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1. Introduction 

Turbulent flows are ubiquitous in both natural and 

industrial fields. It has a critical role in various 

applications, such as aircraft, turbomachinery, and 

weather forecasting. Characterized by chaotic and 

unsteady motion, turbulence involves a broad range of 

vortices across different scales. The use of numerical 

simulations with reliable computational methods serves 

as valuable tools for fundamental research in turbulent 

flow. A direct numerical simulation (DNS) resolves all 

turbulence scales, but its computational cost is 

prohibitive for practical use due to its immense 

computational resources on fine mesh. Among existing 

modeling approaches, large-eddy simulation (LES) has 

become a widely used compromise between accuracy 

and computational efficiency. In LES, large-scale 

vortices are directly resolved using the numerical 

scheme, while a turbulence model is introduced to 

account for the small-scale vortices. The scales that are 

explicitly resolved are referred to as grid-scale (GS), 

whereas the small-scale are known as subgrid-scale 

(SGS) or residual stress (𝜏௜௝), with the latter represented 

by SGS model. Many SGS models have been proposed 

such as the Smagorinsky (SMAG) model which is one 

of the most typical SGS models. However, these 

conventional models, which rely on linear eddy 

viscosity assumptions, often struggle to accurately 

capture the complex features of SGS.  

Recently, advances in computational resource and 

machine learning have enabled the development of data-

driven SGS models using deep neural networks (DNN). 

The data-driven SGS model aims to predict 𝜏௜௝ without 

relying on explicit mathematical and physical 

assumptions. Early efforts, such as Gamahara & 

Hattori[1], used multilayer perceptrons (MLP) trained 

on filtered DNS (fDNS) data to predict 𝜏௜௝ , while later 

Liu et al.[2] demonstrated an improved performance 

using convolutional neural networks (CNN) due to their 

ability on capturing spatial features. Despite this 

potential of data-driven SGS models, capturing the 

multiscale dynamics of turbulent fields remains 

challenging, particularly due to the nature of turbulent 

energy cascade where kinetic energy is progressively 

transferred from large to smaller vortices. To address 

this, we propose a multiscale CNN-based SGS model 

(MSC-SGS) which incorporates features across multiple 

spatial resolutions ranging from large to small vortices 

and evaluate its effectiveness on predicting 𝜏௜௝ . 

 

2. Methodology 

The problem setting of this study is wall-bounded 

turbulent channel flow between two parallel flat plates 

driven by a constant pressure gradient with Reynolds 

number (Re) of 180. LES computation is conducted by 

solving the spatially filtered forms of the continuity and 

NavierStokes equations expressed in Eqs. (1) and (2). డ௨ഥ೔డ௫೔ = 0      (1) 

డ௨ഥ೔డ௧ + డ௨ഢതതത ௨ണതതതതడ௫ೕ = − డ௣̅డ௫೔ + ଵୖୣ డడ௫ೕ ൫−𝜏௜௝ +  2𝐷ഥ௜௝൯ (2) 

The overbar denotes the filtering operation and 𝐷ഥ௜௝ =ଵଶ ൬డ௨ഥ೔డ௫ೕ + డ௨ഥೕడ௫೔ ൰ , is the GS rate-of-strain tensor. Here, 𝑢ത  

and 𝑝̅  denotes the velocity and pressure, respectively. 

The SGS components, 𝜏௜௝ = 𝑢ప𝑢ఫതതതതത −  𝑢పഥ  𝑢ఫഥ , are unclosed 

term and need to be modeled. Here, the data-driven SGS 

model is proposed to predict 𝜏௜௝. A schematic diagram 

of data-driven SGS framework is depicted in Fig. 1. The 

data-driven SGS model is trained in a supervised 

manner using fDNS dataset that comprises a set of input 
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data 𝑋௧௥  and label data ൫𝜏௜௝௙஽ேௌ൯ . The training step (a 

priori test) aims to establish a functional relation 

between the input and output variables, thus yielding a 

nonlinear regression 𝜏௜௝௣ = ℱ(𝑋௧௥; 𝑤) , where 𝑤 

indicates the weight of the neural network and 𝜏௜௝௣  is the 

predicted 𝜏௜௝. The training process aims to determine the 

optimum weight such that 𝑤 =argmin௪ ቀℒ൫𝜏௜௝௣ , 𝜏௜௝௙஽ேௌ൯ቁ , where ℒ  denotes the loss 

function. Subsequently, the trained data-driven SGS 

model is implemented in the CFD framework of actual 

LES computation to assess its performance (a posteriori 

test). 

