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1．はじめに 

圧縮性流体場の特徴的な物理現象として最も

代表的なものとして、衝撃波と境界層乱流との相

互 干 渉 で あ る Shock Wave Boundary Layer 

Interaction（SWBLI）が挙げられる。この SWBLI

は境界層乱流よりも遥かに複雑な乱流場となっ

ていることから、結果的に空気抵抗が増大すると

言われており。SWBLI の最適制御は高速流体機

器の抵抗低減化に必要不可欠である。 

H. Ozawa et al. (1) は、衝撃波が発生する箇所に

Bump を設けることで衝撃波の分布が変形し、

SWBLI の構造に影響を与えることを発見してお

り、このBumpのことをShock Control Bump（SCB）

と呼称している。また、K. Mazaheri et al. (2) や E. 

Jinks et al. (3) は、代表的な 2 次元翼断面である

RAE2822 において揚抗比や圧力の最小化問題を

解くことで SCB の設計を行い、SWBLI が抑制さ

れていることを数値的に示している。しかしなが

ら、これらの先行研究では SCB の形状を高々数

個程度の媒介変数で設定したパラメトリックな

最適設計を行っており、SWBLI の正確な物理現

象を十分に考慮している訳ではない。 

一方、本研究構想では全ての自由度を用いる随

伴解析を基礎技術とする形状最適化問題を採用

することで、対象としている物理現象に対して忠

実な最適設計を目指している。ところが、圧縮性

流体の数値計算には SWBLI を解像する必要があ

るため、伴う膨大な計算コストを必要とする。例

えば、空間刻みΔ𝑥は10ିଷ程度が、時間刻みΔ𝑡は10ି଺程度が一般に用いられる。また、格子点数は

1 次元で10ସ、2 次元で10଼、3 次元で10ଵଶ程度を

必要とする。そして、形状最適化問題を解くこと

を想定すると数十回の順問題を解く必要があり、

この点において圧縮性流体場の膨大な計算コス

トが致命的となる。 

圧縮性流体の数値解析において物理量が不連

続に変化する現象をどのように扱うかが問題と

なり、現在までに Gudunov 法を原型として様々

な近似リーマン解法及び高次多項式による空間

再構築を中心に研究が行われてきた（4）。このよ

うな解法は、数値振動を抑制するための制限関

数・人工粘性といった共通点を持っており、 

MUSCL や WENO、AUSM といった手法が提案さ

れている。しかし、制限関数・人工粘性が数値拡

散の原因となり、衝撃波や接触不連続面の界面を

鈍らせる結果につながる。このような数値的な課

題を回避するために、tanh 関数によって不連続な

物理量を近似することで数値拡散を抑制する 

THINC 法が F.Xiao et al. (5) によって提唱されて

いる。近年では高忠実・非散逸な数値計算手法と

して、人工粘性を用いずに、運動エネルギーとエ

ントロピーを高精度に保存させる KEEP スキー

ムが提案され(6)、MHD 乱流や燃焼乱流の数値シ

ミュレーションに活用されている。 

これらの先行研究で扱われてきた数値計算ス

キームにおいて、時間刻みΔ𝑡は全空間で一定値を

取る必要があるため、空間方向の計算コストを如

何に抑制できるかといった点が、計算コスト抑制

に向けた解決の糸口となり得る。そこで本研究で

は、SWBLI を解像可能な高い計算精度と形状最

適化問題を現実的な計算時間で実行可能な低い

計算コストを両立する数値計算手法を構築し、圧

縮性 Navier-Stokes 方程式に適用する。 

SCB の最適設計は抵抗低減に留まらず、航空機

設計にとって重要な役割を果たす。航空機が運航

時に迎角を上げると翼面上で SWBLI が発生し、
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それに伴い衝撃波後方の境界層が乱流場の振動

