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Abstract
This paper proposes a data-driven topology design (DDTD) framework, incorporating image fragmented learning that lever-
ages the technique of dividing an image into smaller segments for learning each fragment. This framework is designed to 
tackle the challenges of high-dimensional, multi-objective optimization problems. Original DDTD methods leverage the 
sensitivity-free nature and high capacity of deep generative models to effectively address strongly nonlinear problems. How-
ever, their training effectiveness significantly diminishes as input size exceeds a certain threshold, which poses challenges in 
maintaining the high degrees of freedom crucial for accurately representing complex structures. To address this limitation, we 
split a trained conditional generative adversarial network into two interconnected modules: the first performs dimensionality 
reduction, compressing high-dimensional data into a lower-dimensional representation, which is then fed into a variational 
autoencoder (VAE) to generate new low-dimensional data. The second module reconstructs the generated low-dimensional 
data back into the high-dimensional design space. The effectiveness of the proposed approach is demonstrated through two 
case studies: the optimization of an L-bracket design problem and a turbulent heat transfer design problem, both involving 
design variables at a scale unattainable by the conventional VAE-based method.

Keywords  Data-driven topology design · Topology optimization · Image fragmented learning · Multi-objective 
optimization

1  Introduction

Topology optimization is a computational design method-
ology that formulates a structural optimization problem as 
a material distribution problem within a predefined design 
domain, offering a high degree of design freedom for achiev-
ing an optimal structure (Bendsøe and Kikuchi 1988). By 
strategically manipulating material layout, this approach 
facilitates the discovery of innovative solutions that are often 
unattainable through conventional design methods. Over the 
past few decades, a diverse range of topology optimization 
techniques have been developed and successfully applied 
across various engineering fields, including structure, heat, 

fluids, and many other engineering problems (Bendsøe and 
Sigmund 2004; Deaton and Grandhi 2014).

Despite its potential, topology optimization using gradi-
ent-based methods often encounters challenges in addressing 
the multimodal nature of nonlinear physical problems, mak-
ing it prone to converging on local optima. This limitation 
has spurred interest in sensitivity-free methods, which cir-
cumvent the need for sensitivity analysis and exhibit broader 
applicability. Genetic algorithms (GAs) (Balamurugan et al. 
2008; Wang and Tai 2004), and immune algorithms (Luh 
and Chueh 2004) have been proposed as effective tools 
for gradient-free solution search. Similarly, Wu and Tseng 
(2010) recommended that differential evolution based on a 
binary bit-string framework can be utilized for numerical 
optimization problems. However, gradient-free methods face 
limitations, particularly in structural representation flexibil-
ity and computational efficiency. As Sigmund (2011) noted, 
such constraints restrict their applicability to small-scale 
problems. While gradient-free methods help avoid some 
challenges of gradient-based approaches, they remain less 
effective for large-scale, high-dimensional problems with 
extensive design freedom.
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Recent advancements in artificial intelligence (AI) gen-
erative models have gained significant attention in various 
fields, leading to a surge in their integration into topol-
ogy optimization (Woldseth et al. 2022). For instance, 
Oh et al. (2019) proposed a deep learning framework that 
integrates topology optimization with a generative adver-
sarial network (GAN) (Goodfellow et al. 2014) to gener-
ate diverse, high-performance designs from limited data, 
validated through a 2D wheel design case study. Nie et al. 
(2021) leveraged stress and strain energy density fields 
derived from initial material distributions as input fea-
tures for neural networks, enhancing the accuracy and reli-
ability of generative outputs. Lee et al. (2023) employed 
super-resolution (SR) image reconstruction methods as a 
generative approach to enhance the resolution of topol-
ogy optimization results without increasing mesh refine-
ment, yielding much sharper and higher contrast outcomes 
compared to conventional methods. Furthermore, Jang 
et al. (2022) introduced a reinforcement learning-based 
generative design method that maximizes topology design 
diversity while significantly reducing computational costs 
through neural network approximations. Guo et al. (2018) 
presented an innovative method that employs an aug-
mented variational autoencoder (VAE) (Kingma and Well-
ing 2013) to encode 2D topologies into a low-dimensional 
latent space, enabling efficient design generation. These 
studies highlight the growing potential of generative mod-
els in addressing challenges associated with high design 
freedom and improving solution quality beyond the capa-
bilities of conventional topology optimization.

Building on these advancements, data-driven topology 
design (DDTD) proposed by Yamasaki et al. (2021), dem-
onstrated the capability of deep generative models to effi-
ciently produce diverse material distributions from a small 
set of latent variables, offering a sensitivity-free approach to 
strongly nonlinear multi-objective problems. Expanding on 
DDTD, Yaji et al. (2022) introduced data-driven multifidel-
ity topology design (MFTD) to solve complex topology opti-
mization problems, where Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) (Deb et al. 2002) is used to select 
promising solutions in the objective space on Pareto domi-
nance and crowding distance, thereby addressing complex 
multi-objective optimization. Kato et al. (2025) used data-
driven MFTD to minimize maximum stress and volume, 
starting from gradient-based topology optimization solutions 
using the p-norm stress measure. Luo et al. (2025) proposed 
a data-driven multifidelity topology design (MFTD) method 
for fin design in thermal energy storage, combining high-
fidelity phase change modeling with low-fidelity topology 
optimization. Additionally, to enhance convergence sta-
bility in high-design-freedom problems, Kii et al. (2024) 

proposed a new sampling method in the latent space called 
latent crossover.

Despite advances in DDTD, significant challenges remain 
in applying deep generative models to high-dimensional 
problems, particularly in preserving the design freedom 
required for capturing complex structures. Previous DDTD 
methods often compress the design space into limited latent 
representations for efficiency, which can restrict the diversity 
of generated solutions. This limitation makes it particularly 
challenging to apply DDTD to high-dimensional problems, 
such as high-resolution or three-dimensional designs. Yang 
et al. (2025) attempted to address this using principal com-
ponent analysis (PCA) to compress data into lower dimen-
sions, serving as input to a VAE. Material distribution was 
then reconstructed and enriched with new features using 
PCA. Although PCA can fully reconstruct a dataset with a 
sufficient number of components, using fewer components 
may limit design freedom and risk losing important informa-
tion. This is because PCA selects components based only on 
variance, potentially omitting critical features essential for 
meeting design objectives.

