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Abstract—Generalized approximate message passing (GAMP)
achieves near-optimal performance in detecting spatially mul-
tiplexed massive multiple-input multiple-output (MIMO) sig-
nals with significantly reduced computational complexity under
independent and identically distributed (i.i.d.) measurements.
However, in spatially correlated MIMO channels where the
ideal assumption of large-scale uncorrelated observation does
not hold, the detection capability severely deteriorates. This
performance degradation can be compensated for by optimizing
GAMP with embedded learnable parameters via deep unfolding
(DU) techniques, i.e., data-driven tuning; however, the learning
process becomes quite unstable. To address this issue, we propose
a novel method that achieves stable learning by incorporating
a monotonic increase constraint on the reliability of propagated
messages by learning the differential (incremental) values of the
learnable parameters between two consecutive iterations. The
efficacy of the proposed method is confirmed through numerical
results in terms of loss trajectory in the learning process and
bit error rate (BER) of massive MIMO detection.

Index Terms—Generalized approximate message passing, deep
unfolding, MIMO signal detection, data-driven tuning

I. INTRODUCTION

A massive multi-user multiple-input multiple-output (MU-
MIMO) system, where a base station (BS) equipped with
a large number of antenna elements simultaneously serves
multiple user equipments (UEs), is one of the promising
technologies in the forthcoming wireless communication sys-
tems. The spatial degrees of freedom (DoF) obtained by the
multiple antennas enable enhanced detection reliability and
improved spectral efficiency. In the uplink scenario, spatially
multiplexed signals need to be separated at the BS receiver
with low computational complexity and high accuracy [1].

As signal detection schemes reasonably balancing these
two demands, various message passing algorithms (MPAs)
based on belief propagation (BP) have been proposed [2]-[8].
Among them, Gaussian belief propagation (GaBP) [2], [3] and
generalized approximate message passing (GAMP) [4], [5]
have been proven to asymptotically achieve the Bayes-optimal
performance in the large-system limit! with highly affordable
computational complexity of O(M N) per iteration, provided
that the measurement matrix is composed of independent
and identically distributed (i.i.d.) Gaussian random variables
with mean zero [9]. However, unlike expectation propaga-
tion (EP) [8] and vector AMP (VAMP) [7], which trade
computational cost for robustness in detection capability by

IThe idealized system assumption, where the input and output dimensions,
M and N, respectively, are infinity for a given compression rate § = N/M.

allowing matrix inversion or singular value decomposition
(SVD) operation, its performance deteriorates significantly
when the statistical behavior of the measurement matrix
deviates from this ideal condition [10], [11].

To mitigate this performance degradation, several heuris-
tic methodologies have been investigated, such as belief
damping [12] and belief scaling [3]. The former enables to
suppress the undesirable vibration behaviors in the propagated
messages i.e., beliefs, by updating the beliefs via weighted av-
erage, and the latter to prevent the generation of harmful belief
outliers by adaptively regulating the shape of the denoiser.
However, the analytical optimization of their parameters is
hard due to the non-linearity of their algorithmic structures.

Recently, a novel deep learning (DL)-aided approach,
called deep unfolding (DU) [13], [14], has attracted a great
deal of attention in the physical layer signal processing of
wireless communications [15], [16]. DU regards the signal-
flow graph obtained by unrolling the iterative algorithm as
a feed-forward neural network (FFNN), and enables the
learning optimization of the embedded parameters via the
standard learning techniques, such as backpropagation and
stochastic gradient descent (SGD); this process is also referred
to as data-driven tuning. In [17], [18], it was shown that
trainable GaBP (T-GaBP), where the embedded damping
and scaling parameters are learned via data-driven tuning,
dramatically improves signal detection performance under
correlated measurements compared to the conventional GaBP.
However, since GaBP requires the calculation of M N beliefs,
the computational cost is higher than that of GAMP, which
only operates with M beliefs, and the number of learnable
parameters also increases accordingly; thus, the learning cost
of T-GaBP is also higher. In learned AMP (LAMP) [19],
which applies DU to GAMP, it is necessary to learn the
weight matrix, and problems such as high load during the
learning process and poor generalization performance have
not yet been circumvented. In addition, if one attempts to train
GAMP with fewer learnable parameters, it becomes difficult
to maintain consistency with the sophisticated update rule
derived based on the ideal assumptions described above. In
many cases, this leads to significant instability in the learning
process.

In light of the above, in this paper, we propose a novel
strategy for stabilizing the learning process in optimizing the
few parameters (damping and scaling parameters) embedded
in GAMP via data-driven tuning to achieve reliable signal
detection under highly correlated massive MIMO channels.



