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consumers (Høibø and Nyrud 2010). The sorting of wood 
by colour also improved density estimation algorithms (Tan 
et al. 2025) by clustering wood with similar density profiles. 
This allows manufacturers to create products, particularly 
laminated boards made of wood pieces with similar density, 
thus improving their long-term stability during their ser-
vice life. The colour of the wood was also used to track and 

1  Introduction

Wood colour sorting is a process by which timber that are 
determined to be visually similar are clustered together to 
be processed and assembled into some wood product. This 
process is crucial in producing a pleasingly homogeneous 
appearance, which has been shown to be preferred by 
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Abstract
Timber colour sorting is an important woodworking process in producing a homogeneously coloured and pleasant looking 
product. However, for multispecific timber such as light red meranti, LRM (Rubroshorea spp.), which spans a wide gamut 
of colours, there is an antagonistic compromise between having good separability of colour and the number of bins. This 
research attempts to solve this by intentionally overclustering the intensity gamut and then automating the selection of 
ideal colour sorting bins (CSB) for a given batch size to produce high-similarity coloured sorting. 178,327 unique LRM 
wood samples collected over 8 months of production were used. Machine learning clustering algorithms such as k-means 
and Otsu multithresholding were tested against percentile and equal spacing methods. Batch sizes of 250 (B250) and 1,000 
(B1000) pieces were evaluated. Maximum likelihood estimation was tested against statistical methods to select the CSB, 
and ideal overcluster setups were determined using the average delta E (∆E∗

00) assessment. The ‘burn-in rates’ of 3–30 
pieces were then evaluated. For the B250 four-bin setup, six overclusters (6C4) performed best, with a recommended 
‘burn-in rate’ of 12 pieces. For B1000, 5C4 performed best with a ‘burn-in rate’ of 10 pieces. The 4C3 configuration and 
the ‘burn-in rate’ of 10 pieces were found to be the best for three-CSB for both B250 and B1000. This study shows the 
feasibility of using machine learning to automate the bin selection process when the overclustering technique is used to 
improve colour sorting in situations with a restricted number of bins.
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characterise the change in colour in Norway spruce (Picea 
abies) and Scots pine (Pinus sylvestris) undergoing thermal 
modification (Torniainen et al. 2021b), giving an indication 
of the level of heat treatment and the quality of the treated 
wood (Torniainen et al. 2021a).

Therefore, to produce high-quality wood products, man-
ufacturers must dedicate a significant proportion of their 
workforce to the selection and sorting of materials. This is 
traditionally performed manually (Wang et al. 2021), which 
is highly susceptible to human fallibility due to the psycho-
physical nature of colour perception and fatigue after long 
hours of work. There are industrial scanners available, such 
as the MiCROTEC WoodEye Parquet, Weinig CombiScan 
Sense, and ATB Blank Spectra. In fact, colour sorting is a 
very common industrial requirement, particularly in agri-
culture and food production, where colour is a key indicator 
of quality (ripeness, freshness, etc.). These include products 
such as salmon fillet (Ranjan et  al. 2024), apples (Meenu 
et al. 2024), and rice (Cha et al. 2025).

Past studies on colour sorting in wood include the use of 
soft colour descriptors and k-Nearest Neighbours for par-
quet sorting (Bianconi et  al. 2013) using the RGB colour 
space and comparing it with other colour spaces. Another 
study attempted to grade oak boards by colour (Defoirdt 
et  al. 2012). This is done by comparing the CIEDE2000 
distances to their respective sub-space centres and using 
human observers as yardsticks. K-means clustering method 
was also used for the colour sorting of beech wood (Fagus 
sylvatica) (Wang et  al. 2021) using soft descriptors and 
colour histograms as features. Lin et al. (2020b) also used 
k-means to group wooden boards (unspecified species), but 
added an image preprocessing step to remove dark stains 
from the image which improved performance. An older but 
more direct method was to compare the histograms of the 
wood with those of the colour clusters and to set appropriate 
thresholds (Lu et  al. 1997). A combination of the textural 
(using grey-level co-occurrence matrix, GLCM) and colour 
features of wood was also tested for oak parquet that had 
large variability in terms of colour and texture (Rožman 
et  al. 2006). GLCM has also been recently used to clas-
sify textures on veneers (Savolainen 2023). More advanced 
methods would be to use deep learning algorithms, such 
as convolutional neural network (Liu et al. 2020) for rub-
berwood, XGBoost (Zhuang et  al. 2021) for an unspeci-
fied flooring species, and Vision Transformer coupled with 
Densenet121 (Zhuang et  al. 2022) for Pometia pinnata 
hardwood flooring.

KayuSort is an industrial prototype colour sorting sys-
tem developed to handle multiple types of species, based 
on the algorithm developed in a previous study for red oak 
(Quercus rubra), yellow poplar (Liriodentron tulipifera) 
and maple (Acer spp.) veneers (Liew 2024). KayuSort was 

also tested for light red meranti [LRM, previously Shorea 
spp., but recently reclassified as Rubroshorea spp. per Ash-
ton and Heckenhauer (2022); Kew Gardens (2024)] (Tan 
et al. 2025). However, a minor but persistent issue is the fact 
that LRM is a multispecific wood, encompassing 11 (Lim 
et al. 2016) different species from the Rubroshorea genus in 
Peninsular Malaysia, and having a wide range of densities 
(385–755 kgm–3). Several LRM species overlap with those 
of dark red meranti (DRM), namely rambai daun (Rubro-
shorea acuminata), daun besar (R. hemleyana), kepong 
hantu (R. macrantha), tengkawang ayer (R. palembanica) 
and paya (R. platycarpa) (Gan and Lim 2004), differentiated 
only by their density. Due to this, the colour range of com-
mercially available LRM is similarly broad. Therefore, one 
common practical difficulty faced by colour sorting algo-
rithms is this under-clustering issue which none of the past 
research addressed.

It is ideal to train any colour sorting algorithm to cover 
the entire gamut of colours available for any given spe-
cies, like what is being done in previous studies. However, 
in reality, timber arrives at a processing facility in batches, 
with a smaller breadth of colour distribution, compared to 
the total possible colour for the species, particularly one 
with a huge variation in colour like LRM. This means that a 
universal colour sorting binning system will result in poorly 
resolved separation of the timber with certain batches. To 
complicate things, most production facilities do not want 
the wood sorted into too many bins due to space and han-
dling constraints. Also, they are often not concerned about 
the timber’s absolute colour parameters but are more con-
cerned about their colour homogeneity within the sorted 
bins, which when assembled will produce a pleasant look-
ing product.

The latest upgraded version of KayuSort involved train-
ing separate colour swatches using the same dataset used 
for this study for various shades of darkness and lightness 
(for four bins, which were the system requirements desired 
by the facility) using six intentionally overclustered groups 
(hereinafter known as ‘overclusters’ in this study), and the 
sorting maps can be manually selected by the user depend-
ing on the perceived lightness or darkness of the batch of 
timber. The six overclusters were clustered using the quan-
tile method and were arbitrarily chosen to allow the user 
to have three options (dark, medium, and light) given four 
desired bins each. However, manual selection of the cor-
rect set of bins proved to be tedious, whereby the timber 
in that batch must be manually combed through to provide 
adequate samples representative of all the available colours 
in the batch.