In response, our proposed method, image fragmented 
learning, integrates an image transformation neural net-
work (Isola et al. 2017) with original DDTD. By converting 
design variables into pixel distributions and processing them 
through image transformation techniques, the framework 
achieves efficient dimensional compression and reconstruc-
tion. By learning smaller structural fragments and leverag-
ing neural network tiling, our method facilitates the efficient 
handling of high-dimensional problems while preserving 
fine structural details.

The main contribution lies in enhancing the original 
DDTD framework through dimensional transformation, 
which allows the VAE to handle higher-resolution data by 
compressing input size before training and recovering it after 
generation. Combined with fragment-based learning and 
image transformation, the method enables more diverse and 
detailed solutions in high-dimensional topology optimiza-
tion. We demonstrate its effectiveness through applications 
in minimizing maximum stress for an L-bracket design prob-
lem and optimizing a turbulent heat transfer problem, show-
casing its capability to address complex, high-dimensional 
design challenges in topology optimization.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a brief overview of the fundamental con-
cepts and limitations of previous DDTD methods. Section 3 
outlines the proposed approach and the associated training 
framework. Section 4 details the implementation process, 
followed by the two computational case studies along 
with their respective results in Sect. 5. Finally, concluding 
remarks are offered in Sect. 6.



Image fragmented learning for data‑driven topology design﻿	 Page 3 of 18    148 

2 � Overview of data‑driven topology design

2.1 � Main concept

Data-driven computing can effectively generate new data 
based on the patterns contained in a given dataset. This 
approach has demonstrated good convergence and robust-
ness, particularly in solving nonlinear and linear elastic-
ity problems (Kirchdoerfer and Ortiz 2016; Conti et al. 
2018). Building on this foundation, previous works on 
DDTD (Yamasaki et al. 2021) extended these principles 
to optimize material distribution using data-driven tech-
niques. By moving beyond conventional sensitivity-based 
approaches, DDTD aims to leverage known high-perfor-
mance material distributions in a multi-objective space to 
generate even better-performing designs.

DDTD iteratively selects high-performance material 
distributions, referred to as elite data, during each itera-
tion. The elite data are used to train a deep generative 
model, and as a result, a latent space is constructed. The 
elite data are distributed according to the learned prob-
ability distribution, and new material distributions are gen-
erated by sampling this latent space. The generated data 
are then evaluated in the multi-objective function space, 
with higher-performing data accepted as new elite data. 
Through this iterative process, the elite data are continu-
ously updated, leading to improved performance.

The quality of the initial elite data is critical to the suc-
cess of DDTD. Referring to Yaji et al. (2020) these initial 
data can be prepared by solving a simpler topology opti-
mization problem, termed low-fidelity optimization, which 
is computationally efficient and correlated with the target 
problem. The complex target problem is then evaluated 
using multi-objective criteria in a process referred to as 
high-fidelity evaluation.

Central to the original framework of DDTD is a gen-
erative model, VAE, which maps the training data into a 
latent space. In this latent space, new material distribu-
tions are generated by sampling from a learned probability 
distribution. These generated distributions, inheriting key 
features from the original data, are iteratively refined. By 
continuously updating the training dataset with higher-
performing designs, the method progressively enhances 
material configurations in a data-driven manner.

2.2 � Variational autoencoder

Figure 1 shows the architecture of the VAE, which is the 
key component to generate new candidates. For a sample 
dataset X(1),X(2),… ,X(N) , where X(i)

∈ ℝ
N , the encoder 

aims to compress the high-dimensional input data X(i) 

to low-dimensional latent variables z ∈ ℝ
Nlt , where gen-

erally Nlt ≪ N  . The decoder aims to reconstruct high-
dimensional output data Y(i)

∈ ℝ
N from low-dimensional 

latent variables. Kingma and Welling (2013) described the 
VAE as a method designed to approximate the probability 
distribution P(X) using a model P�(X

(i)
) = P(X;�) . The 

parameter � is optimized through learning in a way that 
maximizes the likelihood of P�(X) . For each data point, 
the log-likelihood logP�(X

(i)
) is bounded by the variational 

lower bound, as follows:

In this context, Q�(z|X
(i)
) represents the approximate pos-

terior parameterized by � , while DKL(Q�||P�) refers to the 
Kullback–Leibler (KL) divergence between the distributions 
Q� and P� . In VAE, because directly maximizing logP�(X

(i)
) 

is intractable, Q�(z|X
(i)
) and P�(X

(i)|z) , which correspond 
to the encoder and decoder, are implemented via neural 
networks. To optimize � and � using backpropagation, the 
latent variable z is defined using the reparameterization 
trick, as follows:

where � and � represent the mean and the standard deviation 
of the approximate posterior, respectively. The symbol ⊙ 
denotes the element-wise product, and � is a random sample 
from the standard Gaussian distribution N(0, I) . Using (2), it 
is evident that sampling occurs directly in the latent space, 
as intended.

Assuming that Q�(z|X
(i)
) , P�(z) , and P�(X

(i)|z) are 
Gaussian distributions, the VAE loss function LVAE can 
be expressed as the sum of the analytically derived KL 
divergence and the mean square error (MSE), from the 
right-hand side of (1), as follows:

(1)
logP�(X

(i)
) ≥ − DKL(Q�(z|X

(i)
)||P�(z))

+ �Q�(z|X
(i))[logP�(X

(i)
|z)].

(2)z = � + � ⊙ �,

Fig. 1   Schematic illustration of VAE, which is composed of two neu-
ral networks, i.e., encoder and decoder
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Herein, � ∈ ℝ
+ serves as a weight parameter that modulates 

the impact of the KL divergence, enforcing the regulariza-
tion of the latent space toward N(0, I) . The parameters � and 
� are optimized using neural networks to minimize LVAE . As 
a result, the successfully trained model is capable of generat-
ing new candidates by sampling from the latent space.

2.3 � Limitation on large‑scale problem

In density-based structural optimization, increasing the 
number of mesh elements typically leads to more precise 
and refined structures, which often exhibit superior per-
formance (Andreassen et al. 2011). Similarly, in DDTD, a 
higher dimensionality of the design variables expands the 
potential material distribution possibilities, increasing the 
likelihood of achieving optimal configurations.

