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第一原理計算を用いた非調和フォノン特性データベースの構築 

大西 正人

統計数理研究所 先端データサイエンス研究系

1．はじめに

フォノンは原⼦の集団振動であり熱輸送特性
に⼤きな影響を及ぼす。⼀⽅、フォノンは電⼦、
マグノン、フォトンなどと相互作⽤することによ
り、熱物性以外にも電気、磁気、光学、機械特性
などに影響を及ぼす。近年、マテリアルズ・イン
フォマティンクス（MI）技術が急速に発達してお
り、情報科学と材料科学を融合した様々な材料開
発⼿法により、電池、触媒、磁性材料などに関す
る物性において成果が挙がっている。また無機材
料 の デ ー タ ベ ー ス と し て  Materials Project 、
AFLOW、AtomWork などの従来のデータベース
に加え、2023 年末頃から DeepMind[1]、META[2]、 
Microsoft[3]などが超⼤規模データベースを発表
するなどデータ量の増強も加速している。しかし、
特に従来のデータベースでは、主に電⼦物性（バ
ンドギャップ、電⼦バンド構造等）をまとめたも
のであり、熱機能材料に関しては熱伝導率などの

フォノン⾮調和物性のデータが不⾜している。
⾮調和フォノン物性の計算には多数の超格⼦

構造の⼒計算が必要であるため計算コストが⾼
くなるが、近年の計算能⼒の発達と HPCI を含め
た我が国の優れた計算環境により、⾮調和フォノ
ン特性の⼤規模計算も可能になってきた。そこで
申請者らは世界中の共同研究者と協⼒して、⾮調
和フォノン特性の解析プロセスの標準化とそれ
を組み込んだ⾃動化計算ソフトウェアの開発、さ
らにそれを利⽤した⾮調和フォノン特性データ
ベース構築を進めている。本年度は、⾃動計算に
よるデータベースの構築を進めながら、構築した
データベースと機械学習を⽤いたスペクトル熱
伝導率などの⾮調和フォノン特性の予測モデル
構築を進めた。過去の⾃動計算も合わせ、約 6,000

材料の⾮調和フォノン特性の計算に成功し、この

データとグラフニューラルネットワークを⽤い
た⾮調和フォノン特性の予測を⾏った。また、構
築した予測モデルを⽤い、DeepMind が発⾒した
約 38 万の新材料データベースから低熱・⾼熱伝
導材料のスクリーニングを⾏うことで、⾼性能な
熱機能材料の候補材料を特定した。 

このように、本研究で構築した⾮調和フォノン
特性データベースを⽤いることで、⾼精度な⾮調
和フォノン特性の予測が可能であることを⽰
した。今後は、電⼦・フォノン相互作⽤や⾼次
の⾮調和フォノン相互作⽤などを考慮したデー
タを追加することで、より広範囲な材料開発へ
の発展が期待できる。 

2．第一原理非調和フォノン特性解析 

本研究では図 1 に⽰すような、第⼀原理⾮調和
フォノン特性解析プロセスを⾃動化した[4] 。ま
ず、与えられた任意の結晶構造の基本単位胞
（primitive cell）、慣⽤単位胞（conventional cell）、
超格⼦構造（原⼦数 150個以下）を決定する。次
に、フォノン計算では⼒の計算精度が重要なため、
複数ステップの構造緩和計算を⾏う。このように
⽤意した構造を⽤いてフォノン特性を計算する。
複素周波数が発⽣した場合は、さらに厳しい構造
緩和計算、⼤きな超格⼦構造の利⽤、4次の⾮調
和効果によるフォノン繰り込みの考慮などを⾏
う。これまでの⾃動計算ではフォノン繰り込みは
考慮しておらず、最も基本的な計算⽅法である、
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緩和時間近似を⽤いてボルツマン輸送⽅程式を
解くことで 3 フォノン散乱の散乱頻度を計算し
ている。対象とした材料は、Phonondb に含まれ
る全て材料と Materials Project に含まれる材料の
うち⾮⾦属・⾮磁性材料で合わせて 21,452 材料
であり、そのうち約 6,000 材料の⾮調和フォノン
特性の計算が終了している。 

上記の第⼀原理フォノン特性解析には、第⼀原
理計 算 に VASP [5] 、 フ ォ ノ ン 計 算 に は
ALAMODE[6] を⽤いており、Python を⽤いた⾃
動 化や結晶構 造 の操作 に は 、 ASE[7] 、
Pymatgen[8] 、 Spglib[9] 、 Pymatgen[8] 、
Phonopy[10, 11]、Custodian[8]、SeeK-path 
library[9, 12] などの Python ライブラリを利
⽤している。 

