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A B S T R A C T

Heart transplantation (HTx) is an established treatment for patients with advanced heart failure, although 
postoperative rejection responses hamper favorable long-term treatment outcomes. Medical imaging is a non- 
invasive diagnostic modality that can provide attractive insights into cardiac physiology for HTx, including 
morphological characteristics and cardiac hemodynamics. This study aimed to achieve a basic understanding of 
left ventricular (LV) hemodynamics in patients with good treatment outcomes following HTx. Specifically, four- 
dimensional magnetic resonance imaging was performed on 10 patients with a good postoperative course 
following HTx and 24 controls without a prior history of heart diseases nor HTx. LV hemodynamics were 
evaluated from the LV flow kinetic energy. We found that LV volumetric functions and kinetic energy ranges 
were not significantly different between the HTx and control groups, supporting good efficacy of HTx. Never
theless, a temporal increase in the kinetic energy in late diastole owing to atrial contraction was present in the 
control group but absent in the HTx group except for one HTx patient. These findings raise the need of further 
evaluation of cardiac hemodynamics and the pathophysiology of HTx patients even within normal ranges of 
volumetric and flow transport functions.

1. Introduction

Heart transplantation (HTx) is an established treatment for patients 
with advanced heart failure [1,2]. Although acute rejection immediately 
after HTx used to be a critical issue, recent large cohort studies reported 
that the 5-year survival rate of HTx exceeds 80 % in the United States 
[3], owing to continuous improvements in pre- and post-transplant 
management and guideline development [4,5]. Because the majority 
of patients who undergo HTx are pediatric or young adult populations 
[2,6], the focus of HTx has been shifted to maintaining favorable 
long-term treatment outcomes.

Cardiac allograft rejection is inevitable after HTx [7] and manifests 
as several chronic inflammatory responses. Tissue fibrosis is a common 
characteristic of remodeling in transplanted hearts [8–12] and is asso
ciated with increasing left ventricular (LV) compliance, leading to LV 
diastolic dysfunction. To detect the symptoms of the rejection response, 
a clinical guideline recommends that an endomyocardial biopsy [13,14] 

is conducted every year after HTx. However, because of the invasiveness 
of biopsies, medical imaging is an attractive modality for the 
non-invasive evaluation of transplanted hearts [15–18]. In particular, 
four-dimensional (4D) flow magnetic resonance imaging (MRI) can 
provide spatiotemporal hemodynamic profiles [19–22], from which LV 
dysfunction can be detected, even in subtle or subclinical LV remodeling 
[23]. Because tissue fibrosis correlates with LV dysfunction, which ap
pears as restrictive cardiac physiology [24] and may alter cardiac he
modynamics in patients with HTx [25], assessment of cardiac 
hemodynamics would be valuable to deepen our understanding of the 
cardiac physiology of transplanted hearts and the implications of its 
alteration.

However, cardiac hemodynamics in patients with HTx has received 
little attention and has been limited to echocardiographic studies 
[26–30]. To the best of our knowledge, there have been no 4D flow MRI 
studies of transplanted hearts in patients with pathological responses or 
a good postoperative course. According to clinical guidelines, the 

* Corresponding author: Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, The University of Osaka, 1-3, Machi
kaneyamacho, Toyonaka, Osaka 560-8531, Japan.

E-mail address: otani.tomohiro.es@osaka-u.ac.jp (T. Otani). 

