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Abstract
We give some regularization in order to define rigorously acisastic W.Z.N.W.
model or a stochastic Chern-Simons theory. We show that thekd property of
the random field allows us to satisfy the glueing axiom of fitddory (of Segal or
Atiyah).

I.  Introduction

This list of axioms of ad -dimensional field theory is stronghgpired of Segal’s
axiom of conformal field theory ([50]) and Atiyah’s axiom adpological field theory

([5D).

Axioms. a d-dimensional field theory is given by the following data:
i) To anyd — 1 Riemannian manifold, ¢ ), we associate an HilbedcspH &, g)
such thatd E1U X5, 21U g2 = H(Z1,21) ® H(X2, g2) if Z1NXo=0.
i) If (V,gy) is a bordism from &1, g1) to (X2, g2) such that in a neighborhood of
¥, (V, gv) is isometric to ([0 ¥ 2k X, dr ® g1) and such that in a neighborhood of
31, (U, gu) is isometric to (]¥ 2 1]x X4,dt ® g1), then (U, gy ) realizes a bounded
linear mapH ¥, gv ) fromH Ei, g1) into H (X2, g2).
iii) These data have to satisfy the following requirementlu{@y property): let
(V1, gv,) a bordism from Eq, g1) into (X2, g2) and (V2, gy,) be a bordism between
(22, g2) into (X3, g3). Let (W, gw) the Riemannian manifold got by sewig and V-
along their common boundar},. Then

(1.1) HW.gw)=H (V2. gv,) o H(V1, gv,).

Let us remark that there are some difference with the ti@dhti axioms of field
theory:
-) The operatorH V, gy ) is supposed only bounded and not Hilbehwr8dt as it is
traditional.
-) In the gluing axiom, we sewW, gv,) and (2, gv,) along a piece of the output
boundary ofV; and a piece of the input boundary 5.

We are motivated in this work by a stochastic realizationh&fse axioms, with in
addition a technical modification.
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The first example is involved with the stochastic Wess-Zuatitovikov-Witten
model (see [17], [18], [19] for a pedagogical introductiomoat the physicist model).
This is a 2-dimensional field theory. This theory uses irdiniimensional processes
over infinite dimensional manifolds. The construction o€lsyprocesses was pioneered
by Kuo ([30]) who has constructed the Brownian motion on itdirdimensional man-
ifold. The Russian school ([6], [12], [7]) has a differentyi construct processes on
infinite dimensional manifolds. [2] and [13] have constaattthe Ornstein-Uhlenbeck
process on the loop space by using Dirichlet forms. [1] havastucted the heat-
kernel measure over a loop group by using the Brownian maiiom loop group. Our
construction is related to this work and to the constructiérdiffusion processes on
M — 2 Banach manifolds of Brzezniak-Elworthy ([8]). Related rikm are the papers
of Brzezniak-Léandre ([9], [10]) and Léandre ([31], [32B3], [34], [35], [36], [37],
[38], [39], [40], [41]). As in [37] and in [38], our random figs areC* . This leads
to a simplification with the treatment of [33] for instanceanmely no construction of
stochastic integrals is required in the treatment of the AZ&asmino term.

The second example is the 3-dimensional stochastic CherorS theory. Unlike
the traditional Chern-Simons theory, our stochastic Cfg&mons theory is not a topo-
logical field theory, because we average the connectiongruadGaussian measure,
instead of the Lebesgue measure as it is classical in ChlismorS theory ([5], [3],
[53]).

In these two examples, we deduce from the gluing propertylaioa with oper-
ads by chosing bordism between always the same connektegl (nd dsaexit bound-
ary a finite disjoint union of the same&(g ). This relation wasngered for confor-
mal field theory by Huang-Lepowsky ([23]) and Kimura-StdsMeronov ([26]).

The geometrical data of this paper are taken from the workre&dr ([16]).

Il. Stochastic Wess-Zumino-Novikov-Witten model

Let us consider the case of a two dimensional field theoty. Rieanannian
surface with exit and input boudary loops endowed with theooical metric ons*
on each on the connected components of the boundary.

