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Abstract
We give some regularization in order to define rigorously a stochastic W.Z.N.W.

model or a stochastic Chern-Simons theory. We show that the Markov property of
the random field allows us to satisfy the glueing axiom of fieldtheory (of Segal or
Atiyah).

I. Introduction

This list of axioms of a -dimensional field theory is stronglyinspired of Segal’s
axiom of conformal field theory ([50]) and Atiyah’s axiom of topological field theory
([5]).

Axioms. a -dimensional field theory is given by the following data:
i) To any 1 Riemannian manifold ( ), we associate an Hilbert space ( )
such that ( 1 2 1 2) = ( 1 1) ( 2 2) if 1 2 = .
ii) If ( ) is a bordism from ( 1 1) to ( 2 2) such that in a neighborhood of

2, ( ) is isometric to ([0 1 2[ 2 1) and such that in a neighborhood of

1, ( ) is isometric to (]1 2 1] 1 1), then ( ) realizes a bounded
linear map ( ) from ( 1 1) into ( 2 2).
iii) These data have to satisfy the following requirement (Gluing property): let
( 1 1) a bordism from ( 1 1) into ( 2 2) and ( 2 2) be a bordism between
( 2 2) into ( 3 3). Let ( ) the Riemannian manifold got by sewing1 and 2

along their common boundary2. Then

(1.1) ( ) = ( 2 2) ( 1 1)

Let us remark that there are some difference with the traditional axioms of field
theory:
-) The operator ( ) is supposed only bounded and not Hilbert-Schmidt as it is
traditional.
-) In the gluing axiom, we sew (1 1) and ( 2 2) along a piece of the output
boundary of 1 and a piece of the input boundary of2.

We are motivated in this work by a stochastic realization of these axioms, with in
addition a technical modification.
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The first example is involved with the stochastic Wess-Zumino-Novikov-Witten
model (see [17], [18], [19] for a pedagogical introduction about the physicist model).
This is a 2-dimensional field theory. This theory uses infinite dimensional processes
over infinite dimensional manifolds. The construction of such processes was pioneered
by Kuo ([30]) who has constructed the Brownian motion on infinite dimensional man-
ifold. The Russian school ([6], [12], [7]) has a different way to construct processes on
infinite dimensional manifolds. [2] and [13] have constructed the Ornstein-Uhlenbeck
process on the loop space by using Dirichlet forms. [1] have constructed the heat-
kernel measure over a loop group by using the Brownian motionon a loop group. Our
construction is related to this work and to the constructionof diffusion processes on

2 Banach manifolds of Brzezniak-Elworthy ([8]). Related works are the papers
of Brzezniak-Léandre ([9], [10]) and Léandre ([31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41]). As in [37] and in [38], our random fields are . This leads
to a simplification with the treatment of [33] for instance: namely no construction of
stochastic integrals is required in the treatment of the Wess-Zumino term.

The second example is the 3-dimensional stochastic Chern-Simons theory. Unlike
the traditional Chern-Simons theory, our stochastic Chern-Simons theory is not a topo-
logical field theory, because we average the connections under a Gaussian measure,
instead of the Lebesgue measure as it is classical in Chern-Simons theory ([5], [3],
[53]).

In these two examples, we deduce from the gluing property a relation with oper-
ads by chosing bordism between always the same connected ( ) and as exit bound-
ary a finite disjoint union of the same ( ). This relation was pioneered for confor-
mal field theory by Huang-Lepowsky ([23]) and Kimura-Stasheff-Voronov ([26]).

The geometrical data of this paper are taken from the work of Freed ([16]).

II. Stochastic Wess-Zumino-Novikov-Witten model

Let us consider the case of a two dimensional field theory. is aRiemannian
surface with exit and input boudary loops endowed with the canonical metric on 1

on each on the connected components of the boundary.
Let us consider got from by sewing disk along the boudaries. has a

canonical metric, inherited from . Let be the Laplace Beltrami operator on.
Let the Hilbert space of maps from into such that:

(2.1) + 1 ( ) + 1 ( ) ( )

where ( ) denotes the Riemannian measure on.
Let be the Brownian motion with values in . It has reproducing Hilbert
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space:

(2.2)
[0 1]

+ 1 ( ) + 1 ( ) ( )

with initial condition (0 ) = 0. If is big enough independent from , ( )
( ) is continous in [0 1] and in (see [37]).
Let 1 = [0 1] 1 where we sew disk along the boundary.1 inherites a canon-

ical Riemannian structure. Let
1

be the Hilbert space of maps from1 into such
that

(2.3)
1

1
+ ( )