Contents lists available at ScienceDirect

Medical Engineering and Physics

journal homepage: www.elsevier.com/locate/medengphy

https://doi.org/10.1016/j.medengphy.2025.104373
Received 23 January 2025; Received in revised form 6 May 2025; Accepted 29 May 2025  

Medical Engineering and Physics 142 (2025) 104373 

Available online 30 May 2025 
1350-4533/© 2025 The Author(s). Published by Elsevier Ltd on behalf of IPEM. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-6431-2703
https://orcid.org/0000-0002-6431-2703
mailto:otani.tomohiro.es@osaka-u.ac.jp
www.sciencedirect.com/science/journal/13504533
https://www.elsevier.com/locate/medengphy
https://doi.org/10.1016/j.medengphy.2025.104373
https://doi.org/10.1016/j.medengphy.2025.104373
http://crossmark.crossref.org/dialog/?doi=10.1016/j.medengphy.2025.104373&domain=pdf
http://creativecommons.org/licenses/by/4.0/


particular cardiovascular physiology of cardiac allografts (e.g., dener
vation) and surgical complications determine the specific hemody
namics in patients with HTx [31]. On the basis of this consensus, we 
hypothesized that cardiac hemodynamics in patients with HTx, 
including patients with HTx and a good postoperative course, would be 
different from those in healthy controls without a history of heart dis
eases nor HTx.

This study aimed to achieve basic knowledge of LV hemodynamics in 
patients with HTx and a good operative course using 4D flow MRI. 
Fundamental LV hemodynamics were assessed using established pro
tocols and evaluation indices. The obtained hemodynamic characteris
tics were compared with those of healthy controls without a prior 
history of heart diseases nor HTx.

2. Methods

The workflow of the assessment of the LV morphology and hemo
dynamics in patients with HTx is shown in Fig. 1. This retrospective 
cross-sectional study was approved by the Institutional Review Boards of 
The University of Osaka Hospital (No. 20,125–3) and the Graduate 
School of Engineering Science (No. R3–21), for basic research purposes. 
The study was performed in accordance with the approved guidelines of 
the Declaration of Helsinki. Subjects were included after they had pro
vided oral and written informed consent.

We selected 10 patients who underwent HTx by the modified bicaval 
anastomosis technique [32] and 24 healthy controls. All patients with 
HTx had no evidence of acute rejection responses in endomyocardial 
biopsies conducted according to guidelines [14], no abnormal findings 
in right-heart catheterization, and no symptoms of other diseases. All 
healthy controls had no prior histories of heart diseases, no medications, 
and no other abnormalities in health check-ups. MRI scans of patients 
with HTx were performed in 2020–2022 as an adjunct to a clinical ex
amination. MRI scans of healthy controls were also performed in 
2020–2021 using the same scan protocol.

MRI images were acquired in normal sinus rhythm using a 1.5 T 
Philips Ingenia scanner (version R5.7.1; Philips Healthcare, Best, The 

Netherlands). 4D flow MRI of each patient was performed with free 
breathing using an electrocardiogram-triggered, retrospectively 
navigator-gated, three-dimensional, three-directional, time-resolved, 
phase contrast MRI sequence (time of repeat, 4.6 ms; echo time, 2.4 ms; 
flip angle, 10◦; field of view, 320 mm; matrix, 176 × 176 × 80; voxel 
dimensions, 1.82 × 1.82 × 1.5 mm; and 18 time phases in the R-R in
terval). Velocity encoding of 150 cm/s was set according to [20] for all 
subjects not to exceed the maximum flow velocity. To obtain LV volu
metric data, balanced steady-state free precession cine images were 
acquired for a stack of short-axis images covering the entire LV and right 
ventricle (time of repeat, 3.5 ms; echo time, 1.7 ms; flip angle, 60◦; field 
of view, 320 mm; matrix, 384 × 384 × 15; voxel dimensions, 0.91 ×
0.91 × 10 mm; and 20 time phases in the R-R interval).

LV regions in 4D flow MRI images were segmented in all time phases 
by superimposing the short-axis cine MRI images as described previ
ously [33,34]. Original short-axis cardiac magnetic resonance (CMR) 
images were temporally interpolated from 20 phases to 18 phases using 
third-order b-spline interpolation, and the LV inner outlines were then 
extracted using CVI42 (Circle Cardiovascular Imaging Inc., Calgary, 
Canada). The LV regions were superimposed onto 4D flow MRI images 
by three-dimensional rigid registration in a representative time phase 
using Elastix [35]. Registration was restricted to translation only in 
accordance with a previously reported protocol [33].

