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Abstract
To develop a sophisticated ship system, such as an autonomous ship, experiments using a real ship are essential to evalu-
ate its performance and behavior of the developing system. However, it is difficult to evaluate it installed on various ships, 
which have different configurations of actuators and sensors. This paper describes a design method of evaluation platform 
for autonomous ships that easily adapts the target system to different configured ships. The method is based on a distributed 
architecture, and the system consists of an abstracted hardware driver and target system connected through the communica-
tion bus. This paper explains a design method and an example module design. The authors implemented the system using 
the proposed architecture and showed an example of porting the system to another ship. In addition, this paper discusses the 
advantages and points to note associated with certification processes, such as classification approvals, when applying the 
proposed design method to actual development.

Keywords  Autonomous ship · Ship experiment · Model ship · System design

1  Introduction

Autonomous ships are highly expected that one of the effec-
tive solutions for preventing ships from marine accidents. 
Also, it is considered that autonomous ship technology is an 
effective solution to the problem of seafarer shortages [1]. 
For this reason, some projects to develop autonomous ships 
have been started around the world recently [2–4]. Not only 
fully autonomous technologies but also technologies aimed 
at assisting crews, such as watch-keeping functions [5] have 
been also developing. In the development of these advanced 
ship control functions, evaluation is an essential process. 
Particularly, experiments using a real ship are considered 
to be essential.

Figure 1 shows the typical process of development of a 
ship control system. The process consists of three parts: the 
research process, the development process, and the product 
process. The last step in every process of development is a 

test or evaluation using a real ship. In the research process, 
the function test is a proof of concept (PoC) in which the 
performance of a unit function is evaluated. Subsequently, 
the system evaluation of a system that integrates several unit 
functions, which are verified by the functional test, brings 
the system from the development process to the production 
process. In the product process, the product will be installed 
on the real ship through an adaptation process involving 
parameter tuning specific to each individual ship.

As described above, real ship experiments play a signifi-
cant role in the development of ship control systems. The 
system evaluation is reported in recent autonomous ship 
development projects in Japan [6, 7]. Conducting experi-
ments with an actual ship yields precise results; however, 
it also incurs expenses and requires a significant amount 
of time. Thus, the earlier step of development consists of 
experiments with a model ship instead of an actual ship. For 
example, Ahmed et al. used a free-run model ship to evalu-
ate their autonomous berthing algorithm [8]. In other cases, 
there is some research to evaluate the dynamic positioning 
function [9], and the course tracking function [10] with 
model ships. While model tests can verify the hydrodynamic 
behavior of the ship, it is difficult to verify the hardware-
induced failures of the implemented system. Hardware in the 
Loop (HILS) is often performed for this purpose. Huijgens 
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et al. combined HILS and a towing test [11] to evaluate the 
electronic propulsion system [12].

Many methods are employed in the development of these 
systems, which leads to further cost increases. Every ship 
has different hardware configurations, so it has been difficult 
to use the same test platform for many types of ships. To be 
worth the cost of development, the system to be developed 
must be versatile enough to accommodate different hard-
ware configurations of ships. In this context, during system 
development, hardware drivers responsible for managing the 
equipment installed on the ship can potentially pose chal-
lenges to achieving this versatility.

Then, the author presents here a method of design of 
development and evaluation platform that can be applied 
to different types of ship configurations. The proposed 
method is realized by utilizing the distributed architecture 
of abstracted hardware drivers.

This paper is composed of six sections. In the next sec-
tion, an overview of the proposed method is provided. In 
Sect. 3, detailed design elements such as device drivers and 
application software are described. In the following section, 
an example implementation of an experimental system with 
the proposed architecture is presented. The following Sect. 5 
provides a practical discussion on the benefits of applying 
the proposed methodology in the development of real–world 
marine systems, along with considerations for points to note 

in the design and development. In the final section, we con-
clude the paper.

2 � System overview

Real ships have been used in the research and development 
of a sophisticated ship control system, such as an autono-
mous ship system [6–10]. Each real ship experiment plat-
form, which is used in these examples, was designed for 
their research and development. There is also a report to 
develop a ship experiment platform [13]. These systems 
are considered to be helpful in evaluating the performance 
of the function or the system in their research. However, 
in these researches, the evaluated systems are not so much 
assumed to be deployed on different ships. Generally, ship 
configurations are different from vessel to vessel. And then, 
it has been mentioned in the previous section, that a design 
method is required to separate the evaluated software and 
the module of input and output, to apply it to various types 
of ship configurations.