Here, the dataset is obtained using DNS data of a 

turbulent channel flow where it has been validated by 

comparing with Kim et al.[3]. DNS data are 

subsequently filtered using box filter to separate the GS 

and SGS components, resulting in the fDNS data. To 

satisfy the Galilean and rotational invariant of 

turbulence model, the GS variable of 𝐷ഥ௜௝ is used as the 

input variable. Therefore, the input (𝑋௧௥) and label data 𝜏௜௝௙஽ேௌ can be defined in Eqs. (3) and (4). 𝑋௧௥ = {𝑥 ∈ 𝑅଺×ேೣ×ே೤×ே೥: 𝑥 = 𝐷ഥ௜௝}    (3) 𝜏௜௝௙஽ேௌ = {𝜏௜௝௙஽ேௌ ∈ 𝑅଺×ேೣ×ே೤×ே೥}   (4) 

As illustrated in Fig. 2, the MSC-SGS model 

incorporates multiscale representation of turbulent 

fields. The input features are separated into a quarter, 

half, and full scale which corresponds to large-, 

intermediate-, and full-scale vortices by using low-pass 

filter operation. Next, these inputs are sequentially 

encoded and then concatenated to form a comprehensive 

multiscale representation. To account for three-

dimensional spatial interactions in turbulent flows, the 

MSC-SGS model utilizes 3D convolutional kernels with 

a uniform size of 3 across each spatial direction. For a 

more profound explanation of the MSC-SGS model and 

its training procedure, readers are referred to the study 

by Jalaali & Okabayashi[4]. 

Figure 1. Schematic diagram of data-driven SGS 
framework. 

 

Figure 2. Schematic illustration of the MSC-SGS 

model network structure. 

 

3. Result and discussion 

In a priori test, the correlation coefficient (CC) 

expressed in Eq. (5) is introduced to evaluate the 

performance of the data-driven SGS model where 〈 . 〉 
denotes the ensemble average in the streamwise–

spanwise (𝑥-𝑧) direction and in time.  

 𝐶𝐶 =  〈ቀఛ೔ೕ೑ವಿೄି〈ఛ೔ೕ೑ವಿೄ〉ቁቀఛ೔ೕ೛ ି〈ఛ೔ೕ೛ 〉ቁ〉ට〈(ቀఛ೔ೕ೑ವಿೄି〈ఛ೔ೕ೑ವಿೄ〉ቁమ〉ට〈ቀఛ೔ೕ೛ ି〈ఛ೔ೕ೛ 〉ቁమ〉    (5) 

Figure 3 shows the correlation coefficient (CC) as a 

function of wall-normal distance (𝑦ା), averaged over all 

components of 𝜏௜௝. The MSC-SGS model consistently 

yields high CC values, particularly in the region 5 <𝑦ା < 30 , where shear-dominated turbulence and SGS 

dynamics are prominent. A reduction is observed near 

the wall (𝑦ା < 5 ) due to diminished flow variability, 

while high correlations are observed for 𝑦ା > 30 . 

Compared to previous studies of Gamahara & Hattori[1], 

Bose & Roy[5], and Park & Choi[6], the MSC-SGS 

model demonstrates higher overall CC value, 

underscoring the advantage of incorporating multiscale 

information. 
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Figure 3. CC averaged in streamwise–spanwise (𝑥 -𝑧 ) 

direction and in time between 𝜏௜௝௣  and 𝜏௜௝௙஽ேௌ. 

