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SiO2反応性イオンエッチング分子動力学シミュレーションのための 

機械学習原子力場の構築 

 

浜口 智志 

大阪大学 大学院工学研究科 マテリアル生産科学専攻 

 

1.はじめに 

近年、半導体デバイスの高集積化および微細化

に伴い、半導体プロセス技術はナノスケールに移

行しており、原子レベルでの表面反応機構の解明

が求められている。こうした半導体プロセス技術

のシミュレーションを行う上で重要となるのが、

エネルギーや力を予測する原子間ポテンシャル

である。本研究では、反応性イオンエッチングお

よび物理スパッタリングシミュレーションに適

した汎化性能の高い機械学習原子間ポテンシャ

ルの構築することを目的とする。また、モデルに

組み込む原子種が増えることで複雑化すると予

想される原子間ポテンシャルの開発プロセスに

対して、機械学習を用いた自動化の手法を提案す

る。さらに、作成した機械学習原子間ポテンシャ

ルを大規模な半導体プロセス技術の分子シミュ

レーションに適用し、半導体製造プロセスにおい

て見られるプラズマ表面反応のメカニズム解明

を目指す。半導体製造プロセスにおいて多用され

ている SiO2 を基板材料とし、Si イオンおよび O

イオンを入射することでスパッタ率の予測を行

う。さらに、シミュレーション結果を実験値と比

較することでシミュレーションの精度を評価す

る。1) 

 

2.シミュレーション手法 

2.1  データセットの作成  

 本研究では、結晶データ、アモルファスデータ、

分子データの 3 パターンのデータ生成手法によ

って構造データを作成した。たとえば、結晶デー

タでは、まず初めに、１つ目の構造データの作成

方法について説明する。最初に、Materials 

Project から SiO2の結晶構造類型を取得した。次

に、これらの結晶構造を構造最適化した後、それ

ぞれに対して、Fig. 1 (a)に挙げたように、0.5

から 1.5 倍の範囲で格子を圧縮または膨張させ、

さらに、その後、内部座標にランダムな変位を加

え、結晶付近の多様な構造データを作成した。

Fig.1 (b) と(c)に同様に構築したアモルファス

データ、(e)に、分子データを示す。 

なお、本研究では、本研究では一般化勾配近

似（GGA）の一形態である PBE 交換相関汎関数を

用いて、密度汎関数理論（DFT）に基づく第一原

理計算を実施した。また、DFT計算には PAW法を

用い、計算の実行には計算ソフト Quantum 

Espresso 7.2 を用いた 2-4)。さらに、Dimer デー

タに関しては、Gaussian16 を用いて全エネルギ

ー及び各原子にかかる力を計算した。  

 

2.2.  機械学習原子間ポテンシャルの構築 

本研究では、機械学習原子間ポテンシャルのフレ

ームワークとして、 Harvard 大学の研究グルー

プが開発した Allegro モデルを用いた。Allegro

モデルは GNNと Equivariant Neural Network を

組み合わせた機械学習原子間ポテンシャルであ

る 5)。 
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2.3   原子間ポテンシャルにおける近接距離

相互作用の表現 

本研究では、第一原理計算ソフトの信頼性の観点

から、例えば、Si-Si 結合では 1Å 以下の原子間

距離を有する構造データをデータセットから取

り除いた。そのため、そのまま学習を行うと、機

械学習原子間ポテンシャルは原子間距離が 1Å 以

下の原子の相互作用を正しく予測することがで

きない。そこで、本研究では、Allegroのフレー

ムワークを用いて、ポテンシャルに反発性の

Ziegler-Biersack-Littmark(ZBL)項を追加した。

Allegroにて使用される ZBLポテンシャルは次式

で与えられる。 

 