により剥離し、その結果として境界層と衝撃波が

時間周期的に干渉する現象をバフェット現象と

呼ぶ。このバフェット現象は主翼にかかる応力を

時々刻々変化させるため、機体の振動や翼の損傷、

操縦性の悪化、構造設計への悪影響等が懸念され

ている。そこで、本研究構想で構築する形状最適

化問題が SWBLI の抑制による抵抗低減化に役立

つことが実証されれば、バフェット現象の自励振

動を抑制する道筋が立つ。 

 

2．数理・計算モデルの構築 

圧縮性流体を扱う研究分野では、保存系の方程

式を用いることが一般的である。その理由は、密

度・運動量・内部エネルギー・運動エネルギー・

エントロピー・エンストロフィー等の物理量を保

存させるためには、発生した衝撃波の数値フラッ

クスを高精度に評価する必要があり、保存系圧縮

性 Euler 方程式を有限体積法や不連続ガラーキン

法、KEEP スキーム等を用いて離散化することで

実現することが可能であると、多くの数値計算結

果から裏付けられているからである。ところで、

保存量は密度𝜌・速度𝒖・圧力𝑝で構成されている

ことから、𝜌、𝒖、𝑝を保存させることが可能な非

保存系圧縮性 Euler 方程式を解くが可能であれば、

保存量もまた保存させることが可能となる。しか

し、非保存系圧縮性 Euler 方程式では数値フラッ

クスを精度よく解像することは一般に困難であ

り、数値振動・オーバー/アンダーシュートが発生

し、妥当な数値計算結果が得られないとされてき

た。 

このような圧縮性流体場の数値計算に関する

大きなトレンドにあって申請者は、保存系圧縮性

Euler 方程式から導出した新規・非保存系圧縮性

Euler 方程式（Table 1 参照）に対する数値計算ス

キームを開発することにした。この新規・非保存

系圧縮性 Euler 方程式は、保存系圧縮性 Euler 方

程式と同一のリーマン不変量を持つことが示さ

れており、その利用に数学的な矛盾は生じない。

その上で、従来手法で用いられてきたような数学

的な妥当性が全く与えられていない制限関数・人

工粘性を用いず、微分幾何や変分問題、誤差解析、

数値解析等の数理科学を基礎学問とする技術を

全面的に採用した新規・非保存系圧縮性 Euler 方

程式に対する数値計算スキームを構築した代表

的なテスト問題の一つである 1 次元 Sod Shock 

Tube Problem に適用したところ、格子点数を 90%

削減しつつ、エネルギーを保存させることに成功

し、厳密解とほぼ同様の密度・圧力・速度分布を

有する数値解が得られ、その有効性を実証してい

る。 

 

Table 1 新規・非保存系の圧縮性 Euler 方程式 𝜌 𝐷𝑎ఘ𝐷𝑡 + 𝜌𝛻 ⋅ 𝒖 = 0, 
𝜌 𝐷𝒖𝐷𝑡 + 𝑝𝛻𝑎௣ = 0, 
𝑝 𝐷𝑎௣𝐷𝑡 + 𝛾𝑝𝛻 ⋅ 𝒖 = 0. 

 

3．研究方法 

新規・非保存系圧縮性 Euler 方程式（Table 1 

参照）を導出する過程で、密度𝜌と圧力𝑝に log を

取 っ た (LCR: Logarithm Conformation 

Representation)、𝑎ఘ = log 𝜌 , 𝑢, 𝑎௣ = log 𝑝及び速

度𝒖を未知変数としている。この LCR を採用する

ことで、密度𝜌と圧力𝑝のオーダーを大幅に緩和

することが可能となる。この LCR は、これまで

レオロジーの分野で代表的な研究対象である非

ニュートン流体の数値計算に対して積極的に用

いられてきた。しかし、申請者が知る限り、少な

くとも航空工学分野における圧縮性流体におい

ては全く活用されてこなかった。このような経緯

であるため、新規・非保存系圧縮性 Euler 方程式
に関する物理的な性質については、これまで全く

と言っていいほど解析されることが無かった。 

このような状況を鑑みて、新規・非保存系圧縮

性 Euler 方程式に対して、位相速度・適合方程式・
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リーマン不変量といった物理的な性質が、保存系