Before the explanation of system structure, the 
term"application software"is defined here. In this context, 
application software is defined as an evaluated object soft-
ware, which contains one or more functions that realize 
some integrated ship control system, such as an autono-
mous berthing controller, a track control system, etc. These 
functions are sometimes realized using multiple application 
software. In case the application software includes the com-
munication part, such as the top figure in Fig. 2, the experi-
ment system works for a particular system or ship.

However, when application software has to be ported to 
another type of ship, this structure has some problems as 
next:

–	 Generally, hardware has its own original communica-
tion scheme. In case the application software contains 
a device communication part, a communication scheme 
has to be implemented or removed every time when 
changing the structure of the hardware. In other words, 
application software cannot be ported to other ships with-
out modification.

–	 The application software evaluation should not include 
the communication portion with the device. In other 
words, what we want to evaluate is the algorithm that 
the application software has, such as autonomous con-
trol, and it should be separated from the problem that the 
output commands are not properly input to the device. It 
sometimes induces harmful behavior in the communica-
tion part, and possibly misunderstands the result of the 
evaluation. In order to avoid troubles in an experiment, 
it is considered that the original code and the other func-
tional code should be separated.

Fig. 1   Typical process of development of ship control system
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–	 If a ship has the same devices, communication imple-
mentation on all application software is redundant.

Hence, the authors propose a design of system structure in 
which the application software and communication part are 
separated by introducing a distributed architecture. Distrib-
uted architecture [14] is considered to be the more appropri-
ate architecture for a customizable system. For example, the 
distributed architecture is applied for vehicle systems [15]. 
This architecture has a feature that all hardware is modu-
larized and connected by a common bus. In the proposed 
structure design, the authors introduce a device driver that 
abstracts the hardware and connects with application soft-
ware by a common communication bus along with this 
distributed architecture. The device driver is defined as a 
bridge software between application software and a particu-
lar device. In this structure design, application software has 
the only way to communicate with hardware via the device 
driver. Introducing this structure, the different communica-
tion protocols specified by each device are absorbed by a 
device driver, and application software and the device driver 
communicate with each other by only using a standardized 
communication protocol. In other words, hardware is hidden 
and abstracted from the application software side. Then, it 
helps application software port to different ships. Using this 
design, communication parts are established as independent 

execution units, and application software is not affected by 
the difference in the system’s consistency (Fig. 3). Moreover, 
if there are devices that use the same communication proto-
col, the device driver can be reused by multiple executions.

In the next section, it is explained the details of applica-
tion software and device driver design.

3 � Detailed design

In the previous section, we described the advantages of 
introducing a device driver that abstracts real hardware from 
application software. In this section, it is described that the 
detailed design of the system.

3.1 � Communication protocol between application 
software and device driver

The main concept of the proposed system is to separate the 
hardware’s unique communication part from the application 
software. In this design, the communication protocol used 
between application software and device drivers has to be 
defined. Application software and device drivers are inde-
pendent programs from each other. In this case, the protocol 
used for a computer network is one of the typical methods 
to exchange data between two instantiated programs: such 
as UDP/IP or TCP/IP (UDP: User Datagram Protocol [16], 

Fig. 2   Porting application to another ship without driver layer
Fig. 3   Porting application to another ship with driver layer
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TCP: Transmission Control Protocol [17], IP: Internet Pro-
tocol [18]). These protocols are defined as the Internet Proto-
col Suite by IETF (Internet Engineering Task Force). These 
protocols are practically the standard for current networking 
technology and are so widely accepted that they are imple-
mented in most OS (Operating Systems). Also, recent net-
work infrastructures have usually adequate line bandwidth. 
Both application software and device drivers are expected 
to be executed on commercially supplied computers; thus, 
using these network-based protocols to exchange data is con-
sidered to be one of the practical options. There are many 
data exchange protocols based on UDP/IP and TCP/IP, 
such as MQTT (Message Queue Telemetry Transport) [19] 
defined by OASIS (Organization for the Advancement of 
Structured Information Standards), DDS (Data Distribu-
tion Service) [20] admired by OMG (Object Management 
Group), etc. These protocols are based on network technolo-
gies, and make it possible to execute application software 
and device drivers on different machines. On the other hand, 
if application software and device drivers are executed on 
the same memory, it is also available a way to use shared 
memory to exchange data. This method has the advantage 
of transport and calculation speed. Some DDS implementa-
tion has also a method using shared memory, such as FAST 
DDS [21]. Afterwards, the term"internal network"is defined 
as the network consisting of application software and device 
drivers using some protocol such as explained above.

