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1. Introduction

By the 3-rank of a number field is meant the rank of the 3-primary com-
ponent of the ideal class group. For example, the field @(\/—3299), with class
group C(3)XxC(9), has 3-rank two. No quadratic field presently known has
3-rank exceeding four.

In [3] (q.v. for notation), I showed the existence of infinitely many ima-
ginary quadratic fields with 3-rank three (or larger). Extending this earlier
work, the present article provides the following:

Theorem. Infinitely many imaginary quadratic fields have 3-rank at least
Sour.

This result will be approached by way of:

Proposition (Cf. [3, Prop. 3]). Suppose that for 1<i<4:
(1) The integers A;, B; are coprime;
(ii) The quantities Bi—4A} have a common value D, such that Q(/D) is an
imaginary quadratic field of discriminant < —4;
(iii) There is a prime I; dividing A; for which B; is not a cubic residue;
(iv) 3(B;+B,) is a non-zero cubic residue of 1; whenever 1<i< j <4.
Then with f; denoting the class determined by the ideal (A;, $(B;+~/ D) of the field
Q(\/ D), we have

() {fvs for for fO=C(3)".

For the proof of the Proposition, refer to [16].

The work falls naturally into two main divisions. Parts 2-6 (cf. (ii)
above) are concerned with constructing a polynomial D possessing suitably
many decompositions in the form B2—443, where 4, B denote polynomials
with rational integer coefficients. The remainder is devoted to verifying the
premises of the Proposition, for certain values of this expression D.

More specifically, in Part 2 the problem of forming an appropriate
function D is reduced to that of obtaining a rational parametric solution to a
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certain pair of simultaneous diophantine equations. The latter are best treated
by means of circulants (taking the place of factorizations using cube roots of
unity, in an earlier version). Part 3 accordingly furnishes a treatment of
these determinants and in Part 4 the notation is applied in effecting a resolution
of the equations in Part2. The remaining difficulties are then of a computati-
onal nature, the statement of the Proposition serving to guide this later divi-
sion of the work. A number of supplementary matters receive attention in
notes at the end.

This article is based on the author’s dissertation [4]. I take the oppor-
tunity to express my deep gratitude to Professor D.]. Lewis for his sympathe-
tic guidance and unfailing support as my advisor. Thanks are tendered also to
Dr W. Ellison, who jointly suggested the topic of the investigation, to Dr P.J.
Weinberger for sharing his expertise in the course of many profitable discu-
ssions, and to Professor D.H. Lehmer, to whom are due the factorizations of
the larger numbers in formulae (60) below.

2. The simultaneous equations

We begin as in [3] from the observation that the polynomial
D(Xm Y, Zo) = ("Xo‘f“ Yo+Zo)2_4'YoZO

is a symmetric function of the three variables. This can be turned to advantage
by writing X,=x3 and so on, thereby producing a polynomial D(x3, y3, 23) with
three different arrangements in the form B2—44° 'To enrich the supply still
further, we admit additional variables x,, ---, 2, which are to be such that

D(x3, y5, 25) = D(x3, y1, 1) = D(x, y3, 23) .
These requirements will be met provided

(2-a) 1% = X%y, XYz = Xy Yo
A3 3 Led (g3 a3 o8

@) T T
x2+y;—2; = —(%+Y0—=0) .

Equations (2-a) are evidently satisfied by the assignments

X Yo 2 ra pb ve
(3) % Y1 ®|=|A pb va
Xy, Y, 2 A opa ve .

Substituting these values in (2-b) produces
M3(b3_}_b:li) = (N7 (@ +-¢%)

(4) 30,31 ~3Y — (X3_L ,3)( 3L p3
v (c-ei) = (W p)(@’+-b7),
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this being the diophantine system alluded to in the Introduction.

The system is separately homogeneous in both Greek and Roman letters, so
that every solution amounts in fact to a doubly infinite solution set. It will be
clear however, that since

(5) D((na)’, (ub), (ve)) = () -+ (ub)— (ve) Y —4(naub)’

is likewise bi-homogeneous, this feature does not lead to a proliferation of fields
Q(\/D). The various integer values of D so obtained will all be sixth-power
multiples of a common, least integer value.

3. Circulants

Let o denote a generator of the cyclic group C(3). The regular represen-
tation of C(3) maps o to the matrix ‘
0 01
1 0 0
010
The element pl-+go+7ra? (o*=1) of the rational group algebra QC(3) is carried
to the matrix

P r g
F(p,q, r): q pr
r q pi,

known as a cyclic matrix of the third order. The determinant

A(P’ 9 f) = det P(px UB 7’)

is called a cyclic determinant, or circulant. Since QC(3) is a commutative ring,
multiplication of cyclic matrices is commutative and the products are again
cyclic matrices. We note that

L(p, ¢ 7)" =T(p, 7, 9)
and adj I'(p, ¢, r) = T(p*—gr, ’—pyq, ¢’—1p) .
Thus the transpose of a cyclic matrix and the inverse of a nonsingular cyclic
matrix are both cyclic.

Unit circulants

The diophantine equation
(6) A(p, g, 7) =1

can be solved completely (in rational numbers p, g, r) with the aid of a change
of variables. We set
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(7-2) { (5, q, 7] = [a+s, B+s, ¥+s]

where a-+B+7v=0.
The inverse transformation is given by
{ 35 = p-gtr
[, B, 7] = [p—s, g—s, r—5] .

By means of (7-a) (ii), it is possible to write (7-a) (i) in terms of only three new
variables (say «, 3, ), but it is better to preserve symmetry.
In view of the identity

(7-b)

pr q

¢ p r|=(ptern? 1772
roq »p qg—r p—9qh
equation (6) assumes the form
(8) 3|28 e
B—y a—8B

As this is linear in s, however, it serves to determine the latter in terms of the
other new variables.

Equations (7) and (8) express in parametric form the complete solution of
(6). The letters e, B, v (possibly accented) will be standard notation for three
rational-valued parameters (not all zero) subject to the single restraint (7-a)
(i1). Further, we shall write

a—RB T—a
(9-2) b= B =0 " 0
(9-b) [L, M, N] = [a+1/3¢, B+1/3¢, v+1/3¢]

(where L=L(a, B, %) and so on).
In summary,

[P’ 9 1‘] = [L’ M, N]
gives the general solution of equation (6). The values of «, 3, v are recoverable

from those of p, g, 7 by use of relations (7-b), and in fact it follows directly from
(9) that

{ [a, B, ¥] = [L—s, M—s, N—s]
where 3s=L+M+|N.

Three further functions U, V, W of a, 8, v are defined by

(10)
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(11) [U, V, W] = [L*~MN, M>—NL, N*—LM].

Thus T'(U, V, W) is the matrix of cofactors for T'(L, M, N). We have
A(L, M, N)=1, hence

(L, M, N)'=adjT'(L, M, N)=T(U, V, W) =T(U, W, V).
Writing I for the identity matrix T'(1, 0, 0), we obtain the relation
(12) (L, M, NIU, V, W) =1,
by transposition of which it follows that
U, Vv, W)yr(L, M, N)' = 1.
The transformation (11) is therefore involutory, that is,
[L, M, N] = [U*~VW, V*-WU, W*-UV].