In this study, we first determined the ideal number of 
overclusters for a given number of bins using the long-term 
dataset gathered from the field. The scope of this study 
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covers three and four colour sorting bins. Having estab-
lished the best overcluster setup, we then explored methods 
for automatically selecting the ideal bin configuration to 
achieve the best sorting performance (smallest colour varia-
tion between members in the bin). This involves sampling 
some timber and making a prediction of the colour distribu-
tion of the batch and then evaluating their efficacy.

2  Materials and methods

This section shall be divided into five subsections. The first 
subsection describes the samples and the equipment used to 
obtain the wood images. The second subsection explicates 
the feature extraction process. The third and fourth subsec-
tions explain the two salient algorithms used in this study, 
which are maximum likelihood estimation and the proposed 
new ∆E∗

00 based performance metric. Lastly, the final sub-
section details the three steps to optimise the overclustered 
solution and discover the ideal colour sorting setup. These 
steps are (a) choosing the batch size, (b) selecting the ideal 
number of overclusters and bin configuration, and (c) deter-
mining the recommended ‘burn-in rate’.

Statistical and machine learning tools and functions from 
the MATLAB R2024b Update 1 64-bit (24.2.0.2740171) 

Statistics and Machine Learning Toolbox (MathWorks 
Incorporated 2024) were used to perform the analyses.

2.1  Image sampling

The KayuSort industrial colour sorting prototype machine 
was used to acquire timber images. The imaging system 
consisted of an industrial line scan camera system (Hikrobot 
MV-CL022-40GC coupled with an MVL-KF1224M-25MP 
lens) with a CCS LNSP2-200SW line light (6600 K colour 
temperature), as shown in Fig. 1. The entire mechanical 
conveyor and sorting system was managed by an Indus-
trial Shields MDuino 58+ industrial programmable logic 
controller, while a Dell PC (where KayuSort software ran) 
performed image capture, storage and colour processing 
for colour sorting. The current setup was configured with 
seven sorting bins (3 x modular double bins and 1 x bin at 
the end of the conveyor) and can be expanded in the future. 
The line scan camera was triggered by a proximity sensor 
on the input side of the conveyor. All autogain, auto white 
balance, and gamma correction settings were turned off. A 
Calibrite Colour Checker Passport 2 Macbeth colour cali-
bration chart was used as a reference target for colour con-
stancy adjustments.

KayuSort was coded in Visual Studio 2022 64-bit ver-
sion 17.9.2 (Microsoft Corporation 2022) and is capable of 
sorting into 10 bins (software limit, and can be increased). 
Its core sorting algorithm is the self-organising maps (SOM) 
artificial neural network. The network training was designed 
to be semi-supervised and flexible, whereby the colour 
classes can be assigned by the workers based on u-matrix 
observation after training, manual feeding of pre-sorted 
labelled samples during image acquisition, or off-site clus-
tering and training using acquired wood images.

A total of 178,685 unique images of LRM timber were 
collected between December 2023 and July 2024 in five 
separate periods when personnel were available to super-
vise data collection (detailed in Table 1), representing an 
eight-month sample of timber that arrived at Sim Seng Huat 
Industries Sdn Bhd (SSH). The colour distribution of these 
data was assumed to be a good representation of all possible 

Table 1  The period when data from the original and superpopulation datasets used in this study were collected, the number of images per period, 
and the basic statistics upper L∗, a∗, and b∗ values, and range of upper L∗ values (s.d. = standard deviation)
Period Date span No. of images Average upper L∗ [s.d.] Upper L∗ range Average upper a∗ [s.d.] Average upper b∗ [s.d.]
Original 23/10* 392 75.1 [4.8] 62.6–85.8 7.3 [0.67] – 0.1 [0.87]
1 04/12–18/12* 27,018 75.4 [5.96] 55.4–94.8 7.5 [0.71] 0.1 [0.96]
2 29/01–07/02 27,498 74.4 [5.92] 55.4–94.8 7.2 [0.77] 0.3 [0.96]
3 22/03–29/03 24,533 68.3 [5.24] 54.6–94.1 7.4 [0.68] 0.8 [0.92]
4 29/05–05/07 82,232 68.1 [5.65] 41.0–93.9 7.1 [0.65] 0.8 [0.90]
5 11/07–17/07 17,404 66.2 [5.17] 53.6–90.4 7.2 [0.58] 1.2 [0.89]
Overall† 178,685 70.0 [6.53] 41.0–94.8 7.2 [0.69] 0.6 [0.98]
Data collected in 2023, others were in 2024; † Excluding the original dataset

Fig. 1  KayuSort colour sorting system consisting of a the colour scan-
ner, and b the sorting mechanism
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illuminant configuration (closest standard white point to 
the 6600 K lighting used in this study) (International Color 
Consortium 2004). This was performed by first applying 
gamma correction to the RGB values as per Eqs. (1) and 
(2), and subsequently converting them to CIEXYZ colour 
space per Eq. (3).

fγ(u) =

{
−(1.055 · |uγ | − 0.055), u ≤ −a
12.92 · u, −a < u < a
1.055 · uγ − 0.055, u ≥ a

� (1)

[
R′

G′

B′

]
=




fγ

(
R

255
)

fγ

(
G

255
)

fγ

(
B

255
)


� (2)

[
X
Y
Z

]
=

[0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

] [
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B′

]
� (3)

where 
fγ(u)	 gamma correction function for colour value u, 

where 0 ≤ u ≤ 1
γ	 gamma correction factor = 1

2.4

a	 conditional parameter with value of 0.0031308
R, G, B	 red (R), green (G) and blue (B) values, values from 
0 to 255
R′, G′, B′	 gamma corrected RGB values
X, Y, Z	 transformed RGB values in CIEXYZ colour space
Using D65 reference illuminant white point values shown in 
Eq. (4) (International Color Consortium 2004), the CIEXYZ 
values were subsequently converted to their CIELAB val-
ues using Eqs. (5) and (6). All definitions and some of the 
conversions are also defined in ISO 13655:2017 (Interna-
tional Organization for Standardization 2017).
[
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where 
Xn, Yn, Zn	 reference white point value in CIEXYZ
f(t)	 function for quotient t used in Eq. (6)
t	 quotient between the X, Y, and Z values with their 

LRM colour variations in Peninsular Malaysia, as the mill 
sources their timber from several different forest conces-
sions throughout Peninsular Malaysia. The wood pieces 
were of various sizes (the machine accepts lengths of 150 to 
900 mm, widths of 75 to 150 mm and thicknesses of 25 to 
75 mm), surfaced on two sides, and predominantly free of 
major defects such as knots, wane, and huge cracks. Minor 
defects such as live knots, pinholes, hairline cracks, and 
mineral streaks were not excluded. The wood pieces were 
already filtered by the workers for major defects, such as 
dead knots, stains, or rot, during the cross-cutting process 
prior to imaging. In this study, it was also assumed that 
the sequential feeding of the timber into the colour sorting 
machine was performed randomly, which, from observa-
tions, appeared to be so (as prior processes had mixed the 
timber from the incoming batch onto the pallet that fed into 
the colour sorting machine). In this study, this dataset shall 
be referred to as the ‘superpopulation’.