3.2 � Design of device driver

As mentioned in Sect. 2, the role of device drivers is to 
absorb the differences in communication protocols of each 
hardware, and it enables application software to com-
municate with hardware by a single method. Showing an 
example of a system which has LiDAR(UDP connection), 
GNSS(RS-422 connection), AIS(NMEA2000 connection), 
an engine (J1939 connection), and an embedded computing 
unit with application software that consisted of several pro-
cesses. As shown in Fig. 4, processes are enabled to access 
to the hardware by a single communication method (e.g., 
MQTT) by including drivers for each device despite the dif-
ferent communication methods of each device.

Drivers themselves function as programs that relay com-
munications with each piece of hardware and translate 
between protocols. When designing a driver, it is important 
to understand deeply the hardware-specific communication 
protocol and implement it correctly. It is also essential to 
recognize that protocol conversion requires a finite amount 
of time. In particular, when developing control-oriented 
application software, such as for autonomous systems, the 
real-time nature of data is often critical. Therefore, in the 
design phase, one must pay careful attention to the charac-
teristics of each device’s communication method so as not 

to inadvertently alter the original transmission intervals or 
introduce excessive conversion latency. If very high update 
rates are not necessary, however, techniques such as down-
sampling data may be helpful to conserve bandwidth. Addi-
tionally, assigning timestamps to each measurement, derived 
from a single, unified clock, can be an effective means of 
synchronizing time across multiple sensors.

The protocol of the internal network side is described 
in Sect. 3.1. On the other hand, on the hardware side, there 
are many types of devices, and each of them uses various 
protocols. Showing examples of devices equipped on ships, 
and communication protocols on Table 1.

In Table 1, a device actuated by some physical links is 
designed to be controlled by humans using some handles. 
For controlling such devices, it is required to equip some 
actuators to move electronically. In addition, computers 
cannot deal with analog signals directly. For using these 
devices, signals have to be converted by D/A and A/D con-
verter (D/A: Digital to Analog, A/D: Analog to Digital).

Digital communication protocols mentioned in Table 1 
have more various detailed protocols. For example, there 
are several standardized protocols in serial communication 
methods, such as EIA-232-D, and USB (Universal Serial 
Bus).

Fig. 4   Example of devices and process connection via drivers

Table 1   Example of a device that is equipped on ships

CAN Control Area Network, GNSS Global Navigation Satellite Sys-
tem, LiDAR Light Detection And Ranging

Device Protocol(Example)

Engine CAN, wire
Rudder CAN, Ethernet, Analog, Serial
Hydraulic device CAN, wire, Serial
Electric actuator CAN, Ethernet, Serial
Satellite device (GNSS, internet, 

etc.)
CAN, Ethernet, Serial

Position measuring device (LiDAR, 
Radar, etc.)

CAN, Ethernet, Serial
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To develop a device driver, it is required to adapt its 
design for each device specification, along with used com-
munication protocol. In Fig. 5, a fundamental device driver 
structure is shown.

Figure 5 represents a synchronous type device driver. In 
this type, the device driver enters to procedure to convert and 
publish data just a time when it receives data(Synchronized 
Mode). In this mode, the time interval from hardware send 
until application software receiving, is substantially derived 
from only data transfer and conversion. So this type of 
device driver can reduce data delay as much as possible. If 
the hardware communication frequency and Internal Net-
work communication frequency are the same, a synchronous 
device driver is considered to be one of the practical options.