1
+ 1 ( )

1
( )

Let
1

be the Brownian motion with values in
1
. It has as reproducing Hilbert

space the set of maps from [0 1] 1 into such that:

(2.4)
[0 1] 1

1
+ 1 ( )

1
+ 1 ( )

1
( )

with initial condition (0 ) = 0 (
1

denotes the Laplace-Beltrami operator on1).
Let ( ) be a map from into [0,1] equal to 1 on where we have removed

the output collars [0 1 2[ 2 and where we have removed the input collars ]1 2; 1]

1. We suppose that is equal to zero on a neighborhood of the boundaries of .
Let out be a smooth map from [0 1 2] into [0 1] equal to 0 only in 0 and equal

to 1 in a neighborhood of 1 2. Letin be a smooth map from [1 2 1] equal to 0 only
in 1 and equal to 1 in a neighborhood of 1 2.

We consider the Gaussian random field parametrized by [0 1]:

(2.5) ( ) = ( ) ( ) +
in

in in
1

( ) +
out

out out
1

( )

where we take independent Brownian motion on
1

which are independent of the
Brownian motion . We have a body process and some boundary processes which
are independent themselves and of the body process.

An object tot = ( 1 2 ) is constructed inductively as follows:1 is a
Riemann surface constructed as before.tot +1 is constructed from tot where we sew
some exit boundaries oftot along some input boundaries of+1. Let us remark that
in the present theory, we don’t considertot as a Riemannian manifold, but as the se-
quence ( 1 ) and the way we sew +1 to tot inductively. Namely, if we con-
sider the random fields parametrized bytot [0 1] considered as a global Rieman-
nian manifold done by (2.5), it is different from the random field tot constructed
as below. In particular, the sewing collars intot are independent in the construction
below, and are not independent in the construction (2.5).
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We can construct inductively tot +1 as follows: if = 1, it is . +1 is con-
structed from Brownian motion independent of those which have constructed tot ,
except for the Brownian motions in the input boundaries of+1 which coincide with
the Brownian motion in the output boundaries oftot which are sewed to the corre-
sponding input boundaries of +1. By this procedure, if tot, we get a process
( ) tot ( ) which is continuous in and in tot.

Let be a compact simply connected Lie group. We consider Airault-Malliavin
equation ([1])

(2.6) tot ( ) = tot ( )
tot

( )

starting from .
tot

are independent copies of tot and an orthogonal basis of the
Lie algebra of .

Let us remark that we can construct the formal action drivingthe non-linear Ran-
dom field tot by using large deviation theory ([19], [31]). tot ( ) is a Brownian
motion on a Hilbert space whose reproducing kernel is deduced from (2.1), (2.3)
and (2.5). It has formally the Gaussian law:

(2.7) =
1

exp
1

0

1

2
( ) 2 ( )

where ( ) is the formal Lebesgue measure on fields parametrized by tot [0 1]
into Lie( ). Let us consider the equation

(2.8) tot ( ) = tot ( )
tot

( )

The following large deviation estimate holds: let us consider a borelian subset on
the space of maps fromtot [0 1] into for the uniform topology.int denotes its
interior for the uniform topology andclos 0 its adherence for the uniform topology.
We have when 0:

inf
tot ( ) int

1

0
( ) 2 lim inf 2 2 log tot ( )(2.9)

lim sup 2 2 log tot ( ) inf
tot ( ) clos

1

0
( ) 2(2.10)

In order to define tot ( )( ), we replace formally in (2.6)
tot

( ) by
tot

( ).
By proceeding as in [37] we get:

Theorem II.1. If is big enough, the random field parametrized bytot

tot 1( ) is . Moreover the restriction to this random field to the connected compo-
nents of the boundary of tot are independents and have the same law.
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Let us recall some geometrical background about the Wess-Zumino-Novikov-
Witten model ([16]). Let be an oriented surface with boundaries. Let be a
map from into conveniently extended into a map ( ) from [0 1] into
such that 0( ) = . We define the Wess-Zumino term:

(2.11) ( ) =
1

6 [0 1]

