2')f2j\fand2j\f
6) A,Jorf>2.

For the proof, see R. W. Hartley [3].
As a corollary of Proposition 1.11, we have the following

Proposition 1.12. Let H be a subgroup of the group PGL(3, q) with q=2f

whose index m divides (q2-\-q+l)(q2+q) and is smaller than it. Then either i / 3
PSL(3y 2/) or H stabilizes a point or a line of the projectίve space 3?(2, q).

Proof. If a conjugate of H f) PSL(3, 2-Q is contained in a maximal subgroup
of PSL(3, 2*) which is in one of the cases 3)~6) in Proposition 1.11, then 2/+1

\\PGL(3, 2-0: H\ since 2'+ 1 | \PSL(3, 2*)\ PSL(3, 2^ΠH\, and this is a
contradiction. Moreover, we easily have the assertion.

2. Structures of some subgroups of the group PSL(n, q)

A) Definition of some subgroups of PSL(n, q).
Before setting about the proof of Theorem 1, we fix some notations for

subgroups of PSL(n, q).

3) Strictly speaking, all these subgroups are not maximal.
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Let GL(ny q) be the group of invertible nxn matrices whose coefficients lie
in the finite field Fqy q being a power of an arbitrary prime p (q=p/) Let us
set SL(n, q)={x^GL(ny q); det x=l}y and

i n—i

Zci'n-i'=[x^GL(nyq);x=(ocIi-^-Vt ), where J, denotes the ixi
I V 0 βlnj) n-i\ i d e n t i t y m a t r f x

Let us set

PGL(ny q)=GL(n, q)\Zy

PSL(ny q)=SL(ny q)ISL(ny q) Π Z.

We denote by x the homomorphic image of x^GL(ny q) by the above natural
homomorphism GL(ny q) -» PGL(ny q). As is well known, the groups PGL(ny q)
and PSL(ny q) naturally act doubly transitively on the set of the points of the
projective space $>(n—ly q). The orders of these groups are given as follows:

\GL(ny q)\=q^»-» (

I SL(ny q)\ = \PGL(ny q)\ =

I PSL(ny q) \ =
(ny q—\)

q-ί

\ PGL(ny q) \,

GL(ny q)\,

where (ny q—l) denotes the G, C D. of n and q— 1.
Now let us set

n—i

ny q)y x=(±Ά\.],
\ * I * /) n—i)
i n—i

*'•-'>={*; xtΞSL(ny q)y χ=(M

% n—i

Then we have G(-i'n-i'=K^n~iΨ^n-i^t>PQhn~i\ P - ^ F 1 ' " - ' ^ ! , and
QQi,n-i) j s a n m a x i m a l subgroup of PSL(ny q) consisting of all the elements
which fix an (/— l)-dimensional complete subspace of the projective space 9?{n—
1, q). We denote by πci'n~^ the natural homomorphism Gcin~^^Kcini\

Let us set
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n—ι

Since &«>»-» n ZEtf"-"-'5 Π Z"'11-
homomorphism

n—i)

, we have naturally a

QPGL(i, q)xPGL(n-i, q).

Note that if # = 2 / and ί = 1 or 2, then

i, q)χPGL(n-i, q) .

B) The stabilizer subgroup of the permutation group (@Λ, T(ά)). From now
on we always assume that q is a power of 2 (i.e., q=2f) and that w>4, unless
the contrary is stated.

Let L be the stabilizer of a point of the permutation group (@Λ, Γ(α)),
where ®a^PSL(n, q) and is simple from the assumption that w>4. Thus the
index of L in ®a is equal to /, the length of T(a).

Proposition 2.1. Let Then a conjugate of L is contained in either
^ QCn-2.2)

Qγ

Proof. By Proposition 1.2. / is not divisible by qn~2> hence from Proposition
1.7. L fixes some complete subspace of dimension, say s. Hence a conjugate
of L is contained in the group Gίs+1'n~s~ι\ (Here, note that PSL(n, q) is
transitive on the set of all s-dimensional complete subspaces of 9?(n— 1, q)> where
0<ί<w—2.) But s-\-l must be either 1, 2, n—2 or n— 1, since otherwise the
index / of L in PSL(rc, ? ) which is a multiple of \PSL(n, q): G c ' + 1 ' "— 1 5 | does
not divides A(/s— 1), and it contradicts Proposition 1.2. (Here, q need not be a
power of 2.)