Specifically, to impose a monotonically increasing constraint
on changes in scaling parameters for iterations, the non-
negative incremental value of the parameter at each iteration
step is set as a learnable parameter, rather than the scaling
parameter itself. This is equivalent to incorporating the oper-
ating principle of MPAs as additional domain knowledge that
the reliability of the beliefs should be gradually improved as
iterations proceed [3], [20].

Finally, the efficacy of the proposed method is numerically
confirmed in terms of loss trajectory in the training process,
dynamics of the learned parameters, and bit error rate (BER)
in massive MU-MIMO signal detection.

Notation: Vectors and matrices are denoted in lower- and
upper-case bold-face fonts. Sets of non-negative real, real,
and complex-valued numbers are denoted by R, R, and
C, respectively. The conjugate and transpose operators are
denoted by (-)* and (-)T, respectively. The real and imaginary
parts of a complex quantity are denoted by R[] and I[]. In
addition, j £ \/—1 represents the imaginary unit. The K x K
identity matrix is denoted by Ix. The (i,j)-th element of
the matrix A is denoted by [A]; ;. The complex Gaussian
distribution with a mean vector g and a covariance matrix
A is denoted by CN (u, A). The notation a ~ P indicates a
random variable a follows a probability distribution P.

II. PRELIMINARIES
A. Signal Model

Consider an uplink MU-MIMO system consisting of M UE
devices and one BS, where each UE device is equipped with
a single transmit (TX) antenna while the BS is equipped with
N receive (RX) antennas in a uniform linear array (ULA)
pattern. Each UE device chooses a TX symbol independently
and uniformly from the quadrature amplitude modulation
(QAM) constellation points X = {x1,x2,---,x¢q} of the
average energy Fg, where @ denotes the modulation order.
The RX vector y € CV*1 can be expressed as

y=Hx+z, 6]

where the m-th element of the TX vector & € XMx1L,

denoted by x,, for all m € {1,2,--- , M}, represents the TX
symbol from the m-th UE device, and the measurement matrix
H € CN*M denotes a MU-MIMO channel matrix, whose
(n,m)-th entry h,, ,,, € C corresponds to the fading coeffi-
cient of the channel between the m-th UE device and the n-th
antenna element at the BS. In addition, z ~ CN (0, NoIy)
is an additive white Gaussian noise (AWGN) vector of the
noise power density Ny. Assuming that channel estimation
on the BS is performed without error, our goal is to infer the
unknown vector x in (1) based on the knowledge of y, H,
and Np.

B. Channel Model

To represent the spatial correlation among fading coeffi-
cients, we construct channel matrices based on the Kronecker
model [12] as

H = RI[;GR\, )

Algorithm 1 - GAMP-based Signal Detector [5]

Input: y ¢ CN*X!. H ¢ CNXM T
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where each element of G € CV*M representing the instan-
taneous variation of the channel follows the i.i.d. complex
Gaussian distribution CA'(0,1), and Rrx € CM*M and
Rgrx € CN*N denote the spatial correlation matrices on
the TX and RX sides, respectively. Each element of Rpx
is generated based on the exponential attenuation model [21]
by
_ )L i =7,

[RRX]Z"]' - p‘l,ﬂ’ i 7& j, (3)
where p € [0,1] denotes a fading correlation coefficient
between two adjacent RX antennas on the BS side, whereas
Rrx is set to Iy in MU-MIMO systems.

C. GAMP-based Signal Detection

The pseudo-code of the GAMP-based signal detector for
the linear inference in (1) is given in Alg. 1. For simplicity
of notations, we hereafter refer to the [-th line of Alg. 1 as
(Al1-1). The qualifier (-)(*) denotes the iteration index t € T =
{1,2,---,T} for every variable, where T denotes the total
number of iterations.

Alg. 1 consists of two modules [6]. In Module A, soft
interference cancellation (IC) is performed for every RX
symbol in (A1-6, 7) based on the tentative estimates, a.k.a,
soft replicas, followed by the linear estimation process based
on matched filter (MF) in (A1-8, 9) with the normalized resid-
ual interference and noise component 5%) Module B then
performs symbol-wise nonlinear estimation by considering



the filter output fﬁfl) and its variance @ﬁfl) as the output of the

virtual AWGN channel and its noise variance, respectively [8],
ie.,

O =2 4w, Wy ~CN (0,@5,?) . 4)

m

Specifically, calculating the conditional expectation based
on (4) yields the updated soft replica igﬂ) and its mean
square error (MSE) {)ﬁ,t,,ﬂ) in (A1-12, 13). The second term
in the right-hand side of (A1-5) is called Onsager correc-
tion term, comprising the fundamental operating principle
of GAMP. Onsager correction can be systematically derived
as an approximation of the extrinsic belief generation in
GaBP under i.i.d. measurements in the large-system limit [20]
and enables to decouple the self-noise propagation across
iterations. Hence, the validity of the resultant message update
rule heavily relies on the ideal condition of large-scale un-
correlated observation, and its elaborately designed behavior
even becomes a potential disturbance to the training process
when applying DU under non-ideal conditions. Finally, belief
damping [12] is introduced in (A1-10, 11) where C(t) € [0,1]
is the damping parameter.