To assess LV hemodynamics, flow kinetic energy (KE) and flow 
transport properties through the LV were analyzed. First, the time course 
of KE in the LV was computed, as follows. 

KE =
∑

i∈ΩLV

1
2

ρ(ui⋅ui)Δv, (1) 

where ρ is the blood density (= 1.05 × 103 kg/m3), u is the flow velocity 
vector, and Δv is the volume of each voxel [33,36]. Additionally, KE was 
normalized by the LV volume in each time phase to remove the effect of 
an individual LV size, as reported previously [37]. Moreover, flow 
transport properties based on flow pathlines [34] were analyzed through 
the LV in a cardiac cycle (please see supplementary 1, and videos 1 and 2 
for pathline analyses).

All parameters are shown as the mean ± standard deviation (SD) 
unless otherwise noted. Statistical analyses for correlations between 
patients with HTx and controls were performed with the two-tailed 
Mann–Whitney U test using SciPy v1.6.2; (https://scipy.org/)

3. Results

The sociodemographic and physiological parameters of patients with 
HTx and controls are shown in Tables 1 The LV end-diastolic volume 
(EDV), end-systolic volume (ESV), and ejection fraction (EF) 
([EDV− ESV]/EDV) were computed from cine-MRI images. The heart 
rates of patients with HTx were significantly higher than those of the 
controls (p = 1 × 10–4), whereas LV EDV, ESV, and the EF were not 
significantly different between the two groups. Parameters in each pa
tient and controls are shown in Supplementary 2.

Fig. 2 shows the time course of flow KE and normalized KE (by the LV 
volume) in the LV during the R-R interval in patients with HTx and 
controls. In all controls, flow KE peaked in systole, early diastole, and 
late diastole. From the normalized KE, the first, second, and third peaks 
were extracted in chronological order (Fig. 3). The first peak of flow KE 
in systole (0.046 ± 0.015 mJ/ml) tended to be similar to the second 
peak in early diastole (0.042 ± 0.013 mJ/ml), and the third peak in late 
diastole (0.016 ± 0.008 mJ/ml) was smaller than the other peaks. In 
patients with HTx, flow KE peaked to 0.040 ± 0.012 mJ/ml in systole 
and to 0.046 ± 0.012 mJ/ml in early diastole. Moreover, after the sec
ond peak, flow KE monotonically decreased from early diastole to the 
end of diastole, and the third peak was not found, except in one patient 
(48-year-old man, heart rate = 75 beats/min [bpm], and postoperative 
period = 1095 days).Fig. 1. Workflow of left ventricular morphology and hemodynamic evaluation 

in patients with heart transplantation (HTx) and controls.
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4. Discussion

Compared with the controls, patients with HTx had higher heart 
rates but similar LV volumes, EFs (Table 1), KE ranges (Fig. 2), and flow 
components (Supplementary 2). These findings can confirm that the 
flow transport function of each transplanted heart was successfully 

restored to the normal range and HTx was efficacious. However, the 
time course of flow KE was different between patients with HTx and 
controls (Fig. 3). In patients with HTx, the first and second peaks 
appeared in systole and early diastole. However, the third peak that 
appeared in late diastole in controls was absent in patients with HTx 
except in one patient. Generally, this third peak corresponds to passive 
LV dilation owing to left atrial (LA) contraction. Although the third peak 
becomes small with increasing heart rate, the heart rate of the patient 
with HTx in whom the third peak appeared (75 bpm) was similar to that 
of the other patients (group mean ± SD = 74 ± 5 bpm). Furthermore, 
there were no characteristic differences in age and postoperative period 
between this patient and other patients (Table 1). These findings suggest 
that the loss of the third peak originates in HTx-specific factors.