Proposition 2.2. Let rc>5. If L is contained in GQ2'n~2\
following cases occurs:

1) L=GC2n2\ μ=q(q+l),

2) L is conjugate to

2 fi-2

0 /

3) L is conjugate to
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2 n-2

.* 0 "̂""̂

M2=\x; x<=SL(n, q), x=\

2 n—2

0 * 0 \ ) 2

)n—2 or

x =
* 0 0 \ ) 2

* I) n-2

4) L is conjugate to
2 n-2

c d 0 \ ) 2

("

» J)n-2 '

., 22'f)^PGL{2, 2η\ for f even, μ =

Proof. Since (I) k<l<k(k-ί) and (2)
2, ?): pC2'n~2'πc2'n-2\L) \ must be a divisor

\PGL(2,q)χPGL(n-
1), since PGL(2, q)

χPGL(n-2, q) is the homomorphic image of GC2'Λ"2) by pC2'M-2V2'M'2). Thus
\I2xPGL(n-2, q): pc 2 'w-2V2 'M-2 )(L)n(/2xPGL(w-2, ? ) ) | must also a divisor
of q(q+l) and less than ^(^+1), since I2xPGL(n—2, q) is normal in PGL(2y q)
χPGL(n—2, q). (Here, /,- denotes the identity subgroup of PGL(i, q). Thus
by Proposition 1.8 and Proposition 1.12, 7 2xPGL(w-2, 9)Sp ( 2 '""2V2 'w-2 )(L).
(Here, note that (?+l , j — 1 ) = 1 since q=2f.) While by Proposition 1.10,
PGL(2, q) X In_2 must be conjugate to one of the following subgroups PGL(2, q) X
In_2, Aχln_2, Bxln_2, Df_2χln_2 (for/even) or Z3χln_2 (for /=1) . Hence,
pC2'n~2)7rC2'*~2)(L) is conjugate to one of the following subgroups (1) PGL(2, #)

xPGL(n-2, q), (2) AxPGL(n-2, q), (3) BxPGL(n-2, q), (4) D//2xPGL(n
—2, g) (for/ even) or (5) Z3xPGL(n—2, q) (for /=1) . But the last case (5)
is impossible, because otherwise d=4k2-\-μ2—4μ=4 2(2n~2-\ |-2+l) is not
a square and this contradicts Proposition 1.4. In every case (1)^(4), we have

x Φ 1, where Px =

L Π P 2 Φ 1, where P 2 =

x;

x;

q)y x =

q), x =

, and
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Clearly in every case (1)~(4), πC2'n~2\L) is transitive on the set of non-identity

elements of Px (resp. P2). Hence L^Pc2n~2\ and we have the assertion of the

proposition.

Similar argument proves the following

Proposition 2.3. Letn^S. If L is contained in G c w~2 ) 2 ), then one of the

following cases occurs:

1) L=G<-'>», μ=q(q+i),

2) L is conjugate to

n-2 2

M{ = )x; x<=SL(ny q)y x =

3) L is conjugate to

n

Mi = \x; x<=SL(n, q), x = (—

0 \)n-2

* 0
* * >

)2
μ — ?>

n-2 2

^ΊΓ\)n-2
* 0
0 */

or

x = ( * 0 * j f ' ^

4) L is conjugate to

Mi = \χ; x<=SL(n, q), x =

n-2 2

0 \)n-2

a b

, 2//2)CPGL(2, 2^)1 forf even, μ=VJ=

Proposition 2.4. Letn^4 . If L is contained in G c l w ~ υ ,

following cases occurs:

1) u = I G c l ' M " υ : LI w a divisor of (q—l)(q—l, n—1)/(?— 1, Λ)

2) L w conjugate to

n,q), x =

2 n-2

0 \ ) 2
* *

o/ the

1.
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n> q), x =

*

*

*

n-2

*

*

0

o

*

- 2 } , μ=q

3) L is conjugate to

M4 = {x;