The older, initial KayuSort training dataset consisted of 
392 images of samples that were free of defects, including 
all minor defects, and of various sizes (dimension range 
similar to the dataset above). This dataset was obtained 
within a short period of time due to time constraints during 
the initial setup of the system for deployment and appeared 
to work well within the prototype testing phase. This dataset 
was separately evaluated to provide a baseline comparison 
for this study. Details of this dataset are also reported in 
Table 1. In this study, this dataset shall be referred to as the 
‘original dataset’.

Since colour sorting was the sole focus of this study, only 
the wood image was obtained and other parameters were 
not measured to avoid impeding regular production. The 
typical moisture content of wood on the production floor 
was 11.6% (standard deviation, s.d. = 1.3%, measured using 
Delmhorst JX-30 moisture meter) based on a previous study 
that involved the estimation of density in the same facility 
(Tan et al. 2025). It was assumed that the wood that arrived 
at the facility was properly kiln dried and that any variations 
in the moisture content did not influence the colour of the 
wood.

2.2  Feature extraction

The features extracted and used in this study were the aver-
age RGB values (red, green and blue) of the images of the 
wood samples, and their CIELAB converted values. Firstly, 
the raw images were cropped so that only the wood was vis-
ible. KayuSort’s standard Otsu bisected dual-stratum colour 
features were obtained (Liew et al. 2023). The average RGB 
values of the lower and upper strata were then converted 
to CIELAB (Commission Internationale de l’Eclairage 
L∗a∗b∗) colour space using the D65 standard reference 
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2.3  Distribution fitting function

Maximum likelihood estimation (MLE) is a popular 
machine learning technique for obtaining values from dis-
crete observations to fit a known or presumed function and 
returning the function’s parameters. MLE’s general likeli-
hood function is shown in Eq. (7), and the maximisation 
equation in Eq. (8). MLE aims to obtain the distribution 
function’s parameters where the observations have the high-
est joint probability (dot product of each observation’s prob-
ability function). For this study, two distribution functions 
were tested, which are the Gaussian and beta distributions. 
Since the superpopulation appeared to be skewed, both of 
these methods were evaluated to determine which method 
predicts the centrality of each batch distribution best when 
selecting the ideal bins for colour sorting.

L(θ|x) = f(x|θ) =
n∏

i=1
fi(xi|θ)� (7)

θ̂ = arg nmax
θ=1

L(θ|x)� (8)

where 
L(θ|x)	 objective likelihood function of the parameter θ 

given observation x
f	 the product of univariate density functions
n	 number of observations
θ̂	 maximum likelihood estimator for parameter θ
The Gaussian distribution has a likelihood function as 
shown in Eq. (9). The estimated mean and variance are cal-
culated using Eqs. (10) and (11) respectively.

LG(µ, σ2|x) =
(

1√
2πσ2

)n

e
− 1

2σ2

n∑
i=1

(xi−µ)2

� (9)

respective reference white points
L∗, a∗, b∗	 CIELAB values
The CIELAB distribution of all images is shown in Fig. 2. 
L∗, which represents the lightness component of the image, 
exhibited a large spread (Fig. 2a), while the chromatic com-
ponents a∗( green-red component, negative to positive) and 
b∗( blue-yellow component, negative to positive) appeared 
to be very concentrated (Fig. 2b). L∗ had an intensity span 
of 53.8 intensity values (mean = 70.0, s.d. = 6.53) while a∗ 
and b∗ spanned 8.7 (mean = 7.2, s.d. = 0.69) and 14.5 (mean 
= 0.6, s.d. = 0.98) chromatic positional values, respectively. 
Since CIELAB colourspace is defined by the International 
Commission on Illumination (CIE) as an almost perceptu-
ally uniform colour space, the large variance in L∗ values 
showed that it is the most significant contributor to the 
colour difference in the dataset. In this study, the upper 
colour stratum of the image is used to mitigate the influence 
of dark coloured defects (such as live knots, pinholes, hair-
line cracks, and mineral streaks) present in the wood images 
on the results.

The data were then cleaned up by winsorising the top and 
bottom 0.1%, thereby removing extreme outliers. Only sam-
ples with upper L∗( L∗

u) values between 54.2 and 90.1 were 
used in the analysis (N = 178,327 samples), with a trimmed 
mean value of 70.0 (s.d. = 6.48, median = 69.7). In practical 
terms, any wood with upper L∗ values outside this range 
can either be included in the edge bins or rejected outright. 
Both mean and median were centrally located between the 
5th (59.7) and 95th (81.2) percentiles with a skewness coef-
ficient of 0.205. However, using the Kolmogorov-Smirnov 
(KS) and Anderson-Darling (AD) normality tests, and by 
observing the normal quantile-quantile (QQ) plot (Fig. 2c), 
the distribution of the data is skewed from a normal distri-
bution (p-values < 0.001 for both KS and AD).

Fig. 2  Distribution of CIELAB a L∗, b a∗ and b∗ values of the upper and lower strata for all the wood images, and c normal quantile (Q-Q) plot 
for CIELAB L∗ upper stratum values for the trimmed dataset
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2.4  Performance assessment

Previous colour sorting research typically used humans to 
measure the performance of their proposed models. How-
ever, this is not practical on the scale of the data used in this 
study. Furthermore, KayuSort had been shown to perform 
better than humans with much smaller variances in colour 
in each cluster (Tan et al. 2025).

∆E∗
00 is a well established method to measure the dif-

ference between two colours and had been used in previous 
wood research such as to perform colour grading using a 
spectrophotometer (Defoirdt et al. 2012) and to characterise 
colour change before and after wetting the timber (Meints 
et al. 2017). Therefore, to assess the performance of each 
method in this study, inspiration was taken from the study 
conducted by Defoirdt et al. (2012). ∆E∗

00 was originally 
conceived in 1976 as an attempt to establish a quantitative 
measure of colour difference in a parametrically equal man-
ner, as shown in Eq. (16).

∆E∗
76 =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2� (16)

where ∆E∗
76	 colour difference value defined in CIE76 

standard
∆L∗, ∆a∗, ∆b∗	 difference in L∗, a∗ and b∗ values 

between two colours
However, this equation was found to be imprecise and was 
improved in 1994 with compensation factors, and again in 
2000 (CIEDE2000) culminating in Eq. (17) (Luo et al. 2001; 
Sharma et al. 2005; Mokrzycki and Tatol 2011). Details on 
each of the terms in Eq. (17) with respect to the values of 
L∗, a∗ and b∗ can be found in the study by Sharma et al. 
(2005). All ∆E∗

00 values used in this paper refer to that of 
CIEDE2000.

