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運動論的レーザープラズマ相互作用で発生する 

非熱的高速電子特性の解析 

 
高木 悠司 

大阪大学 大学院理学研究科／大阪大学 レーザー科学研究所 

 

1．はじめに 

1.1 高強度レーザーとプラズマとの相互作用 

 101-6 J級の大型高強度レーザーを用いて物質

を加熱・圧縮することで、温度が数千万度、圧

力が数百億気圧に達する高温高密度プラズマを

作り出せ、高圧物性研究・核融合研究等のプラ

ットフォームになると共に、高エネルギー粒子

源等への応用も期待されている（図 1）。現在こ

のような高エネルギー密度プラズマを実験室内

で作り出せるのは高強度レーザーだけである。   

 高強度レーザーとプラズマとのレーザープラ

ズマ相互作用（Laser plasma interaction: LPI）

は、レーザー強度・パルス波形等のレーザー照

射条件にターゲットの形状・材質等の条件も組

み合わさった、多数のパラメーターが関与する

複雑な物理過程である。特に、レーザー強度が

1017 W/cm2以上の運動論・相対論的強度領域と

1013 W/cm2以下の流体的領域との中間に位置す

る 1014-16 W/cm2 付近の強度領域での LPIは、熱

的平衡にある流体的プラズマと運動論的非線形

過程で発生する非熱的高速粒子とが混在する非

平衡状態にあるため、流体モデルや運動論モデ

ルでの解析が難しく理解が進んでいない。   

 

1.2 中間的強度でのレーザープラズマ相互作用 

 強度が 1014-16 W/cm2 付近の中間的領域での

LPIでは、誘導ラマン散乱（Stimulated Raman 

scattering: SRS）・ブリルアン散乱（Stimulated 

Brillouin scattering: SBS）・二電子波崩壊不安定性

（Two plasmon decay: TPD）等のパラメトリック

不安定性（Parametric instability: PI）と呼ばれる

LPIによるレーザー光の吸収・散乱が起こる

（図 2）。これらの過程はピコ秒スケールで成長

し、発生する周囲のプラズマより一桁以上高エ

ネルギーの非熱的電子は高密度プラズマ内部に

エネルギーを輸送し、衝撃波等のナノ秒スケー

ルの流体運動に影響を与える。例えば代表的な

PIである SRSは、レーザー電磁波が散乱波と電

子プラズマ波（Langmuir wave: LW）を共鳴的に

励起する LPIであるが、励起された大振幅の

LW （Large-amplitude LW: LALW）は周囲のプ

ラズマ中の電子を捕獲し自身の位相速度程度ま

で加速させる事で、典型的には数 10 keV程度の

エネルギーを持つ高速電子を発生させる。ま

た、SRS再散乱等の多段階の LW励起過程を経

る事で、100 keVを超える相対論的エネルギー

を持った高速電子の発生も報告されている     

[1-2]。 

 

図 1：レーザー光と物質との相互作用の模式図。 
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 一方で、前年度までの研究から数 10 psの長

い LPI下では、LALWによる電子捕獲では無く

揺動電場中での統計的加速により数 100 keVの

平均エネルギーを持つ高速電子が定常的に発生

する事が分かってきた[3]。よって本年度は、こ

の揺動電場中での統計的加速と多段階の LW励

起による加速の二つの加速機構がそれぞれどの

様に高速電子発生に関与しているかを明らかに

する為に、電場のフーリエ解析情報から励起電

場モードの時間変化について調査を行った。 

 

2．高速電子発生過程のシミュレーション 

中間的領域の LPIの難しさは粒子的・流体的

二つの時空間スケールが含まれる点にある。本

研究では両者を切り分け、高速電子発生のみに

焦点を当て Particle-in-cell (PIC)法による運動論

的シミュレーションからその詳細を調べる。 

 

2.1 シミュレーションの設定 

 PIC法では格子状に分割したシミュレーショ

ン空間内にプラズマを模した荷電粒子を配置す

る。空間内での荷電粒子の運動に伴い発生する

電磁場及び外部電磁場（レーザー場）を各空間

格子上でマクスウェル方程式に従って求める。

荷電粒子の運動は自分の位置する格子上の電磁

場から運動方程式に従って計算される。 

 SRS による電場のモード励起状態を調べる為

に高解像度 1次元 PICシミュレーションを行っ

た。PIC コードは PICLS コード[4]を使用した。

図 3にシミュレーションの設定を示す。1次元

シミュレーション空間 x軸上に陽子と電子から

なる水素プラズマを配置し、左（x軸負方向）

からレーザーを照射した。レーザーは p偏光

（電場は y方向、磁場は z方向に振動）を用

い、レーザー波長 λは 1 μm、レーザー強度は

1016 W/cm2に設定した。シミュレーション中レ

ーザーは常に照射し続ける。空間格子サイズは

1/100 μm（レーザー波長 λを 100分割）に設定

した。タイムステップは PICLSのアルゴリズム

の都合上≃ 0.033 fs （レーザー周期を 100分

割）に自動的に決定される。水素プラズマの

（数）密度 nの初期設定は、最大密度をレーザ

ー遮断密度 nc（  ~ 1021 /cm3）の 1.2倍、最小密

度を 1.2/e4 ≃ 0.02倍に固定し、指数関数的な密

度勾配を仮定した。密度勾配のスケール長 Lは

L = 600 μmとした（n ∝ exp(-x/L)）。陽子と電子

はそれぞれ一空間格子につき 100個ずつ配置

し、初期温度がそれぞれ 1 keVと 5 keVとなる

様に初期運動量分布を持たせた。シミュレーシ

ョン空間は 1次元だが電磁場の空間及びプラズ

マの運動量空間は 3次元である。 

 

