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Logarithm conformation representation(Z&k %

ERERAAREXOBH & BEFHE

i s
SRR FWMAT 4 TR 2 —

1. [FC®IZ

JERMEMETRAR S O FHER 22 BB L & L TR b
REMR SO L LT, HE L EREELIT & O
H T ¥ T #® % Shock Wave Boundary Layer
Interaction (SWBLI) 2% F 545, 2 SWBLI
BRI EELIE L 0 b MR AL & 72 o
TWDZEMND, ERIICELEINE AT 5 &
ShiTE Y, SWBLI O i il 4 1 ) i (A
PROBEPURBALIC LB R AT R T 5.

H.Ozawaetal. (1) 1%, R NFBAET HEITIC
Bump Z#J %5 2 & CHEBEDOSMANER L.
SWBLI OEICHELEZ D5 L 2HALTEH
D, Z®Bump ® Z & % Shock Control Bump (SCB)
EIEFRL TV 5, F£7-, K. Mazaherietal. (2) X°E.
Jinks et al. (3) &, fAFM72 2 RILEMHE TH D
RAE2822 (2B WTHHLLL S O Fe/ MR E %
fig < Z & T SCB M&at & 17V, SWBLI 231l &
NTND I EEHMEITR LTS, LnLZen
D, ZIDDOEAITHFE TIL SCB DR A & & £L
TEHFRE OENERCTHRELTZANT AN v 77
R AT ZIT > TH Y, SWBLI OIEME/R B
ShTSICEEB L TVDLRTIIA,

— )i AR TII A COHBEZ AV 56
PEFRAT & BLBEE N & 3 2 TR Ao b T & £
THZET HBE L TCOHAYHEBIRICH L TR
FEiohlERF 2 HIEL TW5, & 2 A0, JEMEE
FEAROEEE 1L SWBLI & #4322 LR &
L7 fEI R AE A N ELTEET D, #
ZAE, ZEMA A AT 103 FREE A, FERD %I AL 1T
107 SRREN —RICHWON D, Fiz, K1 RE0E
1 RIET10%, 2 RILT108, 3 oL CTL0V2HEE %
VELT 5, T LT, Bk bMEZEL< Z &
ZAET D LB EONEREZ iR < LB H D |

Z ORI BV TIEMEMET RS O R 223 H 2 2

R E 72D,

JFE A M AR D BB AR AT 12 33\ C A B 73 AN il
BCEL T 2HE 2 D X H 1T s HiE s
720 BITEE TIZ Gudunov HEZEJFALE L CThEX
PRl Y —~ IR R OV IR 2 AU KD 22 [
P2 PLICHE M T TE T (4), 2D X
D TR RV BB IREY A BN D 72 D O il R
W NTHEE W BE R EZFF-> TR,
MUSCL <° WENO, AUSM & Vo 7= FIES R X
NTWD, Lol fBRBAEL - A TOREPEAN B L
BRI & 72 1) | 1B RoH2 i e A 1 D S 1 &
O DERICORN D, T O XD AN 7R
A [AEET 5 72 012, tanh BEIC K - TR 72
WHELEZ IS 5 2 & CHEUESL A I 9 5
THINC 7:7° F.Xiao et al. (5) I2X > THRBENT
WD, TR TIEE BT - FEBOR A R T L
LT, ANDHMHEZRAWTIZ, i3 —Lt =
yhurbv—aEmEEICRFESE S KEEP A% —
LHMER SH(6). MHD ELITERBABE LT O B fiE >
Ral—vaFHERTWS,

IS DEITHIE THRb L T & B EFHH A
F— AITBUNT, EEZ AT 22 ©— EfE &
DM 2728 ZERIT M OFHRE 2 A S Z 40
I T & D E Vo 7= s, FHE 2 2 M)
T TR0 v 0 & 720 155, & 2 CARBSET
I%. SWBLI Z fif#f% rIRE 72 i W EHRURS E & TR i
WAL E % BLUERY 22 5 AR M CEAT T RE R R
MR A N &ML D BB R A AL, T
#EtE Navier-Stokes HFERIZ# AT 5,