1 [ 1 1 ]

where , is the canonical normalized Killing form on the Lie algebra of . We sup-
pose that the 3-form which is integrated in (2.11) represents an element of 3( ; )
(see [16] for this hypothesis). exp[2 1 ( )] can be identified canonically to an
element of where is an Hermitian line bundle over the set of maps from

into . Let be the oriented connected components of . We have a canon-
ical inclusion map from in . We deduce from it a map from the set
of maps from in into the set of maps from into . Let be the her-
mitian bundle on the set of maps from into constructed in [16]. =
endowed with its natural metric inherited from each . We denote it exit in .
Moreover, we can realize this expression as a map from the tensor products of Her-
mitian line bundle over the exit loop groups defined by restricting the field over
each exit boundary to the tensor product of Hermitian line bundles over the input
loop groups defined by restricting the field over each connected component of the in-
put boundary. Therefore exp[2 1 ( )] can be realized as an application from

exit into in of modulus 1. This application is consistent with the operation of
sewing surface.

Let tot and the restriction of tot 1( ) to one connected component of the bound-
ary of tot. Let be the Hilbert space of section of over the loop group ( )
endowed with the law arising from restricting the field to oneboundary loops. Let
be such a boundary loop. The laws oftot 1( ) restricted to each are the same. Let

( tot 1( ) ) a section of on the set of loops defined by . (tot 1( ) ) de-
notes a random variable which is tot 1( ) measurable, where tot 1( ) denotes the
restriction to the random field to . We put

(2.12) 2 = [ ( tot 1( ) ) 2]

But the previous Hilbert norm don’t depend of the chosen boundary loop , and we
get the definition of the Hilbert space . Let2([0 1] ) be the Hilbert space of

2 functionals with respect of tot ( ) restricted to [0 1] . We put =
2([0 1] ). We get always the same Hilbert space independent of the choice

of tot. If tot 1( ) is the random map from tot into , we deduce the random map
from [0 1] tot into , ( ) tot 1( ) with the the boudary condition tot 0( ) = .
We deduce from this the Wess-Zumino term exp[2 1 tot( tot 1)]. Let us recall
that the cinetic term in the W.Z.N.W. model is equal to exp[ ( )] where ( ) is the
energy from the map from tot into . Compare with (2.9) and (2.10). In this work,
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we will consider the same topological term and we will consider another cinetic term
given by the law of tot 1( ).

DEFINITION II.2. ( tot tot) is the operator from out into in where we put
the tensor product along respectively the connected components of the exit boundary
of tot and of the input boundaries oftot defined as follows: let a section of at
the connected component of the exit boundary:

(2.13) ( tot tot) out = [exp[2 1 tot( tot 1)] out ([0 1] 1)]

where ([0 1] 1) is the -algebra spanned by the random fieldtot ( ) restricted
to the input data [0 1] 1.

Let ( 1
tot

1
tot

) and ( 2
tot

2
tot) and ( tot tot) got by sewing 1

tot along some exit
boundaries coinciding with some input boundaries of2tot. We call the sewing bound-
ary ˜ in tot. We call ([0 1] ˜ ) the sigma algebra defined by (4.2) for the ran-
dom field ( ) tot ( ) parametrized by [0 1] tot. From Theorem IV.2, it sat-
isfies (4.4). We deduce:

Theorem II.3. We have:

(2.14) ( tot tot) = ( 1
tot 1

tot
) 2( 2

tot 2
tot

)

where the composition goes for the Hilbert spaces which arises from the sewing
boundaries.

Proof. Let be the sewing boundary intot. We get almost surely:

exp[2 1 tot( tot 1)]

= exp[2 1 1
tot

( 1
tot 1)] exp[2 1 2

tot
( 2

tot 1)](2.15)

By Markov property, the two term in the right hand side of (2.15) are conditionnally
independent to ([0 1] ). We have:

( tot tot) out

= [ [exp[2 1 tot( tot 1)] out ( 1 )] ([0 1] 1)](2.16)

But we have:

[exp[2 1 tot( tot 1)] ( 1 )] = [exp[2 1 1
tot

( 1
tot 1)]

exp[2 1 2
tot

( 2
tot 1)] out ([0 1] ( 1 )](2.17)
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By (4.4), where we choose as the interior of1tot in tot, the right hand-side
in (2.17) is equal to

[exp[2 1 1
tot

( 1
tot 1)]( [ exp[2 1 2

tot
( 2

tot 1)]

out ] ([0 1] )] ([0 1] 1)](2.18)

In (4.4), this decomposition formula is true for functionals, but we can come back to
this case in (2.17) by introducing an orthonormal basis of .

If ( tot tot) have only one connected component in the input boundary and
connected component in the output boudary, we say that (tot tot) belongs to ( ).
An element of ( ) realizes an element ofHom( ).