∆E∗
00 =

√
L2 + C2 + H2 + c

L = ∆L′

kLSL

C = ∆C ′

kCSC

H = ∆H ′

kHSH

c = RT
∆C ′

kCSC

∆H ′

kHSH

� (17)

where
∆E∗

00	 colour difference value as defined in CIEDE2000 
standard
∆L′	 difference in L∗ values between two colours
∆C ′	 difference in chroma values
∆H ′	 difference in hue values in circular coordinates

µ̂(x) = 1
n

n∑
i=1

xi� (10)

σ̂2(x) = 1
n

n∑
i=1

(xi − x̄)2� (11)

where 
LG	 likelihood function for a Gaussian function with 
input x
µ, σ	 mean and variance of observation’s distribution
n	 number of observations
µ̂, σ̂2	 estimated µ and σ2 of the Gaussian distribution

For the beta distribution, the likelihood function is shown 
in Eq. (12), given the gamma function in Eq. (13). The esti-
mated shape parameters (α̂ and β̂) must first be obtained 
using iterative methods (such as the Gauss-Newton algo-
rithm) (Gnanadesikan et  al. 1967), approximation tech-
niques (Beckman and Tietjen 1978), or the Bayesian 
approach (Talib  Othman 2022). With the estimated shape 
parameters, its estimated mean can be calculated using Eq. 
(14) (Johnson et al. 1995) while the median can be approxi-
mated using Eq. (15) (Kerman 2011). In this study, the 
MLE-approximated Gaussian method shall be referred to as 
MLE-G, whereas the MLE-approximated beta distribution 
shall be referred to as MLE-B.

LB(α, β|x) =
n∏

i=1

Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1� (12)

Γ(x) =
∫ ∞

0
tx−1e−tdt = (x − 1)Γ(x − 1)� (13)

µ̂B = α̂

α̂ + β̂
� (14)

m̂B ≈
α̂ − 1

3

α̂ + β̂ − 2
3

� (15)

where 
LB	 likelihood function for beta function with input 

x, where 0 ≤ x ≤ 1
Γ	 gamma function
α, β	 shape parameters for beta distribution
n	 number of observations
α̂, β̂	 estimated shape parameters for beta distribution
µ̂B, m̂B	 estimated mean and median of the beta distribution
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∆Ē∗
00,c) of all constituents of the cluster c to the centroid 

colour of their respective cluster, as shown in Eq. (19). The 
clustering method that scored the lowest overall average 
∆Ē∗

00 was deemed the ideal method, as it meant that it had 
the smallest variance in their colour differences with the 
centroid colour. Therefore, the smaller the value, the greater 
the perceived colour consistency. This is similar to the 
CIELAB tolerancing approach (Huda 2017) when setting 
an acceptable value of ∆E∗

00 with the centroid colour being 
analogous to the tolerancing reference colour. Also, because 
the values of ∆E∗

00 are always positive by definition, tak-
ing an average of the ∆E∗

00 values is almost equivalent to 
determining the mean absolute error of the constituents to 
their centroid colour value.

L̄∗

c
ā∗

c

b̄∗
c


 = fLab







R̄c

Ḡc

B̄c







= fLab







1
Nc

∑Nc

i=1 Rc,i

1
Nc

∑Nc

i=1 Gc,i

1
Nc

∑Nc

i=1 Bc,i







� (18)

∆Ē∗
00 = 1

N

N∑
c=1

∆Ē∗
00,c

= 1
N

N∑
c=1


 1

Nc

Nc∑
i=1

f∆E





L̄∗

c
ā∗

c

b̄∗
c


 ,

[
L∗

c,i
a∗

c,i
b∗

c,i

]





� (19)

where
L̄∗

c , ā∗
c , b̄∗

c 	 centroid L∗, a∗ and b∗ values of cluster c
L̄∗

c,i, ā∗
c,i, b̄∗

c,i	 L∗, a∗ and b∗ values of each element i in 
cluster c

R̄c, Ḡc, B̄c	 average red, green and blue values of the 
cluster c

R̄c,i, Ḡc,i, B̄c,i	 red, green and blue values of each ele-
ment in cluster c
fLab(C)	function that converts colour C from RGB to 
CIELAB, Eqs. (1)–(6)
f∆E(C1, C2)	 function that calculates ∆E∗

00 between 
C1 and C2, Eq. (17)

∆Ē∗
00	 overall average colour difference to their respec-

tive centroids

∆Ē∗
00,c	 average colour difference of cluster i to its centroid

N	 number of clusters
Nc	 number of elements in cluster c

kL, kC , kH 	 parametric weights
SL, SC , SH 	 compensation factor for lightness, 
chroma, and hue respectively
RT 	 hue rotation

The ideal measurement is to average all the ∆E∗
00 values of 

every pair of samples in the same colour bin, which gives 
an indication of how similar all constituents are to each 
other. However, this method is computationally expensive 
as the number of samples increases. Instead, we used a sim-
pler approach by obtaining the centroid RGB colour of the 
samples in each bin and calculating the ∆E∗

00 of every con-
stituent of the bin to their respective centroid. In doing this, 
we only needed to perform N∆E∗

00 calculations, rather than 
its combination N C2 number of calculations (where N is the 
number of samples in the bin).

The CIE latest guideline on the interpretation of ∆E∗
00 

values is shown in Table 2 (Karma 2020). ∆E∗
00 values 

are bounded between 0 and 100, where colour difference 
values below one unit are imperceptible to humans. Many 
applications involving the need for accurate colour repro-
duction, such as professional displays, use ∆E∗

00 values of 
2.0 (ViewSonicCorporation 2021), 2.3 (Light Illusion Ltd 
2025), or 3.0 (BenQ Corporation 2014) as thresholds under 
which to define high colour accuracy. Determining the 
acceptable ∆E∗

00 value is industry- and application-specific, 
such as 2.0 in the printing industry (Huda 2017).

Furthermore, according to the CIE guideline in Table 2 
and observing the standard deviation values in Table 1, the 
values of a∗ and b∗ in the data did not appear to contribute 
much to the perceptible colour difference, while the vari-
ance of L∗ disproportionately influenced the value of ∆E∗

00. 
Furthermore, each batch was only going to be sorted into 
three or four bins, and hence the chromatic differences (a∗ 
and b∗) were likely overwhelmed by intensity differences 
(L∗). Since the images were stratified into lighter wood 
colour and darker grain colour (and possibly minor defects), 
the L∗

u values representing lighter wood colour were the 
main focus in this study.

The centroid colour value for each cluster was found and 
converted to CIELAB, as per Eq. (18). Subsequently, to 
score each clustering approach, the overall average ∆E∗

00 
value (∆Ē∗

00) was calculated, which is the average ∆E∗
00( 

Table 2  International commision on illumination (CIE) guidelines on 
interpreting ∆E∗

00 values as defined by CIEDE2000 (Karma 2020)
∆E∗

00 Perception
< 1 Imperceptible to human eyes
1–2 Perceptible through close observation
2–10 Perceptible at a glance
10–49 Colours are more similar than opposite
> 49 Colours are dissimilar
100 Exact opposite
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Another useful metric is range coverage, Q, or the propor-
tion of which the average interquartile (IQR), mid 90th per-
centile (M90), mid 98th percentile (M98) and extremum 
(EX) ranges of each batch size straddle the L∗

u intensity 
range of the superpopulation (54.2 to 90.1), as expressed 
in Eq. (21). This provides a useful indication of the band in 
which the central majority of the samples in each batch are 
occupying.