Previously, DDTD has been shown to handle design vari-
ables up to 104 dimensions (Yamasaki et al. 2021). Within 
this range, the method is effective due to its use of relatively 
compact VAE architectures. However, when applied to larger 
design spaces, this approach faces significant challenges. 
Scaling up the VAE requires increasing both the number of 
nodes and layers, which not only raises the computational 
cost per iteration but also necessitates a higher-dimensional 
latent space and a larger amount of training data for effec-
tive learning. These changes make DDTD evaluations more 
expensive and less stable.

In practice, once the number of design variables exceeds 
105 , the cumulative runtime for the numerous high-fidelity 
evaluations in DDTD becomes difficult to manage. Each 
evaluation becomes significantly more computationally 
expensive as resolution increases, and the VAE must be 
trained on increasingly larger datasets to effectively capture 
the expanded design space. These factors combined lead to 
unstable training and degraded latent space representations. 
Moreover, when the number of design variables exceeds 105 , 
the original DDTD framework often encounters memory 
issues under our computing environment (a single NVIDIA 
RTX A5000 GPU and a single AMD EPYC 7763 CPU). 
Based on our experience, 104 has become a practical upper 
limit for applying the original DDTD framework under typi-
cal computational and data constraints.

Furthermore, even if computational cost is not a con-
straint, VAE training requires a sufficiently large dataset. 
When the number of design variables exceeds approximately 
104 , gathering adequate data becomes increasingly difficult, 

(3)
VAE(�,�;X

(i)
) = −

�

2

Nlt∑

j=1

(1 + log(�2
j
) − �2

j
− �2

j
)

+
1

N
||X(i)

− Y
(i)||2.

which hinders the learning of meaningful latent features. As 
noted by Yang et al. (2025), controlling the degrees of free-
dom for representing material distributions is essential for 
the effective training of VAEs in DDTD applications. These 
challenges highlight the inherent difficulties of employing 
DDTD for large-scale problems.

3 � Image fragmented learning

3.1 � Basic concept

In this section, we propose a method named image frag-
mented learning, which integrates dimensionality reduction 
and enhancement techniques to address the challenges of 
high computational complexity in topology optimization. 
This approach segments an image into numerous small 
square elements, enabling dimensional reduction and upscal-
ing to be applied to each fragment individually.

Specifically, the original high-dimensional data is divided 
into smaller square elements of size Nhigh × Nhigh , as illus-
trated in Fig. 2. After segmentation, each element is down-
scaled to Nlow × Nlow , and a new low-dimensional image is 
reconstructed by assembling these downscaled segments. 
The neural network processes these fragments sequentially, 
enhancing efficiency in handling complex structures.

During the transformation, high-dimensional data is 
downscaled to generate low-dimensional input for the VAE, 
which then reconstructs the original high-dimensional data 
from its output. Instead of generating the entire image at 
once, the method generates the image block by block using 
an image-to-image translation neural network, specifically 
pix2pix (Isola et al. 2017). This block-wise approach simpli-
fies the handling of complex structures while significantly 
enhancing computational efficiency.

Fig. 2   Fragmentation and reconstruction process for converting 
between high-dimensional images ( Nhigh = 128 ) and low-dimensional 
images ( Nlow = 16 ). The red grid illustrates the segmentation of 
images, and the blue region highlights the mapping of a representa-
tive fragment
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3.2 � Division of pix2pix

The concept of dimensionality transformation is inspired 
by the neural network architecture used in pix2pix, a model 
designed for image-to-image translation. pix2pix is a variant of 
the conditional generative adversarial network (cGAN) (Mirza 
and Osindero 2014), specifically designed to use images as 
the condition in the generative process, as illustrated in Fig. 3. 
Unlike standard cGANs, which can use various forms of con-
ditions (e.g., labels or one-hot encoded vectors), pix2pix takes 
a set of input images u(1), u(2),… , u(N) , where u(i) ∈ ℝ

N , as the 
conditional input to guide the generation process.

The generator G takes u(i) along with a noise vector 
n ∈ ℝ

N , mapping to the output y(i) ∈ ℝ
N , represented as 

G ∶ [u(i),n] → y
(i) . Here, y(i) denotes the ground truth used 

for training, while G(u(i)) represents the actual output image 
generated by the generator. The training process aims to mini-
mize the discrepancy between G(u(i)) and y(i).

The role of the discriminator D is trained to accurately dis-
tinguish the pair of the real output image y(i) and the input 
image u(i) , represented as [y(i), u(i)] , as real, and the combi-
nation of the generated image, G(u(i)) ∈ ℝ

N , with the input 
image, represented as [G(u(i)), u(i)] , as fake. The dynamic 
interactions between the generator and the discriminator in 
the pix2pix framework illustrate the adversarial process that 
drives the network to generate highly realistic images, mak-
ing both the generator and the discriminator more powerful 
during training.

For our model, to maintain stable output structures, noise 
is not introduced as an additional input. The objective of the 
pix2pix model we used is expressed as:

where G aims to produce outputs indistinguish-
able from real  by the discr iminator D ,  which 
means G minimizes this objective while D maxi-
m i z e s  i t ,  i . e . ,   G∗ = argminG maxD Lpix2pix(G,D)  , 
D∗ = argmaxD Lpix2pix(G,D).

(4)
pix2pix(G,D) =�y,u[logD(y

(i), u(i))]

+ �
y,u[log(1 − D(y(i),G(u(i)))],

To improve the performance of our model, we combine 
the GAN objective with a traditional loss function. Spe-
cifically, we introduce the L1 distance as an additional loss 
term, defined as:

By incorporating the L1 loss, our final objective can be for-
mulated as:

The generator architecture G uses a U-Net neural network 
(Ronneberger et al. 2015). As shown in Fig. 4, the encoder 
employs a series of downsample layers to capture hierar-
chical feature representations, while the decoder utilizes 
upsample layers with transposed convolutions to reconstruct 
the feature maps and match the input resolution. Skip con-
nections between the encoder and decoder enhance predic-
tive performance by directly transferring spatial information 
across different scales.

As illustrated by the pixel variations across layers in 
Fig. 4, during the encoder’s downsampling process, the 
width and height of the feature maps are each halved 
at every layer. Conversely, the decoder restores the fea-
ture maps through transposed convolution operations. 
To leverage the hierarchical structure of the generator 
G, we decompose the network into two components: a 
downscale module that maps high-dimensional inputs to 
lower-dimensional features, and a regeneration module 
that reconstructs high-dimensional outputs. This process 
is visually summarized in PHASE 1 of Fig. 5, and imple-
mentation details are further provided in Sect. 4.1.