Let us considerV got from V by sewing disk along the boudarieg. has a
canonical metric, inherited fronv . Lety be the Laplace Beltrami operator dn.
Let Hy the Hilbert space of mapg  fro into R such that:

2.1) fv (A% +1) £ Q)AL +1) £ @)dm(z) < o

wheredmy(z) denotes the Riemannian measure 1on
Let By, be the Brownian motion with values iffy;. It has reproducing Hilbert
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space:

(2.2) /[o . /V%(Akv+ 1)1, z)%(AkV+ 1) £ (¢, z)dt dmy(z) < o0

with initial condition f(Qz) = 0. Ifk is big enough independenbm r, ¢, z) —
By ,(z) is continous int € [0 1] and™" i € V (see [37]).

Let S1 = [0, 1] x S; where we sew disk along the bounda$y. inherites a canon-
ical Riemannian structure. Leii;, be the Hilbert space of maps frofy into R such
that

(2.3) /E (Agl +1) f(z)(Ag1 +1) f @)dms,(2) < oo,

Let Bs,, be the Brownian motion with values if/s,. It has as reproducing Hilbert
space the set of mapg  from,[0 %]S; into R such that:

ad d
(2.4) ./[0 1]./5 E(Agl +1) £ (t, Z)E(Agl +1) £, 2)dt dmyg (z) < 00

with initial condition £ (Qz) =0 (5, denotes the Laplace-Beltrami operator §1).

Let gv(z) be a map fromV into [0,1] equal to 1 o  where we have remove
the output collars [0 A 2{3, and where we have removed the input collars 11 % 1]
1. We suppose thagy is equal to zero on a neighborhood of thediaoias of V .

Let g°t be a smooth map from [0/1 2] into [0 1] equal to O only in O and équa
to 1 in a neighborhood of /1 2. Lef" be a smooth map from J1,2 1] equal to O only
in 1 and equal to 1 in a neighborhood of 1 2.

We consider the Gaussian random field parametrized/by , [0 1]

(2.5) By. () =gv OBy, ()+ D _g"BY, ()+) g*"Bg"()

out

where we take independent Brownian motion & which are independent of the
Brownian motion By;. We have a body process and some boundary processes which
are independent themselves and of the body process.

An object Vigrr = (V1 U Vo.. U V,) is constructed inductively as follows?; is a
Riemann surface constructed as befdfg.+1 is constructed fronVie, where we sew
some exit boundaries dfi.rx along some input boundaries f.1. Let us remark that
in the present theory, we don't considgg;, as a Riemannian manifold, but as the se-
guence Vi, .., Vi) and the way we sewW;.1 to Vi inductively. Namely, if we con-
sider the random fields parametrized By, x [0, 1] considered as a global Rieman-
nian manifold done by (2.5), it is different from the randoreldi By,,, constructed
as below. In particular, the sewing collars ¥ are independent in the construction
below, and are not independent in the construction (2.5).
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We can construct inductivelBy,,,,, as follows: if k =1, it is By . By,,, is con-
structed from Brownian motion independent of those whickehaonstructedBy,,,.
except for the Brownian motions in the input boundariesBef,, which coincide with
the Brownian motion in the output boundaries Wf;, which are sewed to the corre-
sponding input boundaries df..;. By this procedure, if; € Vi, We get a process
(¢, z) = By,,.(z) which is continuous i and” g € Vig.

Let G be a compact simply connected Lie group. We consider ultidalliavin

equation ([1])
(26) dlthotJ (Z) = thot.l(Z) Z eidl B{/tot(z)

starting frome . B}, are independent copies @, ande; an orthogonal basis of the
Lie algebra ofG .