However, in some cases, such as reducing data rate, 
Internal Network communication frequency has to be dif-
ferent from the hardware communication. In such cases, an 
asynchronous mode can be applied. The data diagram of the 
asynchronous type device driver is shown in Fig. 6.

The asynchronous type device driver receives data and 
stores it in a buffer at once. The rate of transferring data is 
regulated by the inner clock of the device driver, and data 
is published by a trigger generated by the clock. In this 
procedure, the newest data stored in the buffer is usually 
used, so some old data may possibly be abandoned. Also, 
it should be kept in mind that the published data was pos-
sibly received in the past. Figure 7 represents the case that 
a device driver receives data with a higher frequency than 
the publishing frequency. In asynchronous mode, published 
data is somehow delayed. Thus it is required to be designed 
to use a higher publish frequency than receiving frequency, 
not to skip data.

In any type of driver, the published data from the driver 
contains some delay. In case an application software requires 

severe on-time data, such as a control system, even nanosec-
ond or millisecond delay might induce harmful effects. Thus, 
developers have to choose an appropriate way along with a 
specification of the application software.

3.3 � Design of application software

In this paper, application software is defined as software for 
realizing a function of ship control. It includes a new algo-
rithm or a method and behaves as a main component. It is 
usually an object to be evaluated in the experiment using an 
experimental system. In a huge sophisticated system such as 
an unmanned autonomous ship, such main software is some-
times described as separate programs. They are executed 
independently, and programs exchange messages with each 
other. Additionally, some utility software that helps experi-
ment, such as a data logger or UI(User Interface), is also 
described as application software. Thus normally, multiple 
application software are executed on a system.

For evaluating such application software, it has to be 
implemented along with the proposed system structure. 
Next, we show an example to develop application soft-
ware for a Zig-Zag test. A Zig-Zag test is one of the typical 
experiments to measure specifications of ship response by 
rudder control. The experiment is executed along with the 
next method: 

1.	 Running in constant speed(rotating propeller in constant 
rotation speed.).

2.	 Steering rudder until a determined angle.
3.	 If the ship’s heading reaches a determined heading, it 

steers the rudder until the inverse angle of a determined 
angle.

Fig. 5   Fundamental device driver structure (Sync. Type) Fig. 6   Fundamental device driver structure (Async. Type)
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4.	 Repeat the previous step and record the angle of the 
rudder, the ship’s heading, and a time stamp.

To realize the method above, the application software 
needs the following information:

–	 Ship’s heading(Sensing by gyroscope sensor)
–	 Rudder actual angle(Receiving from rudder driver)

Also, the application software needs to send commands 
to the next device:

–	 Propeller rotation number to the main actuator.
–	 Target angle of Rudder.

Then, the main application software for the Zig-Zag test 
can be designed as Fig. 8.

Similar to device drivers, application software can be 
developed in synchronous mode or asynchronous mode. In 
the Fig. 8 case, the asynchronous type is shown. The appli-
cation receives the ship’s heading from a gyroscope and 
the rudder angle from a rudder driver. Received data are 
stored in a buffer. The program cycle is regulated by the 
inner clock. In every cycle, the program fetches the newest 
data from the buffer and evaluates the next step’s behavior. 
If the heading angle reaches to designated value, a steering 
command is generated and sent to the rudder device driver. 
In Fig. 8, a data logging tool is also represented as applica-
tion software. It is not a main object for a control ship, but 
it is a utility tool.

Fig. 7   Data Delay in asynchro-
nous mode

Fig. 8   Example application 
software Structure for Zig-Zag 
Test
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4 � Implementation example

In this section, the example of implementing a real ship 
experiment system is shown. We show the implementation 
method of our proposed structure and the result of one of 
the simple operations (Zig-Zag test) using the system. In 
addition, we show the system’s portability by a trial to 
transplant the system to another type of ship.

4.1 � Model ship specification

For this experiment, we used a model tanker ship as shown 
in Fig. 9, which was developed by authors in 2019 at 
Osaka University [22]. Its hardware structure is shown in 
Fig. 10. It had one engine (motor), one rudder, and several 
sensors: a rotation counter of the propeller, a rudder angle 
sensor, a gyroscope, two anemometers, and an RTK-GNSS 
(Real Time Kinematic-GNSS). It had also a main com-
puter (NVIDIA Jetson TK1) to which Linux Ubuntu 14.04 
is installed. All devices were connected to the computer 
directly or via a network hub.