Proof. Note that pc l "-1Vcl l |-1 )(G c l l |-1)) = PGL(l, q)xPGL(n-l, q) (^1
χPGL(n—l,q)). Since / satisfies the relations (1) k<l<k(k—ί) and (2) /|β
(k-ί) by Proposition 1.2, |PGL(1, q)xPGL(n-l, q): p^-'-W^L)] must
be a divisor of β - l ^ - ^ ^ H h 2 / + l ) . Then, by Propositions 1.8 and
1.12, either p<1 f|-1V1'li~1)(L) contains PGL(1, q)xPSL(n-ly q) or fixes a com-
plete subspace of the projective subspace ζB{n—2y <7)={(#i, •••, xj^^n— 1, ̂ );
^ = 0 } . Here, the dimension of the fixed complete subspace must be either 0
or w-3, since otherwise |PGL(1, q)xPSL(n-l, q): p^n'^π

CUH'i:>(L)\ does not
divide &(&— 1), and this is a contradiction.

1) Let us assume that pc l l | -% c l l |-1 5(L)3PGL(l> q)xPSL(n-l, q). We have
L n P c l > n " υ φ l . While πσtn~Ό(L) acts transitively on the set of non-identity
elements of P' 1 '*"". Noting that

fbΛ
= 0 , we immediately conclude that LΏPclt" υ , and clearly

\bU
with

the case 1) in the assertion of the proposition holds.

2) Let us assume that pc l n~1)7rcl>>l~1)(L) fixes a complete subspace of dimension
0 (i.e., a point) of the 9?{n—2, q). Choosing a suitable conjugate L* of L, we
have

2 n-2

xQ]x; xeΞSL(n,q)y x=\

* υ
* * ) j

/) n-2)

Since LxQGQZn 2), from Proposition 2.3, a conjugate of IS is equal to the
subgroup M.x.

3) Let us assume that pcun~Όπcl'n~i:>(L) fixes a complete subspace of dimension
n—3 (i.e., a hyperplane) of the ίP(w—2, #). Choosing a suitable conjugate If
of L, we have
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n-1

x£ΞSL(n,q), * = * * '^ Vjn-2} (stt=J)

Now let us use the following notation:

U={x; q), x=

V={x; q), x=

T h e n / = UV\>U and Uf] V=l. We denote by T the natural homomorphism
J-*V. Since \M2: Lx\ is a divisor of q and less than q, \J: πCUM~i:>(Lx)\ and | V:
τ πcl'n~i:>(Lx)\ must also be a divisor of q and less than q. Therefore, by
Propositions 1.8, 1.10 and 1.12, τ-π

cl-H-i:>(L*)=V9 bacause of (?, ?)=1.
Moreover a similar argument as in the proof of Proposition 2.2 shows that
j=π«.»-»(Lx), and that L = P C 1 ' M " 1 ) / = M 4 . Hence the assertion of the
proposition is completely proved.

A similar argument as in Proposition 2.4 proves the following

Proposition 2.5. Let n^4. If L is contained in G c n " l f l ) , then one of the
following cases occurs:

1) u= I G c*" l f l ): L\ is a divisor of (q— l)(q— 1, n— l)l(q—ί, n) and is more than 1.

2) L is conjugate to

n-2 2

* =

3) L ά conjugate to M4, μ^q.

3. Proof of Theorem 1 for the case n>5

In this section we always assume that q=2f and that τz>5.
As we have seen in Proposition 2.1, we may assume that a conjugate of

L is contained in either G c l ' w " υ , GC2'n~2\ Gcn~2'2> or GC M" i a ). In the first place
we assume that a conjugate of L is contained in either in G c l ' n~ υ or (JC2'M~2:).
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From Propositions 2.2 and 2.4, one of the following cases occurs:

Case 1. u(=ljk) is a divisor of (q—iχ<?— 1, n—\)j(q—\, n) and is more than 1.

Case 2. L is conjugate to the subgroup G (2>n"2:>, μ=q(q+l)

Case 3. L is conjugate to the subgroup Mu μ=q.

Case 4. L is conjugate to the subgroup M4, μ=q.

Case 5. L is conjugate to the subgroup M2, μ=2.

Case 6. L is conjugate to the subgroup M3y μ=22//=\/ q (for f even).

Now we will show that the above 6 cases are all impossible.