Let us remark that we can construct the formal action dritimg non-linear Ran-
dom field gy, by using large deviation theory ([19], [31)).— Bw,.(.) is a Brownian
motion on a Hilbert space whose reproducing kerhél is detidican (2.1), (2.3)
and (2.5). It has formally the Gaussian law:

@7 du =2 ex /118nh()n2 aD(h)
' H=Z 8P 25

wheredD () is the formal Lebesgue measure on fields paramethbyeVi,: x [0, 1]
into Lie(G). Let us consider the equation

(2.8) A 8Vig1.6(2) = €8Vig1.e(2) Z eid B(/IO‘,,(Z)-

The following large deviation estimate holds: let us coasid borelian subse® on
the space of maps froiy x [0, 1] into G for the uniform topologyint O denotes its
interior for the uniform topology andlos O its adherence for the uniform topology.
We have where — O:

1
; 9 2 i 2
(2.9) _ng(L?efimo< /O Ellhf(-)ll dt) < liminf 2¢“log P{gv,, () € O},
. ) . 1y )
(2.10)  limsup 22log P{gy,,.c() € O} < _g‘,m(/,'{lLoso( /O —lhi()di] )

In order to definegy,,(z)(k), we replace formally in (2.6, B}, (z) by d;h, (z).
By proceeding as in [37] we get:

Theorem II.1. If k is big enough the random field parametrized by, z —
8vien1(2) 18 C". Moreover the restriction to this random field to the cocteel compo-
nents of the boundary ofy,: are independents and have the same law.
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Let us recall some geometrical background about the Wessfi&uNovikov-
Witten model ([16]). LetV be an oriented surface with boumekrLet g be aC”
map fromV intoG conveniently extended into a mgpz () from [0Ox1y toilty
such thatgo(z) = e. We define the Wess-Zumino term:

(2.11) Wy @) =—é / (¢7dg A g™ dg A g7 "dg])
[0,1]xV
where (,) is the canonical normalized Killing form on the Ligethra ofG . We sup-
pose that the 3-form which is integrated in (2.11) represamt element ofH3(G; Z)
(see [16] for this hypothesis). expf2/—1 Wy (g)] can be identified canonically to an
element ofKyy 5, whereK is an Hermitian line bundle over the seCof psriaom
aV into G. LetdV; be the oriented connected components bf . We havanane
ical inclusion maps; fromaV; indV . We deduce from it a map from the set
of maps fromaV inG into the set of maps froaWV; inG . Lag be the her-
mitian bundle on the set of maps frof; in®  constructed in .[I6]= Q7 A;
endowed with its natural metric inherited from eagsh . We dent QexitA Qin A.
Moreover, we can realize this expression as a map from theoteproducts of Her-
mitian line bundleA over the exit loop groups defined by restrg the field over
each exit boundary to the tensor product of Hermitian linedbeis A over the input
loop groups defined by restricting the field over each comtkecomponent of the in-
put boundary. Therefore expf2/—1 Wy (g)] can be realized as an application from
RexitA INt0 ®in A of modulus 1. This application is consistent with the ogeratof
sewing surface.

Let Vit and the restriction ogy,, 1(.) to one connected component of the bound-
ary of Vior. Let &’ be the Hilbert space of section of over thé loop gravipG ()
endowed with the law arising from restricting the field to doeundary loops. LeV;
be such a boundary loop. The laws gf,,,(.) restricted to eacl; are the same. Let
W, (gv,.1(-)lv;) a section ofA on the set of loops defined By |¥; gv(1(.)|v,)| de-
notes a random variable which is,,1(.)lv, measurable, wherey, 1(.)|v, denotes the
restriction to the random field t&; . We put

(2.12) 1912, = E[Wi(gvaa()v)I.

But the previous Hilbert norm don't depend of the chosen bawy loop V; , and we
get the definition of the Hilbert spacg, . L&E([0, 1] x V;) be the Hilbert space of
L? functionals with respect ogy,, (.) restricted to [0 1]x V; . We putg; =E] ®
L?([0,1] x V;). We get always the same Hilbert spaBe  independenhefchoice
of Vior. If gy,.1(2) is the random map fronVyy into G, we deduce the random map
from [0, 1]x Vit iNtO G, (¢, 2) = gw,.1(2) with the the boudary conditiogy,, o(z) = e.
We deduce from this the Wess-Zumino term exp{—1 Wy, (gv,.1)]- Let us recall
that the cinetic term in the W.Z.N.W. model is equal to exp[g ](Where I () is the
energy from the mag fron¥y into G. Compare with (2.9) and (2.10). In this work,
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we will consider the same topological term and we will coesidnother cinetic term
given by the law ofgy,, 1(.).