3．計算結果と考察 

3-1. 深層学習スケーリング則

⾃動計算により得られた約 6,000 材料の⾮調和
フォノン特性のデータセットと機械学習を⽤い
て格⼦熱伝導率（𝜅!: p は粒⼦性を表す添字）の
予測をした。機械学習には CGCNN（crystal graph

convolution neural network）[13] を⽤いた。学習デ
ータに⽤いるデータ数を変化させた時に、データ

サイズと誤差（mean absolute error）をプロットし
たところ図 2(a)左図のように、対数プロットで直
線となるようなスケーリング則[14] が確認され
た 。 スケー リ ン グ則は  (𝑀𝐴𝐸) = (𝐴 𝑁"#$%&⁄ )' ,

(𝐴, 𝛼 > 0) と表されるが、今回観察されたスケー
リング則の強さ（係数𝛼）は 0.125 であり、⼤規
模⾔語モデル（0.095）[14] や結晶材料の⼒の予
測（0.21）[1] で得られたスケーリング係数と同
程度の値となった。
 それぞれのデータ数に対する第⼀原理計算と
予測値を⽐較したところ、図 2(a)右図に⽰すよう
に、予測値と計算値がよく⼀致していることが分
かる。データ数が多いほど計算値と予測値が⼀致
する線（⿊線）上にデータが集まっており、デー
タ数の増加に伴う予測精度の向上が確認できる。 

スケーリング則が観察されたことは、データ数
を増加させると誤差が減少を続けることを意味
しており、今後のさらなるデータ数増強による予
測精度向上が期待される。⼀⽅で、例えば、MAE

を 0.2 まで減少させるためには、200,000 材料以
上の⾮調和フォノン特性のデータが必要になる。
この計算コストは現在利⽤している、全て第⼀原
理計算で⼒の計算をする⼿法では現実的ではな
く、今後は機械学習ポテンシャルを利⽤したデー

図 1．⾃動化した第⼀原理フォノン計算プロセス 
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タ数増強も検討する必要がある。

3-2. 低熱・高熱伝導材料の探索

上記のように GNN を⽤いて構築した予測モ
デルを適⽤して、DeepMindの 38万の新材料結
晶構造データベース[1]から低熱・⾼熱伝導材料
をスクリーニングした。その際の予測結果と予測
後に第⼀原理計算をした値を⽐較すると、図 2(b)

に⽰すように、⾼熱・低熱伝導材料の分類は可能
であることが確認できた。また、低熱伝導材料（⾚
いプロット）では MAE（mean absolute error）が
0.28 となり、6,000 材料全て使った場合（MAE 

≈ 0.32）よりも予測精度が⾼かった。⼀⽅で、⾼
熱伝導材料（⻘いプロット）では MAE が 0.70 と
なり予測精度が低くなった。どちらの場合も、予
測がより低いあるいは⾼い材料に着⽬している
ことから、平均の予測精度よりは悪くなることは
問題ない。その上で、⾼熱伝導に関しては、今回

の計算では 4 フォノン散乱の影響を考慮してい
ないことから、学習データの理論値に誤差が乗り
やすいことが原因で、予測値が実際の値を過⼤評
価しやすいと予測される。 

 いずれにしても、本課題では、6,000 材料とい 
った⼤規模データを⽤いることで、熱機能性材料
の予測が可能になることを実証に成功した。今後
は、熱伝導率などのスカラー値だけでなく、モー
ド依存のフォノン緩和時間など複雑なフォノン
特性の予測も進める予定である。 

4．おわりに 

本プロジェクトは 2022 年頃から始めたもので
あり、ようやくある程度の量のデータが集まり機
械学習を⾏うことが可能になった。本報告書には
熱伝導率の値のみを記載したが、構築したデータ
ベースを⽤いてスペクトル熱伝導率やフォノン
分散の予測も可能である。これらをまとめた成果

図 2．構築した⾮調和フォノンデータベースを⽤いた格⼦熱伝導率の予測。(a) スケーリング則の
実証。学習データサイズを変化させた時の平均誤差（mean absolute error, MAE）の変化(左)。MAE
は log 𝜅! に対して計算した値であり、エラーバーは 20 回のアンサンブル平均の 90%信頼度を表
す。灰⾊の線は図中に記載したフィッティング曲線である。異なるデータ数における第⼀原理計
算値と予測値のパリティプロット（右）。データ数がデータ数が多い場合に、計算値と予測値が⼀
致する直線周りにデータが集中していることが分かる。⻘、⾚、緑のマーカーは、それぞれ学習
（training）、検証（validation）、テストデータの結果である。(b) 予測モデルと DeepMind の
GNoME データベースを⽤いたスクリーニングの結果。 
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は近⽇中に学術論⽂として投稿予定であり、構築
したデータベースも併せて公開予定である。今後
は、⾼次の⾮調和ポテンシャルの考慮や電⼦・
フォノン相互作⽤などのデータも追加する予定
である。データ数の増強には機械学習ポテンシャ
ルの利⽤も検討しているが、これらの特性を精度
良く解析するには現状では第⼀原理計算が必要
となる。構築したデータベースは熱物性のみでは
なく、電⼦・磁気・光学・機械物性など様々な分
野の材料開発に貢献すると期待される。 
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