

Title	On isomorphic power series rings
Author(s)	Ishibashi, Yasunori
Citation	Osaka Journal of Mathematics. 1976, 13(2), p. 419–430
Version Type	VoR
URL	https://doi.org/10.18910/10261
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Ishibashi, Y. Osaka J. Math. 13 (1976), 419-430

ON ISOMORPHIC POWER SERIES RINGS

YASUNORI ISHIBASHI

(Received June 5, 1975)

Introduction

Let A and B be commutative rings with an identity. In this paper we investigate the following question raised by M.J. O'Malley [4]. Can there be an isomorphism of A onto B whenever the formal power series rings $A[[X_1, \dots, X_n]]$ X_n] and $B[[Y_1, \dots, Y_n]]$ are isomorphic? We shall say that A is n-power invariant if whenever C is a ring and $A[[X_1, \dots, X_n]] \simeq C[[Y_1, \dots, Y_n]]$, then we have $A \cong C$. A ring A will be said to be strongly *n*-power invariant if whenever C is a ring and φ is an isomorphism of $A[[X_1, \dots, X_n]]$ onto $C[[Y_1, \dots, Y_n]]$, then there exists a C-automorphism ψ of $C[[Y_1, \dots, Y_n]]$ such that $\varphi(X_i) =$ $\psi(Y_i)$ for $1 \leq i \leq n$. The present paper consists of three parts. In the first part we shall give a characterization of A-automorphisms of $A[[X_1, \dots, X_n]]$. The second part will deal with higher derivations on a complete local ring and we shall determine a necessary and sufficient condition in order that a complete local ring A is isomorphic to a formal power series ring $A_0[[X]]$. M.J. O'Malley has proved that semisimple rings (the Jacobson radical=(0)) are strongly 1-power invariant [4]. In the last part we shall show that semisimple rings are strongly *n*-power invariant for any positive integer *n*. In particular an affine domain over a field is strongly *n*-power invariant for any *n*. Next we shall prove that if A and B are local rings which may not be noetherian (see [2], p. 13) and $A[[X_1, \dots, X_n]] \simeq B[[Y_1, \dots, Y_n]]$ under φ , then there is either a B-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ satisfying $\varphi(X_i) = \psi(Y_i)$ for $1 \leq i \leq n$ or A(resp. B) is isomorphic to a formal power series ring $A_0[[X]]$ (resp. $B_0[[Y]]$). From this we shall easily conclude that a local ring A which may not be noetherian is either strongly n-power invariant for any n, or A is isomorphic to a formal power series ring $A_0[[X]]$. Furthermore we shall show that any noetherian local ring is *n*-power invariant for any *n*.

Throughout this paper all rings are assumed to be commutative and contain an identity.

1. A-automorphisms of $A[[X_1, \dots, X_n]]$

We denote the Jacobson radical of a ring A by $\Im(A)$. In this section let

us suppose that a ring A satisfies the condition $\bigcap_{m=1}^{n} \Im(A)^{m} = (0)$. As is well-known we have $\bigcap_{m=1}^{n} \Im(A)^{m} = (0)$ when A is noetherian.

Proposition 1. Let B be a ring and let φ be an isomorphism of $A[[X_1, \dots, X_n]]$ onto $B[[Y_1, \dots, Y_n]]$. Let $\varphi(X_i) = b_i + b_{i_1}Y_1 + \dots + b_{i_n}Y_n + \dots$ for $1 \le i \le n$, where $b_i, b_{i_j} \in B$. We set $\mathfrak{B} = (b_1, \dots, b_n)$, the ideal of B generated by b_1, \dots, b_n . Then we have

- (1) $\bigcap_{m=1}^{\infty} \mathfrak{F}(B)^{m} = (0) \text{ and } \mathfrak{B} \subset \mathfrak{F}(B),$
- (2) B is complete in the \mathfrak{B} -adic topology,