(5)LL1
(G) = �

y,u[||y
(i) − G(u(i))||].

(6)G∗ = arg min
G

max
D

Lpix2pix(G,D) + �LL1
(G).

Fig. 3   Process of training pix2pix by cGAN. u : input, y : target, G(u) : 
output by generator G. The discriminator D distinguishes between the 
real pair [y,u] and the fake pair [G(u),u]

Fig. 4   The U-Net architecture of generator G tailored for process-
ing data with a resolution of 128 × 128 . Each block’s output is anno-
tated with its dimensions (vertical pixels × horizontal pixels × feature 
maps)



	 Y. Yang et al.  148   Page 6 of 18

3.3 � Overall procedure

Our proposed framework is summarized in Fig. 5. Initially, 
a small-scale neural network is trained to convert high-
dimensional structural fragments into low-dimensional 
representations. This process develops two essential com-
ponents: a downscale module for converting high-dimen-
sional fragments ( Nhigh × Nhigh ) to low-dimensional ones 
( Nlow × Nlow ), and a regeneration module for reconstruct-
ing high-dimensional fragments from low-dimensional 
representations.

After completing the training phase of pix2pix, the frame-
work transitions to the optimization phase for DDTD. This 
phase incorporates the two modules described in the mul-
tifidelity topology design strategy introduced in Sect. 2.1, 
where low-fidelity optimization refers to applying conven-
tional topology optimization to simplified problems and 
high-fidelity evaluation denotes the simulation-based assess-
ment of multiple objectives. This entire iterative process is 
outlined in PHASE 2 of Fig. 5: 

Step 1	� Performance Evaluation: Compute the values of 
multiple objective functions for the high-dimen-
sional initial data.

Step 2	� Elite Selection: Identify superior high-dimensional 
data entities based on their objective values. These 
selected data are stored for later merging with 
newly generated high-dimensional data (see Step 
7). Elitism-based selection is performed using 
NSGA-II (Deb et al. 2002).

Step 3	� Convergence Check: Determine whether the elite 
high-dimensional data satisfy the convergence 
criterion.

Step 4	� Dimensional Reduction: Convert the high-dimen-
sional elite data into low-dimensional representa-
tions using the downscale module. Each structural 
fragment is processed as described in Sect. 3.1.

Fig. 5   Flowchart illustrating the data process of proposed image 
fragmented learning DDTD framework. PHASE 1 depicts the train-
ing of the generative model for dimensionality transformation, while 

PHASE 2 demonstrates the iterative optimization process for high-
dimensional material distributions
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Step 5	� VAE Training and Generation: Train the VAE on 
the low-dimensional material distributions and 
generate new low-dimensional data.

Step 6	� Dimensional Regeneration: Reconstruct the high-
dimensional data from the newly generated low-
dimensional data using the regeneration module 
from PHASE 1.

Step 7	� Data Evaluation and Merging: Evaluate the high-
dimensional generated data in the same manner 
as Step 1. Merge these generated data, along with 
their performance values, with the stored data from 
Step 2, and return to Step 2 for the next iteration.

Through this iterative procedure, the framework identi-
fies high-performance material distributions for high-dimen-
sional problems, which have been challenging to address 
using previous DDTD methods. By leveraging a two-stage 
transformation between high- and low-dimensional repre-
sentations, our framework facilitates efficient exploration of 
the design space and overcomes the scalability limitations 
associated with conventional DDTD.

4 � Implementation details

This section provides supplementary processes and imple-
mentation details necessary for applying the proposed 
method described in Sect. 3. Specifically, Sects. 4.1 and 4.2 
address key considerations when integrating image frag-
mented learning into the original DDTD framework, while 
Sect. 4.3 details the application of body-fitted mesh in high-
fidelity evaluation.

4.1 � Training of pix2pix

As described in Sect. 3.1, the pix2pix model requires paired 
input and target images during training. To ensure the gen-
eration of high-quality material distributions, the network 
was trained using a dataset of 1600 optimized material 
distributions derived from various working conditions and 
boundary constraints in topology optimization (Yamasaki 
et al. 2019). Each input image was paired with an identical 
target, enabling the generator to accurately reproduce the 
input material distributions. However, prior studies such as 
that by Wang et al. (2018), observed that pix2pix exhibits 
instability and produces low-quality results when handling 
high-resolution inputs of 256 × 256 pixels. To address this, 
we selected a training dataset with a resolution of 128 × 128 
( Nhigh × Nhigh ), as shown in Fig. 6, which strikes a balance 
between computational efficiency and output quality.

The trained pix2pix model is divided into two compo-
nents: the downscale module, responsible for compressing 
high-dimensional data into low-dimensional representa-
tions, and the regeneration module, which reconstructs 
low-dimensional data back into the high-dimensional design 
space. The choice of the downscaled resolution Nlow is criti-
cal because smaller values reduce accuracy, whereas larger 
values improve reconstruction quality but also increase com-
putational cost and place greater demands on the VAE, as 
discussed in Sect. 2.

We evaluated the generator model with different values of 
Nlow using 40 datasets, each with a resolution of 512 × 512 . 
The evaluation results indicate that larger Nlow values yield 
more accurate image reconstructions. As shown in Fig. 7, 
the setting of Nlow = 32 achieves a good balance by sig-
nificantly reducing resolution while still producing images 
that closely resemble the original ones, with no noticeable 
boundaries from segmentation. Although the difference in 
MSE between Nlow = 16 and Nlow = 32 is relatively small, 
the reconstructed structure at Nlow = 32 exhibits clearer 
and sharper contours. Therefore, we selected the generator 
model with Nhigh = 128 and Nlow = 32 . The architecture of 
the pix2pix neural network used in our study is illustrated 
in Fig. 8. After bifurcation, the section highlighted by the 
dashed line corresponds to the downscale module, while the 
remaining components form the regeneration module.