(To save repeated back-reference, the reader is asked to memorize both (11)
and these inverse formulae. They will be needed constantly.) Thence

L(L*-MN) = LU = (U*-VW)U
or L3—-U3=LMN—-UVW.
This extends by symmetry of the right side to yield the relations
(13) L—U3=M3*—V3*=N3*—W?*= LMN—-UVW .
The expanded form of (12) provides the identities

LV+MW+4NU =0

(14)
LW+MU+NV =0.

On solving these as a pair of linear equations to determine M, V we find the
expressions

(15) _ NU—L'W _ LW~ NU?
LU—-NW ’ LU—-NW

Lastly, (7-a) (ii) shows that
= By=RF—va=v"—af.
The common value of these three quantities will be one third of their sum,

hence %cﬁ. By (9-b) and (11) however,
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U= <a+§15)2—(ﬁ +3%)(v+§1$)

- a2—37+% , by (7-a) (ii).

Writing
L U L U
(16) M V| =3p|M V
N W N W],

we have therefore the formulae

L U 14+3a¢p ¢*+3a
(17) MV |=|1+38s 438
N W] [143v¢ ¢+3v

These polynomial functions L, -+, W are ultimately better suited to express the
solution of equations (4). We shall find it easier however, to work with the
rational functions L, --+, W, using (16) to translate the results as required.

Carmichael’s and Vieta’s equations

The complete solution of the diophantine equation
(18) A(p”, 9", ") = AP, ¢, r')

was given by Carmichael [2]. Assuming that neither side vanishes
(N.B. 2A (p, ¢, r)=>"p 2 (9—7)?), we can write the equation as

det {T(p”, ¢, ¥ )T(p', ¢, )} =1.

From our earlier remarks, it follows that the expression in braces is a cyclic
matrix. We conclude that -

L'(p”, q", ") =T(p, ¢, )T(P, q,7)
where (6) holds. In other words

P// p/
q"|=T(L, M, N)| ¢
r// rl

Consider next the diophantine equation
(19) ¥ty = B4wd,
first solved in full generality by Euler [2, 5, 9]. It is clear from (13) that
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(20) x:y:ziw=L:—U:N: —W

affords a parametric solution. Apart from solutions of the form [x, y, , y], this
is in fact the general solution. For equation (19) may be put in the form

A(x, 0, —2) = A(—y, w, 0),

showing it to be a restricted case of (18). (A distribution of symbols has been
chosen which leads to (20). There are evidently many solutions of (19) in-
herent in (13), all of them forms of the general solution.) Thus

(L, M, N)I'(x, 0, —2) = I'(—y, w, 0)

—y Lx— Mz
or w | =| Mx—N=z
0 Nx—Lz |,

in agreement with (20).

Lemma. Let L'=L(c’, B, v’) and so on. Then o', B', v’ can be chosen
rationally in terms of a, B3, 7 so as to produce

(21) L.U_N_W ().

Proof. Equation (19) may be put in the alternative form
Az, 0, ) = Az, w, 0),
and then for suitable values of a’, &/, v’ we shall have
(22) (L', M’, N)T'(x, 0, y) = I'(2, w, 0)
hence x:y:iw=L":—N:U":—W".

A comparison with (20) yields (21). Q.E.D.
To obtain a’, B/, v’ explicitly in terms of a, B, v, write (22) in the form

r 2
M |=T(x0,y)" w
N’ 0
Since adj I'(x, 0, y) = T'(*%, »%, —xy),
the right side becomes
x(xz— yw)

(x3_|’_y3)—l yZz_’__xZw
—y(xz—yw) .
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Thus from (20) we obtain
L L(LN—UW)
(23) M| = (L*—-U3%Y NU*—-L*W
N’ ULN—-UW)

where the factor (L3>— U®)™! may be replaced by (LMN— UV W)™}, in accordance
with (13). We find that
N-—W
L'4+M+N' =——
+M'+ I—U
and then o/, B/, v’ can be obtained at once from (10’) (denoting the primed-
notation analogue of (10)). Moreover, (23) gives for the common value of the
ratios in (21),
LMN—-UVW
(24) Jj=LMN_UVW
LN—-UW

Finally, we can supplement (21) by relations which allow M’ and V’ to
be expressed in terms of L, U, N, W. Thus by (21), the equations

(151) M — N/ZU/__L/2W/ Vr— LIWIZ__NIU/Z

~ LU-NW'' =~ LU-NW
take the form
(25) gy = NE=LW gy LWP—NU
LN—-UW LN—-UW

Combining (25) (i) with (24) gives, of course, the same expression for M’ as
lent already by (23).

ReMARk. Although no use will be made of it, the following property of
the functions L, M, N seems worth mentioning. Suppose that

(L”, M”", N'y=T(L, M, N)I(L’, M’, N') .
Then the associated parameters are related by the equation
T’ B, v") = I(a, B, V)T, B, ') .
For on multiplying the former equation by T'(1, 1, 1), we obtain
L'+M"+N" = (L+M+N)(L'+M'+N'),
while from (10),
T(L, M, N) = T'(a, 8, v)+-; (L+M+N)T(, 1, 1).
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The result then follows directly.

4. The rational parametric solution

A solution in the field Q(a, B, v¥) will be obtained for the system (4).
Taking the equations separately, we may write (4) (i) in the form

A(pub, pby, 0) = A(x, 0, v)A(a, 0, ¢)
and so obtain a parametric solution by setting

T(L, M, N)T(b, pby, 0) = T'(x, 0, »)[(a, 0, c)

ub Aa AU+ vW)a+(W+vV )
or wh |=T(U, W, V) = | (AWW+vV)a+AV+2U)e
0 va+ae AV+vU)a+AU+vW)e
This yields the formulae
¢ _ _AV+vU
a AU+v W
wb _ NL—AvM-+v*N
a ANU+vW
by NM—xvN-+v’L
a AU+ vW

A solution of (4) (ii) can be read off by symmetry. With L'=L(a/, 5, %)
and so on, we have
b AV+uU
a AU+ uW’
e _ NL' —xp M+ u2N’

a U+ u W
ve, . NM'—ApN'4-p’L’
a AU+ uW’ ’

A simultaneous solution of equations (4) will be achieved by showing how
o', B’y v/ may be chosen in terms of a, B, ¥ so as to reconcile the disparate
expressions for b/a and c/a afforded by the two sets of formulae above. For
this we require

NL—MwMAvN __ V4l (- ,L_b)
AU+ oW U+ u W' a
_DLV_l_VU _ XZL,“)\,fLM,+M2N, (:LC>

AU+ vW AU+ W’ a/’

(26)