Q = 100
(L∗

u,max − L∗
u,min)

· 1
n

n∑
i=1

Ri%� (21)

where 
Q	 Range coverage, percentage of superpopulation’s 

L∗ intensity range
n	 total number of batches evaluated
L∗

u,max	 the maximum L∗
u of the superpopulation, 90.1

L∗
u,min	 the minimum L∗

u of the superpopulation, 54.2
Ri	 IQR, M90, M98 or EX range of batch at iteration i

Once these results were obtained, the batch size was then 
selected based on their distribution characteristics and prac-
tical considerations on the production floor.

2.5.2  Overclustering and bin configuration

Several different overclustering methods were tested to try 
to provide greater resolution to the colour range. By hav-
ing more colour clusters, each cluster will invariably have a 
smaller average value of ∆E∗

00. Five methods of clustering 
the values of L∗

u were tested: (1) percentile, (2) fixed width, 
(3) Otsu multilevel image thresholding (Otsu multithresh-
olding), (4) clustering using k-means on L∗

u values, and (5) 
clustering using k-means on all three L∗

u, upper a∗( a∗
u) and 

upper b∗( b∗
u) values.

Percentile methods were widely tested and used in pre-
vious research (Bianconi et al. 2013; Rožman et al. 2006; 
Defoirdt et al. 2012), including past iterations of KayuSort, 
therefore included in the analysis. The fixed width cluster-
ing was tested to see whether the splitting into equal clusters 
in the L∗

u range worked better. A different clustering method, 
Otsu multithresholding, was introduced for colour sorting 
to see if separation by minimising intercluster variance 
works better than the other methods. Figure 3 shows Otsu-
clustered groups and selected wood sample images whose 
L∗

u values correspond close to the mid point of each clus-
ter. Lastly, k-means clustering is another popular machine 
learning tool for unsupervised clustering. K-means used in 
this study used the squared Euclidean distance of points to 
their respective centroids as the performance optimisation 
parameter with the maximum number of iterations capped 

The use of this approach has a similar consequence to 
the tolerancing method deployed by colour professionals. 
Because the judgement of ∆E∗

00 is purely against the refer-
ence colour (in the case of this study, the centroid colour), 
two assessed objects that are within the acceptable range of 
∆E∗

00 to the reference may possibly have up to almost dou-
ble the ∆E∗

00 when compared to each other if they are on 
diametrically opposing sides of the reference colour within 
the CIELAB tolerancing bounds. However, since this is an 
acceptable norm in the interpretation of ∆E∗

00  this conse-
quence was assumed to be acceptable in this study.

2.5  Colour sorting setup optimization

2.5.1  Batch size selection

In this study, a batch is defined as the quantity of lumber 
that will be segregated into the desired number of bins. In 
practice, the bin configuration are to be re-evaluated for 
every batch of timber. However, since the dataset for each 
period (periods one to five, as per Table 1) was obtained 
sequentially, batch analysis was performed convolutionally 
for each period as separate evaluation sets.

The first step taken was to assess the most suitable 
parameter to locate the central position of the batch, and 
this is done by assessing the distribution that is most repre-
sentative of the batch data. Two distributions were tested, 
Gaussian and beta. The normalities of the distributions for 
batch sizes 25, 50, 100, 200, 250, 500, 750, and 1000 were 
evaluated using KS, AD, and SW tests (at 5% significance 
level). To test their goodness of fit to a beta distribution, 
since the two-parameter beta distribution is defined for 
values from 0 to 1, L∗

u values were first normalised using 
Eq. (20) with the assumption that the L∗

u extremities are 
between 44 and 100 (approximately 10 levels of intensity 
below 54.2 and above 90.1, which are trimmed extremities 
in the dataset). MLE was then used to estimate the fitted 
probability density function to a beta distribution for each 
batch size, and subsequently equal numbers of samples to 
the batch size were randomly generated using this function 
(Monte Carlo method). These samples were then evaluated 
against the actual batch using the KS and AD tests (at 5% 
significance level) to determine their goodness of fit to a 
beta distribution.

L̃∗
u = L∗

u − 44
56

� (20)

where 
L̃∗

u	 normalised L∗
u value
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their overall average ∆E∗
00 was calculated and tabulated. As 

in the previous steps, the configuration that scored the low-
est overall average value of ∆E∗

00 was considered the ideal 
bin configuration for the batch size used.

It should be noted that the average ∆E∗
00 performance 

of the recently upgraded KayuSort algorithm is identical to 
the percentile overclustering of six clusters with four-CSB.

2.5.3  ‘Burn-in rate’ recommendation

The final step in this study was to determine the minimum 
amount of observations or samples necessary to provide 
an acceptable prediction of the batch’s colour distribution, 
which is also known as the ‘burn-in rate’. By convention, 
sampling ratios of 30% or greater are required to adequately 
predict the characteristics of the population. Realistically, 
however, a ‘burn-in rate’ of 30% for a batch size of 250 
pieces (which is 75 pieces) in the industry is highly imprac-
tical. Even going by the United States Defence Standard 
MIL-STD-105 (adopted in ASTM E2234), which recom-
mends a sample size of 32 for batch sizes between 151 and 
280, the ‘burn-in rate’ is still rather high. The purpose of this 
study was to recommend a lower acceptable ‘burn-in rate’, 
and the ‘burn-in rates’ of 3 to 30 samples (hereafter these 
samples are referred to as kernels for brevity) shall be tested 
for the three- and four-CSB configurations.

at 1000. The numbers of overclusters tested ranged from 3 
to 10 (KayuSort’s current bin count limit) to gauge the effi-
cacy of each clustering method. To evaluate these different 
clustering methods, the entire trimmed dataset was sorted 
into their respective clusters for each method using the L∗

u 
values, and their average ∆E∗

00 values were calculated. The 
clustering method that scored the lowest overall ∆E∗

00 was 
considered the winning method.

The average ∆E∗
00 performance of the original KayuSort 

percentile-based clustering was also evaluated using the 
original dataset and the superpopulation dataset. This value 
was used as a performance baseline to compare the results 
of the different clustering methods used in this study.