4.2 � System implementation

To implement the experiment system, the authors intro-
duced ROS (Robot Operating System) [23]. It is one of the 
platforms for developing robots (robots in this context are 
represented as a kind of sophisticated system to behaves 
automatically). ROS contains the definition of a framework 
for building and executing multiple programs (ROS Nodes), 
communication protocols between ROS Nodes(ROS Top-
ics, ROS Services, etc.), and surrounding ecosystems such 
as tools for logging, visualizing, package management, etc. 
ROS Nodes are defined as the execution unit of the program. 
In this implementation, all of the device drivers and applica-
tion software that the authors proposed are implemented as 
ROS nodes. ROS Nodes exchange data with some defined 
message protocols: ROS Topic(Asynchronous communi-
cation), ROS Service (Synchronous communication), etc. 
These communication methods are implemented with TCP, 
which is one of the fundamental protocols of the Internet. 
TCP is a protocol that places relatively greater emphasis on 
reliable data delivery through mechanisms such as retrans-
mission and congestion control. Although it offers lower 
real-time performance than UDP, leveraging the ROS eco-
system enables rapid development. Moreover, in a wired 
system without high-bandwidth sensors, communication 
remains stable, and since nanosecond-scale latency has vir-
tually no impact compared to the poor inertial response of 
the control subject, we adopted this approach.

Device drivers were implemented as ROS nodes that 
translate between each device’s proprietary communica-
tion protocol and the TCP-based ROS Topic interface. 
The vessel is equipped with a motor (UDP communi-
cation), a rudder (UDP communication), a gyroscope 
(EIA232 communication), an anemometer (UDP commu-
nication), a GPS receiver (EIA232 communication), and 
an R/C transceiver (UDP communication). Taking into 
account the characteristics of each device, we designed Fig. 9   Exterior of the model ship

Fig. 10   Hardware structure of 
the model ship
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and implemented the drivers as ROS nodes. For the motor 
and rudder, rapid response to manipulate commands from 
the processor is essential, while the actuators themselves 
operate more stably when driven at fixed intervals regard-
less of the processor’s polling rate. Accordingly, these 
drivers were implemented as the asynchronous program-
ming model described in Sect. 3.2. The gyroscope and 
anemometer both transmit data periodically via serial 
interface and UDP, respectively, at rates that exceed the 
control loop frequency (10Hz order). Because serial com-
munication involves sequential reading from a buffer, 
making tight synchronization with UDP streams problem-
atic, these drivers were likewise implemented asynchro-
nously. Although the GPS emits data at a fixed rate that 
approximates the control cycle-making a synchronous 
implementation technically feasible. Then, we chose to 
implement its driver asynchronously as well, to unify the 
programming model across the other device interfaces.

As application software, we designed and imple-
mented the Zig-Zag test application software as ROS 
Nodes which was designed in the Sect. 3.3. As an experi-
ment helper tool, data recording ROS Nodes was also 
implemented.

Finally, all nodes were deployed on the computer on 
the model ship as shown in Fig. 11.

4.3 � Experiment with the implemented system

With using the system, the Zig-Zag test was executed in 
2018 February, at Inukai Pond at Osaka University. In 
this experiment, the threshold of the heading angle was 
set as ±20 [deg], and the designated rudder angle was set 
as ∓20 [deg]. The result of the experiment is shown in 
Fig. 12. This figure is generated from the experiment log 
file which is logged by the logger node.

4.4 � Porting to another ship

To verify the scalability of the system implemented on 
Model Ship Type A, we attempted to port the Zig-Zag 
test system developed in this study to a different platform 
(Model Ship Type B). Although Type B shares the same 
overall system architecture as Type A, it is equipped with a 
single bow thruster and a Vec-Twin dual-rudder configura-
tion. As shown in Fig. 13, we therefore added new device 
drivers for these components. The bow-thruster driver was 
adapted from the main motor driver, but the thruster itself 
was not used during the Zig-Zag test. The Vec-Twin rud-
ders were implemented to operate in synchrony, yet were 
designed to subscribe to the same ROS Topic as the single 
rudder on Type A. Thanks to this driver-level abstraction, 
the Zig-Zag test application software ran unchanged on both 
Type A and Type B platforms – requiring 0% code modi-
fications – and thus clearly demonstrates the advantage of 
isolating hardware differences within the device drivers. 
This approach makes it possible when deploying a feature 
under development simultaneously on vessels with differing 