The training results after 50 iterations are shown in Fig. 9. 
The generated outputs closely match the input structures, 
exhibiting a high degree of structural similarity, indicating 
that the network successfully learned the mapping between 
high- and low-dimensional representations. To further 

Fig. 6   Training dataset comprising 1600 optimized structures with a 
resolution of 128 × 128 pixels from Yamasaki et  al. (2019), utilized 
for training the pix2pix model in this study
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evaluate the generalization capability of the trained model, 
we tested its performance on an independent set of datasets 
excluded from the training phase. The results show that the 
output structures closely match the corresponding inputs, 
with minimal deviations. This consistency indicates that 
the model effectively generalizes to unseen data, success-
fully learning the desired mapping and meeting the design 
objectives.

4.2 � Normalization of material distribution

In the design domain D, material distributions are described 
using the density expression �(�) , where � represents the 
coordinates of an arbitrary point in D. �(�) takes values 
between 0 and 1, consistent with the density-based approach 
in topology optimization. In this approach, � = 1 represents 
full material presence and � = 0 represents voids, allow-
ing for intermediate values that facilitate the optimization 
process.

However, the material distributions generated by the 
pix2pix-based model are not inherently constrained to the 
range [0, 1]. Instead, the pix2pix outputs values within the 
range of [ −1, 1].

To align the generated outputs with the density-based 
framework, we apply a transformation to the material dis-
tribution in the design domain D. Specifically, we utilize 
the scalar function �(�) = 2�(�) − 1 , where �(�) denotes 
the material distribution representation in both the down-
scale and regeneration modules of the model. Follow-
ing dimensional transformation, the material distribution 
is restored to the desired range using the inverse relation 
𝜌̂(�) = (𝜙(�) + 1)∕2.

This transformation ensures consistency with the density-
based framework, enabling effective structural representa-
tion. Using the generated material distribution D̄ with 𝜌̂(�) , 
the signed distance function r ∶ D̄ → ℝ is defined as follows:

where ts is the threshold parameter defined. The smooth tran-
sition function H defined as:

(7)

⎧
⎪
⎨
⎪
⎩

r(�) > 0 (𝜌̂(�) > ts),

r(�) = 0 (𝜌̂(�) = ts),

r(�) < 0 (𝜌̂(�) < ts),

(8)H(r, h) =
1

2
+

15

16

(
r

h

)

−
5

8

(
r

h

)3

+
3

16

(
r

h

)5

,

Fig. 7   Reconstruction results of the test sample (size: 512 × 512 ) with varying low-dimensional resolutions ( Nlow ). The corresponding mean 
square error (MSE) values are: 0.0701 ( Nlow = 8 ), 0.0079 ( Nlow = 16 ), 0.0074 ( Nlow = 32)

Fig. 8   Architecture of the generator employed in our framework 
with Nhigh = 128 , Nlow = 32 . Section enclosed by the dashed black 
box represents the downscale module, and the remaining parts cor-
responding to the regeneration module

Fig. 9   Training progression of the generator, with input and ground 
truth set as 128 × 128
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where H is differentiable in [−h, h] and dH
dr

= 0 at r = −h 
and h, where h is the bandwidth parameter controlling the 
transition zone from void to material. Following previous 
DDTD studies (Yamasaki et al. 2021; Yaji et al. 2022), the 
bandwidth parameter h in the relaxed Heaviside function is 
set to 3Δx , which balances smoothness and structural reso-
lution. By using a geometry-based reinitialization scheme 
(Yamasaki et al. 2010), we give r(�) the signed distance 
characteristic to the iso-contour of r(�) = 0 . Therefore, the 
density �(�) is updated using the following relaxed Heavi-
side function:

Through this transformation, the original material distribu-
tion is normalized into a smoothed form with a consistent 
transition zone bandwidth. The application of the Heaviside 
projection helps reduce noise in the final output, effectively 
addressing irregularities introduced by the generative model.

4.3 � Body‑fitted mesh

Figure 10a illustrates an optimized material distribution 
Ω within the design domain D. In density-based topol-
ogy optimization, the entire design domain D is typically 
discretized using regular square meshes. However, the 
accuracy of the optimized structure is influenced by the 
mesh shape, potentially introducing numerical artifacts. 
To address this, the material distribution is extracted and 
re-discretized using a body-fitted mesh, enabling more 
precise representation and evaluation of the optimized 
structure, as depicted in Fig. 10b.

(9)𝜌̂data(�) =

⎧
⎪
⎨
⎪
⎩

0 (r(�) < −h),

H(r(�)) (−h ≤ r(�) ≤ h),

1 (h < r(�)).

5 � Numerical examples

5.1 � Example 1: L‑bracket design

5.1.1 � Problem setting

To verify our framework, we solve a stress minimization 
and volume minimization problem for a two-dimensional 
L-bracket, a common benchmark in stress-based topol-
ogy optimization (Allaire and Jouve 2008; Holmberg et al. 
2013). The optimization is challenging due to the nonlinear 
nature of stress distribution, especially under strict point-
wise stress constraints. The maximum von Mises stress often 
appears on the structural surface, and addressing these peaks 
is crucial for achieving optimal designs. Additionally, bal-
ancing structural efficiency while maintaining low weight 
and compliance introduces further complexity.

The design domain D and boundary conditions are illus-
trated in Fig. 11. For the generated material distribution Ω , 
the bi-objective optimization problem is formulated as:

where �vM is the von Mises stress and x represents a point 
within the material distribution Ω . Due to the non-differen-
tiability of the maximum stress, density-based methods can-
not directly solve this original problem. Instead, alternative 
objective functions are used in the high-fidelity evaluation, 
leveraging the boundary conditions and material properties 
given in Table 1.

As noted in Le et  al. (2010), maximum stress mini-
mization is hindered by singularities, causing nonlinear 

(10)

find Ω ⊆ D,

that minimize 𝜎max = max{𝜎vM(x)|∀x ∈ Ω},

V =
∫
Ω

dΩ,

Fig. 10   A sample of discretization with body-fitted mesh of an 
L-bracket, a design domain D and the structure Ω ; b discretization 
with body-fitted mesh of Ω

Fig. 11   Design domain and boundary conditions for the L-bracket, D: 
design domain
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algorithms to avoid degenerate regions where global optima 
often lie, instead converging to local solutions. To address 
this, the p-norm approximation, denoted as �PN , is employed 
in this study to estimate the maximum stress �max (Kato et al. 
2025). Consequently, the low-fidelity optimization problem 
can be expressed as follows:

where vi is the element, i is the solid volume, and V̄  is the 
volume constraint. According to the previous work (Le et al. 
2010), P = 8 is set for this study. Table 2 lists the parameters 
used in the low-fidelity optimization for this case. Under the 
assumption of linear elasticity and static behavior, the dis-
crete form of the equilibrium equation can be represented as 
KU = F , where K is the stiffness matrix, U is the displace-
ment vector, and F is the external force vector. We solve 
this optimization problem by using the method of moving 
asymptotes (MMA) (Svanberg 1987), one of the most widely 
used gradient-based optimizers in the research community 
of topology optimization.