Having determined the batch size and the winning over-
clustering method, the selected batch size was used to 
evaluate the average ∆E∗

00 values for all combinations of 
overclustered colour clusters from three to nine for three 
colour sorting bins (CSB) and from four to ten for four-
CSB. The target CSB was chosen by calculating (i) the sta-
tistical median L∗

u value of the batch, (ii) the MLE-G mean 
of the batch, (iii) the MLE-B mean, and (iv) the MLE-B 
median of the batch, and matching them to the closest mid-
point of each CSB (measured by Euclidean distance). The 
midpoints of each CSB were determined by taking the aver-
age of the two extreme boundary values that spanned three 
or four bins. The batches were then sorted into their respec-
tive bins according to which set of CSB they fall into, and 

Fig. 3  Six selected wood sample images (labelled ‘O’) close to the 
midpoint of each cluster (clustered using Otsu multithresholding), 
their respective upper (‘U’) and lower (‘L’) stratum images after Kayu-

Sort’s Otsu bisection, and their average upper L∗( L∗
u), a∗( a∗

u) and b∗( 
b∗
u) values; note that wood images were cropped to similar lengths for 

illustration purposes
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3  Results and discussion

3.1  Batch size selection

The results of the normality test and the batch L∗
u span as 

a percentage of the superpopulation L∗
u span, Q, for batch 

sizes of 25–1000 are shown in Fig. 4. For the two normal-
ity tests (KS and AD tests), the acceptance rates of the null 
hypothesis H0( shown in Fig. 4a with the null hypothesis 
H0 being that the distribution is normal) showed a decrease 
in the acceptance rate of the null hypothesis as the batch size 
increased. However, the goodness of fit to the beta distribu-
tion remained relatively high for both the KS and AD tests 
(above 80%). This meant that a beta distribution was a good 
approximation for the distribution of the batch population 
at the various batch sizes tested. Also, according to Fig. 4b, 
the distribution appeared quite similar even as batch sizes 
increased, with the interquartile, the middle 90th percentile 
and the middle 98th percentile ranges slowly but steadily 
increasing.

The selection of the batch size is critical, as it determines 
how well the timber is separated into similar colours within 
a restricted number of colour bins. Too large a batch size 
would result in the batch’s colour distribution approaching 
the superpopulation, which negates the efficacy of higher-
resolution sorting, while too small a batch size would result 
in insufficient timber to produce the product with similar 

To predict the batch distribution, four methods were used 
to predict the CSBs to use, which are the statistical median, 
MLE-G mean, MLE-B mean, and MLE-B median L∗

u val-
ues of the kernels. These values were then used to select the 
CSB as per previous section for the entire batch, except now 
using values derived using the kernels. Then, these selec-
tions were compared with the actual selection for the entire 
batch to determine their accuracy rate, AR, as shown in Eq. 
(22).

AR = iterations with correct CSBs
total iterations

× 100%� (22)

Lastly, the average ∆E∗
00 results for each kernel size 

were calculated for the method with the highest accuracy 
rate. With these average ∆E∗

00 values, the percentage of 
instances when they exceed 2.0 was determined (2.0 bench-
mark was chosen in line with the standard acceptable value 
of ∆E∗

00). As described earlier, the total possible range of 
∆E∗

00 is 4.0 (2.0 around the centroid colour), which puts it 
in the lower half of the perception range of 2–10 (percep-
tible at a glance, Table 2). However, since the wood industry 
colour matching requirements are generally not as stringent 
as those in the automotive or printing industry, this average 
∆E∗

00 of 2.0 will serve as a useful benchmark for colour 
sorting performance.

Fig. 4  a Rates of which normality test results for Kolmogorov-Smirnov 
(KS) and Anderson-Darling (AD), and the goodness to fit test results 
for KS and AD to a beta distribution showed that the batch L∗

u distribu-
tion was similar to a normal and beta distribution, tested for various 
batch sizes, convolved across superpopulation dataset; b Range Cov-

erage, Q, per Eq. (21), which is the percentage of which the averages 
of all the batches’ interquartile, mid 90th percentile (M90), mid 98th 
percentile (M98), and extremum ranges spans the L∗

u intensity range 
of the superpopulation
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the difference in performance between the two batch sizes 
and assess the possibility of using the same setting for both 
batch sizes. For actual implementation, this number can 
be varied depending on the product requirement (such as 
required product size and input timber size), and the analy-
sis presented here may be adjusted accordingly.

3.2  Overclustering and bin configuration

The results of the clustering tests are shown in both Figs. 
5 and 6a. As can be seen in Fig. 5, the original KayuSort 
colour gamut (trained using 392 samples) covered a sub-
stantial range of the central percentile of the superpopula-
tion’s colours, with an overall average ∆E∗

00 of 1.288 (s.d. 
= 0.808). However, due to the limited sample size used, the 
samples were skewed toward lighter coloured woods, and 
therefore the darker coloured woods were not sufficiently 
resolved, which was evident when the superpopulation data 
were used, resulting in a new overall average ∆E∗

00 of 2.296 
(s.d. = 1.684). Furthermore, having only a rigid four colour 
cluster meant that increasing the range of each cluster would 
inevitably result in larger ∆E∗

00 values, hence poorer colour 
similarities within each sorted cluster. In addition, it can 
be seen that the recently upgraded over-clustering method 
(albeit manual selection of bins) resulted in much better 
clustering performance, with an overall average ∆E∗

00 of 
1.318 (s.d. = 0.775) over the original.

The Otsu multithresholding method was the best method 
to perform clustering, scoring lower overall average ∆E∗

00 
values although its performance was very similar to that of 
k-means (both L∗

u and all three L∗
u, a∗

u and b∗
u methods). 

The performance of the percentile method was marginally 
lower, whereas the equal spacing method performed the 
worst. This meant that Otsu multithresholding managed to 
cluster the L∗

u colour efficiently, and the a∗
u and b∗

u compo-
nents of the image had inconsequential effects on the results 
(since they were used in ∆E∗

00 calculations, although the 
clustering was performed only on the L∗

u values alone), as 
anticipated. Furthermore, given the large data set used in 
this study with the assumption of a good representation of 
the colour gamut of LRM wood, clustering based on inter-
cluster variance in the L∗

u values gives a truer representation 
of how these L∗

u values are clustered rather than the tradi-
tional variance methods.

Interestingly, k-means had a very similar clustering 
characteristic as Otsu multithresholding, with very similar 
threshold and ∆E∗

00 values. Otsu’s original paper (Otsu 
1979) indicated that, in the context of images, as the num-
ber of classes increased, the selected thresholds will become 
less credible. However, in the context of this study, they 
behaved very similarly to k-means and provided good clus-
tering performance, despite the fact that the data were not 

colour before the colour grouping shifts. As can be seen 
in Fig. 4, selection of batch sizes between 250 and 1000 
appeared to be feasible. A drop in performance can be 
expected as the increased span for outliers increases, but 
shall be minimal. For this study, the batch size of 250 was 
selected because it represented an equivalent amount of 
wood to produce approximately four pieces of laminated 
scantling. The batch size of 1000 was also tested to see 

Fig. 5  Segmentation chart for a KayuSort’s (i) original (percentile, 
original dataset) and (ii) the recently upgraded (percentile, superpopu-
lation) upper L∗( L∗

u) clustering, the four methods used in this study to 
cluster the L∗

u of the superpopulation which are b percentile based, c 
equal widths, d Otsu multithresholding, and e k-means, and f k-means 
clustering of the superpopulation using all three upper L∗, a∗ and b∗ 
values (only the L∗

u values is shown)

 