(3) for any power series $\sum a_{i_1} \cdots a_n X_1^{i_1} \cdots X_n^{i_n} \in A[[X_1, \cdots, X_n]], \sum \varphi(a_{i_1 \cdots i_n}) \varphi(X_1)^{i_1} \cdots \varphi(X_n)^{i_n}$ is a well defined power series in $B[[Y_1, \cdots, Y_n]]$ and we have $\varphi(\sum a_{i_1 \cdots i_n} X_1^{i_1} \cdots X_n^{i_n}) = \sum \varphi(a_{i_1 \cdots i_n}) \varphi(X_1)^{i_1} \cdots \varphi(X_n)^{i_n}.$

Proof. (1) Since $\Im(A[[X_1, \dots, X_n]]) = \Im(A)[[X_1, \dots, X_n]] + (X_1, \dots, X_n)$ and $\bigcap_{m=1}^{n} \mathfrak{F}(A)^{m} = (0), \text{ we get } \bigcap_{m=1}^{n} \mathfrak{F}(A[[X_{1}, \dots, X_{n}]])^{m} = (0). \text{ On the other hand } \varphi(\mathfrak{F}(A[[X_{1}, \dots, X_{n}]])) = \mathfrak{F}(B[[Y_{1}, \dots, Y_{n}]]) \text{ and hence } \bigcap_{m=1}^{n} \mathfrak{F}(B[[Y_{1}, \dots, Y_{n}]])^{m} = (0). \text{ Then it is easy to see that } \bigcap_{m=1}^{n} \mathfrak{F}(B)^{m} = (0). \text{ In order to show } \mathfrak{B} \subset \mathfrak{F}(B), \text{ we have only } \mathbb{F}(B)$ to prove that $b_i \in \mathfrak{F}(B)$ for $1 \leq i \leq n$. For each $b \in B$, $1 + \varphi^{-1}(b)X_i$ is a unit of $A[[X_1, \dots, X_n]]$ and hence $\varphi(1+\varphi^{-1}(b)X_i)=(1+bb_i)+bb_{i_1}Y_1+\dots+bb_{i_n}Y_n+\dots$ is a unit of $B[[Y_1, \dots, Y_n]]$. Therefore $1+bb_i$ is a unit of B for each $b \in B$ and so $b_i \in \mathfrak{F}(B)$ as asserted. If B is \mathfrak{B} -adic complete, $B[[Y_1, \dots, Y_n]]$ is complete in the $(\mathfrak{B}[[Y_1, \dots, Y_n]] + (Y_1, \dots, Y_n))$ -adic topology. Then the assertion (3) is obvious. Thus it is sufficient to prove (2). (2) We set $\mathfrak{B}_k = (b_1^k, \dots, b_n^k)$, the ideal of B generated by b_1^k, \dots, b_n^k . The sequence of ideals $\{\mathfrak{B}_k\}$ defines a topology on B which is equivalent to the \mathfrak{B} -adic topology on B. Let $\{c_k\}$ be a Cauchy sequence of B in the \mathfrak{B} -adic topology. Then $\{c_k\}$ is a Cauchy sequence with respect to the topology defined by $\{\mathfrak{B}_k\}$. It is therefore immediate to see that there exists a subsequence $\{d_k\}$ of $\{c_k\}$ such that $d_k = \sum_{i=0}^k (r_i b_1^i +$ $\cdots + r_{in}b_n^i$ for each k, where $r_{ij} \in B$. Let $f_{ij} = \varphi^{-1}(r_{ij}) \in A[[X_1, \cdots, X_n]]$ and we set $f = \sum_{i=0}^{\infty} (f_{i1}X_1^i + \dots + f_{in}X_n^i)$ which is a well defined power series in $A[[X_1, X_n^i]]$..., X_n]]. If B^* is the \mathfrak{B} -adic completion of B, then we have the canonical injection $\iota: B[[Y_1, \dots, Y_n]] \rightarrow B^*[[Y_1, \dots, Y_n]]$. We shall identify $B[[Y_1, \dots, Y_n]]$. Y_n]] with the subring $\iota(B[[Y_1, \dots, Y_n]])$ of $B^*[[Y_1, \dots, Y_n]]$ and for $h \in B$ $[[Y_1, \dots, Y_n]]$ we shall denote $\iota(h)$ by h. The sequence $\{\sum_{i=0}^k (r_{i1}\varphi(X_1)^i + \dots \}$ $+r_{in}\varphi(X_n)^i)_k$ is obviously a Cauchy sequence of $B[[Y_1, \dots, Y_n]]$ under the $(\mathfrak{B}[[Y_1, \dots, Y_n]] + (Y_1, \dots, Y_n))$ -adic toplogy. Hence $\sum_{i=0}^{\infty} (r_{i1}\varphi(X_1)^i + \dots + r_{in})$ $\varphi(X_n)^i$ is a well defined power series in $B^*[[Y_1, \dots, Y_n]]$. On the other hand we have