2.2 電場のモードスペクトルの測定 

 シミュレーション結果を図 4-5に示す。図 4

は t = 40 psと 41 psにおける電子密度 ne（上）、

 
図 2：レーザー強度が 1014-16 W/cm2 程度の領域
で起こるレーザープラズマ相互作用の模式図。 

 
図 3：1 次元 PIC シミュレーションの設定。 
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横（レーザー）電場 Ey（中）、縦(LW)電場 Ex

（下）の空間分布である。ne = nc/4付近及び ne = 

nc/16を中心とした ne < 0.2 ncの領域に SRSによ

る密度空孔（キャビティー）が発生している。 

Eyの空間分布を見ると、キャビティーにおいて

入射レーザー波の約 3倍の大振幅場が形成され

ていることが分かる。この領域での Eyと Exのフ

ーリエ解析の結果が図 5になる。図 5 (a)は Eyの

モードを示しており、入射レーザー波とその反

射波に対応した ω = ωLに強い信号が見られる

（kL,ωLはそれぞれレーザーの波数と周波数）。

また、0.1 < ω/ωL < 0.5の領域にもキャビティー

による強い信号が見られる。Exのモードを示し 

 

た(b)を見ると、この領域でのプラズマの密度・

温度からあり得る範囲内においてあらゆるモー

ドの波が同程度の信号強度で存在しており、

LALWは発生していない事が分かる。よって t = 

40 psでは LALWによる電子捕獲・加速は起こ

り得ず、統計的加速によって数 100 keVの平均

エネルギーを持つ高速電子が発生している事が

示唆される。 

 

2.3 モードスペクトルの時間変化 

 両加速機構の時間的遷移を調べる為に、より

早い時刻(t = 20 ps)との比較を行った。シミュレ

ーション中から先行研究[5-6]で SRS再散乱が起

こるとされている 0.1 < ne/nc < 0.2の領域を切り

出してフーリ解析を行い結果を比較した。結果

を図 6に示す。図 6 (a), (b)は切り出した領域の

電子密度、(c), (d)はその領域中での Eyのスペク

トル、(e), (f)は Exのスペクトルである。 

(a), (b)を見ると、t = 20 psに成長し始めたキャビ

ティーは t = 40 psには 0.15 nc以下全体に広がっ

ている事が分かる。(c), (e)を見ると、t = 20 psで

は後方への SRS (Backward SRS: BSRS)とその再

散乱の強い信号、また弱いながら前方への SRS 

(Forward SRS: FSRS)を示す信号も確認できる。 

一方で(d), (f)を見ると、t = 40 psではこれらの

SRSの信号は全て消滅している事が分かる。 

 よって、シミュレーションの早い段階には従

来提唱されてきた SRS再散乱による 100 keV以

上の相対論的エネルギーへの電子加速が起こり

得る一方で、遅い段階では SRSの信号は消滅し

ており統計的加速へと加速過程が遷移している

事が伺える。t = 40 psでの SRS消滅の理由は現

在明確ではないが、キャビティーの成長による

プラズマ密度の大きな不均一が原因ではないか

と考えている。 

 
図 4：t = 40, 41 psにおける電子密度（上）、横（レーザ

ー）電場（中）、縦(LW)電場（下）の空間分布。 

 
図 5：t = 40-41 ps間の(a) Ey（レーザー）電場と(b) Ex 

(LW)電場のフーリエ解析結果。 
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3．おわりに 

レーザー強度が 1014-16 W/cm2の領域でのレー

ザーとプラズマとの相互作用における数 100 

keVの平均エネルギーを持つ高速電子の発生過

程について、高解像度大規模 1次元 PICシミュ

レーションを用いてその詳細を調べた。シミュ

レーション中から電場の時空間変化の情報を取

得し、そのフーリエ変換からモード解析を行っ

た。シミュレーションの早い段階 （t = 20 ps）

には先行研究と同様に SRS の理論から予測され

る位置に強い信号が確認された一方で、遅い段

階 （t = 40 ps）ではそれらの SRS を示す信号は

全て消滅している事が判明した。 

 

この結果からこの強度領域での 100 keV以上へ

の電子加速機構は、従来提唱されてきた SRSに

よる LALWの励起とその LALWによる電子捕

獲・加速から SRSによるキャビティー成長とそ

れに起因して生じる揺動電場中での統計的加速

過程へと、時間的に変化する事が示唆された。 
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図 6：t = 20, 40 psでの(a), (b) 電子密度、(c), (d) Eyスペクトル、(e), (f) Exスペクトルの比較。 
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