1 3

Page 11 of 17    131 



European Journal of Wood and Wood Products          (2025) 83:131 

This is in agreement with previous studies whereby 
k-means performed better for larger numbers of CSG (Lin 
et al. 2020a; Wang et al. 2021). Likewise, when the number 
of CSG is small (K being between 3 and 7), direct colour 
sorting without oversampling resulted in visibly poorly 
matched timber. The optimal number of bins for Wang 
et al. (2021) was 8 for a dataset of 1800 images from 200 
samples of beech panels, while it was 16 bins for Lin et al. 
(2020a) based on 15,000 images. Furthermore, the CIELAB 
distribution of the superpopulation in this study (Fig. 2) 
corresponded closely to the observations for Pometia pin-
nata (Zhuang et al. 2022) where the L∗ components of the 
wood colour had a larger spread (about 8 times) compared 
to the chroma components. This indicates that this approach 
to clustering may also work for other species. It must be 
noted that HSV colour space is not ideal as features for 
k-means analysis since it is a cylindrical coordinate system 
with the hue (H) and saturation (S) components being polar 
coordinates (with the assumption that k-means used Euclid-
ean distance in calculating their centroids). Also, Zhuang 
et al. (2022) asserted that chromatic components cannot be 
ignored during colour sorting; this is only true when there 
are adequate bins available for colour sorting. In fact, their 
plot actually hinted at very good separability characteristics 

visibly multimodal. In fact, Otsu multithresholding matched 
or slightly outperformed k-means using the three values L∗

u, 
a∗
u and b∗

u for seven clusters and less (except for five clus-
ters). The performance of k-means was the best for eight 
clusters and beyond. This means that when there are more 
clusters available for sorting, the chromatic components can 
be used to improve sorting performance, but when the num-
ber of clusters is restricted, segmentation with the inclusion 
of chroma values actually degrades the performance slightly 
causing confusion at the thresholds. Although k-means in 
this study used the Euclidean distance as the optimisation 
parameter, which is identical to the older ∆E∗

76, Eq. (16), and 
the presence of adjustment factors and minor discontinuities 
in the newer ∆E∗

00 computations (Sharma et al. 2005) may 
have contributed to this phenomenon. This results shows 
that comparable performance can be achieved by using only 
L∗

u values and Otsu multithresholding, compared to the use 
of all three L∗, a∗ and b∗ values and a slightly more sophis-
ticated machine learning approach. Although k-means was 
found to be more computationally efficient for multithresh-
olding applications compared to Otsu (Liu and Yu 2009), in 
this method, clustering is performed on the superpopulation 
only during the setup phase, therefore, inconsequential to 
the colour sorting speed.

Fig. 6  a Average colour difference (∆Ē∗
00) of the four methods (per-

centile, equal spacing, Otsu multithresholding, and k-means) of clus-
tering the superpopulation dataset’s upper L∗ values into 3 to 10 clus-
ters, as well as k-means clustering using all three upper L∗, a∗ and 

b∗ values, and b∆Ē∗
00 for different three colour sorting bins (CSB) 

and four-CSB configurations for batch sizes of 250 (B250) and 1000 
(B1000) samples, using maximum likelihood estimation beta distribu-
tion approximated median
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use six overclusters for four-CSB, although the rationale 
for that choice was purely to provide three choices of wood 
brightness for the user to choose from.

This stage is analogous to searching for the optimal bin 
breadths that minimise the colour difference of all of the 
constituents in the bin. As can be seen from the results, as 
the number of desired bins increases, the optimal number 
of overclusters increased, with overcluster to CSB ratios of 
around 4:3 and 6:4. This conclusion depends on the batch 
size, and as the batch size increases, there is a greater pos-
sibility of obtaining a larger variety of wood of different 
species or provenance and therefore a wider colour distri-
bution—this can be clearly seen in Fig. 6b where the val-
ues ∆E∗

00 for the batch size of 1000 were much higher than 
those for the batch size of 250. Furthermore, the perfor-
mance of 6C4 and 5C4 for the batch size of 1000 was very 
similar, with 5C4 slightly outperforming 6C4. It can be pro-
jected that this trend of reducing overclusters will continue 
as the batch size increases further, whereas conversely, as 
the batch size decreases, the optimal number of overclusters 
increases.

3.3  ‘Burn-in rate’ recommendation

The MLE-B median approximation slightly outperformed 
the others in most of the results. However, it should be noted 
that a one-way ANOVA revealed that there were no statis-
tically significant differences between the performances of 
MLE-G mean, MLE-B mean, and MLE-B median (post-hoc 
tests p-values > 0.95). The statistical median method per-
formed the worst among the methods tested, with a statisti-
cally significant difference from the others (post-hoc tests 
p-values < 0.01, Bonferroni-adjusted significance level 
of 1.25%). Figure 7 shows the accuracy of each of the bin 
configurations using MLE-B median. For four-CSB with a 
‘burn-in rate’ of 3 and batch size of 250 pieces, 6C4 only 
managed an accuracy rate of 63.9%, which improved to 
77.9% with a ‘burn-in rate’ of 30. For a batch size of 1000, 
5C4 managed an accuracy rate of 81.7% and improved to 
89.3%. For three CSB, batch sizes of 250 and 1000 (both of 
them were 4C3 configuration), began at the ‘burn-in rate’ of 
3 with accuracy rates of 83.5% and 81.6%, respectively, and 
reached 92.3% and 89.2% at the ‘burn-in rate’ of 30 pieces.

However, Fig. 8 gives a much clearer context to the 
performance results in Fig. 7, showing the actual average 
∆E∗

00 performance of each ‘burn-in rate’. From Fig. 8b, the 
‘burn-in rate’ of around 12 pieces appeared to be the ideal 
recommended ‘burn-in rate’ for four bins and batch size 250 
(using the 6C4 configuration) as the percentage of batches 
with their average ∆E∗

00> 2.0 units dipped below 1%. For 
a batch size of 1000 pieces using the 5C4 configuration, the 
1% value was crossed at the ‘burn-in rate’ of 10 pieces. For 

using the luminance component alone at low bin counts, 
consistent with our findings.

Having determined that the Otsu multithresholding per-
formed well, particularly for fewer clusters, each configura-
tion was tested for performance when three- and four-CSBs 
were selected from up to 10 total clusters. All approximation 
methods tested performed very similarly (one-way ANOVA 
test p-values > 0.05) with the MLE-B median scoring the 
lowest ∆E∗

00 values overall. This is consistent with the 
results in Fig. 4a, which showed the highest goodness of fit 
when tested using the KS and AD tests. Therefore, MLE-B 
median’s results were reported here in Fig. 6b and used for 
the ‘burn-in rate’ tests. For the batch size of 250 pieces, it 
is clear from Fig. 6b that the overall average ∆E∗

00 value 
reached their minimum (∆E∗

00 = 1.373) at six colour over-
clusters for four-CSB (referred to as 6C4), four colour over-
clusters for three-CSB (referred to as 4C3) with ∆E∗

00 of 
1.646. For the batch size of 1000 pieces, five colour overclu-
sters for four-CSB (referred to as 5C4) performed only mar-
ginally better than 6C4 for four-CSB (∆E∗