374 M. Craic

Now from (14) (ii),
UNL—x vM+v’N) = AL U+vW)+oNAV+vU) .
There is an analogous identity in the primed notation. If we write
*Z_MXV'-HLU’ ok — _ AU
AU +uW”’ AU+vW’
equations (26) will therefore assume the form
{ AL = p*U+v*N
AL = p*N'4-v*U’ .
Let o/, &', v’ now be chosen, as the Lemma shows may be done, so that
(21) is satisfied. Then the relations just written, regarded as a pair of linear

equations to determine the ratios A: p*: v*, are seen to be linearly dependent.
(Conversely, if they are dependent, then (21) must hold. For

L U _ N
L N U
and the cube of each ratio will equal
L3—U3—N?® w3
LA-N"—U" W~

by (13), (13’).) Returning to the earlier form (26) of these relations, we need
therefore only solve the single equation obtained by subtracting corresponding
sides, namely

NL—M(M—V)+ AN+ U) | ML 2p(M' = V) + N+ T) _ g

27
@7) ANU+vW AU+ u W’
This can be accomplished as follows. Set
u v

28) w W
From (21),

N+U _ N'+U’
29 k= =1 .
(29) =
The choice
(30) utv= —kx

reduces (27) to a mere linear equation, which may then be solved simultaneously
with (30) itself to yield the ratios u/A, v/X.
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In fact, eliminating % between (28) and (30) produces

w w’

which simplifies (27) to the form

NML—AAM—V)+ 4N+ U) _ ML —au(M'—V')+ p#N'+ U
w W '

By (21), M L/W=X\L’|W’. Subtracting this quantity from both sides and using
(29), we are left with the equation

This gives upon rearrangement

M-V, M-V"\_ b2,z
x( —Zy—M ,L)_k(u )
— En(u—v), by (30).
Hence
M~V _(z M-V
(32) e [ (a1 2

A mental check now suffices to show the solution of the linear system (30)-(32)
to be

= _kzt(fk 2+VM—%4[//) v
MR T T
) vy
.
p 2k2+MV;V+MI;/V,

In summary, the solution obtained for the bi-homogeneous system (4) is
the following:

/N, v[/\ given by equations (33);

b _ 1 NL—wM+vN _  AV'+uU
a p AU+ oW AU W’
c

a

_AV+HU _ 1 NL'—xpuM'+ p?N’
ANU+vW w AU+ uW’

(34)
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b _ _ 1 M*M—xwN+-v2L

o AU+vW
¢ _ 1 MM —apN'4p’L’
a v AU+ u W’ '

The values of o/, B/, v’ for these formulae are to be determined from those
of a, B3, v as described at the end of the preceding section (they will not be
needed explicitly), while (in (33)) k=(N+ U)/W. (See also Note A4.)

5. Identities
From equation (31) we see that
AU puW = — ] \ANU+vW).
By formulae (34), the system (4) thus has a solution in which

a=—A\U+vW)
c=ANV+vU

(35-a)
wb = —(ANL—axvM+-v°N)
pby = NM—AvN+-v2L
—Jla = —QU+uW)
(35-) A

—J e = — (AL —AuM'+ 12N’
—J ey = NM'—xuN'+ 2L .

Several useful relations connecting the variables on the left side in (3) follow
from the above. The first of these are

(36-a) { %o = Ly,+Ny,
2y = Myy,+Ly,,
(36.b) { x, = L'z,+N'z,
Vo= M'z,+L’z,.
In fact,

—%y+ Ly,+ Ny, = —ra+Lub-+N pub,

and (36-a) (i) results immediately on substituting the values given by (35-a).
The other three relations are obtained similarly.

Further identities can be deduced by elimination (that is, by solving).
Thus we find
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(37-a) { Lxy—Uy,— Nz, =0
Mx,+Uy,—Lz,= 0,

(37-b) { L'xy—N'y,—U’2zy =0
M’x,—L'y+U’z,=0.

Application of (21) to (37-b) (i) yields (37-a) (i) again, while applying (21) to
(37-b) (i1) produces

JM'xe—Ly,+Nz, = 0.
Eliminating y, between this equation and (36-a) (i), we get
(38) N(y:+2) = (1=JM)x, .

In addition to these linear relations, there are also quadratic identities
connecting the triplets of subscripted variables. Indeed (35-a) gives

X, A |14 U 0 M2
= /l’bl = M - N L AV
2 va L0 —U —WIiL?

Inverting the matrix and making use of (14), we find

A2 LU+NW UW  LU7x,
—ILN|w|=| MW  —VW —LV ||y
» —MU uv Lwllzl,

so that by elimination of A, »,

(MWx,—VWy,—LVz)*
= (LU+NW)x,+UWy,+LUz)(—MUx,+ UVy,+LWz) ,

or finally (by application of (14} and after division by L)

(39-a) LM(x,+2,)*—N%,2, = VWyi+(LV—MW)(x,+2,)y, .
The analogous identity satisfied by x,, ¥,, 2, is

(39-b) L'M/(%,+,) — Ny, = VW 254+ (L'V'— M' W) (%,+7,)2, -

It is to be noted that although not every solution of (4) given by (34) will
satisfy (35), the relations obtained in Part 5 will be valid anyway. For the
bi-homogeneity of these relations leaves them free of the added restriction
on the value of a/n imposed by the parent equations (35).
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6. The simplified solution
The values used for the Greek letters in (35) must satisfy (33). Hence

, u, 2] = B[X’ 7 7]

where

£ - LT M)
(40) N

e MV

while is § arbitrary. We shall next simplify certain of formulae (35)-(40),
assigning § a particular value chosen to help achieve this end.
Set
(41) K=M+4+V+1.
We have
KM—-V)= M*—V’+(V?*-UW)—(M?*—LN)
=LN—-UW.
Again, by (13),
L3+ W3 = N3+ U3,
giving
L—LW+W? _ N*-NU-+U?
N+U L+W

)

where the common value of the two members will be shared also by the ratio

NU(L*— LW+ W?)— LW(N*—~NU+U?)
NUN+U)—LW(L+W) '

The numerator in this expression simplifies to (LU—NW)(LN—UW), while
as regards the denominator, (15) gives

Yy — NUN+U)— LWL+ W)
LU—NW

This serves to establish the formulae

L—LW+W? _ N*~NU+U? _ LN—UW
(42) = = =K.
N+U L+W M—V

We may use (29) and (42) to write
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43) p_ N+U _ —LWAW*
w KW

And from (42), (24) and (13),

(44) JK=M*+MV+V?2.

By (42) and (44), we see that it is appropriate to define
J=13¢J, K=13¢K.

Formulae containing the letters J, K and homogeneous in L, ---, W will then
remain valid on replacing the latter by L, ---, W, provided we also change J to
"Jand K to K.
Next, for the numerators in (25), we have

NU?*—L*W = N(U*~VW)—(L*—MN)W—-NW(M—V)
= (LN—UW)—NW(M—-V)
and likewise
LW?*—N?*U = (LN—UW)—LUM-V).
So by (42),
(45) JM’'=1—-NW|K, JV'=1—-LUIK
whence on subtraction (N.B. W'=W|])
M-V’ _ LU-NW

6
(+6) w’ Kw
Moreover,
(47) (LU-NW)+(LN—UW) = (L—W)(N+U),
so with the help of (29) we derive
1 M-V M’—V’> L—w

8 — = .

