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Abstract
Liver cancer remains a significant global health concern, ranking as the sixth most common malignancy and the third 
leading cause of cancer-related deaths worldwide. Medical imaging plays a vital role in managing liver tumors, particu-
larly hepatocellular carcinoma (HCC) and metastatic lesions. However, the large volume and complexity of imaging data 
can make accurate and efficient interpretation challenging. Artificial intelligence (AI) is recognized as a promising tool to 
address these challenges. Therefore, this review aims to explore the recent advances in AI applications in liver tumor imag-
ing, focusing on key areas such as image reconstruction, image quality enhancement, lesion detection, tumor characteriza-
tion, segmentation, and radiomics. Among these, AI-based image reconstruction has already been widely integrated into 
clinical workflows, helping to enhance image quality while reducing radiation exposure. While the adoption of AI-assisted 
diagnostic tools in liver imaging has lagged behind other fields, such as chest imaging, recent developments are driving 
their increasing integration into clinical practice. In the future, AI is expected to play a central role in various aspects of 
liver cancer care, including comprehensive image analysis, treatment planning, response evaluation, and prognosis predic-
tion. This review offers a comprehensive overview of the status and prospects of AI applications in liver tumor imaging.

Keywords  Artificial intelligence · Liver tumors · Liver neoplasms · Medical imaging · Hepatocellular carcinoma · 
Radiomics
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Introduction

In 2020, liver cancer was the 6th most commonly diag-
nosed cancer worldwide and the 3rd leading cause of can-
cer-related deaths. Approximately 905,700 new cases and 
830,200 deaths were reported globally. By 2040, these num-
bers are projected to increase by > 55%, reaching an esti-
mated 1.4 million new cases and 1.3 million deaths annually 
[1]. Medical imaging techniques—such as ultrasound, 
computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET)—play 
crucial roles in diagnosing and managing liver tumors, 
including hepatocellular carcinoma (HCC) and metastatic 
liver cancer. These imaging techniques are used for surveil-
lance, detection, diagnosis, staging, treatment planning, and 
post-treatment follow-up. Advances in imaging modalities 
and evaluation methods have greatly contributed to the 
management of patients with liver tumors. Since 2011, the 
Liver Imaging Reporting and Data System (LI-RADS) has 
evolved as a comprehensive system to standardize imaging 
practices in patients with liver cirrhosis or chronic hepatitis 
B [2, 3].

Despite significant advancements, the imaging diagnosis 
of liver tumors still presents numerous challenges. Accurate 
diagnosis using CT or MRI is still challenging for detecting 
small HCCs, because of its low sensitivity [4]. Moreover, 
liver imaging includes multi-phase, three-dimensional (3D) 
volumetric and functional imaging using liver-specific con-
trast agents in MRI. Therefore, the amount of information 
generated via these techniques tends to be substantial. This 
underscores the need for skilled abdominal radiologists who 
specialize in liver imaging. However, such specialists may 
not always be available at the clinical site, making it dif-
ficult to properly evaluate liver images. There are also chal-
lenges associated with interpretation using LI-RADS. The 
LI-RADS system presents notable challenges, including the 
substantial reporting burden imposed by its highly detailed 
templates, which require explicit documentation of imaging 
features, and the intrinsic subjectivity in interpreting radio-
logic findings, which contributes to interreader variability 
even in seemingly objective measures such as lesion size 
[3]. Many researchers expect that artificial intelligence (AI), 
which has made significant progress in recent years, will 
help address these challenges.

AI has been explored since the 1950s as an attempt to 
simulate human-like cognitive processes using machines. 
Since the advent of deep learning in 2012, AI has rapidly 
gained prominence across various fields, including medi-
cine. Deep learning shows remarkable progress in image 
recognition and classification, and its application in radiol-
ogy began early. Currently, AI is applied in areas such as 
lesion detection, tumor characterization, segmentation (of 

organ, anatomical region, or lesion boundaries), and image 
quality enhancement, which support radiation dose reduc-
tion or shorten imaging time. In addition, AI is increas-
ingly used in radiomics, with ongoing research exploring 
its potential to predict treatment outcomes and support 
other clinical applications. Earlier studies have reported on 
the application of AI in detecting and characterizing liver 
tumors [5]. This review aims to examine the current status 
and prospects of AI in liver tumor imaging.