Firstly, let us recall some elementary properties concerning involutions

(elements of order 2) in PSL(2, 2-f).

Let us set

11
01

q
/ blocks

1 1
01

Then every involution of PSL(ny 2*) is conjugate to some τ y ( / = l , 2, , Γ—Ί),

and that ri and τ y are not conjugate to each other if ί φ ί . The number of

element of PSL(n, q) which are conjugate to τx is (?*—IX?*"1—1)/(?—1).

Let us denote by ψ1 the permutation character of the permutation group

(®Λ, A(a)) and by ψ2 the permutation character of (®β, Γ(tf)). Clearly we have

so ψ 1(τ 1)>ψ 1(τ y) for everyj=2,-., ^-|-J.

Proposition 3.1. 1 does not hold.

Proof. If n is sufficiently large, ^
i s n o t a s e>

bacause

for u>2 and in this case u is never equal to 2, and it contradicts Proposition

1.4. For small values of n, we can practically derive a contradiction to Proposi-

tion 1.4.

Proposition 3.2. The case 2 does not hold.

Proof. Let q=2. Then μ=6 and d=S(2n~2-] f-22+3) is not a square,

and it contradicts Proposition 1.4. Let #Φ2. Then μ=q(q+l), and if n is

sufficiently large, a=μ^μ~ ' ^ ~ H μ ~ j s dearly not an integer, hence J

4 ^ + 2 4
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is not an integer by Proposition 1.5, and this contradicts Proposition 1.4. For

small values of n, we can practically derive a contradiction to Proposition 1.4,

by computing the value a.

REMARK. An alternative proof of Proposition 3.2 is also possible,

which banishes the troublesome calculations in the case of small n. That is to

say, under the assumptions of Proposition 3.2, (®a, Γ(ά))^PSL(n> q) acting on

the set of lines of the projective space P. Thus (@α, Γ(α)) is primitive and

rank 3, and the subdegrees are 1, qQ2Qn-2> tfQnMn-z^, where £?,•=(?'—1)/

(q— 1). Thus the stabilizer of a point of the permutation group (®Λ, T(a)) has

no union of orbits whose total length is k—μ> and this is a contradiction. (Cf.

D. Wales, Uniqueness of the graph of a rank three group, Pacific J. of Math.

30 (1969), 271-276, Theorem 1. This assertion is immediate from the existence

of an element g^® interchanging a and ί/GΓ(β).)

Proposition 3.3. The case 3 does not hold.

Proof. Let?φ2and ?φ4. Then μ=q and a=
μ^μ~4^μ~2^μ~6^

4k+μ2—4μ

is never an integer for w> 7, and so d is never an integer and it contradicts

Proposition 1.4. For # < 6, we can also derive a contradiction to Proposition

1.4 by actually computing the value a. Let q=4. Then we can regard (®Λ,

T(a)) (^(PSL(n, q), PSL(ny q^M,)) as the group of permutations of ®a(^PSL

(n, q)) on the set of incident point-line pairs in the projective space £P(/z— 1, q).

Noting that the involution τ1 is an elation, we immediately have that -v 2̂(
τi)—

( ί M " 2 + - + ? + l ) ( ? Λ - 3 + - + ? + l ) + ^ - 2 . As is easily verified, ψ^^ψ^j)

for every y=2, , | — 1 . Let us denote by ψ the permutation character of (©,

Ω). Ύhenψ=ί+ψ1+ψ2on®a. Since ψ(τ1)>Λ|r(τy) for every j=2,.

every element of ®a which is conjugate to τ1 in @ is already conjugate to τ1 in

(Sβ, and there exist (qn— l)^""1—1)/(?— 1) such elements. Hence, the number

β of element of (S which are conjugate to τx is given as follows (cf. [ 1 ]):

But we can easily show that the β is not an integer, and this is a contradiction.

To be more precise, the G.C.D. of 64Z 2 +28X+7 and 4X2+16X+7 divides

-228X-105, and the G.C.D. of 6\X2-2QX+\ and4Z 2 +16X+7 divides ( -

92Z-37). 3. Thus in order to β being an integer, ( - 2 2 8 X - 105)(-92ΛΓ-37)
4 X -\-\6X-\-7
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must also be an integer. Since the G.C.D. of (—228X—105)(—92X-37) and

4 Z 2 + 1 6 Z + 7 divides 65808X+32823, we can conclude that 6 5 8 Q 8 X + 3 2 8 2 3
4 A +16AH-7

must be also an integer. But we can easily show that this is impossible for any
X=4n~2. This kind of argument will be used repeatedly in the following
without explicitly mentioning.