(*+9) k ( w M w’ K

When the values given by (43), (46) and (48) are introduced in equations
(40), we find

S o L—LWAW? _L-W

KW K
__(N+UV , M—V

"”< 7% )+ w

, _N+U L—LW+W* , LU-NW

w Kw Kw
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By (47), we can write

(N+ UYL — LW+ W+ W(LU—NW) =
(N+U)(L*— LW+ W?)+ W(L—W)]— W(LN—UW),
which by (42) reduces simply to L(N+NU)—KW(M—V).

Consideration of the denominators in the expressions thus obtained for A,
B, © leads to the choice §=KW?2 We have then the formulae

A= — WL — LW+ W?)+W(L—W)]
= —WQ2L—LW+W?)
(49) p= K[(N+UY-+WM—V)]
v = (N+U)L*— LW+ W+ W(LU—~NW)
= IN+U)—KW(M~V).

Equations (45) in conjunction with (21) permit the reduction of several
other formulae also. Thus (35-b) (ii) gives

(50) b= —(1—LUK)»—Np
while (36-b) (ii), (38) and (39-b) yield in turn
(51) Jyo=(1—NW|K)zy+Lz,
(52) Wx, = K(y,+32,)
(33)  LA-NW[K)(%ty,)— Uxyy, =
W(QA—LU|K)z;+[(L—W)-+(NW?—L2U)[K|(%,+¥2)2, -
Proceeding with the simplification of (35-a) (i), we have by (49)
—a|W = UNW)+v
= —U[2AL*— LW+ W34 W(L—W)]
+(N+UYL*—LW+WH+W(LU—NW)
= (N-U)(L*—LW+W3H—W¥N—-U).
Hence
(54) a=—LW(IL—-W)N-U).
And by elimination of » between (35-a) (i) and (ii),
(55) We= —Lx—Ua.

The equations (54), (50), (55), (36-a) (i) and (52) can now be assembled to
read as follows:
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a= —LW(L-W)N-U)
b= —(1—LU/K)»—Np
(56) ¢ = L(—\W)+U(—a/W)
Nub,= na—Lub
Kve, = Wxa—Kub, .
It is these formulae, together with (49), which constitute the “simplified” sol-
ution. As noted in Part 3 however, we want a solution of (4) in terms of
L, ---,W (see (16)) rather than L, ---, W, in order that integer values of the
parameters «, 3, ¥ may produce integer values of D in equation (5). Taking
advantage of the bi-homogeneity of (4), we therefore cause the Greek letters in

(49) to absorb a factor (3¢)?, the Roman letters in (56) a factor (3¢)*, and so
write down the following as our final form of the solution to equations (4):

K= M+ V+3¢ (see (41))
A= —WQ2L'— LW+ W?
pl|K=(N+UP+W(M—V)
v=LN+U)—KW(M—YV)
(57) a= —LW(L—W)N—-U)
Kb= —\3¢K—LU)—uKN
¢/ = 3(—7/ W)+ U(—a| LW)
Npb,= 3¢pna— Lub
Kve, = Wxa—Kub, .

Lastly, we remark that formulae (35) become valid for the above solu-
tion if L, -+-, W are replaced by L, ---;, W. The relations so obtained will find
use in Part 8.

7. The main example

The present section will exhibit a specific imaginary quadratic field with
3-rank (at least) four. How from this one example we may infer the existence
of infinitely many such fields, will be seen in Part 8.

Take as solution to (7a) (ii)

(58) [et, B, ¥]1 = [0, 3, —3].
By (9-a) we have ¢=3% hence by (17)

L U 1 729

(39) M V| =| 244 738

N W —242 720
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It is then a matter of patience (see Note B) to verify the following values com-
ing from (57):
K = 1063
A= —25.32.5.11.23531
p/K = —37.3203
v = 378 088 327
(60) a= —2%3%5.719.971
Kb = —2.11.2749.2837-3413
c=3%6 801 023
wh, = —79-79018 39513 77089
Kvc, = 1231.736 717-22 19170 41539.

We shall need the fact that the four numbers printed in bold type are primes
congruent to 1 (mod 3). While three of these numbers scarcely require the
use of tables, the value of » lies beyond the range of existing tables. Its primality
can be confirmed without recourse to mechanical means of computation, by
applying the Gaussian method of exclusions, for example (see Note C).

The Proposition stated in the Introduction is next brought to bear on the
field @(\/D), D being given by (5). These two are placed in relation to one
another by the table which follows.

) A, B; IA Integer Multiples
1 XoR0= X313 x5 —y3+23 v )

2 V2%, —x3+yit2 37 »2l K, o

3 XY, x3+yi—z3 79 7

4 X0 Yo=%, x3+ys—25 2749 Kx,, v,

Equations (2-a) have been used in forming the second column. By noting
that y,=(u/K)(Kb) and y,2,=(u/K)a(Kvc,), we see from (3) and (60) that the
entries in this column are integral. Those in the third column are likewise all
integers. This is already clear in the case of B, and B,, while from equations
(2-b) we obtain

Bz = B4+2y3

61
(61) B, = B,4-2x}

(where y, and «, are integers). The last column of the table lists multiples
of /; for each value of 7, as can be checked using (3) and (60). A comparison
with the second column yields in particular the result
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A,-EO(mod l,')’ 1<1<4,

needed for (iii) of the Proposition. We proceed to a systematic examination
of the other requirements for the isomorphism (1).

Greatest common divisors
(a) (4, B)=1= (4, B).
These conditions take the form
(%20 X5—Y5+23) = 1 = (Y0, ¥5+y5—23)
so are equivalent to
(%0, Yo—23) = (Y0, 23— 23) = (20, %3—y3) = 1.

It will be enough to show that (3, y§—=3)=1 (which is clearly satisfied), together
with

(%0/3% UNyi—2%)) = (30, L x5 —27)) = (20, L¥x5—0)) = 1.
By (37-2) (1),
Uy,=— Nz, (mod x,/3%)
Lx, =Nz, (mod y,)
Lx,=Uy, (mod z,).
The conditions above therefore reduce to
(3%, (N*+U%)20) = (30, (L*—N?)20) = (20, (L*—U?)pe) = 1.
By (3) and (60) however,
xy = 2%.3%.52.11.719.971.23531

(62) Vo= 2-11.37.2749.2837-3203-3413
2, = 3*-6 801 023.378 088 327

where the factorizations are complete (c/3* being within the limits of the table of
Lehmer [7]). Hence

(63) (%6/3% 20) = 1 = (30, 20)
and it requires only to be shown that
(%9, N3+-U?®) = (30, L’— N3 = (2, L*-U? = 1.
From (42),
N+ U= K(L+ W)N+U) = 7-103-487-1063 ,
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which is prime to x,. And
(64-2) L*—N?= (L—N)(L*+(L+N)N)=3%19441,
prime to y,, while

Us—L? = (3*—1)(3°+1)
= (B 1)FFFH)FH 1)@+ 1)—3)

or
(64-b) U3—L*= 2%.7.13.19.37.757 ,
which is plainly prime to z,.