Deep learning reconstruction

Image reconstruction is the process of creating cross-sec-
tional images from raw data obtained via signals, such as 
X-rays or electromagnetic waves. Application of AI to this 
process can enhance image quality in medical imaging tech-
niques such as CT and MRI. Currently, major manufacturers 
offer diagnostic imaging scanners equipped with deep learn-
ing reconstruction (DLR) techniques. While the specifics of 
DLR differ by manufacturer, the general principle involves 
incorporating AI trained on high‒quality images to recon-
struct superior-quality images from raw data. DLR typically 
produces images with reduced noise (Fig. 1). As discussed 
below, the advent of DLR has contributed to improved 
image quality and diagnostic accuracy, reduced radiation 
exposure in CT, and shortened scan times in MRI.

Obtaining high spatial resolution images in both CT and 
MRI generally increases image noise. Efforts to reduce X-ray 
radiation exposure during CT and shortened MRI scan times 
often result in increased image noise. Conversely, suppress-
ing noise with DLR can enhance spatial resolution (Fig. 2). 
For high-resolution abdominal CT, it has been reported that 
when images were reconstructed from the same raw data 
using DLR, hybrid iterative reconstruction (IR), and model-
based IR, the image noise was significantly lower and the 
contrast-to-noise ratio was significantly higher with DLR 
compared to both hybrid IR and model-based IR [6].

In liver CT, where the contrast between tumors and sur-
rounding organ parenchyma is lower than that of lung CT, 
minimizing image noise is crucial for tumor detection. 
AI-driven noise reduction can thus improve liver tumor 
detectability. A recent study demonstrated that, compared 
to conventional hybrid IR, DLR significantly improved 
the detection performance of HCC, interobserver agree-
ment in LI-RADS categorization, and overall image quality 
in dynamic contrast-enhanced CT. The figure of merit for 
HCC detection was significantly higher with DLR than with 
hybrid IR, and DLR also yielded significantly better interob-
server agreement [7]. An additional study similarly reported 
that DLR outperformed hybrid IR in LI-RADS categori-
zation and reader confidence [8]. Evidence from another 
investigation indicated that DLR significantly reduced noise 
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relative to IR, without affecting noise texture, which may 
aid in detecting hypervascular liver lesions on dual-energy 
CT [9]. In addition to its utility for HCC, DLR has also been 
shown to improve the detection of liver metastases, offering 
better lesion conspicuity and higher sensitivity compared to 
IR [10].

Studies have demonstrated that DLR reduces radia-
tion exposure in CT while maintaining image quality. For 
instance, a recent multicenter study demonstrated that low-
dose CT using only 33% of the standard radiation dose, 
when combined with DLR, achieved lower image noise 
and non-inferior diagnostic performance for detecting 
malignant liver tumors compared to standard-dose CT with 
model-based IR [11]. Another study also reported a 34% 
dose reduction with DLIR while maintaining detection per-
formance for liver metastases [12].

DLR is also useful for reducing scan time in MRI. For 
example, a recent study demonstrated that deep learning–
accelerated multi-b-value diffusion-weighted MRI reduced 
acquisition time by over 50%, improved image quality, and 
maintained predictive performance for microvascular inva-
sion in HCC [13]. An abbreviated MRI protocol using DLR 
has been shown to enhance image quality and reduce scan 
time by 50%, while preserving diagnostic sensitivity for 
malignant liver lesions [14].

Additionally, AI-based super-resolution techniques, 
which generate high‒resolution images from lower‒resolu-
tion data, are expected to allow for more detailed evaluation 
of small structures [15].

Detection of liver tumors using AI

Researchers have studied AI systems capable of detecting 
tumors from medical images [5]. High-performance AI 
tools for lesion detection in chest X-rays and CT scans have 
been developed and are becoming increasingly integrated 
into clinical practice. In liver imaging, progress remains 
slower compared to that of chest imaging. Several factors 
contribute to this challenge: (a) the contrast between lesions 
and surrounding tissues in liver CT is significantly lower 
than that in chest CT; (b) dynamic multiphasic imaging 
plays a critical role in liver CT, making the processing more 
complex; and (c) liver MRI requires the interpretation of 
several image types [16]. These are key challenges that must 
be addressed for AI-based liver tumor detection systems to 
become well-established in clinical practice.

