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連星系における共通外層期の軌道進化を対象とする 3次元磁気流体計算 

 

水谷 耕介 

大阪大学 大学院理学研究科 

 

1．はじめに 

重力波放射をはじめとする高エネルギー現象

は近接した連星系で起こる。このような近接連星

の連星間距離（10ି଻~10ିଶ au）は恒星連星の典型

的な連星間距離（10ିଵ~10ଶ au）に比べ数桁以上

小さい（1 auは現在の地球と太陽の距離）。このこ

とから連星は進化の過程において連星間距離を

効率的に減少させる段階を経ていると考えられ

ている。このようなメカニズムとして共通外層期

[1]が有力視されている（図 1）。共通外層期は、

連星のうち巨星となった星がもう一方の天体を

その内部に取り込む段階である。この段階におい

て連星の軌道エネルギーが効率的に共通外層部

へ移動し、軌道が縮小する。その結果、はじめに

比べ連星間距離が数桁程度縮小した近接連星が

形成される。 

連星進化ひいては高エネルギー現象の起源を

理解する上で重要な共通外層期であるが、現在で

もその機構は十分に理解されておらず、連星進化

理論の不定性として残されている。ブラックホー

ル連星をはじめとするコンパクト連星の合体は

重元素の有力な起源と考えられているが、このよ

うなコンパクト連星合体の発生率は連星進化理

論に大きく依存している。共通外層期における軌

道縮小について、現状は物理的な根拠に乏しいパ

ラメータを仮定することで計算を行っており、モ

デルのアップデートが喫緊の課題である。 

 現在まで共通外層期の詳細な物理の解明が進

んでいない背景には共通外層期が 3 次元的かつ

非線形な現象であり、この現象の理解には 3 次

元流体計算が必須となる点がある。これまでに

共通外層期を対象とした 3 次元流体計算がいく

つか行われてきたが、そのほとんどが小質量星

に焦点を当てており、大質量星で起こる共通外

層期に関する議論は十分にされていない。そこ

で本研究では大質量星で起こる共通外層期に焦

点を当て、特に連星の軌道進化について調査を

行う。 

共通外層期を経て形成される近接連星は合体

時に相対論的ジェットを駆動したり、時空を大き

く歪ませて重力波を発生させたりするなど、多く

の理論の検証の場を提供する役割を担う高エネ

ルギー現象を引き起こす。このような高エネルギ

ー現象は宇宙物理学の分野の中でも非常に盛ん

に研究されている。共通外層期における連星のパ

ラメータ、とくに連星間距離の進化を決定するこ

とは高エネルギー現象を取り扱う上でのより正

確な初期条件を与えることを意味する。 

 

図 1：共通外層期の概要 
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2．計算における困難と過去の研究について 

共通外層期は連星進化を理解する上で重要で

あるにもかかわらず、数値計算における多くの

困難のためにシミュレーション例は未だ数少な

い。特に重要な問題として、計算領域内におけ

る密度差が大きいことが挙げられる。この密度

差に起因する問題に対処するため、現状多くの

計算では流体を粒子に近似して計算を行う粒子

法がよく用いられている[2, 3]。しかし、この手

法は密度差に強い反面、解像度が密度に依存す

るという特徴を持っている。そのため、共通外

層期において放出される低密度な主星外層部の

時間発展を正確に追うことは難しい。宇宙物理

学において理論的な研究を行う際には、観測で

きる可能性や観測されるであろう特徴に対して

言及する必要があることから、観測との比較を

行うことができる計算が求められている。 

 