(b) (45 By)=1.

This requires (x;, By)=1=(y,, By), the first part of which is immediate from
(61) (ii) together with (4,, B,)=1. We are left to show

(yp #i—20) =1,
and this will follow from
(31, LM(x,—2,))) = 1 = (y,, LM(x{4%,2,+21)) .
By (39-a) however,
LM(x,+2)*= N2, (mod y,),
so that these conditions can be replaced with

(_',Vn N2—4LM) - (yl) NZ'_'LM) = 1

©3) { (%2, y1) = 1.
For (65) (i) we have

N?— LM = 3¢W = 2:.35.5

(66) {
N2—4 LM = 34) W—3LM = 22.3.-4799,

while by (2-a) (i), equation (65) (ii) can be written as

(67) (%0, 71) = 1 = (20, 1) -

To confirm (67), we note that the ideal (x,, ,) must contain
(Bpxo— Ny, Mxo+Uy)) = (Lyo, Lz,

by (36-a) (i) and (37-a) (ii). Similarly, (2, ¥,) will include

(3¢20"Ly1’ .2‘0) = (Myo’ 2’0) )
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by (36-a) (ii). Since L=1=(M, z,), the latter part of (63) supplies what is
needed.

(c) (4 By)=1.

It is to be noted that whereas x, and 2, are non-integral, all three of Kx,, y,/K,
Kz, are integers. We have 4,=(y,/K)(Kz,) and so must show that

(32/K, By) = 1= (Kz,, B,).
Now (%:y3, B) = (4, B) =1

by (a) above. The former requirement is thus a consequence of (61) (i). The
latter one will follow from

(Kz,, (Kx,)*—(Ky)}) = 1.
But by (53),
L3pK— NW)(Kx,+ Ky,)*= KUY Kx,)(KYy,) (mod Kz,) .
It will be sufficient to check that
(Kz;, L(3pK—NW)(Kx,—Ky,)") =1
(Kz;, L3pK—NW)((Kux,)*+(Kx,)(Ky,)+(Ky,))) = 1
and therefore that

(K=, (Kxp)y,) =1
(68) (K=, KU*—4L(3¢K—NW))=1

(K=, KU*—L(3¢K—NW))=1.
We have

KU*~L(3¢K—NW) = (KV+LN)W
L—-u?
T M-V

by (42) and (13). So by (59) and (64-b), equation (68) (iii) reduces simply to

(Kz,, 26+32-5.7-37.757) = 1.

Again, in (68) (ii),
KU*—4L(3¢K—NW) = 4W(L*—-U®/(M— V)—3KU*
= 32.62 653 379

(the larger factor being actually prime).
To handle (68) (i), since 2, is non-integral it is enough to see that

(Kz,, (Kx,)(y./K)) =1
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and hence by (2-a) (ii) that
(Kz,, %) = 1 = (L(Kz,), y) .
From (52) we have
Kz, = Wx,— Ky, .

Our first condition then follows readily from (62) (i) and (67). For the second,
note that by (51)

L(Kz,)) = JKy,— (3¢ K— NW)z,
and we need only check that
(¥o, (3 K—NW)z)) = 1.

However,
3o K— NW = 32.28927,

and the result follows by (62) (ii) and (63).

The discriminant

The truth of D<O0 can be confirmed from (5) and (62) with the aid of a
table of logarithms.

To see that the discriminant d of Q(\/D) satisfies d <—4, note that
D=C% where C is an integer. It is thus sufficient to check

(D,6)=1.
This is easily achieved, since from (62)
%= Y,=2,—1=0(mod 2)
X% =2,= y,+1=0(mod 3),

giving by (5)
D=1 (mod 3) and (mod 4).

Non-cubic residues
It must next be shown that for 1<7 <4,

B;==cube (mod /) .
The techniques of the preceding section apply. Thus
f L°B,=(U’—L%y; (mod )
L*B,=—(L*—N%z3 (mod y,)
l (LM)yBi=(N*—4LM)(N*—LM)*(x,%,)* (mod y,)
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while from (61) (i),
B,=B, (mody,).

(See also the last column of the table.) Taken in conjunction with (63) and
(65) (ii), the following conditions will therefore furnish our requirements:

U3—L*%cube (mod v)
L3— N3z%cube (mod 37) and (mod 2749)
(N?*—4LM)(N*—LM)*==cube (mod 79).

These, in turn, reduce to the conditions
(69-a) 73 and 757=cubes (mod v),

] 11 and 17=cubes (mod »)

S5%cube (mod v)
(69-b)
l 2%cube (mod 37)
3=%cube (mod 79) and (mod 2749) .

Indeed, the reader may check that

28.5(7-11.13)(17-19)37 = 40.1001-323 (111/3)
= »+100 429 713 .

Multiplying by 8x 8 and reducing, we obtain

26.5(11.17)(23.7-13:19.37)=73 (mod v»)
hence by (64-b),
28.5(11-17)(U3—L*)=73.757 (mod v).
Again,
j9441= ] 2 (mod37)
2.3%2.11 (mod 2-5%-11—1)
so from (64-a),
L}*—N3*=2(2-3%)* (mod 37),
5(L*—N3%=3% (mod 2749).
Lastly, 4799=—22.5 (mod 79)
and (66) gives
(N*—4LM)(N*—LM)*=—3(2*-3*.5)* (mod 79).
To avoid repetition, we shall postpone checking (69) until the end of the
next section.
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Trace conditions
Concerning (iv) of the Proposition, we have by equations (2-b) and the
table,

%(BA—BZ) — x3tyi=a (mod)
BBy = yt—si=—si (mod )
(Bt B) = si+ a4}

%(B1+B4) = X3

%K3(BZ+B4) — (K +(Kz)=(Kz) (modl,)
1

S (BB) = wttst.

Since
(xo: 1214) = (zl, ls) = (Kzz; 14) =1,

it has only to be shown that

(70) { x3+x}+y3 =non-zero cube (mod I;)
x4} =non-zero cube (mod 7,) .
From (60) we find
I, p, a, ]=[—34, —1, 3, —16] (mod 79),,
giving [0, %, ¥2]=[—23, —9, —3] (mod 79),
so 23(x3+x3+y3)=3% (mod 79) .

This gives (70) (i). For (70) (ii), since (A, I)=1, we must show

a*+c3=non-zero cube (mod 2749) .
Now from (60),
[a, c]=[—3%2-487, —3°] (mod 2749) .
Thence
a*+c3=3%.241 (mod 2749),
or 2.7(a*+c%)=5(32-5)% (mod 2749) ,

and the desired conclusion will follow from

(71) 2 and 5 and 7=cubes (mod 2749) .
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The verification of (69-b) and (71) is immediate from the product criterion
of Note D, applied to the decompositions

4v = (17.2207)427(11-179)?
4.37 = 1174271
4.79 = 174271
2749 = 7-+27(2.5).