For compatibility with the image fragmented learning 
model, the initial design domain is discretized into 262,144 
square elements, each acting as a design variable. This 
level of discretization poses challenges for previous DDTD 

(11)

find � = (𝛾1, 𝛾2,… , 𝛾n)
�,

that minimize 𝜎PN =

(
n∑

i=1

𝜎P
vM,i

) 1

P

,

subject to V =

n∑

i=1

vi𝛾i ≤ V̄ ,

𝛾i ∈ [0, 1],

approaches. We generated an initial dataset comprising 100 
material distributions (Fig. 12) via low-fidelity optimization, 
each with a volume fraction Vf  between 0.3 and 0.8. High-
fidelity evaluations were performed to assess von Mises 
stress and structural volume, with iterative refinement aimed 
at improving design quality.

To efficiently manage the high-dimensional nature of the 
problem, the mesh is partitioned into 16 equal 128 × 128 sec-
tions (Fig. 13), each compressed to a 32 × 32 representation. 
These sections are combined into a latent vector of dimen-
sion 16,384 for VAE training, retaining crucial structural 
details while facilitating efficient processing.

For the VAE training and other DDTD parameters, we 
adopt the settings as Table 3.

5.1.2 � Results and discussion

We evaluate the performance using the hypervolume indi-
cator (Shang et al. 2021) which can measure the conver-
gence performance in multi-objective optimization. For two 
objectives, it is represented by the area formed between a 
reference point and the Pareto front in the objective space, 
as illustrated in Fig. 14. A higher hypervolume indicates 
improved convergence, implying that the Pareto front has 
advanced closer to the optimal solution set. Furthermore, a 
continuously increasing hypervolume throughout the itera-
tions suggests effective optimization progress.

As depicted in Fig. 15a, the hypervolume increases by 
approximately 68% beyond its initial value after 400 itera-
tions, indicating significant convergence improvement. 
Moreover, Fig. 15b illustrates the outcome in the objec-
tive space for two objectives after 400 iterations, showing 
improved objective values compared to the initial structure 
and highlighting superior solutions with smaller volumes 

Fig. 12   100 initial structures obtained through topology optimization 
aimed at minimizing maximum stress

Table 1   Parameters for the 
high-fidelity evaluation of the 
L-bracket

Parameter Value

Young’s modulus E 1
Poisson’s ratio � 0.3
Load per area Fper 1

Table 2   Parameters for the low-fidelity model of the L-bracket

Parameter Value

Young’s modulus (solid) E1 1
Young’s modulus (void) E0 1 × 10−9

Penalty term p 3
Maximum design domain gmax

1
2.56

Poisson’s ratio � 0.3
Load per area Fper 1
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and lower maximum stresses. The final structures are 
clearly clustered into three distinct volume fractions.

We also applied the original DDTD framework to the 
L-bracket design problem for comparison. Due to the 
dimensionality limitations imposed by the VAE, the design 
resolution was set to 16,384. The resulting objective func-
tion values after 400 iterations are presented in Fig. 15b. 
Compared to the original DDTD, the proposed framework 
based on image fragmented learning enables optimiza-
tion in significantly higher-dimensional design spaces. As 
shown in Fig. 15b, the Pareto front obtained by image frag-
mented learning DDTD clearly dominates that of the origi-
nal DDTD, demonstrating both lower stress and volume in 
various regions. This result indicates that the VAE’s outputs, 
once refined through the pix2pix-based regeneration mod-
ule, better approximate optimized structures under physi-
cal simulation. The regenerated high-resolution grayscale 
images provide more accurate representations of interme-
diate material states, which leads to improved numerical 
stability and physical fidelity in high-fidelity evaluations, 
ultimately resulting in more reliable and effective optimiza-
tion outcomes.

It should be mentioned that the pix2pix model in this 
study is trained solely for resolution transformation and does 
not directly control structural complexity. The pix2pix archi-
tecture can be further extended by introducing conditional 
inputs, which would allow future models to incorporate geo-
metric or performance-related constraints and generate more 
controllable, topologically diverse high-resolution designs.

Furthermore, the optimized structures obtained by image 
fragmented learning exhibit notable consistency in local 
structural features within each volume segment. This con-
sistency is further illustrated in Fig. 16, which shows repre-
sentative structures on the Pareto front after 400 iterations.

To further evaluate the structural performance, finite 
element analysis was conducted to examine the stress 

Fig. 13   The L-bracket mesh is segmented into square fragments, each 
with a size of 128 × 128

Fig. 14   Illustration of hypervolume in the case of two-objective opti-
mization

Fig. 15   a Hypervolume histories obtained by image fragmented 
learning DDTD; b comparative analysis of objective function values 
for the proposed method (design dimension: 262,144) and the origi-
nal DDTD (design dimension: 16,384), along with their respective 

initial datasets generated by conventional topology optimization. 
High-fidelity structural images corresponding to both methods are 
also presented for reference
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distribution in both the initial and optimized structures. 
Examples of these analyses are presented in Fig. 17, offering 
insights into the stress behavior across the different designs. 
The initial structures exhibit sharp corners at the L-joint 
regions, resulting in significant stress concentrations. These 
localized stress peaks could lead to structural failure. In con-
trast, the optimized structures exhibit smoother transitions, 
effectively reducing stress concentrations and enhancing 

structural robustness. Moreover, for equivalent material 
volume fractions, the maximum von Mises stress values in 
the optimized structures are consistently lower than those 
in the initial designs. This improvement underscores the 
enhanced performance of the optimized structures, which 
are optimized to achieve both stress reduction and efficient 
material usage. The results highlight the effectiveness of the 
image-fragmentation learning in producing more robust and 
reliable designs.

These advantages highlight the potential of image frag-
mented learning as a significant breakthrough in topology 
optimization for complex design domain problems, particu-
larly when traditional methods struggle due to dimensional-
ity constraints and performance trade-offs.