3．本研究のアプローチ 

 共通外層期前後の連星軌道進化を調査するた

め、我々は赤色超巨星と主系列星の連星に対す

る 3 次元磁気流体シミュレーションを実行し

た。またこの結果をもとに連星軌道の進化がど

のように起こるかを調査した。図 2 に実行した

計算の初期条件を示す。本計算ではカーテシア

ン座標を用い、計算領域の中心に双極子磁場を

埋め込んだ赤色超巨星を置く。数値的に解く方

程式は Maxwell 方程式と流体方程式を組み合わ

せた磁気流体方程式であり、計算には計算コー

ドである Athena++ [4]のフレームワークを使用

している。また、行った計算の空間補間と時間

積分の精度はどちらも 2 次である。今回用いる

計算コードは空間に格子を配置して計算を行う

オイラー法で実装されている。オイラー法は自

身の所望する解像度を明示的に選ぶことができ

るため、例えば低密度な放出物の性質を調査す

る場合などに適している。 

 我々は、Athena++に対して新たに連星の軌道

進化計算を行う機能を実装した。連星の軌道進

化計算では伴星にかかる力（主星外層部からの

重力、主星中心部からの重力、慣性力）を時々

刻々と積分する。この積分には Leap-frog 法を採

用した。 

本計算を行う際に計算上の困難を回避するた

めにいくつかの工夫を行った。まず本計算の対

象である恒星はほとんど真空である宇宙空間に

存在している。このため星中心と星外部での密

度差は 20 桁を超える。このような密度差を扱う

ことは非常に難しいため、本計算では主星中心

部に重力緩和を施すことで中心部の密度を下げ

ている。本研究の対象である共通外層期におい

て重要であるのは主星表面に近い外層部である

ため、このような処置をとった。しかし本計算

は依然として 10 桁以上の密度・圧力差を含む系

を扱う計算である。次に本計算は計算領域の原

点を主星中心にとる非慣性系で計算を行う。一

般に、密度が相対的に大きい対象の移流を正確

に解くことは難しい。これは数値計算において

少なからず数値拡散が入るためである。本計算

においてこのような原因による誤差を減らすた

めに密度の大きい主星が動かないフレームで計

算を行う。この手法は密度の高い領域が主星中

心部に集まっているときに有効に働く一方で、

伴星が主星内部へ落ち多くの質量が主星から剥

ぎ取られた後にはフレームが大きく揺れるため

計算結果の解釈には注意を払う必要がある。 
図 2：計算開始時点での密度分布 
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4．結果 

4.1 主星外層部の時間進化 

現時点で完全に解析は完了していないが、結

果の概要について述べる。図 3 は数値計算から

得られた公転面上における密度分布の時間発展

である。計算が進むにつれ密度分布が変化して

いく様子がわかる。開始直後において主星表面

に波が現れている。これは伴星の動きによって

周期的に変化するポテンシャルに対して共鳴し

た波であり、物理的なものである。計算が続い

ていくにつれ主星から伴星部へと質量が移って

いくことがわかる。これらの質量は角運動量を

持っているため伴星の周囲に円盤を形成する。

また主星や伴星の背後から質量が抜けていく様

子を確認することができる。このような質量損

失は同時に系から角運動量を持ち去っていくた

め、連星間距離は次第に近づいていく。連星間

距離が小さくなると質量移動が活発になりさら

に角運動量が失われ…、というようにこの進化

は加速度的に進み、いずれ伴星は主星内部へと

進入する。この後伴星は数周程度で主星中心部

へと落ち込み、最終的に近接連星が形成され

る。このように連星間での質量移動が始まる時

点から計算を開始し、伴星が中心部で安定軌道

に落ち着くまでの計算をオイラー法で扱う計算

例は少ない。さらなる結果の解析を行い、観測

との対応を考えたり周連星円盤の形成条件の確

認を行ったりすることで新規性の高い結果を得

ることができると考えられる。 

 

4.2 連星軌道の時間進化 

計算した非慣性系における連星の軌道を図 4

に示す。計算の初期は安定した円軌道にあった伴

星が徐々に内側へと落ちていき、一気に主星内部

へと進んでいる。また、最終的に主星中心部へと

落ちたのちに再び安定した軌道に移っているこ

とがわかる。なお最終的な連星間距離は6.05 au
となっており、初期の連星間距離（30 au）の 1/5

程度になっている。 

図 3：公転面における密度分布の時間
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5．おわりに 

本研究では近接連星の形成において重要であ

る共通外層期に焦点をあてた 3 次元流体計算を

行った。オイラー法による計算を行うことでよ

り詳細な放出物の時間発展を追うことができ

た。今後は計算結果の更なる解析や輻射輸送と

いった重要な物理過程の導入を行っていく予定

である。 
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図 4：連星軌道のプロット。黒い実線

は伴星の軌道を示す。本計算は主星中

心を原点にとっているため主星は動

いていない。灰色の点線は計算開始時

点での主星表面の位置を示している 
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