However, recent years have seen promising advances. 
Advances in AI-based software for liver imaging have 
shown encouraging results. In one study using contrast-
enhanced MRI data from 395 patients, AI demonstrated a 
detection sensitivity of 0.848 for lesions < 20 mm—outper-
forming radiologists—and achieved equivalent performance 
for larger lesions [17]. Combined interpretation further 
improved overall sensitivity to 0.883. Lesion size measure-
ments by AI aligned well with pathology (P = 0.174), and the 
average segmentation Dice coefficient was 0.62, supporting 
the role of AI as a reliable adjunct in liver MRI assessment.

Recent research suggests that AI can help reduce the rate 
of missed liver tumors on diagnostic imaging. One study 
investigated the effectiveness of AI-powered software in 

Fig. 1  Contrast-enhanced CT images (late arterial phase, ultra-high-
resolution CT with a 1024 matrix and 0.25  mm thickness, recon-
structed from the same acquisition data using three different methods, 
including deep learning reconstruction). Traditionally, CT images use 
a 512 × 512 matrix size, but with ultra-high-resolution CT equipment 
(Aquilion Precision, Canon Medical Systems), it allows for images 
with a 1024 × 1024 matrix size. Higher resolution generally increases 
image noise. a Using the conventional FBP method, a hypervascular 
nodule of hepatocellular carcinoma is depicted in the lateral segment 

of the left liver lobe (arrow), but its visibility is poor owing to signifi-
cant image noise. b With the more recent mainstream hybrid iterative 
reconstruction methods (AIDR 3D; Canon Medical Systems), the vis-
ibility of the lesion has improved. c Using deep learning reconstruction 
(AiCE; Canon Medical Systems), image noise is significantly reduced 
compared to that of b), and lesion visibility is further enhanced. Deep 
learning reconstruction is useful for improving image quality, enhanc-
ing lesion depiction, and reducing radiation exposure. CT Computed 
tomography, FBP Filtered back projection

 

1 3



Abdominal Radiology

the feasibility and efficiency of using AI to identify missed 
incidental suspicious liver lesions on 2,573 CT pulmonary 
angiographic examinations [19]. AI algorithms flagged 136 
potential cases, of which 13 were confirmed as true misses 
(0.5%) following radiologist review. The AI-assisted work-
flow achieved a 10:1 review-to-yield ratio, compared to a 
baseline estimate of 66:1 without AI. These results support 
the role of AI in reducing radiologist workload while main-
taining diagnostic accuracy.

detecting liver metastases that had been overlooked on 
contrast-enhanced CT [18]. Among 135 analyzable cases, 
the software demonstrated a per-lesion sensitivity of 70.8% 
for all metastases and 55.0% for lesions missed by radiolo-
gists. It identified metastases in 53.7% of overlooked cases, 
with an average of only 0.48 false positives per patient. 
These findings indicate that AI has the potential to meaning-
fully improve lesion detection when integrated into radio-
logic workflows. In another study, researchers assessed 

Fig. 2  Utility of ultra-high-resolution CT angiography with DLR in 
treatment planning for HCC. a Ultra-high-resolution CT angiography 
(MIP image) with a 1024 × 1024 matrix, reconstructed using a DLR 
algorithm (AiCE; Canon Medical Systems). b Standard-resolution 
CT angiography (MIP image) with a 512 × 512 matrix, reconstructed 
from the same raw data. Transverse images during (c) arterial and (d) 
portal venous phases. Traditionally, CT images use a 512 × 512-matrix 
size, but with ultra-high-resolution CT equipment (Aquilion Precision, 
Canon Medical Systems) it enables images with a 1024 × 1024-matrix 

size. A hypervascular tumor is visible (arrows). Ultra-high-resolution 
CT angiography using DLR provides superior delineation of small 
hepatic artery branches (arrowhead) compared to that of standard 
resolution. The improved image clarity provided by DLR in ultra-
high-resolution CT angiography aids in detailed assessment of vas-
cular anatomy, essential for planning transarterial chemoembolization 
therapy in patients with HCC. CT Computed tomography, DLR Deep 
learning reconstruction, HCC Hepatocellular carcinoma, MIP Maxi-
mum Intensity Projection
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and equilibrium phases, providing imaging features such 
as tumor size, arterial phase hyperenhancement (APHE), 
washout, capsule presence, and other diagnostic indicators. 
Radiologists may use these outputs to support a more objec-
tive and detailed imaging diagnosis (Fig. 3).