5.2 � Example 2: turbulent flow heat transfer design

5.2.1 � Problem setting

We also applied the proposed framework to the design of 
a two-dimensional turbulent heat transfer design problem. 
Additionally, we considered high-dimensional design vari-
ables, which were previously infeasible to address using 
conventional methods.

The design domain is illustrated in Fig. 18. The design 
variable field is defined as � = 0 for solid regions and � = 1 
for fluid regions. In this turbulent heat transfer problem, the 
evaluation functionals are governed by the equations for fluid 
velocity v , pressure p, and temperature T. We employed the 

Fig. 16   Obtained material distribution composed of 100 samples of 
image fragmented learning DDTD on L-brackets design by 400 itera-
tions

Fig. 17   Comparison of stress distributions between initial structures (top row) and optimized structures (bottom row) in the L-brackets design 
problem. The maximum von Mises stress ( �max ) and volume fraction ( Vf  ) are indicated for each case
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Reynolds averaged Navier–Stokes (RANS) equation with the 
standard k-� turbulence model (k is turbulent kinetic energy, � 
is turbulent dissipation rate) to simulate heat transfer system 
under the turbulent flow condition:

where � represents the kinematic viscosity, which is 
inversely scaled by the Reynolds number Re when the char-
acteristic speed and length are one. The turbulent eddy vis-
cosity �t is given by �t = C�

k2

�
 , where k and � represent the 

turbulent kinetic energy and its dissipation rate, respectively.
The design-dependent parameter �� is defined as 0 in fluid 

regions and as the inverse permeability � in solid regions. The 
term Pk represents the production of turbulent kinetic energy 
caused by velocity gradients and is expressed as:

In addition, Pr denotes the Prandtl number, and Prt is the 
turbulent Prandtl number, both critical for thermal transport 
calculations. The empirical constants used in the turbulence 
model are as follows: C� = 0.09 , C�1 = 1.44 , C�2 = 1.92 , 
�k = 1.0 , and �� = 1.3.

For this analysis domain in Fig. 18, the boundary conditions 
applied to �in �out and �wall are defined as follows:

(12)

∇ ⋅ v = 0,

(v ⋅ ∇)v = −∇p + �∇2
v − ��v,

(v ⋅ ∇)k = ∇ ⋅

[(

� +
�t

�k

)

∇k

]

+ Pk − �,

(v ⋅ ∇)� = ∇ ⋅

[(

� +
�t

��

)

∇�

]

+ C�1

�

k
Pk − C�2

�2

k
,

v ⋅ ∇T = ∇ ⋅

((
�

Pr
+

�t

Prt

)

∇T

)

,

(13)Pk = �t

[
∇v ∶

(
∇v + (∇v)T

)]
.

(14)

v = −n, T = 0 on�in,

p = 0, n ⋅ ∇T = 0 on�out,

v = 0, n ⋅ ∇T = 0 on�wall,

T = 1 on�heated,

where n is the outward unit normal vector. The thermal 
boundary condition T = 1 imposed on �heated defines the 
region responsible for heat transfer into the fluid. With the 
specified boundary conditions, the bi-objective optimization 
problem for the optimized material distribution of the flow, 
denoted as Ω , is formulated as follows:

where Tout represents the average temperature at the outlet, 
which serves as an indicator of heat transfer efficiency, while 
pin represents the average pressure at the inlet. These objec-
tive functions are applied during the high-fidelity evalua-
tion phase, which is conducted under high Reynolds number 
conditions to simulate turbulent flow, using the parameters 
provided in Table 4. A larger Tout , corresponding to a smaller 
J1 , indicates better thermal transfer efficiency of the flow 
path. Meanwhile, minimizing J2 reduces pressure losses, 
thereby enhancing the flow performance.

Given the inherent complexity and nonlinearity of turbulent 
flow dynamics, we initially used low-fidelity topology optimi-
zation based on laminar flow heat transfer as follows:

where Pe is the Péclet number, defined as Re ⋅ Pr . The 
Prandtl number Pr corresponds to design variable � , and the 
design-dependent parameter �� , �� are, respectively, given by

(15)

find Ω ⊆ D,

that minimize J1 = −Tout = −
∫
𝛤out

Td𝛤out

𝛤out

,

J2 = pin =
∫
𝛤in

pd𝛤in

𝛤in

,

(16)

∇ ⋅ v = 0,

(v ⋅ ∇)v = −∇p + �∇2
v − ��v,

v ⋅ ∇T =
1

Pe

∇2T + �� (1 − T),

(17)

Pr = Prf + (Prs − Prf )
1 − �

1 + qk�
,

�� = �max 1 − �

1 + qf �
,

�� = �max(1 − �),

Table 3   Parameters for the DDTD training process of the L-bracket

Parameter Value

Input dimension of VAE (N) 16,384
Learning rate of VAE 0.001
Mini-batch size of VAE training 20
Training epochs of VAE 1000
Latent variables of VAE ( Nlt) 8
Weighting coefficient for KL divergence 4
Maximum number of elite data 100
Total number of iterations 400

Table 4   Parameters for the high-fidelity evaluation of the heat trans-
fer

Parameter Value

Reynolds number Re 5.0 × 103

Turbulent Prandtl number Prt 0.1
Inverse permeability � 1.0 × 104

Maximum design domain gmax
1

2
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where qk and qf  are parameters that control the convexity 
of Pr and �� , respectively. This laminar flow-based low-
fidelity model approximates heat transfer characteristics 
while reducing computational complexity. To maximize heat 
transfer efficiency, the low-fidelity optimization problem is 
formulated as follows:

where vi and Ti represent the velocity and temperature value 
of element i, respectively. By employing a low Reynolds 
number fluid in a laminar flow state, minimizing J̃1 effec-
tively results in a flow channel that improves heat transfer 
efficiency and reduce pressure loss. Table 5 summarizes 
the parameters used in the low-fidelity optimization, which 
serves as the foundation for subsequent high-fidelity evalu-
ations under turbulent conditions.

To ensure compatibility with the learning framework, the 
design domain is discretized into a uniform grid consist-
ing of 65,536 square elements. This level of discretization 
enables the generation of initial designs via low-fidelity 
topology optimization. However, applying DDTD to such 
a high-dimensional problem poses significant challenges, 
particularly in the context of multi-objective turbulence 

(18)

find � = (𝛾1, 𝛾2,… , 𝛾n)
�,

that minimize J̃1 = −
∑

i∈𝛤out

viTi,

subject to 𝛾i ∈ [0, 1],

optimization. Figure 19 presents 99 design samples under 
varying laminar Reynolds number conditions, as outlined 
in Table 5.