One possible factor of the loss of third peak, which is commonly 
understood as the A-wave peak representing atrial contraction, is the 
progression of LV fibrosis after HTx, increasing elastic compliance [28,
29], and the other factor is LA dysfunction by HTx. Although it is well 
known that the standard HTx technique (biatrial technique) impairs 
physiological LA function owing to the formation of mid-atrial anasto
moses between the donor heart and the remaining tissues of the 

Fig. 2. Time courses of flow KE and normalized KE (by the LV volume) in the LV during the R-R interval in controls (a, c) and patients with HTx (b, d).

Fig. 3. Box plots of the three local peaks in normalized KE extracted during the R–R interval shown in Fig. 2. Peaks are ordered chronologically.

Table 1 
Characteristics of the study population.

Control (n = 24) HTx (n = 10) p-value

Age (y) 45±10 43±9 0.820
Gender (f/m) 7/17 4/6 –
Weight (Kg) 67±10 59±11 0.069
HR at rest (bpm) 63±6 74±5 1 × 10–4

Postoperative period (day) – 1152±514 –
EDV (ml) 134±22 120±28 0.135
ESV (ml) 51±14 47±13 0.427
Ejection fraction ( %) 62±6 61±5 0.438

HTx: heart transplantation, HR: heart rate, EDV: end-diastolic volume, ESV: end- 
systolic volume.
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recipient heart, an improved technique (bicaval technique) is considered 
to preserve physiological morphology and functions [25,31]. However, 
echocardiographic studies reported that both surgical techniques lead to 
LA functions that are not significantly different [38], and the bicaval 
technique decreases LA reservoir functions [39,40]. Furthermore, a 
recent MRI study showed that LV dysfunction is associated with the 
geometric relationship between LA and LV [41], even following HTx 
using the bicaval technique. Further studies on the morphology of the 
left heart and physiology of transplanted hearts would be valuable for 
reaching a consensus on the preservation of cardiac physiology by HTx.

This preliminary study has three major limitations. First, the number 
of patients with HTx is limited because of the difficulty in recruiting a 
large number of patients with HTx, and additional MRI scans are not 
included during standard diagnosis. Further investigations with large 
patient datasets and long-term follow-up of each patient are valuable to 
clarify the hemodynamic function of transplanted hearts and their as
sociation with pathologic progression to achieve favorable long-term 
outcomes. Second, the MRI scan protocol was selected on the basis of 
scanner settings and scan time limitations and not optimized for cardiac 
4D flow MRI according to the cardiac MRI consensus [19,20]. For 
example, compared with a relatively large number of time phases, the 
limited number of time phases of this protocol may result in an under
estimated residual volume, affecting flow component analysis [21,42] 
and making difficult to consider further advanced analyses such as he
modynamic forces [43,44] with higher time resolution. This MRI scan 
protocol would not affect the main findings of this study because MRI 
scans of patients with HTx and controls were performed under the same 
conditions. However, this limitation may prevent the detection of subtle 
hemodynamic differences between the two groups. Third, although 4D 
flow MRI is an indispensable tool for the non-invasive evaluation of LV 
hemodynamics, its inaccessibility is one of the drawbacks for regular 
long-term evaluation of patients with good treatment outcomes. A more 
accessible tool such as Doppler echocardiography would be practically 
useful for further long-term evaluations.

In conclusion, this study is the first to describe LV hemodynamics in 
patients with HTx using 4D flow MRI assessments. The KE ranges and 
flow components through the LV were not significantly different be
tween patients with HTx and controls, supporting good treatment effi
cacy of HTx. However, in patients with HTx, flow KE decreased 
monotonically from early diastole to the end of diastole, and the local 
peak in late diastole from atrial contraction was absent, except in one 
patient. Further studies on cardiovascular hemodynamics and function 
in patients with HTx are needed to understand the underlying implica
tions of the above findings and the relationship between hemodynamics 
and the pathophysiology of transplanted hearts.
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