Beyond AI applications targeting CT, attempts are also 
underway to apply AI to characterize liver tumors via MRI. 
Researchers developed a CNN system to classify seven 
types of focal liver lesions—cyst, hemangioma, focal nod-
ular hyperplasia, other benign nodules, HCC, metastatic 
malignant tumors, and primary hepatic malignancies other 
than HCC—using multiphasic contrast-enhanced MRI and 
clinical data [22]. The system demonstrated performance 
comparable to that of experienced radiologists in liver 
tumor classification.

Gadoxetic acid (Gd-EOB-DTPA)‒enhanced MRI is 
widely used in liver imaging, and it is well known for its high 
diagnostic accuracy in liver tumor detection [23]. However, 
interpreting these images requires specialized expertise, 
which can be a barrier in clinical practice. Therefore, there 
is a growing need for AI systems that can assist non-expert 
physicians in interpreting contrast-enhanced MRI scans. In 
2023, Japan approved an AI-based MRI interpretation soft-
ware (Cal.Liver.Lesion; Bayer Yakuhin Ltd., Osaka, Japan). 
Although not FDA-approved, the software received regula-
tory approval for clinical use in Japan; however, it has been 
discontinued as of 2025. While such AI tools are not yet 
widely adopted, the use of such tools may enable physicians 

Characterization of liver tumors using AI

Attempts to differentiate hepatic lesions on liver CT using 
deep learning began soon after the technology emerged [5]. 
In 2018, convolutional neural networks (CNN), a type of 
deep learning model, demonstrated effectiveness in differ-
entiating liver tumors on dynamic CT scans [20]. Recently, 
AI systems that combine liver CT with clinical data—such 
as sex, age, total bilirubin levels, and tumor markers—have 
also been developed for tumor classification, using a com-
bination of deep CNNs and gated recurrent neural networks 
(RNNs) [21].

In addition to experimentally developed AI systems, 
commercially available software for assisting in the char-
acterization of liver tumors has recently become available. 
Some of the authors evaluated the impact of a commer-
cially available software tool (SAI Viewer; FUJIFILM Cor-
poration, Tokyo, Japan) on the diagnostic performance of 
radiologists. This tool is not FDA-approved but has been 
authorized for clinical use by regulatory bodies in Japan. 
This study focused on how the software affects the abil-
ity of radiologists to evaluate hepatic lesion characteristics 
and differentiate tumor types using multiphasic liver CT 
(Nishigaki D, et al. Performance of radiologists in char-
acterizing and diagnosing hepatic lesions using dynamic 
contrast-enhanced CT with and without artificial intelli-
gence. Presented at RSNA 2024, Scientific Paper). The AI 
system processes voxel data from the arterial, portal venous, 

Fig. 3  Example of commercially available software used for analyz-
ing hepatic lesion characteristics in multiphasic liver CT imaging. A 
60-mm tumor was identified in the lateral segment and diagnosed as 
HCC. AI analyzes voxel data from the arterial, portal, and equilib-
rium phases, providing imaging features such as tumor size, APHE, 
washout, capsule presence, and other characteristics. Radiologists 

can utilize these outputs to aid in making more objective and detailed 
imaging diagnoses (SYNAPSE SAI Viewer; FUJIFILM Corporation, 
Tokyo, Japan). This software has been approved for clinical use by 
Japanese regulatory authorities but not by the FDA. APHE Arterial 
phase hyperenhancement, CT Computed tomography, HCC Hepato-
cellular carcinoma
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across imaging platforms support its integration into clini-
cal workflows.

Segmentation using AI

Segmentation involves identifying and dividing regions of 
interest (such as organs, anatomical segments, or lesions) 
within an image. In liver imaging, segmentation can be used 
to measure liver volume. Usage of 3D volume data improves 
measurement accuracy compared to that using conventional 
thick-slice images [25]. Therefore, automatic segmentation 
of the liver in 3D data enables simple, accurate liver volume 
measurement, which is essential for preoperative evalua-
tions and holds significant clinical value.

AI-based automatic segmentation produces liver volume 
measurements closely matching those of manual methods, 
with high reproducibility and reduced processing times [26]. 
Identifying hepatic segments containing tumors is critical 
for pre-treatment assessment. Recently, several radiological 

unfamiliar with liver MRI to appropriately interpret the 
images, thereby contributing to improved patient manage-
ment (Fig. 4).