420

ISOMORPHIC POWER SERIES RINGS

$$\begin{split} \varphi(f) &- \sum_{i=0}^{k} (r_{i1} \varphi(X_{1})^{i} + \dots + r_{in} \varphi(X_{n})^{i}) \\ &= \varphi(f) - \varphi(\sum_{i=0}^{k} (f_{i1} X_{1}^{i} + \dots + f_{in} X_{n}^{i})) \\ &= \varphi(\sum_{i=k+1}^{\infty} (f_{i1} X_{1}^{i} + \dots + f_{in} X_{n}^{i})) \\ &= \varphi(X_{1})^{k+1} \varphi(\sum_{i=k+1}^{\infty} f_{i1} X_{1}^{i-k-1}) + \dots + \varphi(X_{n})^{k+1} \varphi(\sum_{i=k+1}^{\infty} f_{in} X_{n}^{i-k-1})) \\ &= f_{in} X_{n}^{i-k-1}) \in (\mathfrak{B}[[Y_{1}, \dots, Y_{n}]] + (Y_{1}, \dots, Y_{n}))^{k+1} \end{split}$$

in $B[[Y_1, \dots, Y_n]]$. Hence we get

$$\varphi(f) = \sum_{i=0}^{\infty} (r_{i_1}\varphi(X_1)^i + \dots + r_{i_n}\varphi(X_n)^i)$$
$$= \sum_{i=0}^{\infty} (r_{i_1}b_1^i + \dots + r_{i_n}b_n^i) + g$$

in $B^*[[Y_1, \dots, Y_n]]$, where $g \in B^*[[Y_1, \dots, Y_n]]$ and g has no constant term. Hence we see that $\{d_k\} \rightarrow c$, the constant term of $\varphi(f)$. Since $\varphi(f) \in B[[Y_1, \dots, Y_n]]$ we have $c \in B$. Thus $\{c_k\} \rightarrow c$ and it follows that B is complete in its \mathfrak{B} -adic topology.

Theorem 2. Let $Y_i = a_i + a_{i_1}X_1 + \dots + a_{i_n}X_n + \dots \in A[[X_1, \dots, X_n]]$ for $1 \le i \le n$. We set $\mathfrak{A} = (a_1, \dots, a_n)$, the ideal of A generated by a_1, \dots, a_n . Then there exists an A-automorphism φ of $A[[X_1, \dots, X_n]]$ such that $\varphi(X_i) = Y_i$ for $1 \le i \le n$ if and only if the following conditions hold:

- (1) $\mathfrak{A} \subset \mathfrak{Z}(A)$ and A is complete in the \mathfrak{A} -adic topology,
- (2) the matrix

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

is invertible.

Proof. We assume that there exists an A-automorphism φ of $A[[X_1, \dots, X_n]]$ satisfying $\varphi(X_i) = Y_i$ for $1 \le i \le n$. Then it follows from Proposition 1 that $\mathfrak{A} \subset \mathfrak{F}(A)$ and A is complete in the \mathfrak{A} -adic topology. Let $\varphi^{-1}(X_i) = b_i + b_{i_1}X_1 + \cdots + b_{i_n}X_n + \cdots$ for $1 \le i \le n$. Then we get

$$\begin{split} X_i &= \varphi^{-1}(\varphi(X_i)) \\ &= a_i + a_{i_1} \varphi^{-1}(X_1) + \dots + a_{i_n} \varphi^{-1}(X_n) + \dots \end{split}$$

