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超臨界翼における特異な遷音速フラッター現象のメカニズム解明 

 

三宅 冬馬 

北海道大学 大学院工学院 

 

1．はじめに 

翼のフラッター現象とは、流体の空気力と翼の

構造力および慣性力とが連成して生じる自励振

動現象である。フラッターが発生すると翼に発散

的な振動が生じるため、フラッターは非常に危険

な現象として知られている。Figure 1 にフラッタ

ー境界の概念図を示す。従来の対称翼では、遷音

速域において生じる翼面上の衝撃波が系を不安

定化するため、フラッターが生じやすい領域（遷

音速ディップ）が一つ生じることが知られている。

一方、現在広く用いられている超臨界翼型は翼上

面が平坦で翼後縁近傍で大きなキャンバーを持

つことから、フラッタ―特性が変化すると考えら

れる。Persoon ら[1]は超臨界翼を用いた遷音速フ

ラッター試験を行い、特定の迎角において 2 つの

遷音速ディップが生じることを示した。また

Miyake ら[2]は 2 次元フラッター解析によってダ

ブル遷音速ディップを捉えることに成功してお

り、衝撃波の位相特性から不安定メカニズムにつ

いて説明した。これまでは 2 次元解析でのメカニ

ズム解明が主であったが、実際の翼は後退角や翼

端を有しているため流れ場の 3 次元性は無視で

きない。従って、本研究では超臨界翼を用いた 3

次元遷音速フラッター解析を行い、流れ場の 3 次

元性がフラッター特性に及ぼす影響について調

査する。  

 

2．数値計算手法および計算条件 

流体の支配方程式としてレイノルズ平均した

3 次元圧縮性 Navier-Stokes 方程式を用いた。ま

た乱流モデルとして SA モデルを用いた。構造

側には弾性体の運動方程式を用い、モード法に

よる解析を行った。流体―構造の連成には弱連 

 
図 1：フラッター境界の概念図 

 

成法を用いた。本解析では Aeroelastic Research 

Wing 2 (ARW2)を対象に計算を行った。ARW2

はアスペクト比 10.3、テーパー比 0.286、前縁後

退角 28.8deg の 3 次元超臨界翼であり、過去の

実験で高マッハ数域における不安定性が確認さ

れている[3]。 

 

3．結果と考察 

3.1 静的計算 

まず静的な状態での検証計算としてマッハ数𝑀ஶ = 0.9、迎え角𝛼 = 0 degでの流れ場を実験と

比較した。その結果を Fig. 2 に示す。まず Fig. 

2(a)に示す翼上面圧力係数分布から、翼根から翼

端にかけて衝撃波が生じていることが分かる。

次に Fig. 2(b)に示す 70.7%スパン位置の主流方向

速度分布に着目すると、翼上下面で強い衝撃波

が生じており、その背後で流れがはく離してい

ることが分かる。また Fig. 2(c)に示す断面圧力

係数分布の比較から、本解析結果は衝撃波位置

やその背後での圧力分布などが実験と良く一致

しており、妥当な計算が行えていることが分か

る。  
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3.2 フラッター計算 

次にフラッター解析の結果について述べる。

Figure 3 に本解析で得られたフラッター境界を示

す。Figure 3 より、マッハ数の増大とともにフラ

ッター動圧は低下し、𝑀ஶ = 0.82で最小となる

ことが分かる。また、さらにマッハ数を大きく

するとフラッター動圧は急激に増大し、その

後、再度フラッター動圧は低下する。そして𝑀ஶ = 0.94で極小となったのちフラッター動圧

は再度増大する。このように本解析では先行研

究[2]と同様のダブル遷音速ディップを捉えるこ

とができた。  

 ダブル遷音速ディップの発生要因について調

査するため各マッハ数における流れ場を比較す

る。Figure 4 に各マッハ数における翼上面圧力係

数分布、Fig. 5 に翼上面速度勾配分布をそれぞれ

示す。ここで Fig. 5 中のピンク色の部分は速度

勾配が負、つまり流れがはく離している領域を

表す。Figure 4(a)より、一つ目のディップの底で

ある𝑀ஶ = 0.82では翼上面に衝撃波が生じてい

ることが分かる。Fig. 5 には示していないが、𝑀ஶ = 0.82では、はく離は生じていないことを

確認している。従って、𝑀ஶ = 0.82では翼上面

に生じた衝撃波の不安定化作用によりフラッタ

ー動圧が低下したと考えられる。また𝑀ஶ =0.88では Fig. 4(b)および Fig. 5(a)に示すように、

翼上面に強い衝撃波が生じ、さらに翼根部から

スパン中央付近にかけて衝撃波背後で流れがは

く離していることが分かる。衝撃波背後ではく

離が生じた場合、衝撃波振動が系を安定化する

ことが分かっており[4]、𝑀ஶ = 0.88においても

衝撃波振動の安定化作用によってフラッター動

圧が回復したと考えられる。さらにマッハ数を

大きくした𝑀ஶ = 0.94では Fig. 4(c)および Fig. 

5(b)に示すように翼上面衝撃波はさらに強くな

り、スパン全域にわたって衝撃波背後ではく離

が生じていることが分かる。𝑀ஶ = 0.88との流

れ場の違いは衝撃波背後のはく離域の大きさで

あるため、スパン全体でのはく離が系の不安定

化につながっていると考えられるが詳細なメカ

ニズムについては不明である。さらにマッハ数

を大きくすると、Fig. 4(d)に示すように衝撃波は

翼後縁に達し、翼上面のほとんどが超音速流れ

となる。衝撃波が後縁に達すると衝撃波が後縁

位置で固定され空気力の変化も小さくなる。加

えて Fig. 5(c)に示すように衝撃波背後でのはく

離も生じなくなる。そのため、フラッター動圧

は大きくなる。 

 

4．おわりに 

本研究では超臨界翼 ARW2 を用いた 3 次元フ

ラッター解析を行いフラッター特性について調

査した。その結果、ARW2 では低マッハ数側で

のディップに加えて、高マッハ数側においても

ディップが生じることが分かった。また流れ場

から低マッハ数側のディップは翼面上の衝撃波

振動によるものであり、従来の典型的な遷音速

ディップ特性が表れていることが分かった。一

方、高マッハ数側のディップはスパン全域にわ

たって衝撃波背後で流れがはく離した場合に生

じるものであることが分かったが、その詳細な

メカニズムは不明である。従って今後、強制振

動翼解析などを行い、高マッハ数側でフラッタ

ー動圧が低下する理由について調査していく。 
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(b) 70.7%スパン位置における主流方向速度分布 

 

 

 

(a) 翼上面圧力係数分布 (c) 70.7%スパン位置における圧力係数分布の比較 

 

図2：𝑀ஶ = 0.9における流れ場 

 

 

 

 
図3：フラッター境界 
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(a) 𝑀ஶ = 0.82 (b) 𝑀ஶ = 0.88 (c) 𝑀ஶ = 0.94 (d) 𝑀ஶ = 0.96 

 

図4：各マッハ数における翼上面圧力係数分布 

 

 

 

  
 

(a) 𝑀ஶ = 0.88 (b) 𝑀ஶ = 0.94 (c) 𝑀ஶ = 0.96 

 

図5：各マッハ数における翼上面速度勾配分布 
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