ITII. DIFFERENTIAL LEARNING FOR TRAINABLE-GAMP

In highly correlated channels, the belief damping method
can no longer handle the modeling error, leading to significant
performance degradation. In such scenarios, the belief scaling
method, which is originally proposed for GaBP in [3], enables
GAMP to achieve robust signal detection even superior to that
of GaBP [20]. In this section, after introducing the scaling
method to Alg. 1, we aim to simultaneously optimize both
damping and scaling parameters via the DU techniques.

A. Belief Scaling

Under correlated observation, the statistical behavior of the
Module A output in Alg. 1 deviates from the ideal AWGN-
corrupted model in (4), rendering E(ﬁ) no longer trustable in
describing the reliability of 55,?. Consequently, in the early
iterations, the denoiser operating based on @5,? in (A1-12, 13)
overestimates the reliability of Tg;), leading to the generation
of incorrect hard-decision symbols. These errors propagate
across iterations and degrade the detection accuracy of other
estimates through the soft IC process. The belief scaling is a
method for suppressing this error propagation by controlling
reliability with a parameter instead of FS?, which is achieved
by replacing (A1-12, 13) with the following denoiser [3]:

exp[ ’Xq_zsr? }
- c2/a(®)
=3 g — (5a)
Xg—Tm
XqEX ZX,EXeXp[ :2/a(t) ]
7
t+1 1| R
B =" Iy — &Y ,(5b)

Zx;ex exp {

where the embedded scaling parameters {a(t);t € T} ad-
just the softness of the denoiser function at each iteration

S— Training Data | T

t=1 t=T

Yi, Hi,

Module A Module B

Module B Module A Module B

Calculating Loss

s

Back Propagation & Mini-Batch Gradient Descent
Fig. 1. An unfolded signal-flow graph of T-GAMP iterative detection, where
T denotes the number of iterations or layers and {yy, H, € } representing
the training data set.

step, and the constant ¢ = /3E,/(2(Q — 1)) denotes the

real/imaginary part of the (Q-QAM modulated constellation
point closest to the origin. A strategy empirically known to be
effective in designing scaling parameters [3], [20] is keeping
a® small in the early iterations to prevent the generation of
incorrect hard-decision symbols and gradually increasing a(*)
as the iterations progress to induce convergence.

The use of denoiser in (5) often causes the vanishing
gradient problem in back propagation processes due to exp (+)
operations. To overcome this numerical instability, the ap-
proximate denoiser was proposed in [3], [17], which can be
extended for complex-valued inputs as follows:

2 2
S(t+1) _ —@#) . € . —®]. €

Bt =202 (VQ - 1)2—

+§<§R [70]: 22;) + §<<5 [#0] 22;) , (6b)

where we define

2
fgﬁl)’

n(u;v) = ng tanh {c~ u;’y}’ @)
Q
§(usv) éQCWEXQ:Q’Y'tanh [C'uv'y], (8

with the symbol decision threshold set of

gQé{o,izc,ﬂc,---,i(\/@—Q) c}. ©)

It is worth noting that (6) is exactly the same as (5) in the case
of @ = 4, and the approximation error in (6) in the case of
@ > 16 can be properly compensated through the data-driven
tuning.

We hereafter refer to the algorithm obtained by replacing
(A1-12, 13) with (6) as trainable GAMP (T-GAMP), which
has the set of learnable parameters C = {a,(}, where we
have defined a £ [a),a®), ... ,a(T)]T € R and ¢ &
[CW,¢@ . ,C(T)]T € [0, 1)T*1, Fig. 1 shows a signal-flow
graph of T-GAMP, whose number of layers is equivalent to
the number of iterations 7.

B. Differential Learning for T-GAMP

In [17], the scaling parameter a embedded in T-GaBP is
given as the output of rectified linear unit (ReLU) function



due to its non-negative constraint, ie.,
a = ReLU (@arget ) , (10)

where the function ReLU : REX — Ri“ element-wisely
calculates max (b;,0),l € {1,2,---, L} for any input vector
b= [by,by,...,br]T € REX! with length L, and the vector
Qtarget € RT*1 is the intermediate parameter to be directly
updated via gradient calculation in the training process.
However, when the same learning process is performed with
T-GAMP, the learning behavior becomes unstable, which
suggests the difficulty in optimizing the sophisticated message
update rule of GAMP, designed to guarantee optimality in the
large-system limit, for observations that deviate from the ideal
condition.