With the image fragmented learning framework, the 
design domain is further divided into two equal sections 
of 128 × 128 square elements each, as depicted in Fig. 20. 
Compared to the L-shaped design problem, which involves 
more intricate handling, this approach proves to be more 
straightforward and efficient for the structured rectangular 
design domain. By applying the downscale module, the 
dimensionality of the input to the VAE is reduced to 2048 
design variables, thereby significantly simplifying the prob-
lem and rendering it computationally tractable. For the VAE 
training and other DDTD parameters, we adopt the settings 
shown in Table 6.

Table 5   Parameters for the low-fidelity model of the heat transfer

Parameter Value

Reynolds number Re 20, 40, 60, 80
Prandtl number (fluid) Prf 10
Prandtl number (solid) Prs 1
Control parameter qk 100
Control parameter qf 10
Maximum inverse permeability �max 1.0 × 104

Maximum volumetric heat transfer coefficient �max 0.1
Maximum design domain gmax

1
2

Fig. 18   Design domain and boundary conditions of heat transfer, Γin : 
the inlet boundary, Γout : the outlet boundary, Γwall : the wall boundary

Fig. 19   99 initial data obtained through topology optimization of 
laminar heat transfer design

Fig. 20   The symmetric heat transfer mesh is segmented into square 
fragments, each with a size of 128 × 128
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5.2.2 � Results and discussion

As in Sect. 5.1.2, the iteration history of the hypervolume 
indicator in Fig. 21a demonstrates the progression of opti-
mization, showing an improvement of approximately 56% 
in hypervolume after 400 iterations compared to the initial 
value. Moreover, Fig. 21b illustrates the enhanced position-
ing of solutions in the objective space, indicating a marked 
improvement over the initial dataset. Under identical pres-
sure loss conditions, the optimized structures achieve nota-
bly higher thermal transfer efficiency than those in the origi-
nal dataset.

Similar to the L-bracket case, we also conducted com-
parative experiments using the original DDTD framework 
for the heat transfer design problem. Due to dimensional 
constraints of the VAE, the design resolution was limited to 
8192 variables, and the input dimensionality to the VAE was 
set to 4096. As shown in Fig. 21b, the proposed image frag-
mented learning DDTD achieves a more favorable Pareto 
front. This result aligns with the findings from the first case 
study, further supporting the advantage of high-resolution 
generation in enhancing simulation-based evaluations.

Figure 22 illustrates 100 representative samples gener-
ated by our framework. Compared to the initial dataset, the 
optimized designs show significantly reduced structural 
complexity, resulting in designs that are more stable and 
exhibit distinct shared characteristics. To assess the perfor-
mance of the generated structures, we conducted simulations 
to evaluate their thermal and fluid flow behavior. Figure 23 
illustrates the simulated temperature, pressure, and veloc-
ity fields under comparable flow channel ratios. The results 
confirm that the optimized structures achieve improved heat 

transfer efficiency while maintaining relatively low pres-
sure losses, demonstrating their effectiveness in optimizing 
thermal-fluid systems. Figure 24 presents a comparison of 
heat transfer performance between initial and optimized 
flow channels under similar pressure drop levels. The opti-
mized channels consistently exhibit enhanced heat transfer 
efficiency, highlighting the effectiveness of the proposed 
optimization framework.

6 � Conclusion

In this paper, we proposed a framework based on image 
resolution transformation, called image fragmented learn-
ing, which integrates neural network techniques to address 

Fig. 21   a Hypervolume histories obtained by image fragmented 
learning DDTD; b comparative analysis of objective function values 
for the proposed method (design dimension: 65,536) and the original 
DDTD (design dimension: 8192), along with their respective initial 

datasets generated by conventional topology optimization. High-
fidelity structural images corresponding to both methods are also pre-
sented for reference

Fig. 22   Obtained dataset composed of 100 samples of image frag-
mented learning DDTD on two-dimensional turbulent heat transfer by 
400 iterations
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the challenges of high-dimensional, multi-objective opti-
mization in data-driven topology design (DDTD). By 
utilizing the pix2pix neural network for dimensional 
transformation and a variational autoencoder (VAE) for 
data generation, the proposed framework effectively com-
presses and reconstructs high-dimensional datasets. Con-
sequently, the proposed method enhances the scalability 
of DDTD to 105 design variables, beyond the capabilities 
of conventional implementations. The effectiveness of this 
method was demonstrated through two case studies: an 
L-bracket design and a turbulent heat transfer system.

While the proposed method significantly enhances scal-
ability and optimization performance, its success remains 
influenced by the quality of initial training data. More-
over, the current solution selection approach, based on 

Fig. 23   Comparison of the initial (left), reference straight flow 
(middle), and optimized (right) configurations in the turbulent 
heat transfer topology optimization problem: a flow channel dis-
tribution; b temperature; c pressure; d velocity. All configura-
tions adhere to similar volume constraints, with Vf  denoting the 

ratio of flow channel volume to the design domain. The cor-
responding values are: Vf = 0.618, J1 = −0.544, J2 = 0.483 
(initial); Vf = 0.620, J1 = −0.736, J2 = 1.504 (reference); 
Vf = 0.623, J1 = −0.801, J2 = 0.457 (optimized)

Table 6   Parameters for the DDTD training process of the heat trans-
fer

Parameter Value

Input dimension of VAE (N) 2048
Learning rate of VAE 0.001
Mini-batch size of VAE training 20
Training epochs of VAE 1000
Latent variables of VAE ( Nlt) 5
Weighting coefficient for KL divergence 4
Maximum number of elite data 100
Total number of iterations 400
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NSGA-II, may benefit from improvements to better cap-
ture solution diversity in multi-objective settings. Given 
its modular and scalable nature, the proposed framework 
shows strong potential for extension to more complex and 
three-dimensional design problems. Future work should 
focus on improving the quality and diversity of the initial 
low-fidelity designs used for training and exploring appli-
cations to higher-dimensional and 3D design domains. The 
pix2pix network could also be extended beyond resolution 
mapping to enable more controllable and complex struc-
tural generation.
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