𝐸𝐸𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍𝑍𝑍 =
1

4𝜋𝜋𝜖𝜖0
𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
𝜙𝜙 �

𝑟𝑟𝑖𝑖𝑖𝑖
𝑎𝑎
�  

ここで 

𝑎𝑎 =
0.46850

𝑍𝑍𝑖𝑖0.23 + 𝑍𝑍𝑗𝑗0.23 

𝜙𝜙(𝑥𝑥) = 0.18175𝑒𝑒−3.19980𝑥𝑥 + 0.50986𝑒𝑒−0.94229𝑥𝑥

+0.28022𝑒𝑒−0.40290𝑥𝑥 + 0.02817𝑒𝑒−0.20162𝑥𝑥  

 

また、𝑒𝑒は電子電荷、𝜖𝜖0は真空の誘電率、𝑍𝑍𝑖𝑖と𝑍𝑍𝑗𝑗は

それぞれ 2 つの原子の核電荷を示す。これにより、

機械学習原子間ポテンシャルの学習時に、ZBL ポ

テンシャルの重みが設定され、近接相互作用を

ZBL ポテンシャルで表現することが可能になる。 

 Allegro ではニューラルネットワークから、

中心原子𝑖𝑖と近傍原子𝑗𝑗の間に働くエッジエネ

ルギー𝐸𝐸𝑖𝑖𝑖𝑖を出力する。本研究では、𝐸𝐸𝑖𝑖𝑖𝑖に ZBL 項

を追加することで ZBL ポテンシャルとの組み

合わせを実施した。すなわし、𝐸𝐸𝑖𝑖𝑖𝑖 は 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍𝑍𝑍  

 
で与えられ、𝐸𝐸𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁はニューラルネットワークか

ら出力されるエッジエネルギーを、𝐸𝐸𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍𝑍𝑍は式

(3-24)の ZBL ポテンシャルを用いて計算され

たエッジエネルギーを示す。モデルの学習過程

では、𝐸𝐸𝑖𝑖𝑖𝑖を用いて計算された系全体のエネル

ギー𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠が正解値に近くなるように、重み

の更新が行われる。つまり、予め ZBLポテンシ

ャルによるエネルギー分が足し合わされた状

態で学習が開始し、系全体のエネルギーから

ZBL ポテンシャルによるエネルギー分を差し

引いた値が、学習過程にて変化する。 

 

3.機械学習原子間ポテンシャルの学習結果 

本研究では、まず、Si の構造を正しく再現する

必要あるため、Siのデータセットから構築した。

各構造の原子数およびデータ数を Table 1 に示

す。Table 1では、列名「Dataset type」に構造

データの生成方法の種類、列名「Structure name」

に構造の名前、列名「Number of atoms in 

structure」に 1 構造データに含まれる原子数、

列名「Number of data instances」に構造データ

の数を記載している。SiO2の機械学習原子間ポテ

ンシャルを作成するために使用したデータセッ

トも同様に構築した。 

Fig. 1 Methods to create structural data 
(crystal, amorphous with a surface, 

amorphous, and dimer/trimer molecules). 
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4.分子動力学法による物理スパッタリングシミ