00 = 1.423), while 
for three-CSB, 4C3 performed the best (∆E∗

00 = 1.688).
This similar method can be used to obtain the ideal num-

ber of colour overclusters for any desired batch size and 
CSBs. Batch sizes between 250 and 1000 can use the 6C4 
configuration when four sorting bins are desired, while the 
4C3 configuration may be used when three sorting bins are 
to be used. There is a small increase in the average ∆E∗

00 
values as the batch size increased from 250 to 1000 (3.97% 
for four-CSB and 2.85% for three-CSB). The results also 
affirmed the choice made during the KayuSort upgrade to 

Fig. 7  Accuracy rates, AR, per Eq. (22), for ‘burn-in rates’ from 3 to 30 
for four-bin (6C4 for batch size of 250 pieces, B250, and 5C4 for 1000 
pieces, B1000) and three-bin configurations (4C3 for both batch sizes 
B250 and B1000) using maximum likelihood estimation beta distribu-
tion approximated median
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similarity while maintaining a small number of bins. How-
ever, the methodology used in this study can be extended 
to a larger number of desired bins. Chromatic features can 
also be included by using k-means instead of Otsu multi-
thresholding. The texture of the wood was not considered in 
this study due to the limited number of bins, but it can also 
be parameterised and included in the clustering and per-
formance scoring processes. Deep learning techniques can 
be used to characterise and classify the grain pattern, such 
as the approach used by Liu et al. (2020) for rubberwood 
(Hevea brasiliensis). However, Liu et al. (2020) focused on 
mainly classifying grain patterns while separating their data 
into only two colour groups (dark and light); other indus-
try experts had previously determined that 10 colour bins 
were ideal (Kurdthongmee 2008). This disparity on what 
constitutes good colour clustering illustrates the benefit of 
the flexible approach proposed by this research, which can 
account for different mill preferences for the number of bins.

The KayuSort trained SOM map for a six-overcluster 
setup using Otsu multithresholding is shown in Fig. 9. The 
results and insights gained from this study shall be incorpo-
rated into the next major software upgrade cycle of Kayu-
Sort. It should be noted that although KayuSort is currently 
used with industrial cameras, a study carried out (Liew et al. 
2023) had shown that a well-calibrated high-quality web-
cam can achieve comparable performance, which will allow 
affordable implementations of this colour sorting solution in 
the future. Lastly, to address the issue of requiring long-term 
data on the total gamut of wood colour when training for a 
new species, an algorithm that retraces the methods used 

three bins, while both options had an overall average ∆E∗
00

< 2.0, the percentages of batches that had ∆E∗
00> 2.0 were 

substantially higher, which was expected due to the larger 
band of L∗

u values per cluster. For batch sizes of 250 and 
1000 pieces (both using the 4C3 configuration), the ‘burn-
in rate’ of 10 pieces saw percentages of ∆E∗

00> 2.0 cross-
ing below the levels of 7% and 10%, respectively. The drop 
in percentages thereafter appeared to be too gradual, mak-
ing the increasing ‘burn-in rate’ impractical for industrial 
applications.

Furthermore, for four bins, if slightly higher mismatched 
colours can be tolerated (batch average ∆E∗

00> 2.0 occur-
ring around 2% of the time), a sampling size of three is suf-
ficient to obtain an overall average ∆E∗

00 of 1.45. For batch 
sizes between 250 and 1000, we expect the average ∆E∗

00 
to be confined between the two lines in Fig. 8a, with the 1% 
intersect (probability of ∆E∗

00> 2.0) between the ‘burn-in 
rates’ of 10 and 12 pieces.

From these results, it is clear that there is substan-
tial improvement over the original KayuSort setup when 
exposed to the superpopulation dataset (the original average 
∆E∗

00 was 2.296). Having improved the average ∆E∗
00 to 

less than 1.8 in all tested configurations, this method had 
achieved ∆E∗

00 under the benchmark level of 2.0. This high-
lights the advantage of knowing the breadth of wood colour 
and its distribution, especially for species with a wide array 
of colours. This is especially pertinent if the number of bins 
desired is restricted. Not all manufacturing facilities can 
accommodate colour sorting lines with 8, 16 or more bins; 
therefore, this study provides a pathway to improve colour 

Fig. 8  a Average ∆E∗
00 performance for different ‘burn-in rates’ for 

batch sizes 250 (B250) and 1000 (B1000) pieces for 6C4, 5C4 and 4C3 
optimal configurations, and b the percentage of batches that had their 

∆E∗
00 values larger than 2 units, using maximum likelihood estima-

tion beta distribution approximated median
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4  Conclusion

This study showed the roadmap towards improving the 
performance of timber colour sorting when there is a large 
variance in the colour and the binning requirements are 
restricted. Clustering upper L∗ values using Otsu multi-
thresholding performed well, with performances very simi-
lar to that of k-means clustering using all upper L∗, a∗ and 
b∗ values. For the batch size of 250 pieces, six and four over-
clusters produced the lowest average ∆E∗

00 for four (6C4) 
and three (4C3) bins, respectively, while for the batch size 
of 1000 pieces, five (5C4) and four (4C3) overclusters per-
formed the best. Maximum likelihood estimation using beta 
approximation’s median appeared to match the distribution 
of the entire dataset and each batch the best, and was used 
to predict the centrality of the batch when selecting the ideal 
bin configurations. The recommended ‘burn-in rate’ for 6C4 
with the batch size of 250 pieces is 12 pieces, while all other 
configurations worked best with 10 pieces. Further research 
shall be conducted for other species with wide ranges of 
colours, especially those with undifferentiated sapwood.
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in this study shall be created to automatically update the 
training of the colour sorting map periodically as the system 
encounters new batches of timber with a different hue.

In this study, several shortcomings are recognised. Firstly, 
the erroneous selection of CSB was likely due to changes in 
the actual batch of timber mid-way of each period where 
there was a significant difference in their colour, hence 
resulting in erroneous predictions. This can be partially 
overcome by allowing the worker to reset the system’s pre-
diction when there is an actual known change in the batch, 
so that the predicted CSB of the previous batch does not get 
carried over to the new batch. Secondly, the two edge bins 
will invariably contain all the outliers, potentially causing 
larger colour variations. One possible solution would be to 
eject these outliers to a separate bin to be sorted again with 
a different batch. However, this means having to scan the 
wood multiple times, affecting production efficiency.

Future studies shall focus on the use of continuously slid-
ing bins to better capture the nuances in the shift of wood 
colour rather than fixed clusters. In addition, other local 
species with wide colour ranges, such as kembang semang-
kuk (Scaphium spp.) and merpauh (Swintonia spp.) shall be 
researched. This is largely due to their undifferentiated sap-
wood, where there is a gradual transition in colour between 
the sapwood and heartwood regions. In this case, cluster-
ing has to be performed in both the intensity and chromatic 
domains to improve performance, and there may be a need 
for more bins than three or four. Another area of focus shall 
be the inclusion of the texture of wood into the sorting algo-
rithm, which will be important in the sorting of species with 
prominent grain features such as oak (Quercus spp.).

Fig. 9  KayuSort’s self-organising map for six overclusters trained 
using the superpopulation images labelled using results from this 
study; cluster 1 being the lightest and cluster 6, the darkest
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