REMARK. An alternative proof of Proposition 3.2 for the case q=4
is also possible. This is done by making use of the following Propositions A
and B.

χn 1

Proposition A (W. Ljunggren). The dίophantine equation —y2j w>2,
x J.

\χ\ y \y\ > 1> has no integral solution except for the two cases (i) n=4f x=7, and
(ii) n=5, x=3.

(For the proof see W. Ljunggren, Noen setninger om ubestemte linkninger

av formen *L^l=yq (Norwegian), Norsk Math. Tidsskr. 25 (1943), 17-20.
x— 1

Cf. Math. Review Vol. 8, 315.)

From Proposition A we immediately have the following

Proposition B. μ=2 and μ=4 are impossible.

Because Ίί μ=2 then d—4k—4=4q ± is not a square, and if μ,=4
q-\

then d=4k=4 " is not a square, for q a power of 2.
q-\

From Proposition B the assertion of Proposition 3.2 for the case q=4 is
clear.

(Moreover, Proposition A gives an affirmative answer to the question left
open in S. Montague [8], page 519 lines 21-30.)

Proposition 3.4. The case 4 does not hold.

Proof. Let <?φ4. Then μ=q, and this is a contradiction as we have seen
in the proof of Proposition 3.3. Let q=44\ Then we can regard (®α, Γ(α))
(^(PSL(n, q), PSL(ny q)/M4)) as the group of permutations of &a (^PSL(n, q))
on the set of incident point-hyperplane pairs of the projective space ^(n—1,
q). Moreover we have

) for every

4) Proposition B in Remark following Proposition 3.3 gives an alternative (calculation free)
proof of this assertion.
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/ = 2 , , Γ—Ί, and ψ(τ 1 )>ψ (τj.) for every/=2, , Γ ^ Ί . Hence the number

β of elements of © which are conjugate to τ1 is given as follows:

But we can easily show that the β is never an integer, and this is a contradiction.

Proposition 3.55:>. The case 5 έfô ί not hold.

Proof. μ=2. Thus the assertion is clear from Proposition B in Remark
following Proposition 3.3. (In the original manuscript, the author proved
Proposition 3.5 by showing that the number of elements of © which are
conjugate to the element τt is not an integer, as in the proof of Proposition 3.3.)

Proposition 3.6. The case 6 does not hold.

Proof. Let #Φl6. (Note that #φ4, since otherwise μ=2 and
this is a contradiction as we have already seen.) Then μ = \J q, and

a=<? \9~ ) w ~ ) w ~ ) j s n o t a n integer, hence d is not an integer and this
\k-\-μ— \μ

contradicts Proposition 1.4. Let #=16. Then μ=4 and the assertion is clear
from Proposition B in Remark following Proposition 3.3. (In the original
manuscript, the author proved Proposition 3.6 by showing that the number of
elements of © which are conjugate to the element τx is not an integer, as in the
proof of Proposition 3.3.)

Thus, we have verified from Propositions 3.1—'3.6 that if τz>5 and a
conjugate of L is contained in G c l 'Λ~υ or GC2Λ~2), then the permutation group
(PSL(n, q), P) has no primitive extension of rank 3. A similar argument as
above shows that if « > 5 and a conjugate of L is contained in G(M~2'2) or GC#I"1>1:),
then the (PSL(n, q)y P) has no primitive extension of rank 3. Thus we
completed the proof of Theorem 1 for the case w>5.

4. Proof of Theorem 1 for the case n<4

A) The case n=2.

Proposition 4.1. (PSL(2, 2), P) has a unique primitive extension of rank 3
of degree 10, and this is isomorphic to A5 acting on the set of unordered pairs of

5) This is already proved in [8], page 519.
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the 10 points.

Proposition 4.2. (PSL(2, 4), P) has a unique primitive extension of rank

3 of degree 16, and this contains a regular normal subgroup of order 16.