圧縮性 Euler 方程式と一致することを示した。そ

の結果、適切な数値計算手法を構築することで、

保存系圧縮性 Euler 方程式を用いた先行研究と同

一な結果が得られるのではないかと考えられた。

本研究構想では、FreeFEM++にインプリメントさ

れている Adaptive Mesh Refinement (AMR) ソル

バーを活用する。この AMR ソルバーは、応用数

学者の P. J. Frey and F. Alauzet (7) や A. Loseille and 

F. Alauzet (8) によって提案され、有限要素法にお

ける誤差である 2 回微分項を最小化させるよう

にアルゴリズムが構築されている Anisotropic 

AMR ソルバーであり、“エッジの方向”は

Streamline に沿わせ、“エッジの長さ”は応力集中

している領域で小さく取ることで、物理量の１回

微分を高精度に近似することが可能となる。 

物質微分の近似には Semi-Lagrange Method

（SLM）を採用する。この SLM は時刻𝑡௡ = 𝑛Δ𝑡
の速度𝒖௡からΔ𝑡上流の物理量を算出することで

物質微分を数値的に近似するスキームとなって

いる。LCR や AMR と併用することで、“エッジ

の方向”は Streamline に沿うためΔ𝑡上流の座標は

エッジの近傍に存在することになり、更には衝撃

波の界面付近のように数値計算精度を要求する

ような領域であっても、“エッジの長さ”が小さ

く設定されるため、高精度に物質微分を近似する

ことが可能となる。 

 

4．数値計算結果：圧縮性 Euler 方程式 

上記で詳述した LCR と AMR、更には SLM を

組み合わせた数値計算手法を開発し、圧縮性 Eule

方程式における代表的なテスト問題である 1 次

元 Sod Shock Tube Problem に対して適用し、厳密

解と比較して良く一致していることを確認して

いる（Fig.1）。更に、有限要素メッシュを固定し

た場合と AMR を用いた場合を比較して、格子点

数を 10 分の 1 に抑えることに成功しており、こ

の点は形状最適化問題を解く際に順問題の計算

時間を抑制できるため極めて重要な知見であっ 

 

(a) 密度 

 

(b) 速度 

 
(c) 圧力 

Fig.1. 1 次元 Sod Shock Tube Problem 

 

更に、マッハ数 0.8・迎角 1.25 における

NACA0012 周り Euler 流れ（Fig.2）に対して適用

し、翼周りの𝑐௣コンターや𝑐ௗ値や𝑐௟値等が先行研

究（9）と比較して良く一致していることを確認

している。 

た。 

77



 

 

 

(a) 密度 

 
(b) 速度の絶対値 

 
(c) 圧力 

Fig.2. NACA0012 周りの Euler 流れ 

 

5．数値計算結果：圧縮性 Navier-Stokes 方程式 

 Fig.3 はRe = 200, 𝑡 = 1における 2 次元 Viscous 

Sod Shock Tube Problem の数値計算結果であり、 

G. Zhou et al. (PoF, 2018) と同様の結果が得られ

た。格子点数は固定メッシュの場合には4.5 × 10଺
程度となるが、AMR を採用することで2 × 10ହ程
度までに削減することが出来た。しかし、シング

ルスレッドでは計算時間が膨大となるため、大阪

大学 D3 センターSQUID を用いて大規模並列計

算を行った。その際、計算に必要なスペックとし

ては、20 Core・120GB Memory・600 時間を要し

たが、Re = 500,750,1000においては更に複雑な

乱流場が発生することから計算コストの増加が

予想された。 

 

(a) 密度 

 

(d) 温度 

Fig.3. 2 次元 Viscous Sod Shock Tube Problem. 
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