To stabilize the learning behavior, this paper additionally
incorporates the finding that “the reliability of beliefs should
gradually increase with iterations” as domain knowledge into
the learning process. Specifically, for the purpose of imposing
monotonically increasing constraints, i.e., oV < a(® < ... <
a(T), the scaling parameter a is constructed as

a = Cumsum (ReLU(@arget)) , (11)

where the function Cumsum : REX! — REX1 g defined as
1 2 L
Cumsum(b) £ Z by, Z b,..., Zbl e R\X1 (12)
= =1 =1

for arbitrary input vector b € RE*!, For a more intuitive
explanation, the parameter construction in (11) can be inter-
preted as a method of learning the differential (incremental)
values of the scaling parameter between the two successive
iterations, i.e.,

M (> =
Ag, 2 {“ (20), b=1, (13)

a® —at=Y(>0), t=2,3,...,T,
rather than the scaling parameter itself. Hereafter, we shall
refer to this learning method as “differential learning.”

IV. NUMERICAL SIMULATIONS

To confirm the efficacy of the proposed differential learning
in data-driven tuning of T-GAMP, computer simulations were
conducted. The average RX power from each TX antenna is
assumed to be identical due to the slow TX power control,
and the time and frequency synchronization is assumed to be
perfect. The training process of T-GAMP is implemented by
PyTorch with Adam optimizer. Every learning result in this
section is obtained via mini-batch gradient descent method
with the mini-batch size of 1 x 10? and the number of param-
eter updates of 2 x 103. The loss function was set to the MSE
between the Module B output in the final iteration (layer)
;EE,T) and the true symbol z,, for all m € {1,2,--- , M} in
one mini-batch. The damping parameters for t = 2,3,...,7T
are constructed as the output of the sigmoid function as

1.0, t=1,

(t) = t -1
C (1 + e_gct(aiget) y t = 27 3’ e ,T,

(14)
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Fig. 2. Loss trajectory of the learning process when (M,N) =

(64,64), Q = 4, p = 0.80, and Es/Ng = 0 dB.

where the hyperparameter g (> 0) adjusts the softness of
the sigmoid function. For ¢ = 2,3,...,7T, the damping
parameters were initialized as () = 0.50. Meanwhile, the
scaling parameter a was tested by the following three different
approaches: i.e., by a@ = @yarget, (10), and (11), each referred
to as “Naive,” “ReLU,” and “Cumsum,”’ respectively. In every
case, a was initialized as a(¥) = 0.50 - (t/T), Vt € T. For
“Naive” and “ReLU,” the hyperparameter g and the learning
rate of Adam were respectively set to 1.0 and 2.0 x 1073,
while for “Cumsum,” 5.0 and 2.0 x 10~%, respectively?.

A. Learning Results

The loss trajectories of the learning process and the learned
results are shown in Figs. 2 and 3, respectively, where the
MIMO configuration, QAM modulation order, correlation
coefficient, and noise power density were respectively set to
(M,N) = (64,64), Q@ = 4, p = 0.80, and Es/Ny = 0 dB.
In addition, the number of iterations was set to T = 32.

In Fig. 2, the “Naive” approach, which does not account
for the non-negative constraint of scaling parameters, exhibits
violent oscillation, especially during the initial parameter
updates, which is due to the back propagation of inconsistent
gradient information such that negative scaling parameters are
allowed. While the “ReL.U” method mitigates this instability
to some extent, its loss curve shows a sharp rise around the
1040th update, where the dynamics of the scaling parameters
start to exhibit a zigzag pattern, and the loss remains high
in the subsequent updates. Intuitively, once the loss value
experiences a sudden upward spike, the step size for the
parameter updates based on gradient computation can become
exaggerated, leading to unintended distortion in the shape
of the learned parameters and stagnation in loss reduction.
Even worse for “ReLU” case, this stagnation forces repeated
drastic parameter updates, which can ultimately disrupt the
entire training process. In fact, the shapes of the parameters
learned through the “Naive” and “ReL.U” approaches in Fig. 3
demonstrate irregular fluctuations. In contrast, the loss trajec-
tory for “Cumsum” learning process in Fig. 2 is remarkably

2In differential learning, the learning rate should be set low because the
step size of the scaling parameter is determined by the cumulative sum of the
step sizes in the incremental values. The parameter g is set to compensate
for the learning delay of the damping parameter due to this low learning rate.
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Fig. 3. Comparison of the learned parameters when (M,N) =

(64,64), Q = 4, p = 0.80, and Es/Ny = 0 dB.

stable, which facilitates convergence to the solution that well
reflects the additional domain knowledge, as shown in Fig. 3.
These results suggest the solid efficacy of differential learning
in stabilizing the training process of T-GAMP. The further
analysis of this phenomenon is not straightforward, and thus
is left for our future work.