 

 
(a) 

 
(b) 

Figure 4. Wall-normal distribution of (a) 𝜏ଵଶ and (b) 

SGS backscatter 

 

Figure 4(a) shows wall-normal distribution of 𝜏ଵଶ , 

the dominant shear stress component in wall-bounded 

flows. Fig. 4(b) presents the SGS backscatter ቀ𝜀௕ =− ଵଶ 〈𝜀௦௚௦ − ห𝜀௦௚௦ห〉ቁ  where 𝜀௦௚௦ = −𝜏௜௝ 𝐷ഥ௜௝ represents 

SGS backscatter (energy transfer from small to large 

fluctuations) and accurately capturing this term is 

important for turbulence modeling. From the results, the 

MSC-SGS model closely aligns fDNS results for both 

quantities. Nevertheless, as noted in Park & Choi[6] and 

Duraisamy[7], a priori result does not guarantee 

accuracy in a posteriori simulations, prompting further 

LES validation of the model. 

In a posteriori test, the data-driven SGS model is 

implemented within an LES of turbulent channel flow, 

under conditions similar to those used in the DNS 

computation. The computational domain and grid 

resolution are (𝐿௫ × 𝐿௬ × 𝐿௭) = (2𝜋𝛿 × 2𝛿 × 𝜋𝛿)  and (𝑛௫ × 𝑛௬ × 𝑛௭) = (32 × 64 × 32) , respectively. For 

comparison, the conventional mathematics model of 

SMAG model with van Driest damping is also evaluated. 

(a) 

(b) 
 

Figure 5. Wall-normal distribution of turbulence 

statistics of a posteriori result for (a) mean velocity 

and (b) root-mean-square velocity. 
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Figure 6. Energy spectrum of velocity fluctuations. 

Figure 5(a) compares the mean velocity profiles of 

the MSC-SGS model, SMAG model, and DNS. The 

MSC-SGS model closely matches DNS mean velocity 

profile, while the SMAG model exhibits deviation. 

These discrepancies can be attributed to its reliance on a 

predefined eddy viscosity assumption. Fig. 5(b) shows 

the root-mean-square (rms) velocity statistics. In 

comparison with the DNS results, the SMAG model 

tends to overestimate 𝑢ത୰୫ୱା , while underestimating both 𝑣̅୰୫ୱା   and 𝑤ഥ୰୫ୱା   which indicates inadequate energy 

redistribution. On the other hand, although the MSC-

SGS model slightly overpredicted the DNS for the 𝑤ഥ୰୫ୱା , 

it produces the 𝑢ത୰୫ୱା   and 𝑣̅୰୫ୱା   well owing to the 

appropriate energy redistribution. 

Figure 6 presents the three-dimensional energy 

spectra of the velocity fluctuations. At low 

wavenumbers, both SMAG and MSC-SGS models 

agree well with fDNS, capturing large-scale structures. 

However, at high wavenumbers, the SMAG model 

underpredicts energy due to excessive dissipation. In 

contrast, the MSC-SGS model aligns closely with fDNS 

across all scales, indicating its ability to preserve fine-

scale dynamics and accurately represent the energy 

cascade. 

 

4. Conclusion and Future direction 

In this study, the multiscale algorithm of the 

multiscale CNN-based SGS model (MSC-SGS) model 

was employed to predict the SGS residual stress 𝜏௜௝. The 

model encoded multiscale input representations 

obtained through low-pass filtering at various scales. A 

priori results showed that the MSC-SGS model 

consistently achieved a high correlation coefficient 

across all wall regions. It also revealed that the MSC-

SGS model provided accurate predictions for shear 

stress 𝜏ଵଶ  and SGS backscatter.  In a posteriori tests, 

LES computations based on the MSC-SGS model 

showed good agreement with DNS data in terms of 

turbulence statistics and energy spectra, compared to the 

conventional mathematical model. 

Despite its advantages, the MSC-SGS model has 

certain limitations such as the generalization ability to 

predict flow other than training dataset. Future work will 

focus on enhancing the model’s ability to generalize 

across diverse flow conditions beyond the training 

datasets, thereby improving its applicability to a wider 

range of turbulent flow scenarios. 
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