by Proposition 1 applied to an isomorphism φ^{-1} . Comparing the coefficients of X's we have

$$\sum_{k=1}^{n} a_{ik} b_{kj} \equiv \delta_{ij} \pmod{\Im(A)}$$

where δ_{ij} denotes the Kronecker's symbol, because the coefficients of X's in

 $\varphi^{-1}(X_1)^{i_1}\cdots\varphi^{-1}(X_n)^{i_n}(i_1+\cdots+i_n\geq 2) \text{ belong to the ideal } (b_1,\cdots,b_n)\subset \mathfrak{F}(A).$ Then $det(a_{i})det(b_{i}) \equiv 1 \pmod{\Im(A)}$ and hence $det(a_{i})$ is a unit of A as asserted. Conversely we assume that the conditions (1) and (2) are satisfied. Since A is complete in the \mathfrak{A} -adic topology, $A[[X_1, \dots, X_n]]$ is complete in its $(\mathfrak{A}[[X_1, \dots, X_n]] + (X_1, \dots, X_n))$ -adic topology and hence $\sum a_{i_1 \dots i_n} Y_1^{i_1} \dots Y_n^{i_n}$ is a well defined power series in $A[[X_1, \dots, X_n]]$. If we set $\varphi(\sum_{i_1 \dots i_n} X_1^{i_1} \dots X_n^{i_n})$ $=\sum a_{i_1\dots i_n} Y_1^{i_1} \cdots Y_n^{i_n}$, then we see that φ is an A-endomorphism of $A[[X_1, \dots, X_n]]$ X_n]] satisfying $\varphi(X_i) = Y_i$ for $1 \le i \le n$. In fact we shall show that φ is an automorphism. Let us consider an A-endomorphism τ of $A[[X_1, \dots, X_n]]$ defined by $\tau(X_i) = X_i - a_i$ for $1 \le i \le n$. It is immediate to see that τ is an automorphism and hence we have only to show that $\varphi \tau$ is an automorphism in order to complete our proof. Since $\varphi \tau(X_i) = a_{i_1}X_1 + \dots + a_{i_n}X_n + \dots$ for $1 \leq i \leq n$, it is sufficient to prove assertion under the additional assumption: $a_i=0$ for $1 \le i \le n$. The matrix $(a_{i,i})$ being invertible, we can resolve $X_i=$ $b_{i_1}Y_1 + \dots + b_{i_n}Y_n + f_i(X_1, \dots, X_n)$ for $1 \le i \le n$ conversely, where the non-zero terms of $f_i(X_1, \dots, X_n)$ are of degree ≥ 2 in X_1, \dots, X_n . Now we have $f_i(X_i, \dots, X_n)$ $\cdots, X_n) = f_i(b_{11}Y_1 + \cdots + b_{1n}Y_n + f_1(X_1, \cdots, X_n), \cdots, b_{n1}Y_1 + \cdots + b_{nn}Y_n + f_n(X_1, \cdots, X_n))$ $X_n) = \sum_{i,k} c_{jk}^{(i)} Y_j Y_k + g_i(X_1, \dots, X_n).$ Here the non-zero terms of $g_i(X_1, \dots, X_n)$ are of degree ≥ 3 in X_1, \dots, X_n . We repeat this procedure and eventually we can write $X_i = \sum b_{i_1 \dots i_n} Y_1^{i_1} \dots Y_n^{i_n}$. Since $a_i = 0$ for $1 \le i \le n$, we must have $b_{0\dots 0} = 0$. Then it is easy to see that φ is a surjection. Next we shall prove that φ is an injection. To the contrary, let us suppose that there is a non-zero power series $f(X_1, \dots, X_n) \in A[[X_1, \dots, X_n]]$ satisfying $\varphi(f(X_1, \dots, X_n)) = f(Y_1, \dots, Y_n)$ =0. Let k be the degree of first non-zero terms in $f(X_1, \dots, X_n)$. Since a_i =0 for $1 \le i \le n$, we have $f(0, \dots, 0)=0$ and hence k > 0. As is $f(Y_1, \dots, Y_n)$ =0, we get $\sum_{i_1+\cdots+i_n=k} a_{i_1\cdots i_n} (a_{i_1}X_1 + \cdots + a_{i_n}X_n)^{i_1} \cdots (a_{n_1}X_1 + \cdots + a_{n_n}X_n)^{i_n} = 0$, with some $a_{i_1...i_n} \neq 0$. Now the matrix (a_{i_j}) is invertible by our assumption and therefore we have $A[X_1, \dots, X_n] = A[a_{11}X_1 + \dots + a_{1n}X_n, \dots, a_{n1}X_1 + \dots + a_{nn}X_n]$. This implies that $a_{11}X_1 + \cdots + a_{1n}X_n, \cdots, a_{n1}X_1 + \cdots + a_{nn}X_n$ are algebraically independent over A by the proof of (1.1) in [1]. Thus we obtain a contradiction and our proof is complete.