SCB D figiii st A HIPUEIITHE £ 5 37 22tk
RFHT & o THEREE 2 BT, M2 Ei
IRF I8 & B 5 & 3 BT SWBLI 28384 L,
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Z PR 14 07 D55 R 8 N EL T D R E)
IZE D HIBEL, ZOfESE L CTEE & g
KA T T 28R 2 N7 =y FBIG L
W5, ZONT =y MBI TR DI %

IKf 2 Gl % ZEAL S & 2 723D IR DIRBNCE D5

BERENE D AL M ERE T~ DB B ENR S S N
TW5, £ 2T, AU TS 5 R a0
LR SWBLI Ol iz X 2 #2452
DI ENEFES T, N T = v RO AR
By 2 il 9 2 E 3D,

2. 38 -HHEETIOEE

JERMEPEDR AR & 4 5 BFIE 53 B Tl IRAER O 1R
KEHANWDL Z LR TH D, ZOEMBIL, &
BE . EEhE - N R X — - B R L — -
T hRE—-T R a7 =Y A
fFSHD72DITIE, BAE LT EREORME Y 7 >
7 A% BRI EH T 2 R B Y | RAFRIEAE
£ Euler HEA % A BRI RHERE AT 7 —F
1%, KEEP 2% — 554 W CREBUb T2 2 & T
FHFT D ENAETH D & %< OEMEFHERE
ENLEMTONTHEINLTHD, &TAT,
RAFEIIEEp - HEu - JE)p TR STV 5D
LBl p. u, pERAFESED T ENATRERIE

PRAFRIEAENE Buler TR AR < 23 AIRE T H AU,

REELELRESELZENAREE 2D, L
L. FERIFRIEHMENE Buler HREXCIIXIE~ 7 »
JAGKGE LGRS 52 LIT—KICHETH
0 BEIRE) « A — /T B = — RS
U, ZU BB FEREREM SOV E &N TE
7

Z 0 XD REMIETRR S OBUEFH RIS 5
K& ML RIZH > THEEE L, R RIEMME
Euler HFER0 O 8H U772 H8L - FEORAFRIEAMM:
Euler 523 (Table1 /) (ZkF7 2 HEFHHE A
X—LEMRETDH LI L, ZOHR - ERTT
RIEHENE Euler HRERUT, SR RIEMENE Euler 5
BALEFA—D) =~ AEBEZR O LIRS
NTEY ., ZOMMPITEF R EITAE TR0,

ZOLET ERFETHOONTE L) ol
(72 2 N4 < G2 BV TO R W HIREEI%L - A
TOREPE 2 FHN T B0 (RO 28 4y R L RAZEMRAT
BB FRAT S5 O SRR & FERE R & 3 D Bl &
A FNZERH] U788 - JEORAF R IEAEE Euler 7
FEAUTKT T 2 BUHFHE A — L 2 E L -RE
1727 A NEEDO—>TH % 1 WIL Sod Shock
Tube Problem (Zi#H L7 & Z A, ¥ T w2 % 90%
HII LoD, XV F—ZRAFSED 2 LIS
L. BREMR L RIT Rk DB - [E7) - A %
B HBUERRE G DI, T DOFEDMEZ EREL TV
Do

Table 1 18- FFRFRDEHaE Euler 52X
Da, v _ 0
P o +pV-u=0,

Du

Va, =0,
Dt+p a,

p

Da"+ v 0
P, trev-u=0.

3. MIRAE

FBL « FERATRIEAMENE Euler J7F250 (Table 1
ZH) ZE NI 2WFE T, BEp L EIpll log &
B - 7 (LCR:
Representation), a, = logp,u,a, = logp & Ok
Euk RAMEHE LT 5, 20O LCR 28T 5
LT, BEpLIENpDA— K —%& Kig kRN
THIENAREE /D, TOLCR X, THET
LA r Y — 5B TREM R H L TH LI
=a— b UK OEEF AR ISR L CRIMRAYIZ ]
WHNT&E T, LaL, HEFEDLIDIRY | D7
< & HMETZEICRT D EMmIERAEICS Y
THEHEIEH SN TI R odo, 20O KD ik
ThDHI=0, FiHl - A7 RIEMETE Buler 772
R 2 ERY 72 MBI DWW TE, T T4l
EESTOVWIEMITSND Z NN T2,