There is strong interest in developing AI systems that 
can simultaneously detect and characterize liver tumors, as 
an alternative to those that perform these tasks separately. 
A Recent large-scale study has highlighted the value of 
such integrated models in radiological assessment of focal 
hepatic lesions [24]. The Liver Artificial Intelligence Diag-
nosis System (LiAIDS) is an end-to-end AI system designed 
for simultaneous detection and characterization of focal 
liver lesions based on contrast-enhanced CT and patient 
clinical data. Trained on a large-scale, multicenter dataset 
(12,610 patients, 18 hospitals), it achieved F1-scores of 
0.940 for benign and 0.692 for malignant lesions. The sys-
tem improved radiologists’ diagnostic performance across 
all levels of experience. In a triage cohort of 13,192 patients, 
it accurately classified 76.46% as low risk (negative pre-
dictive value: 99.0%). Its robustness and generalizability 

Fig. 4  Example of a process using Gd-EOB-DTPA-enhanced MRI 
reading support software with AI. A 35-mm tumor is identified in the 
medial segment (a: arrow). This hypervascular tumor was diagnosed 
as HCC. The MRI reading support software (Cal.Liver.Lesion; Bayer 
Yakuhin Ltd., Osaka, Japan) quantitatively scores the degree of sig-
nal variation compared to surrounding tissue. The score, displayed in 
color, is overlaid on the hepatobiliary phase image, where the HCC 

region exhibits high values (red) (e: arrow). Although not FDA-
approved, the software received regulatory approval for clinical use in 
Japan; however, it has been discontinued as of 2025. Assistance from 
this AI software could enhance the accuracy of MRI-based liver tumor 
diagnosis. AI Artificial intelligence, Gd-EOB-DTPA Gadoxetic acid, 
HCC Hepatocellular carcinoma, MRI Magnetic resonance imaging
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radiomics has been applied to tumor diagnosis [33], predic-
tion of microvascular invasion in HCC [34], prediction of 
CD73 expression in colorectal cancer liver metastases [35], 
prognostication in HCC [36], and prediction of treatment 
outcomes in HCC following transarterial chemoemboliza-
tion (TACE) [37, 38], surgical resection [39], and radiation 
therapy [40, 41], as well as following neoadjuvant therapy 
for colorectal liver metastases [42].

As an example of its use in tumor diagnosis, a previous 
study demonstrated that tumor screening based on radiomics 
features from contrast-enhanced CT has been shown to be 
feasible, enabling noninvasive classification of liver tumors 
and healthy tissue and supporting their role as potential 
imaging biomarkers [33]. Radiomics features from preop-
erative CT have also been used to predict MVI in HCC. 
A hybrid model combining radiomics and clinical data 
achieved high performance (AUC up to 0.86) and enabled 
risk stratification for recurrence and survival, supporting 
its role in preoperative decision-making [34]. Radiomics-
based prediction of CD73 expression in colorectal cancer 
liver metastases has also been investigated. An Attentive 
Interpretable Tabular Learning (TabNet) model trained on 
preoperative CT images yielded high accuracy (AUC up to 
0.79) and a radiomic score that correlated with histologic 
CD73 expression and independently predicted recurrence 
and survival [35].

In the context of prognostic tumor staging, radiomics 
features extracted from baseline MRI have been shown to 
improve prognostication in HCC. When combined with 

imaging viewers have integrated AI to automate liver seg-
ment segmentation (Fig. 5a).

AI has also been applied to automatically segment tumors 
[27]. Commercially available image viewers with these fea-
tures also exist (Fig. 5b). For metastatic liver tumors, AI-
based automatic segmentation improves accuracy compared 
to those of conventional methods such as Response Evalua-
tion Criteria in Solid Tumors (RECIST) 1.1 [28].

However, several significant challenges can substan-
tially affect the accuracy of AI-based liver segmentation, 
including imaging artifacts, anatomical distortions, and 
large hepatic tumors. Common sources of artifacts include 
respiratory motion, cardiac motion, and the presence of 
metallic objects. When such artifacts are present, they can 
degrade segmentation accuracy in both manual and auto-
mated approaches. To mitigate these artifacts, correction 
techniques have been developed [29–31], which can be 
expected to enhance the performance of automated segmen-
tation. Additionally, inter-patient variability in liver shape 
and changes across respiratory phases can also negatively 
impact segmentation accuracy. Massive hepatic tumors fur-
ther contribute to shape distortion, posing another obstacle 
to accurate segmentation. Addressing these issues remains 
an important direction for future research.