B. BER Performance

Next, BER performance as a function of Fs/Ny is pre-
sented in Fig. 4 under the same configuration as that in
Section IV-A to verify the efficacy of the T-GAMP adopting
the parameters obtained by the differential learning method.

The following schemes are compared:

o LMMSE: Baseline performance of linear minimum mean
square error (MMSE) filtering.

e GAMP: Performance of Alg. 1 where the number of
iterations is set to 7' = 32 and the damping parameter
to (M =1.0and ¢ =050 fort =2,3,...,T.

e EP: A high-complexity but powerful Bayesian signal
detector that performs linear MMSE filtering for every
iteration. The same belief damping as GAMP is used and
the number of iterations is set to 7' = 16.

o T-GAMP w/ init. param.: T-GAMP detector using the
initialized parameters, with the number of iterations 7' =
32.

o T-GAMP: T-GAMP detector adopting the learned param-
eters, with the number of iterations 7" = 32.

e MFB: Matched filter bound (MFB) is the referential
lower bound that Bayesian detectors can ideally achieve.

The results of “T-GAMP (ReLU),” whose loss trajectory
showed a radical leap in Fig. 2, are omitted.
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Fig. 4. BER performance versus Es/Ny (p = 0.80).

As can be observed in Fig. 4(a), due to the strong spa-
tial correlation among fading coefficients, “GAMP” fails to
reliably detect spatially multiplexed MIMO signals (BER >
10~1) even when belief damping is employed. In contrast, “T-
GAMP (Cumsum),” GAMP adopting the scaling and damping
parameters optimized through differential learning, shows a
significant improvement in detection accuracy. More specif-
ically, it achieves a gain of about 2.0 dB against “EP,” and
2.5 dB against “T-GAMP (Naive), with only about 3.0 dB
performance degradation from “MFB” at BER = 107°.

In the case of high-order modulation, Fig. 4(b) shows the
BER performance under the system parameters of (M, N) =
(16,32), @ = 16, and p = 0.80, where the learnable
parameters for T-GAMP were learned at F/Ny = 8 dB. The
results of “T-GAMP (Naive),” “T-GAMP (ReLLU),” whose loss
trajectory showed a radical leap, are omitted. Even when using
non-orthogonal mapping rules, which tends to make learning
unstable, “T-GAMP (Cumsum)” can achieve stable learning,
and outperform “EP;” with only about 2.0 dB degradation
from “MFB” at BER = 10~ 4.

C. Iterative Behavior Analysis

Finally, we evaluate the convergence behavior of iterative
detection to confirm the phenomenon of data-drive accel-
eration via differential learning. Figs. 5 and 6 respectively
show the learned parameters for different number of iterations
(T' = 8,16,24, and 32) and the resultant BER performance
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Fig. 6. Comparison of the iterative convergence behavior in terms of BER
when (M, N) = (64,64), Q = 4,p = 0.80, and Es/No = 2 dB.

at each iteration step under the same configuration as that in
Section IV-A. Fig. 5 shows that as T decreases, the slope of
the change in the scaling parameter increases, and the damp-
ing parameter becomes larger in the early iterations, allowing
the convergence speed to be increased. Consequently, Fig. 6
shows that the parameters learned with smaller 7' enable
slightly accelerated convergence of the BER, yet at the cost
of BER degradation achieved at the final iteration t = T'. The
results suggest that T-GAMP with differential learning under
highly correlated channels requires at least about 7' = 24
iterations to achieve sufficient detection accuracy.

V. CONCLUSION

In this paper, we proposed a novel method to stabilize
learning behavior while simultaneously optimizing the damp-
ing and scaling parameters embedded in the GAMP-based
signal detection for separating the spatially multiplexed MU-

MIMO signals under highly correlated observation. Numerical
results demonstrated that the learning behavior of T-GAMP
became dramatically stabilized by imposing a monotonically
increasing constraint on the scaling parameters by learning
the non-negative incremental values of the scaling parameters
across each iteration. The efficacy of the proposed scheme
was confirmed in terms of loss trajectory, dynamics of the
learned parameters, and BER.
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