In particular, we will consider as ( ) the case of 1+ -punctured sphere tot(1 )
with one input loop and output loops, by taking care of the history where we glue
some subspheres intot(1 ). ( ) is very similar to the space of trees with one root
and exit vertices. Trees are an archetype of an operad: if ( ) denotes the space of
trees with -exit vertices, we get an operation of ( ) (1) ( ) by grafting
trees. This action is compatible with the action of symmetric group got by relabelling
the exit vertices. ( ) should correspond to the parameter setof a branching process
on the loop space, time of branching being included: the branching mechanism is got
when a loop splitts in two loops (and not by creating two loopsas it is classical in
branching process theory). ( ) inherits an action of the symmetric group by labelling
the connected components of the exit boudary. The action of sewing punctured spheres
realizes a map from ( ) (1) ( ) into ( ) which is compatible with
the action of the symmetric group. We say that ( ) is an operad.On the other hand,
Hom( ) realizes clearly an operad, by composition of the homomorphisms. We get
from Theorem II.3:

Theorem II.4. If ( tot tot) belongs to ( ), ( tot tot) realizes a map from
the operad ( ) into the operad Hom( ).

If we consider the case of the punctured sphere, this corresponds to a kind of
Branching process on the loop space.

III. Stochastic Chern-Simons theory

We consider now as ( ) the case of an oriented 3-dimensional manifold
with boundaries having connected components some orientedRiemannian surfaces
( ). The input boundaries are calledin and the output boundaries are called

out. This means that realizes a bordism from in into out. We can find
a 3-dimensional manifold whose boundary is . Let us considergot from by
sewing these 3-dimensional manifolds to each .has a Riemannian metric inher-
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ited from . Let be the Hodge Laplacian operating on 1-forms onwith val-
ues in the Lie algebra of a compact simply connected Lie group, endowed with the
natural Killing metric. We introduce the Sobolev space of 1-form with values
in Lie( ) such that:

(3.1) + 1 + 1

We denote by the centered Gaussian measure in. If is big enough, ( ) is
almost surely a 1-form which is .

Let got from [0 1] by sewing these 3-dimensional manifolds alongthe
boundary. inherites a canonical metric from the metric on . Let be the Lapla-
cian operating on 1-form on with values inLie( ). Let be the Hilbert Sobolev
space of 1-forms on with values inLie( ) such that:

(3.2) + 1 + 1

We consider the centered Gaussian measure on. This gives a random 1-form ˜

which is if is big enough.
Let ( ) be a map from into [0,1] equal to 1 on where we have re-

moved the output collars [0 1 2[ out and where we have removed the input collars
]1 2; 1] in. We suppose that is equal to zero on a neighborhood of the boudaries
of .

Let out be a smooth map from [0 1 2] into [0 1] equal to 0 only in 0 and equal
to 1 in a neighborhood of 1 2. Letin be a smooth map from [1 2 1] equal to 0 only
in 1 and equal to 1 in a neighborhood of 1 2.

Let be constructed as above. We consider the Gaussian randomfield:

(3.3) = +
in

in
in +

out

out
out

where we take independent , in and out. is a random 1-form on with
values inLie( ).

Let us consider the trivial bundle on . By this trivialization, realizes
a random connection on this bundle.

An object tot = ( 1 2 ) is constructed inductively as follows:1 is
a 3-dimensional oriented Riemannian manifold constructedas before. tot +1 is con-
structed from tot where we sew some exit boudaries oftot along some input
boundaries of +1.

We can construct inductively +1 as follows: if = 1, it is . +1 is con-
structed from Gaussian fields independent of those which have constructed tot , ex-
cept for the Gaussian fields in the input boudaries oftot which coincide with the
Gaussian fields in the output boudaries oftot which are sewed to the corresponding
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input boudaries of +1.

Theorem III.1. If is big enough, tot is almost surely .

Let us recall some background about the Chern-Simons functional (see [16]). If
is connected, we can construct an Hermitian line bundle ( ) over the set of

connection over of the trivial bundle on . Let us do the following hy-
pothesis: let be the invariant 3-form on which is equal to ( ) =[ ]
at the level of the Lie algebra. Let us suppose that 1 6 represents an element of

3( ; ).
Under this hypothesis, it is possible to define as it was used for instance in [16]

the Chern-Simons functional exp[2 1 ( )] where is a connection on
as a linear application of modulus one fromout ( out)( out) into in ( in)( in)
where we restrict the connection ( ) to the input and output boundaries of .
We call these restrictions. These operations are consistent with the operation of
sewing 3-dimensional manifolds.