DerinimioN 1.2, H (Viot, gvi,) IS the operator fron®q,tE into ®in & where we put
the tensor product along respectively the connected coemsrof the exit boundary
of Vit and of the input boundaries df,; defined as follows: letl; a section gf at
the i’* connected component of the exit boundary:

(2.13)  H (Viot, gvio) ®out Wi = E[eXp[21 v/ —1 Wy, (8vr.1)] Rout Wi | B'([0, 1] x 21)]

where B’ ([Q 1]x X;) is the o -algebra spanned by the random figlg, (.) restricted
to the input data [0 1k X;.

Let (V. gt.) and (V2. g2,) and Wi, gw,,) got by sewingV;, along some exit
boundaries coinciding with some input boundariesVgf. We call the sewing bound-
ary £ in Wir. We call B ([Q 1]x £) the sigma algebra defined by (4.2) for the ran-
dom field ¢, z)— gw,..(z) parametrized by [0 1k Wi, From Theorem IV.2, it sat-
isfies (4.4). We deduce:

Theorem 11.3. We have

(2.14) H Wiot, 8w) = H(Vigy 8v2) © H*(Vidy, 8v2)

where the composition goes for the Hilbert spaces whichearifom the sewing
boundaries.

Proof. LetX,; be the sewing boundary . We get almost surely:

eXp[er v—1 WWtot (ngt,l)]
(2.15) = exp[2r v =1 Wya (gyy,.1)] o expl2r v =1 Wyz (gvz 1)]-

By Markov property, the two term in the right hand side of &).&re conditionnally
independent taB” ([0 1k =, ). We have:

H("Vtoh thot) ®0Ut \Ili
(2.16) = E[E[exp[27 v/ =1 Wi (Wi 1)] ®out Wi B'(X1 U Z,)]IB'([0, 1] x )]

But we have:

E[exp[27 V=1 Wiy (8w )11 B'(Z1 U )] = E[exp[2v/—1 Wy (8. 1)]
(2.17) o exp[2tv/—1 Wz (gyz. 1)] ®out Wil B'([0, 1] x (S1U Z,)].
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By (4.4), where we choose a® the interior B}, in Wy, the right hand-side
in (2.17) is equal to

Elexp[2r /=1 Wy (gva, D)I(E[exp[27 v/ =1 Wy (gvz,1)]
(2.18) ®out Wi]1B'([0, 1] x Z:)]B([0,1] x X1)].

In (4.4), this decomposition formula is true for functiopabut we can come back to
this case in (2.17) by introducing an orthonormal basisEof . U

If (Viot, gv,,,) have only one connected component in the input boundaryrand
connected component in the output boudary, we say that ¢v,,) belongs toE £ ).
An element ofE £ ) realizes an element Hbm(E®", E).

In particular, we will consider a€ n( ) the case of A+ -punafusphereSiy(1, n)
with one input loop and: output loops, by taking care of thddnis where we glue
some subspheres iioi(1, 7). E(n) is very similar to the space of trees with one root
andn exit vertices. Trees are an archetype of an operad:rif d&nbptes the space of
trees withn -exit vertices, we get an operationdf: X A r1) & ---x A(r,) by grafting
trees. This action is compatible with the action of symnaetiioup got by relabelling
the exit vertices.E /{ ) should correspond to the parameteonfet branching process
on the loop space, time of branching being included: the diviagg mechanism is got
when a loop splitts in two loops (and not by creating two loggsit is classical in
branching process theoryk » ( ) inherits an action of the sgtnimgroup by labelling
the connected components of the exit boudary. The actiorwing punctured spheres
realizes a map fronE n( } E r{) x --- x E(r,) into E()_r;) which is compatible with
the action of the symmetric group. We say that: ( ) is an opetadthe other hand,
Hom(E", B) realizes clearly an operad, by composition of the homatisms. We get
from Theorem 11.3:

Theorem I1.4. If (Wiot, gw,,) belongs toE(n), H(Wiet, gw,,) realizes a map from
the operadE(n) into the operad HoifE®", B).