Fig. 11   Structure of Application 
Software and Device Drivers of 
the model ship

Fig. 12   Result of Zig-Zag experiment with the implemented system
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configurations, to support multiple ship types by developing 
only a single version of the application software, provided 
that the device drivers can absorb the hardware differences. 
This, in turn, reduces development costs and accelerates 
return on investment. Because each vessel may use differ-
ent manufacturers or vary in detailed specifications to meet 
owners’ requirements and technical constraints, even when 
offering the same functionality, the system modulariza-
tion afforded by our proposal is significant. Of course, in 
more complex applications –such as autonomous naviga-
tion systems– where inputs and outputs change as functions 
are added or removed, some modification of the application 
software may still be required. The scope of those changes 
also depends on the device driver implementation, and func-
tion additions or deprecations may necessitate further adap-
tation. Nevertheless, the modular structure of the proposed 
system confines design changes to specific modules, and in 
particular for large-scale systems, it is expected to reduce the 
volume of code requiring retesting substantially.

5 � Discussions for practical development

This section discusses the practical application of the pro-
posed design methodology in the development of integrated 
systems for ships, such as those presented thus far. In par-
ticular, when developing systems that are deeply involved in 
ship operations, such as autonomous navigation systems, it 
is critically important to ensure system reliability. The chal-
lenge of assuring the safety of complex systems has long 
been a subject of debate. However, in recent years, the result 
of the Regulatory Scoping Exercise(RSE) on standards for 
autonomous ships [24] has been reported by the International 
Maritime Organization (IMO), and classification societies in 
various countries have begun to formulate guidelines for the 
design and evaluation of autonomous ship systems [25–29]. 
As a result, system requirements, development processes, 
and related aspects are gradually being clarified. In antici-
pation of the future developments where system design and 
evaluation will be expected to align with these emerging 

standards, this section discusses both the advantages that our 
proposed methodology can offer developers and the future 
efforts needed for its effective implementation.

In addition to autonomous navigation functions, maritime 
systems are required to possess a high level of safety and 
reliability. Equipment certification systems have been estab-
lished by various national governments to ensure the reli-
ability of maritime equipment. Examples include the Type 
Approval system in Japan (Regulations for Type Approval 
of Vessels and Other Equipment) and the Marine Equipment 
Directive (MED, Directive 2014/90/EU of the European Par-
liament and of the Council) in the European Union. Mari-
time systems that have obtained such approvals are allowed 
to omit certain tests during classification inspections. How-
ever, if systems are developed individually for each vessel, 
safety testing would be required for each case, resulting in 
excessive costs and extended development timelines. There-
fore, it is essential in maritime system development to design 
systems that are applicable to as many types of vessels as 
possible and to obtain type approval.

The authors propose a method to modularize the core 
software (application software) of maritime systems by 
absorbing communication protocol differences of periph-
eral devices through device drivers, thus enabling software 
commonality across different vessels. If type approval can be 
granted separately for application software and device driv-
ers, developers may be able to combine pre-approved soft-
ware components, limiting the scope of testing required for 
each development while maintaining reliability and improv-
ing development efficiency. In particular, device drivers, 
which interface with hardware components such as sensors 
and propulsion systems can be developed and type-approved 
by manufacturers who possess detailed knowledge of their 
own products. By packaging hardware and corresponding 
driver software together, this approach is expected to reduce 
the certification burden on maritime system developers (e.g., 
system integrators) and promote the development of safer 
and more diverse maritime systems.