Let us recall, if has no boundary, that the Chern-Simons action is equal to

(3.4)
2

Tr +
2

3

wherec is got by imbedding the Lie group into ( ) for some big convenient
.

Let ( ) the Hilbert space of sections of ( ) for the measure got by re-
stricting to .

DEFINITION III.2. ( tot tot) is the operator from out ( out
out) into the

Hilbert space in ( in
in) defined as follows: let out belonging to ( out

out):

(3.5) ( tot tot) out
out = exp 2 1 ( tot)

out( out) in

where ( in) is the -algebra spanned by the restriction to the union of input
boudaries in.

Let ( 1
tot 1

tot
) and ( 2

tot 2
tot

) and ( tot tot) got by sewing 1
tot and 2

tot along
some exit boundaries from 1

tot and some input boundaries of2tot. Since the stochas-
tic Chern-Simons functional exp[2 1 (

tot
)] is measurable for the -algebra

spanned by the fields
tot

, we deduce from Theorem IV.2:

Theorem III.3. We have:

(3.6) ( tot tot) = ( 1
tot 1

tot
) 2( 2

tot 2
tot

)
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where the composition goes from the Hilbert spaces which arise from the sewing
boundary.

If ( tot tot) has only one connected component in the input boundary ( )
and -connected component in the output boundary constituted of the same ( ),
we say that we have an element of ( ). The collection of ( ) constitutes
an operad when ( ) is fixed. We put = ( ). An element of ( )
realizes an element ofHom( ).

Theorem III.4. If ( tot tot) belongs to ( ), ( tot) realizes a
map from the operad ( ) into the operad Hom( ).

IV. Appendix

This appendix constitutes a brief review concerning the Markov property for Gaus-
sian random fields. We refer to [29] and references therein for more details.

( ) be a probability space, and ( ) a Gaussian continuous centered ran-
dom field with parameter space a finite manifold endowed with aRiemannian dis-
tance .

If is an open subset of , we define

(4.1) ( ) = ( ( ); )

anf for an closed subset , we define

(4.2) ( ) =
0

( )

where = : inf ( ) .

DEFINITION IV.1. A random field has the Markov property with respect to anopen
set if for any ( )-measurable functional :

(4.3) [ ( )] = [ ( )]

A random field is -markov if it has the Markov property with respect to all open
sets .

Markov property with respect to is equivalent to the following statement: for
any event 1 ( )-measurable and for any event2 ( )-measurable:

(4.4) ( 1 2 ( )] = ( 1 ( )] [ 2 ( )]

Let us recall that the reproducing Hilbert space of the continuous Gaussian ran-
dom field is given as follows: if is a linear random variable ofthe Gaussian random
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field, we put:

(4.5) ( ) = [ ( )]

and

(4.6) = [ ]

If ( ) is the covariance of the Gaussian random field,

(4.7) [ ( ) ( )] = ( )

we have

(4.8) ( ) = ( )

Let us recall ([29] Theorem 5.1):

Theorem IV.2. A random continuous Gaussian field with reproducing Hilbert
space is a Markov field if and only if the two following conditions are checked:
i) For all 1, 2 with support disjoint, 1 2 = 0.
ii) if H is such that = 1 + 2 with disjoint supports, then 1 and 2 belong to

.

We have a natural generalization of Theorem IV.2 to the case where the random
field takes its values in .

References

[1] H. Airault and P. Malliavin: Integration on Loop Groups, Publication Université Paris VI, Paris
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in Processus Gaussiens et Distribution Aléatoires, X, Fernique P.A. Meyer edt. Ann. Inst.
Fourier.24 (1974), 143–167.

[26] T. Kimura, J. Stasheff and A. Voronov:An operad structure of moduli spaces and string theory,
Comm. Math. Phys.171 (1995), 1–25.

[27] H. Konno: Geometry of loop groups and Wess-Zumino-Witten models: in Symplectic Geometry
and Quantization, Y. Maeda, H. Omori and A. Weinstein edt. Contemp. Math.179 (1994),
136–160.

[28] S. Kotani: On a Markov property for stationary Gaussian processes witha multidimensional
parameter, Proc. 2nd. Japan-USSR. Symp. of Probab. G. Maruyama, Y. Prokhorov edt. Lect.
Notes. Maths.330 (1973), 76–116.
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