Conditions (69-a) meanwhile, are a consequence of the following factorizations of
the reduced period equation (see Note D):

5 15)(7—20 d73
Py@ri17.2207) = | (THICHNT=20) (mod 73)
| (r—10)(r—46)(7-+56) (mod 757) .
This completes the checking of (i)-(iv) of the Proposition. We may thus

conclude that for the field @(\/D) here considered, the ideal class group has
a subgroup isomorphic with C(3)%

8. An infinite collection

To obtain further imaginary quadratic fields with 3-rank four (at least),
we take in place of (58)

[a’ 18) 'Y] = [O) t, —t] .
By (9-a), $=3¢, and so in (17)
L U 1 9t!
(72) M V|=|1498 33:+1)
N W 1-92 3383—1)].

Write D(2) for the value of D produced by (5), (57), (72). Depending on
context, ¢ will denote an indeterminate, a real variable, or a positive integer.
In the last case, define d(t) as the discriminant of the field @(\/D(¢)). The
Theorem of the Introduction will be proved by showing in turn that
(a) d(t)—>—oo as t—>oo;

(b) For infinitely many positive integers ¢, the isomorphism (1) is valid.

The polynomial D(t)
Formulae (72) yield
L, M,N=1; U, V, W=0 (modt).
In (57) therefore, we have K=1 (mod ¢) and
(73) N a, ¢c=0; p/K, —Kb, v=1 (mod #).
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Thus
(74) (% Yo» 20)=(0, —1, 0) (mod 2).
Again, from (72) it is easy to calculate
-\, v = 3%24-0(t°) and —a, ¢ = 3%+ 35t"+O(t"),
so that with the help of (37-a) (i) we obtain

Xoy B = 3UHU4-3B L O(12)

75
(75) Yo = 3284 O(£7) .

Combining (74) and (75) with (5) shows D(2) to be a polynomial of the form
D(t) = 14----—4.372p4

We see from this equation that D(¢#)——oo as #—>co. Condition (a) will follow
immediately by Siegel’s Theorem [14] once it is determined that three or more
roots of D(t) are simple. Since D(¢) is of odd degree however, we have only to
show it has no rational root.

Such a root would be of the form

t= 423", 0<m<2, 0<n<72.

Now by (5), D(#)>0 if naub<0. We use this fact to construct an interval
about t=0 within which D(#)4=0. Indeed, from (35-a) (iii) and (57),

—naub =LW¥L— W)(N— U)2L*— LW+ W?)(L\*— MAv+ Nv?) .

The last factor on the right is a quadratic from and will agree in sign with L when
the discriminant is negative. We are thus reduced to the problem of marking
off a neighborhood of #=0 within which

M*—4LN = 3¢ V—3LN
= 3(—14+18£24-2715 <0
L—W=143t—9>0
N—U = 1-9#—9¢>0.

By Descartes’ Rule of Signs, none of these three polynomials can have
more than one real root of either sign. We find that ¢ V—LN changes sign

in the intervals { —1, _1 , i, 1 and that L— W, N—U change sign in
2/ \3 2 8
(—%, —%), <—;-, 1) and (—2, —1), (%, %) respectively. Thus each poly-

nomial has exactly one positive and one negative root. Moreover, the
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inequalities above will hold simultaneously for —%{g t <%‘.
The work can be completed by checking that D(¢)#0 for =41, :{:—é——,

—%. Except when #=1, it is found that navc<0, while a more elaborate
calculation with logarithms yields D(1)>0.

Congruences

The table of Part 7 is used without modification for relating the Pro-
position to the field @(\/ D(#)). The arguments which before showed the second
and third columns to contain integers, apply to show these entries lie now in
Z[t], and they will be denoted as A,(t) and B,(¢). We shall demonstrate con-
dition (b) under the Assumption: For 1<i<4, the polynomials A,(t), B,(t) are
relatively prime in Q[t].

Set

T = 1,11 R,R,R,R,

where /; is the same as in column 4 of the table and R, is the resultant of A(t)
and B(t) in Z[t]. By assumption, R, is a non-zero rational integer. Next, let
t be an integer satisfying

(76) t=3 (mod T) .

Then (i), (iii) and (iv) of the Proposition are fulfilled in the case of Q(/D(z)).
In fact, (76) gives

(77) AM)=A43), B()=B(3) (modT).

Since T'=0 (mod [;), conditions (ii1) and (iv) follow easily from the results of
Part 7. To obtain (i) we observe that (77) combined with Part 7 yields

(A{t), B{))=1  (mod T),

~ where the left member also divides 7, since it divides R;.

From condition (a) proved above, we shall certainly have d(t)<<—4 if ¢ is
positive and sufficiently large, which supplies the remaining requirement (ii)
of the Proposition. The fields Q(\/D(t)) formed in this way are thus imaginary
quadratic fields of 3-rank at least four, and they constitute a set of infinite
cardinality.

Polynomial common divisors

Our final task is therefore to justify the Assumption made above, and by
the reductions performed in the course of Part 7, it will be enough to show
that the following pairs of polynomials are coprime.
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(a) Fori=1 and 4:

(t’ yg_zg)) (xo/tzy zo)’ (yO) zo)
(% N3*+U3), (30, LP—N?), (20, L*—U?).

(b) Additionally, for =3:
(yl) 3¢W), (_yl’ N2—4'LM)’ (M zo) .
(c) Additionally, for i=2:

(Kz,, W(L'—U?)/(M—V))
(K=, 4W(L*—U?)|[(M— V)—3KU?
(yo’ 3¢K_NW) .
A combination of two different techniques will be employed.
(i) If two polynomials with odd leading coefficients are not coprime, they will
have a common factor of positive degree after reduction modulo 2. The algebra
needed for computing the reduced forms of the polynomials from formulae
(57) can be minimized by representing polynomials modulo 2 as strings of
binary digits, in the obvious fashion. We require also a table of irreducible
polynomials (mod 2), such as the one given in [1, Appendix IV].
By (72),
L U 1 ¢
M V| =148 H(14-8) (mod 2),
N W 148 t(1+8)

so from (57) we obtain (congruences being modulo 2)

K=14+t4-24+854+
A=2(1+8(1+t 2142414
ulK=(14-24-83) (141424
v=(14-t+ 1)1+ B4 541
(78) a=t(1+)(14+24+-2) 1+t 19148+ 1)
Kb=(14-8)1+t+ )1+ 2+t (14- 242+ 17419
c=P(1++ 14+t 2414485
Kve,=(1+824+-8)1 -+ 14 (14-t - 24t - 15474 t5) (1 +- 24+ 2°) .

All factorizations shown are complete. The value of wb; will not be needed
and is omitted. From (37-a) (ii) however, we see

yl —_ '—312t23+ O(tZZ) R
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whence by (52)
Kz, = 3“%4-0(17) .