Radiomics

Radiomics involves extracting numerous quantitative fea-
tures from medical images (Fig. 6) [32]. In liver imaging, 

Fig. 5  Segmentation using an AI-equipped radiological viewer. Radio-
logical viewer with integrated AI features (SYNAPSE SAI viewer, 
Fujifilm; approved for clinical applications in Japan, not FDA-
approved) provides reading support functions. a Automatic segmenta-
tion of liver segments, which is displayed as an overlay on CT images. 

b Manual input of two points on the margin of a liver tumor to extract 
the tumor region. This automated/semi-automated segmentation is 
useful for pre-treatment and post-treatment assessments. AI Artificial 
intelligence, CT Computed tomography
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regularization to enhance prediction accuracy [43]. Ran-
dom forests, another widely used algorithm, are ensemble 
learning methods that construct multiple decision trees and 
output the class that is the mode of the classes from indi-
vidual trees [44]. These algorithms are frequently employed 
in radiomic analyses for classification, regression, and fea-
ture importance ranking. Additionally, instead of relying on 
predefined features as mentioned above, deep learning has 
been explored to discover features automatically. Therefore, 
machine learning plays a crucial role in radiomics.

Despite the growing body of research, however, its 
clinical adoption remains limited [45]. One major chal-
lenge is the issue of repeatability and reproducibility [46]. 
Radiomics workflows involve numerous variables, includ-
ing imaging equipment, acquisition parameters, recon-
struction algorithms, segmentation methods, and feature 
extraction software. The vast number of possible combina-
tions makes it difficult to ensure that results obtained under 
one condition can be reproduced under another. A phantom 
and human study found that only a subset of radiomic fea-
tures were both repeatable and reproducible across scan-
ners and acquisition settings [47]. In that study, wavelet 
and Laplacian of Gaussian features demonstrated the high-
est stability, highlighting the importance of robust feature 
selection in radiomics modeling. Another challenge is the 
lack of standardization. The guidelines include several rec-
ommendations aimed at standardizing radiomics practices; 
notably, they advise the use of software tools that adhere 
to the Image Biomarker Standardisation Initiative (IBSI) 
guidelines, such as PyRadiomics, for feature extraction 
[45]. A further limitation is that most radiomics studies are 
retrospective in nature, often resulting in low levels of evi-
dence. For radiomics to be successfully integrated into clini-
cal practice, it is essential to generate findings supported by 
standardized methodologies, account for repeatability and 
reproducibility, and provide high levels of evidence.

the Barcelona Clinic Liver Cancer (BCLC) staging sys-
tem, radiomics enhanced the prediction of transplant-free 
survival, outperforming either method alone. These results 
highlight the potential of radiomics as a complementary tool 
for risk stratification [36]. An increasing number of stud-
ies have demonstrated the value of radiomics for post-treat-
ment outcome prediction. A radiomics model incorporating 
whole-liver MRI features and clinical data has shown high 
accuracy in predicting survival in HCC patients undergoing 
continued TACE after refractoriness [38]. As an example 
related to surgical resection, a contrast-enhanced CT-based 
radiomics nomogram incorporating radiomics features, neu-
trophil-to-lymphocyte ratio, and alpha-fetoprotein (AFP) 
showed strong performance in predicting overall survival 
after radical hepatectomy in HCC patients [39]. The model 
showed good prognostic performance and outperformed 
traditional staging systems. Regarding radiation therapy, 
a machine learning model combining pre-treatment MRI-
based radiomics features with clinical parameters and AFP 
showed improved performance in predicting HCC response 
to Yttrium-90 radiation segmentectomy, compared to clini-
cal data or AFP alone [41]. For colorectal liver metastases 
treated with neoadjuvant therapy, a machine learning model 
using CT-based radiomics features from tumoral and peritu-
moral regions outperformed radiologist assessments based 
on RECIST 1.1 and morphologic criteria in estimating 
pathologic treatment response [42].