If we consider the case of the punctured sphere, this caneispto a kind of
Branching process on the loop space.

lll. Stochastic Chern-Simons theory

We consider now asW, gy ) the case of an oriented 3-dimensionaifoi V
with boundaries having connected components some orieRiethannian surfaces
(i, g5,)- The input boundaries are called™ and the output boundaries are called
U This means that/ realizes a bordism fram=" into (JZ". We can find
a 3-dimensional manifold whose boundaryds . Let us conskdegot from V by
sewing these 3-dimensional manifolds to eath V has a Riemannian metric inher-
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ited from ;. Let Ay be the Hodge Laplacian operating on 1-forms Wnwith val-

ues in the Lie algebra of a compact simply connected Lie gGugndowed with the
natural Killing metric. We introduce the Sobolev spalg of 1-form » with values
in Lie(G) such that:

(3.2) ./V<(Ak7 + l)a), (Akv + 1)a)> dmy < 00.
We denote bywy the centered Gaussian measureHs. If k is big enough,wy(2) is
almost surely a 1-form which i€”

Let = got from [0, 1] x = by sewing these 3-dimensional manifolds aldhg
boundary.X inherites a canonical metric from the metric @ . L&§ be the Lapla-
cian operating on 1-form o with values inLie(G). Let Hs be the Hilbert Sobolev
space of 1-formsyo orE with values inLie(G) such that:

(3.2) f_((Ag+ Do, (AL + Do)dms < cc.
)

We consider the centered Gaussian measurédgn This gives a random 1-formvs

which is C" if k is big enough.

Let gy(z) be a map fromV into [0,1] equal to 1 oW  where we have re-
moved the output collars [0/1 [z and where we have removed the input collars
11/2; 1]x =I". We suppose thaiy is equal to zero on a neighborhood of theaiesd
of V.

Let g% be a smooth map from [0/1 2] into [0 1] equal to O only in O and équa
to 1 in a neighborhood of /1 2. Let™ be a smooth map from [1,2 1] equal to O only
in 1 and equal to 1 in a neighborhood of 1 2.

Let V be constructed as above. We consider the Gaussian rafieloin

@3 v Zavoy+ Y a0 + Y gMoge

in out

where we take independeut;, Wsin and wsen. wy is a randomC”  1-form oV with
values inLie(G).

Let us consider the trivial bundl® x G oW . By this trivializatiawy realizes
a randomC” connection on this bundle.

An object Vigrx = (V1 U Va.. U Vi) is constructed inductively as follows?; is
a 3-dimensional oriented Riemannian manifold construesdefore.Vip+1 IS con-
structed from Viorx Where we sew some exit boudaries ®fy, along some input
boundaries ofVj4.

We can construct inductivelyy, ,,, as follows: if & = 1, it iswy .oy, is con-
structed from Gaussian fields independent of those whicle ltawnstructedvy,,,, ex-
cept for the Gaussian fields in the input boudariesw®f,, which coincide with the
Gaussian fields in the output boudariesVd;, which are sewed to the corresponding
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input boudaries ofV;.;.
Theorem IIl.1. If k is big enough wy,, is almost surelyC” .

Let us recall some background about the Chern-Simons furdadti(see [16]). If
%; is connected, we can construct an Hermitian line bundI&; ( er ehe set ofC”
connection overx; of the trivial bundl&; x G oB; . Let us do the foliogy hy-
pothesis: letr be the invariant 3-form @ which is equabtd, X, Z (X5[Y, Z])
at the level of the Lie algebra. Let us suppose thatcl 6 represgn element of
H3(G; 7).

Under this hypothesis, it is possible to define as it was usedntance in [16]
the Chern-Simons functional expf2/—1Cc.s(wy)] where wy is a connection of
as a linear application of modulus one froByuA(E")(wgex) into ®inA(Eli-n)(a)):’@n)
where we restrict the connectiomy ) to the input and outpuinblaries:; ofV .
We call wy, these restrictions. These operations are consistéh the operation of
sewing 3-dimensional manifolds.