Consequently, there is no loss of degree due to reduction in the last congruence
of (78). 'The same holds for all the others, as follows immediately from (75).
(i) Let ord denote the 3-adic exponential valuation of @, and also its unique

extension to the algebraic closure @, of the 3-adic completion ;. (N.B. ord (0)=
00.) The 3-adic Newton polygon for

f() = Natez

is the lower convex envelope of the points (z, ord(a;)) (see [15, Ch. 3]). Since
the side-slopes for the polygon give the values of ord at the roots, polynomials

f(t), g(t) generating disjoint sets of slopes can have no common root in @; and
must be coprime. (Notationally, (f(z), g(t))=1. There will be no confusion,
since ¢ always stands for an indeterminate in what follows.)

From (57) and (72) we find

A W= 2430+ 33123434 (Slope: %)
N W—a| LW = 3(1-- 204+ 38— 3£ —2.3%— 3454347 42.3%%)

(S]opes: 0, %)
(79)

I K = 1314352344 34534 (Slope: ‘; )
36 K—NW = 31(14- 343443 564343351 3%)

(Slopes: oo, %, %) .

These preparations completed, we proceed to investigate conditions (a), (b),
(c) above. (see also the remarks following (57).)
(a) The truth of (¢,y; —=3)=1 is apparent from (74). Also,

(80) (—\W, —a|LW)=1,

by application of the 3-adic argument to the first two members in (79). In
view of (35-a) (i), this leads to (—\/W, v)=1. From (57) (iv) it is easily
seen that

(81) (W,v)=1
and we obtain (A, »)=1. This can be strengthened to read

(Aa,v)=1,
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by use of (35-a) (i) again. On the other hand, since

/3t v0)=1,
equation (35-a) (ii) gives

(A3t c)=1.
The desired conclusion

(82) ((3t) "%, 25) =1
will be obtained once it is shown that

(a/3t,c)=1.
Now (—a/LW, 3¢)=1, hence

(a/W,c)=1
by (57) (vii) and (80). And

(W/3t,¢c) =1

by (81), since from (35-a) (ii)
¢=vU (mod ) and therefore (mod W) .

The result follows on multiplying the last two equations.
From (57) it can be seen that # is the highest power of ¢ dividing ¢, and
therefore also 2, by (73). Thus (82) yields

(%0, (31)722p) =1
and by (37-a) (i) we get
(Uyo, (38)22)) = 1.
Hence by (74),
(Yo» ) =1.
To show (Aa, N34 U®=1, we check that
N, L34-W3) =1 = (a, K(L+ W)(N+U))
(see (42)). However, from (57), A=4L? (mod (L+ W)) so (A, L+ W)=1, while
(W, P—LWHW?) =1= (2L*—LW+W? L*~ LW+ W?),

where the first term in the right member equals (—2\/W). This gives the
former requirement. For the latter, note
{ a = 3t(1—383)(1+3t—9¢4)(1—9£—9¢*)
K(L+W)(N+U) = (14349624 9£3++9¢*) (1 — 3¢+ 9¢4)(1 — 92+ 9¢%) .
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All five quartic factors appearing are irreducible, being irreducible (mod 2).
Since they are all distinct, the result is immediate.
In order to prove

(u/K)(KD), L*=N°) =1,
we note that
L*—N?=3¢(LU—NW) = (3t)¥(1—-3%+3%F) .
The Newton polygon for the second factor (which is a factor of 14-3%%) has a
single side of slope —; By (79) (ii1), this sextic must be prime to u/K. And

as reduction produces 1-#+15 which is irreducible (mod 2), its coprimality
with Kb is a consequence of (78) (vi).
Lastly, we must show

(ve, ’—U% = 1.

But this follows at once from (78). For
1+2=(1+8)* (mod 2)
which gives
(83) L—-U=(1+4)(1+t+12)* (mod 2) .
(b) To verify
(o 3¢W) =1,

we need only show (y,, W)=1. However, as

yn=v*  (mod?})

by (35-a) (iv), this is a consequence of (81).
Again, seeing that N2—4 LM has the same degree as N?, the condition

(v N*—4LM) =1
requires only the coprimality of y;, N (mod 2). Now
M=N=14¢ (mod 2),
whereas with congruences modulo the ideal (2, 14#%) of Z[¢], we have in (78)

v=14+1(1+B) (1) + 451+ ) =t
c=E(1+1(1+B)(1+H)(1+8)+5)=2

hence vc=1. By (36-a) (ii) therefore, y,= 3¢ =1 which gives the result sought.
The last condition
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(M, z)=1
is easy from (78).
(c) We have
M—V=(1+tf(1+t+#)  (mod?2),
so by (83)
L3_ 3
W M_“’, =t(1+2)(1+2+2)*  (mod2),

which is seen to be prime to Kvc, (mod 2) in (78). For showing Kuvc, is prime
to
L3_ U3

4w —3KU?,

we note that the terms in the latter expression are both of degree 12, so it is
enough to check Kvc,, KU? are coprime (mod 2). This is immediate from (78).
Regarding the sole remaining requirement

((u/K)(Kb), 3pK—NW) =1,
we obtain from (79) the fact
(v/K, 3¢ K—NW)=1.
And since
3pK—NW =t(14-t+3)(1+2+19) (mod 2),
it follows from (78) we have also
(Kb, 3¢K—NW)=1.

The correctness of the Assumption is thereby proved, and with it the
Theorem.

Notes

A. An alternative derivation
For simplicity, set A=1=a, so equations (4) assume the inhomogeneous
form
WE+b) = (1491 +)
¥(H-c}) = (1+p3)(14-8%) .
Solutions of the system may be denoted by ordered tuples [u, v, b, b, ¢, ¢,].

Each such solution gives rise to another, namely [v, u, ¢, ¢;, b, b,], the effect of
the corresponding linear transformation of the variables being to interchange
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the two equations. Again, when p, b, b, are replaced by b, p, ub,/b respectively
(v, ¢, ¢, being held fixed), the equations are separately preserved. By incorpo-
rating the analogous alteration of v, ¢, ¢, we derive from the original solution,
& say, the solution Y given by [b, ¢, u, ub,/b, v, ve,/c].

The particular self-transformation of the system to which this corresponds
is distinguished as follows. The resolution of (4) obtained in Part 4 resulted
from the solution (33) of equation (27). The latter has other solutions, howe-
ver. In fact, we may use (29) to write (27) (in its inhomogeneous form) as

(U W'+ )L W—Ev~+ ko) -+(UI W) LW~ E -+ ) = 0,
where E=(M—V)/W and E'=(M’'—V")[W’. Note that by (14) (ii), we have
(84) L+EU+RV =0.

Let
ptv = —k*

where the value of &* remains to be chosen (cf. (30)). Elimination of x then
yields the quadratic equation

[Rk*+ B+ E-+ B>+ [k*(kk*+ E+ E'+ 2kU|W)+E'U/W—EU'| W'}
+[(k—k*)L| W+ k*(kE*+E)U/W] = 0 .