ュレーション結果 

本研究では、(100)面をもつ結晶 Si、及び、め、

Alpha quartz 型の SiO2をエッチング対象材料と

してシミュレーションボックスを作成し、スパッ

タリグシミュレーションを実施した。シミュレー

ションボックスでは、SiO2の場合 16、200 個の原

子数を有する、46.2×44.4×113.6Å の大きさの

SiO2個体作成した。基板は構造最適化により、x、

y、z 軸の方向のシミュレーションボックスの大

きさを変化させた後、300 Kにて 100 ps 熱化を

行った。シミュレーションボックスは、平面方向

（x、y軸の方向）に周期境界条件を用いている。 

本研究では、(100)面をもつ結晶 Si、及び、め、

Alpha quartz 型の SiO2をエッチング対象材料と

してシミュレーションボックスを作成し、スパッ

タリグシミュレーションを実施した。シミュレー

ションボックスでは、SiO2の場合 16、200 個の原

子数を有する、46.2×44.4×113.6Å の大きさの

SiO2個体作成した。基板は構造最適化により、x、

y、z 軸の方向のシミュレーションボックスの大

きさを変化させた後、300 Kにて 100 ps 熱化を

行った。シミュレーションボックスは、平面方向 

（x、y軸の方向）に周期境界条件を用いている。 

照射エネルギーは、250 eV、 500 eV、 750 eV、 

1000 eVの 4条件で実施した。スパッタリングシ

ミュレーションは NVIDIA A100 GPUを 8GPU使用

して行った。なお、本研究では、スパッタ率が安

定する1 × 1015cm-2以上の ion doseの範囲に対し

て、スパッタ率を算出した。 

 

 

Table 1: Structure information of each polymorph of Si. 

 
 

 

本研究では、機械学習原子間ポテンシャルを用

いたスパッタリングシミュレーションの結果を

評価するため、実験値および経験的ポテンシャル

のシミュレーション結果と比較した。実験値は、

複数の文献から、イオンビームを用いたスパッタ

リングの結果を引用した。Si のセルフスパッタ

リングの実験および SiO2 基板に O イオンを入射

したスパッタリングの実験は、高真空中に置かれ

た基板に対して、特定のエネルギーのイオンビー

ムを照射してスパッタするイオンビームスパッ

タ法を用いて実施された。また、経験的ポテンシ

ャルのシミュレーションでは、Si 基板を用いた

シミュレーションには Stillinger-Weber ポテン

シャルを用い、SiO2基板を用いたシミュレーショ

ンでは、Tersoffポテンシャルを用いて実施した。

経験的ポテンシャルを用いたシミュレーション

は、機械学習原子間ポテンシャルを用いたシミュ

レーションと同様の条件で実施した。 

Fig. ２に、本研究で開発した機械学習力場を

用いた MD シミュレーションの結果の一例を示
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す。Fig. 2 の例では、同ポテンシャルを用いて、

Si 基盤を構築し、Si＋イオンを入射イオンとし

て、横軸に入射イオンの運動エネルギー、縦軸

に、スパッタリング・イールド（イオン入射あ

たりに、表面が正味に失う Si 原子数の平均値）

を示している。このイールド値が正の値であれ

ば、表面のエッチングが起こっており、府であ

れば、入射した Si が堆積していることを示す。

赤で示した線が、本研究で得られた力場による

もの、緑が実験値、青が Stillinger-Weber の典型

的なパラメータを採用して得られた結果であ

る。数値がすべて負の値であるのは、堆積が起

こっているためである。実験値とシミュレーシ

ョン値は、傾向は一致しているが、定量的に

は、よく合っているとは言えない。この原因の

究明は、今後の研究課題である。 

 

 

Fig. 2: Sputtering yield vs injection energy. 

 

5.おわりに 

 本研究では、第一原理計算および機械学習の

技術を活用し、半導体製造技術の過程で見られる

非熱平衡現象に適した機械学習原子間ポテンシ

ャルを開発した。さらに、作成した機械学習原子

間ポテンシャルを用いて、従来の知見や実験値と

本研究のシミュレーション結果を照らし合わせ

ながら、スパッタリングシミュレーションの精度

について考察した。 

具体的には、GNN に基づいた機械学習のフレ

ームワークを活用して、Si および SiO2 の機械学

習原子間ポテンシャルを作成する際に、近距離相

互作用に ZBL ポテンシャルを統合した。これに

より、従来の機械学習原子間ポテンシャルでは困

難であった物理スパッタリングシミュレーショ

ンへの応用範囲を拡張した。最終的に、Si の機械

学習原子間ポテンシャル、SiO2の機械学習原子間

ポテンシャル、能動学習を用いた SiO2 の機械学

習原子間ポテンシャルの 3 種類のモデルを用い

て、Si のセルフスパッタリングシミュレーション

を実施した。 
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