DX D IR A BT, B - FELRAT R
P Euler 2T LT, ALAREEE - A 7 fEC-

Logarithm  Conformation
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U=~ U AEREE NS TR B D IRAFFR
JEAEM: Euler TR & —HT 52 L &2/RLT, £
OFEFR, WU R RFIEEZMET 5 2 & T,
PRt R M E Buler K2R A FN T2 JEATHIFZE & TR
—RAERBFONDDOTIERVNEEZEZ BT,
ABFFERERR T, FreeFEM++ZA 7 U A R &
FL TV % Adaptive Mesh Refinement (AMR) /L
N=ZE T %, T AMR Y b =3, IS
%3 @D P.J. Frey and F. Alauzet (7) <° A. Loseille and
F. Alauzet (8) |2 X » TIRRE I, AIREREICE
FORETHD 2 BHEHEZR/MEESED LD
W7 TY XAPHEE I LTV D Anisotropic
AMR YL ARR—=ThHbY  “x=yYolm” 1%
Streamline |[Z{RDE, “T v POR ST (TS HES
LTWD TSRS 2 & T pEED 1E
WMo 2 EE I 2 Z L REL 0D,

W) 5y O YT IZ 1X Semi-Lagrange Method

(SLM) ##H¥ %, 2 SLM IERAIt" = nAt
DHEFEU P HAt O HELZREHNT 52 LT
WM 2B ERA T 5 AF—L Lo T
W5, LCRR AMR LT 22 LT, "=y
DIF” 1% Streamline (215 9 72 DAt it O AR I
Ty VOHIFET 5 2 &2/ Y | TITITmER
WD FEATIT D K9 \CHAEFH R R E &2 E R D
EOREHRTH-TH, “myVORS” /S
SBESNDT-O, mkEEICWERSS 25T %
ZEMAREE IR D,

4, BIEFHEREER  EMEHE Euler HEX

FRLTHEER L7 LCR & AMR, ¥ (21X SLM #
FAA G oW T UG R F 1L 2 B % L | JEAEME Eule
HRERICB T H2RENRT A MHETHD 1 K
JC Sod Shock Tube Problem (Z%F L CH@ A L. ##E
et I L TR —HLTWVD I EAMHERLT
W% (Fig.l), B2, AIRERA v o Z#[EEL
%A AMR WA 2 i LT, BT
BE2105D 1AL LICRIHILTEY, 2
O JFITT AR e b [ % g < BRI R O 3R
IRFf 2 i © & 2 72 i CHE /R MR Th o
7=

12 T T T I
Exact Sol.
1 F Numerical Sol. -
0.8 -

06 | /
o/ :
.D #

(a) BEE
12 — : f | |
Exact Sol.
1 Numerical Sol. ------- |
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() FEA
Fig.1. 1 X5t Sod Shock Tube Problem

FIZ, v vk 08 - HlA 125 2B D
NACAO0012 J& ¥V Euler yit4v (Fig.2) (Zxf L CiiE
L. BEY D, Z—Rc R0 % A AT
7t (9) CHBL TR —HLTWDZ LA HR
LTWa,
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@ i

aiocHy Mogriuds

(b) HE D i

(c) JE
Fig.2. NACA0012 J& ¥ @ Euler #itL

5. BUEETE R : [E#EtE Navier-Stokes 2=k
Fig.3 IZRe = 200,t = 1{281F % 2 It Viscous
Sod Shock Tube Problem D FHHEAERTH Y |
G. Zhou et al. (PoF, 2018) & [AEROFRNE SN
7o BT L E A v ¥ = DBFAITI134.5 X 10°
FRELZRD03, AMR Z8H3 5 2 & T2 x 105
FEETITHNRT 2 Z &K, LorL, v
VA Ly RCIEFHERRAIER & 72 5728 KBk
K% D3 & ¥ —SQUID % F\ T KRB FIF

BafTole, TOB, SIRICKLER ARy 7 &L
T, 20 Core « 120GB Memory * 600 B 2 % L
7273, Re = 500,750,10001Z 33\ > T IX B 46 72
LSS N RAT D2 b EHE a2 OB
FRRINT,

(a) #EE

(d) A
Fig.3. 2 ¥k Jt Viscous Sod Shock Tube Problem.
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