As we know, one way of solving this equation is to choose k*=k. Ano-
ther way takes advantage of the fact that the coefficient of »? is linear in k*
and can be made to vanish. Thus on choosing

B — —k—%(E—i—E’),

v will be determined by the linear equation
[kk*(—k+-2U/W)+E'UW—EU' |W v+ [(k—k*)L|W—k*(R*+E)U/W] = 0.
From (28), the coefficient of » may be written as

(U'|W'— U|W)(k+E+E)+E'UW—EU'|W'
= (R+ENU' W —(K+E)U|W ,

and using (84)-(84’) to eliminate E, E’ we can bring this to the simple form
k(L’|W"?—L|W?). For present purposes however, we write it instead as

k(k+E')—(2k*+E-+E\UIW .

Again, the constant term in the equation is
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RL|W—k*(L+-EU)|W+k(k*+E+E)U/W
= (k—k*)(L+EU)|W+Hk(F*+E"\U/W
= —(2KR+E+E)V|WHk(E*+EUW ,
by (84). The value of v is therefore given by the ratio

2R+ E+E"\V—k(k*+EU
(2k+E+E)\U—k(R+E)W'

This however, is precisely the value assigned to ¢ in (the inhomogeneous
form of) (33)-(34). If S stand for the latter solution and J* for the new one,
we have therefore shown that

v(9*) = ¢(S5).
Now this implies that, additionally,
o(g*) = v(S).
For the equation
V4+vU
=——"1""=F
Uoy — 1) S

(which is valid for both solutions), remains correct when the roles of » and ¢
are interchanged. Thus

o(T*) = F((3%) = F(e(S)) = v(S).
Moreover, by symmetry we have
w(T*) = b(S), HT*) = u(S).

The equations (4-a) and (4-b) themselves suffice to determine now the values
of b,(9*) and ¢,(9*), and we see that I* is none other than the solution I
described earlier.

Finally, a glance at (5) shows the value of D will be the same for I (hence
g*) as for S. The two quite different techniques for solution of (27) lead
accordingly to the same results.

B. Numerical values

Less factored forms of the larger numbers in (60) are

j Kb= —2.11.2 66176 90069
ub, = —62 42453 21587 90031
( Kve,— 2 01256 26027 96210 66953.

The labor of checking the work can be reduced as follows. Instead of re-
computing Kb from (57) (vi), let the equation be written as



CONSTRUCTION FOR IRREGULAR DISCRIMINANTS 399

Kb+ (p/K)K*N = —\3¢K—LU).
If the proposed value be used for Kb, the left side will read
2-11(11-37-3203-10632—2 66176 90069) .

Multiplication by 11 and 37 (=111/3) are easy. For the first term in paren-
theses we find the value 147 30513 17749. After performing the subtraction
indicated, the result can be compared with the right side of the equation by
trying the factors of A given by (60) (ii). In this way, successive divisions
(resulting in smaller numbers) take the place of repeated multiplication.

Similar remarks apply with greater force to the calculations for wb, and
Kuc,, the terms containing the factor \a in the last two formulae of (57) being
the ones to isolate.

C. Primality of »=378 088 327
The known idoneal determinant —462 (see [6, §303]) divides
v—1=2.32.7-11-53.5147 .

The eight reduced forms for this determinant are ax?+cy® with a<c, ac=462.
Only the principal form represents quadratic residues of 3, 7, 11 so we are to
show there is just one decomposition (with x, y positive)

v = 52446292 .
Now x < 19444, while
x=+1 (mod 2, 3,7, 11),
so that by the Chinese remainder theorem
+(x—462¢t) = 1, 43, 155 or 197

with 0<t<42. For the cases x=-4-1+ 462¢, we have therefore (upper and
lower signs corresponding throughout)

% = 3.53.5147F2t—462¢

—3F2t42#  (mod 8)
4t (mod 3)
| —2(142+#)  (mod 5)
] 3F2t (mod 7)
—57F2t (mod 11)
—3F2t+6£  (mod 13).

From these congruences it is easy to see that 30, 1 (mod 4), and moreover
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+1%2(3); 0,4 (5) ;0,2,6(7);0,2,5,9, 10 (11);
3,4,5,6,10, 12 (13).

If we write down the numbers = 2, 3 (mod 4) from 2 to 42, then deletion of
those = 2 (mod 3) and so on, will be found to exclude all. The case x=1--462t
is therefore impossible. However, after deleting numbers = —2 (mod 3) etc.,
there remain 18 and 38. Taking #=18 gives y>=668 721, which is not a
perfect square. But from #z=38, we obtain the representation

v = 17555+ 6462-389.

The same exclusion moduli 4, 3, 5, 7, 11, 13 may be used to show that
+x= 43, 155, 197 (mod 462) do not lead to further decompositions. The
one above is therefore unique and » must be a prime number.

D. Cubic residues

If p is a prime = 1 (mod 3), we may write
4p = 24277 .

Sufficient conditions for the prime ¢(=# p) to be a cubic residue of p are then
as follows.

(1) En=0 (mod g) .

When ¢=2, 3, 5 or 7, this condition is also necessary. See [10], [11].
(i) 'The congruence

T=p(37+§)  (modg)

has a root 7(mod g), provided (g, 37)=1. See [8]. (Note that (ii) is just the
condition for g to split fully in the cubic abelian field of discriminant p?. 'The
latter field is @(7) or @Q(7’), where (cf. [6, §358])

™ =p37+E), T°=p(7+n).
We have
discr (7) = (272p)*, discr (') = (£p)’,
the connection between 7, 7° being
2+4E/m+3n/7 =0.)

E. Real quadratic fields
By the second inequality in Scholz’ condition [12]

s<r<s+1,
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the Theorem proved above (r>4 infinitely often) has the immediate conse-
quence that infinitely many real quadratic fields have 3-rank three or larger.
It would clearly be preferable (in retrospect!) to have a proof that s >4 infinitely
often and to deduce our Theorem from the first inequality.

A means for achieving this end is given by Yamamoto in Part II of [16].
Since

—27B* 448 = —27(B*—4(4/3)")

the problem of finding several trinomial cubics x*—Ax+B having the same
discriminant is exactly the one treated above (see Part 2). Assuming some
four of these cubics define unramified extensions of the same (real) quadratic
field K (criteria for this being given in [16]), we shall have s(K)>4 provided
the extensions are independent, that is, none is contained in the compositum
of the others.

A test for independence is easily supplied. Let K, K,, -+ be cubic fields
of discriminant d, where d is the discriminant of K. Then the composite,
sextic fields KK; will be independent provided there are rational primes /,, ,, -+
such that for each i, (/) is fully split in K, -+, K; but inert in K;,,. For
example, with d=3%+4:19% we have

& —370x+ 7315{ o(x—8)(x+8) (mod 17)
(x-+1)(+2)(x—3)  (mod 11)
3 ——
x3——694x+6523—:—{ a’+3x—5 (mod 17)
*(x—1)(+1) (mod 11)
3
x3—604x+5067_=_1 &4 8x41 (mod 17)
¥tx—4 (mod 11).

Thus Q(\/ d) has s>3. The class group is in fact precisely C(3)? (see [13]).

F. Correction to [3]

The second sentence of the proof of Lemma 4 should state that there is
a natural imbedding of Q[s] in Qy]s, #] given by

f(s) = 125D f(s]z)
(to which the map ¢ —1 is inverse).
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