Commonly extracted radiomic features include shape 
features (e.g., diameter, volume), first-order features (e.g., 
mean, standard deviation), and texture features derived 
from the spatial distribution of pixel values [32]. The total 
number of extracted features can exceed hundreds. To select 
the most relevant features and avoid overfitting, dimension-
ality reduction techniques are applied. A commonly used 
method is the least absolute shrinkage and selection opera-
tor (LASSO), which performs both variable selection and 

Fig. 6  Schematic representation of 
radiomics workflow. Segmenta-
tion of the VOI is first required for 
analysis. Manual, semi-automated, 
or fully automated segmentation 
can be used. Subsequently, several 
radiomic imaging features are cal-
culated. Finally, output, such as the 
probability of 5-year survival, is 
generated.  VOI Volume of interests
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levels of evidence. Furthermore, many rely on relatively 
small datasets, potentially limiting the generalizability of AI 
performance. Additionally, most existing approaches focus 
on a single modality. The development of multi-modal AI 
systems that integrate CT, MRI, electronic medical records, 
biomarkers, and treatment history is essential.

Conclusions

The role of AI in liver tumor imaging has been discussed 
and its significance continues to grow. AI-based image 
reconstruction is widely used in clinical practice, provid-
ing benefits such as improved image quality and reduced 
radiation exposure. AI-assisted diagnostic software is less 
common in liver imaging compared to other areas, such as 
the lungs; however, its application is gradually increasing 
and is expected to become an integral part of routine clini-
cal practice. Advancement in emerging technologies (such 
as radiomics, currently at the research stage) is expected to 
have broader applications in image assessment, treatment 
planning, treatment evaluation, and prognosis prediction. 
Moreover, recent developments in generative AI, including 
large language models such as ChatGPT, show significant 
promise for potential applications in medical imaging.

To promote broader clinical integration, future stud-
ies should address key issues such as the repeatability and 
reproducibility of radiomics, which depend on consis-
tent imaging acquisition settings and standardized feature 
extraction methods; the development of multimodal AI sys-
tems that incorporate imaging, clinical, and biomarker data; 
the construction of large, diverse annotated datasets for 
robust training and validation; and the implementation of 
XAI techniques to improve interpretability, user confidence, 
and responsible deployment in routine clinical settings.
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Challenges and prospects of AI in evaluating liver 
tumors

Despite significant progress, several challenges persist in 
developing and implementing AI. A major challenge in 
building AI models is the lack of large, annotated datas-
ets provided by radiologists. This is particularly important 
because the quality of training data substantially influences 
both the performance and generalizability of AI systems. 
One strategy to alleviate the annotation burden is to reuse 
information from medical records collected during rou-
tine clinical practice. Several researchers demonstrate that 
extracting disease information from radiological diagnostic 
reports and using it as training labels eliminates the need for 
additional manual annotation [48].

Another challenge in clinical AI applications is the 
“black-box” nature of these systems, which can lead to 
challenges such as the risk of unintended or inappropri-
ate outputs and the difficulty in assessing the reliability 
of AI results when the underlying rationale is not clear. A 
promising solution to these challenges is the implemen-
tation of explainable AI (XAI), which enables AI to pro-
vide explanations for their outputs, allowing human users 
to understand the reasoning behind them [49–51]. While 
research in this field remains limited, it is expected to grow 
in importance. In XAI, techniques such as saliency maps, 
gradient-weighted class activation mapping (Grad-CAM), 
local interpretable model-agnostic explanations (LIME), 
and Shapley additive explanations (SHAP) are widely used. 
These methods aim to elucidate the rationale behind model 
predictions and have become increasingly prevalent in 
medical image analysis. Although these visual explanation 
techniques can highlight image regions relevant to model 
outputs, they do not necessarily reflect the reasoning pro-
cesses that radiologists employ when interpreting images. 
Another important approach involves generating explana-
tions for AI outputs using natural language, without rely-
ing on saliency maps or similar visual methods. Several 
researchers have contributed to the development and evalu-
ation of an XAI system designed to aid in differentiating 
liver lesions in Gd-EOB-DTPA-enhanced MRI using Liver 
Imaging Reporting and Data System (LI-RADS) language 
(Zhang C, Jin Z, Hori M, et al. AI-aided diagnostic system 
providing explanations in LI-RADS language in liver can-
cer diagnosis using MRI. Presented at RSNA 2024, Scien-
tific Paper). The implementation of XAI may significantly 
facilitate the clinical adoption of AI in liver tumor evalua-
tion by enhancing model transparency, which is critical for 
building trust among radiologists and supporting decision-
making in high-stakes clinical settings.

Additional challenges should also be considered. Most 
studies are retrospective in nature, which often leads to low 
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