Let us recall, ifV has no boundary, that the Chern-Simonsads equal to

k 2
(34) E /‘; Tr I:a)v ANdwy + éa)v A wy A a)vi|

wherecTr is got by imbedding the Lie grou® ins® » ( ) for some bignamient
n.

Let H(X, gx) the Hilbert space of sections &f X( ) for the measure gotrd»
stricting wy to X.

DerNimion 111.2. H(Vior, gvi,) 1S the operator from®quiH (2™, gsow) into the
Hilbert space®in H (X", gxn) defined as follows: lew" belonging toH £, gxow):

(35) H (Viot, 8v,s) ®our W = E [ exi] 2V =1 Ses (@1,)] @ P wsa)| B (UEP) ]

where B’ (J 2}“) is the o -algebra spanned by the restriction to the union plitin
boudariesx".

Let (Vg gva) and (V. &vz) and Wi, gw,,) got by sewingVig, and Vi3, along
some exit boundaries fromi}, and some input boundaries . Since the stochas-
tic Chern-Simons functional exp{r&/—_lsc_s(wv&)] is measurable for ther -algebra
spanned by the fields,; , we deduce from Theorem IV.2:

Theorem 111.3. We have

(3.6) H Wiot, 8wi) = H (Vi 8v3) © HA(Vi3e 8v2,)
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where the composition goes from the Hilbert spaces whiclseafrom the sewing
boundary.

If (Viot, gv,,) has only one connected component in the input boundaryg$ )
and n -connected component in the output boundary congtitafethe same X, g5 ),
we say that we have an elementBf X,(gs ). The collectiorEfX, 45 ) ¢triss
an operad whenX, g5 ) is fixed. We p&@8 H Z(gx ). An elementiof X, gs )
realizes an element diom(2®", B).

Theorem 1.4, If (Wiot, gw,,) belongs toE,(Z, g=), H Wiur, gw,,) realizes a
map from the operad:,(Z, gs) into the operad HofE®", B).
IV.  Appendix

This appendix constitutes a brief review concerning theKdarmproperty for Gaus-
sian random fields. We refer to [29] and references theraginmfore details.

(2, F, P) be a probability space, an¥ z ( ) a Gaussian continuous reehten-
dom field with parameter space a finite manifdld endowed witRi@mannian dis-
tanced .

If Ois an open subset of , we define

(4.1) BO)=0(XE)ze0)
anf for an closed subsdd , we define

(4.2) B(D)=(")B(D.)

e>0

whereD, ={z €T :infcpd,z' )< e€}.

DeriniTion IV.1. A random field has the Markov property with respect toomen
set O if for any B (©)-measurable functional

(4.3) E[y1B(0°)] = E[y|B(30)].

A random field isG -markov if it has the Markov property with pest to all open
setsO .

Markov property with respect t@ is equivalent to the follogistatement: for
any eventd; B(0O)-measurable and for any eveAb B(O¢)-measurable:

(4.4) P (A1 N A2|B(30)] = P(A1|B(d0)] P[A2|B(30)].

Let us recall that the reproducing Hilbert spaie  of the enmtus Gaussian ran-
dom field is given as follows: i is a linear random variabletbé Gaussian random
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field, we put:

(4.5) fx@)=E[XX ()]
and

(4.6) (fx, fr) =EXY].

If e(z) is the covariance of the Gaussian random field,

4.7) E[X(@2)X ()] =e:(2)
we have
(4.8) f@)=(fie:()

Let us recall ([29] Theorem 5.1):

Theorem IV.2. A random continuous Gaussian fied  with reproducing Hilbert
spaceH is a Markov field if and only if the two following conalits are checked
i) Forall f1, f2 € H with support disjoint ( f1, f2) = 0.
i) if feH is such thatf = f1 + f> with disjoint supportsthen f; and f> belong to
H.

We have a natural generalization of Theorem [V.2 to the calserevthe random
field takes its values iR’
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