However, to realize this kind of distributed development, 
it is essential to standardize and unify the communication 

Fig. 13   Structure of Application 
Software and Device Drivers of 
another model ship
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protocol that connects application software with device 
drivers. While application software and device drivers are 
generally installed on the same computing unit, modulari-
zation of application software by function may lead to the 
deployment of components across different computational 
platforms, requiring inter-device communication over a net-
work. In either case, Ethernet appears to be the most suitable 
physical-layer protocol, as it facilitates network construc-
tion, supports a variety of protocols, and offers both high 
transmission reliability and sufficient bandwidth. Ethernet 
supports high-bandwidth communication –up to several 
hundred Gbps–via metallic cables or optical fibers, mak-
ing it capable of transmitting large volumes of sensor data 
such as images or point cloud data of a LiDAR or a Radar. 
Furthermore, the bandwidth at the physical layer enables 
the integration of various higher-layer protocols, making it 
easy to implement features such as encryption and mutual 
authentication. Nonetheless, several considerations must be 
kept in mind when constructing networks based on Ethernet, 
which will be discussed in the following sections.

5.1 � Throughput and delay

Because Ethernet allows all nodes to share part or all of the 
communication path, it is essential to implement counter-
measures against network failures and delays. In particular, 
control communications necessary for ship maneuvering and 
sensor data must ensure sufficient data throughput and pre-
vent malfunctions caused by delays or data loss. Therefore, 
the overall network traffic should be minimized as much as 
possible, and for critical communications, network separa-
tion from other communication systems and prioritization 
through Quality of Service (QoS) mechanisms are required. 
It is also considered necessary to implement measures such 
as redundancy for critical communication systems, including 
those related to navigation, to ensure continued operation in 
the event of transmission line failures.

On the software side, systems utilizing the network must 
take into account the possibility of some degree of latency or 
data loss. It is important to implement mechanisms such as 
timestamps to detect data losses or delays beyond expected 
levels. While the reference time for timestamps is often 
based on the Real-Time Clock (RTC) of the computer on 
which the software is installed, when multiple computers 
engage in mutual data communication, synchronization of 
clocks becomes necessary. This can be achieved using pro-
tocols such as Network Time Protocol (NTP) or Precision 
Time Protocol (PTP). On land, it is possible to access pub-
lic time synchronization services via the internet. However, 
ships are often isolated from terrestrial networks, and thus 
it is necessary to consider incorporating dedicated time syn-
chronization servers onboard as part of the system design.

5.2 � Network security

As ship systems become increasingly sophisticated, the 
potential impact of cybercrime also grows. Therefore, 
robust measures must be taken to ensure cybersecurity. 
This is particularly critical in systems such as autonomous 
ships, where unauthorized access or malicious interfer-
ence with communications could lead to hijacking or 
acts of terrorism. Accordingly, there is a pressing need 
to establish standardized guidelines for cybersecurity 
countermeasures.

Cyberattacks may include eavesdropping on commu-
nications, tampering with data, or unauthorized acquisi-
tion of administrator privileges. To counter these threats, 
technologies developed for terrestrial networks, such as 
encrypted communication, tamper detection, and segrega-
tion between closed and open networks, can be generally 
adapted for maritime systems as well. In closed systems 
that are not connected to the Internet, the primary risks 
for unauthorized access or malware introduction occur 
during software updates. However, in systems designed 
for remote ship operation, which require connections to 
public networks, extra caution is required. In such cases, a 
thorough verification process must be implemented during 
both the outfitting and operational phases to ensure that 
all security configurations are complete and no vulner-
abilities remain.

6 � Conclusion

This paper proposed a method for efficiently developing and 
evaluating shipboard systems by designing communication 
with hardware through device drivers, thereby absorbing 
hardware-specific specifications. Since the configuration of 
ships varies from vessel to vessel, thorough evaluation of 
each system is essential to ensure safety, and certification 
is also required in practical development processes. A sys-
tem design that can be applied across multiple ship types is 
expected to improve development efficiency and contribute 
to the widespread adoption of more advanced systems, such 
as autonomous ships. To achieve this, it will be necessary 
to establish industry-wide standards not only for hardware 
configuration but also for certification at the software mod-
ule level and for safe and efficient interconnection between 
software modules. Furthermore, although evaluation using 
real ships is indispensable, it is difficult to conduct such 
evaluations frequently due to constraints of cost and time. 
Therefore, the use of simulators will also be important to 
further enhance development efficiency. Future work will 
include investigating methods to integrate real-ship develop-
ment systems with simulators. 
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