2. A condition that a complete local ring is isomorphic to a formal power series ring

Let A be a ring. A higher derivation on A is an infinite sequence of endomorphisms $D = \{\delta_0, \delta_1, \delta_2, \cdots\}$ of the underlying additive group of A satisfying the conditions: (1) δ_0 =the identity mapping of A and (2) $\delta_n(ab) = \sum_{i+j=n} \delta_i(a)$ $\delta_i(b)$ for any $a, b \in A$ and n.

Lemma 1. Let A be a ring and let $D = \{\delta_0, \delta_1, \delta_2, \dots\}$ be an infinite se-

quence of mappings of A into itself. Then the following conditions are equivalent: (1) D is a higher derivation on A.

(2) The mapping $\varphi: a \rightarrow \delta_0(a) + \delta_1(a)t + \delta_2(a)t^2 + \cdots$ is a ring homomorphism of A into A[[t]] such that $\pi \varphi(a) = a$ for every $a \in A$ where π is the homormophism: $\sum a_i t^i \rightarrow a_0$.

Proof. The equivalence between (1) and (2) is nothing but a reformulation of the definition.

Lemma 2. Let A be a ring and let \mathfrak{A} be an ideal of A such that $\bigcap_{m=1}^{\infty} \mathfrak{A}^m$ =(0). Suppose that A is complete in the \mathfrak{A} -adic topology and let $D = \{\delta_0, \delta_1, \delta_2, \cdots\}$ be a higher derivation on A. We assume that there exists an element $u \in \mathfrak{A}$ such that $\delta_1(u)=1$ and $\delta_i(u)=0$ for $i \geq 2$. Then A contains a subring A_0 having the following properties: (1) u is analytically independent over A_0 and (2) A is the power series ring $A_0[[u]]$.

Proof. The mapping $\sigma: A \to A$, given by $\sigma(a) = \sum_{i=0}^{\infty} (-1)^i \delta_i(a) u^i$ is a ring homomorphism. We put $\operatorname{Im}(\sigma) = A_0$. A_0 is a subring of A. From the definition of σ it follows that $a = \sigma(a) + \delta_1(a)u - \delta_2(a)u^2 + \cdots$ for $a \in A$. Similarly we see $\delta_1(a) = \sigma(\delta_1(a)) + \delta_1^2(a)u - \delta_2\delta_1(a)u^2 + \cdots$ and therefore we can write $a = \sigma(a) + \sigma(\delta_1(a))u + (\delta_1^2(a) - \delta_2(a))u^2 + (-\delta_2\delta_1(a) + \delta_3(a))u^3 + \cdots$. Proceeding in this way we have $a = \sum_{i=0}^{\infty} a_i u^i$ with $a_i \in A_0$. Next we shall prove that u is analytically independent over A_0 . Since $\delta_1(u) = 1$ and $\delta_i(u) = 0$ for $i \ge 2$, we get $u \in \operatorname{Ker}(\sigma)$. For $a \in A_0$ there exists $b \in A$ such that $a = \sigma(b) = b - \delta_1(b)u + \delta_2(b)u^2 - \cdots$. Thus it follows that a = b - uc for some $c \in A$. If $a \in \operatorname{Ker}(\sigma) \cap A_0$, we obtain $b = a + uc \in \operatorname{Ker}(\sigma)$ and hence $a = \sigma(b) = 0$. Let us suppose that $\sum_{i=0}^{\infty} a_i u^i = 0$ with $a_i \in A_0$. Since $a_0 = -(\sum_{i=1}^{\infty} a_i u^{i-1})u$ and $u \in \operatorname{Ker}(\sigma)$, we have $a_0 \in \operatorname{Ker}(\sigma) \cap A_0 = (0)$. By induction it will be shown that all $a_i = 0$. If we assume $a_i = 0$ for $0 \le i \le n$, we get $0 = a_{n+1}u^{n+1} + a_{n+2}u^{n+2} + \cdots$. Then we have $0 = \delta_{n+1}(a_{n+1}u^{n+1} + a_{n+2}u^{n+2} + \cdots) = a_{n+1} + ub$ for some $b \in A$ and therefore $a_{n+1} \in \operatorname{Ker}(\sigma) \cap A_0 = (0)$ as desired. Hence A is the power series ring $A_0[[u]]$.