Proof of above two propositions are easy, and so we omit the proof.
(Here, note that PSL(2, 2)^symmetric group on 3 letters, PSL(2, 4 ) ^
alternating group on 5 letters. Cf. T. Tsuzuku [11] and S. Iwasaki [7].)

Proposition 4.3. Let / > 3. Then (PSL(2, 2-Q, P) has no primitive extension
of rank 3.

Proof. By Proposition 1.10, L must be conjugate to either B or D//2 (for
/ even). Let L be conjugate to B. Since d=2f, f must be even. The number
β of elements of g which are conjugate to τx is given as follows:

l+2/+l+2/(2/+l)
1 + 1+2'-1 V ' '

But β is not an integer for / even unless/Φ 4. The case/=4 is also impossible,
klbecause there exist no natural integers fx and f2 such that (l+Λ+/) is a

/1/2

square, and it contradicts the theorem of J. S. Frame [13, Theorem 30.1]. Now
let L be con jugate to Df/2. Then l=22/2(2f+1) and μ = 2 / / 2 > 4 because/= even

and > 3 , and a=μ ^μ~ ' ^μ~ ' ^μ~ ' is not an integer and so is d, and it
4k+μ2—\μ

contradicts Proposition 1.4.

B) The case n = 3 .

Proposition 4.4. (PSL(3y 2/), P) has no primitive extension of rank 3 for
anyf

Proof. From Proposition 1.12, a conjugate of L is contained in G α ' 2 ) or
&2Λ\ First let us assume ? φ 2 and let L c G ( l l 2 ) . Then 11 xPGL(2, 2'): pc l 2>
τrcl'2)(L)| must be a divisor of q(q+l) and less than q(q+l). Hence, from
Proposition 1.10, we have that pα > 2 ) πσ'2\L) is conjugate to one of the subgroups
1x^3, l x i ? o r l x D f / 2 (for/even>4). The same argument as in the previous
sections shows that in every above case L^PC'2:> and L is conjugate to one of
the subgroups Mlf M2 or M3. If L is conjugate to M19 then μ=q and

α = ^ 2 ixL Mi L9 and we can derive a contradiction to Proposition 1.4.
5? + 4

If L is conjugate to M2ί then J=4(22-/r+2 /Γ)=4 2 / (2 / +l) is not a square, and

this is a contradiction. If L is conjugate to M3, then μ=^/~c[ and d=Aq2-\~5q

+ l is never a square since (2qJrl)2<d<(2q-\-2)2

> and this is also a
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contradiction. If #Φ2 and LQGcl'2), then we can easily get the same conclusion.
Finally let us assume q=2. Then k=7 and the theorem of Frame [13,
Theorem 30.1] shows that l=k(k— ί)=42. But this is impossible as was
already verified in D. G. Higman [5]. Thus we completed the proof of the
proposition.

C) The case w=4.

Proposition 4.5. (PSL(4, 2/)f P) has no primitive extension of rank 3.

Proof. By Proposition 2.1, a conjugate of L is contained in either Gcl'3),
(5C2.2) o r Grc3,υ Fi r s t let us assume that a conjugate of L is contained in Gα'3:).
From Proposition 2.4, one of the three cases (1)^(3) in Proposition 2.4 holds.
However, we can easily prove, using a similar method as in § 3, that these three
cases are all impossible. If a conjugate of L is contained in G c 3 'υ, then we
have the same conclusion, i.e., this case is also impossible. Now, let us assume
that a conjugate U of L is contained in Gc2>2\ Then pc2'2V2'2)(L*) Π PGL(2, 2/)
XPGL(2, 2-0 contains either PGL(2, 20XPGL(2, 2-0, AxPGL(2, 2^){PGL
(2, 20 xA), Bx PGL(2, 2^(PGL(2, 2/) x B), Dfh x PGL(2, 2^)(PGL(2, 2*) x
Df/2), or Z 3 X PGL(2, 2) (PGL(2, 2) x Z3). As in Proposition 2.3, L is conjugate
to either Gc2>2), (M{), M2(M'2) or M3(M£). A similar argument as in § 3 shows
that these cases are all impossible. Thus the proof of the proposition is
completed.

Thus, Theorem 1 is completely proved.
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