An ideal \mathfrak{A} of a ring A is said to be differential if we have $\delta_1(\mathfrak{A}) \subset \mathfrak{A}$ for every higher derivation $\{\delta_0, \delta_1, \delta_2, \cdots\}$ on A.

Theorem 3. A complete local ring A is isomorphic to a formal power series ring $A_0[[X]]$ if and only if the maximal ideal \mathfrak{M} of A is not differential.

Proof. We assume that A is isomorphic to a formal power series ring $A_0[[X]]$. Then A_0 is a complete local ring. Let \mathfrak{M}_0 be the maximal ideal of A_0 . It is well-known that the maximal ideal of $A_0[[X]]$ is $\mathfrak{M}_0[[X]]+(X)$. We consider a mapping δ_n of $A_0[[X]]$ into itself defined by $\delta_n(\sum_{i=0}^{\infty}a_iX^i)=\sum_{i=0}^{\infty}a_iX^i=0$ for i < n. It is easy to see that $\{\delta_0, \delta_1, \delta_2, \cdots\}$ is a

higher derivation on $A_0[[X]]$. Since $\delta_1(X)=1$, the ideal $\mathfrak{M}_0[[X]]+(X)$ is not differential and hence \mathfrak{M} is so. Conversely we assume that the maximal ideal \mathfrak{M} of A is not differential. Then exists a higher derivation $\{\delta_0, \delta_1, \delta_2, \cdots\}$ on A such that $\delta_1(u)$ is a unit of A for some $u \in \mathfrak{M}$. By Lemma 1 the mapping $\varphi: a \to \sum_{i=0}^{\infty} \delta_i(a)t^i$ is a ring homomorphism of A into the power series ring A[[t]]. We shall set $s = \delta_1(u)t + \delta_2(u)t^2 + \cdots$. Since $\delta_1(u)$ is a unit of A, we can resolve $t = u_1 s + u_2 s^2 + \cdots + (u_i \in A)$ conversely, where $u_1 = \delta_1(u)^{-1}$ is a unit of A. Obviously s is analytically independent over A and we have A[[t]] = A[[s]]. For $a \in A$ we shall define $d_n(a) \in A$ by the following identity:

$$a+\delta_1(a)t+\delta_2(a)t^2+\cdots+\delta_n(a)t^n+\cdots$$

= $a+\delta_1(a)(u_1s+u_2s^2+\cdots)+\delta_2(a)(u_1s+u_2s^2+\cdots)^2+\cdots$
= $a+d_1(a)s+d_2(a)s^2+\cdots+d_n(a)s^n+\cdots$.

Then the mapping $\psi: a \rightarrow a + d_1(a)s + d_2(a)s^2 + \cdots$ is a ring homomorphism of A into A[[s]]. It follows from Lemma 1 that $\{d_0=1, d_1, d_2, \cdots\}$ is a higher derivation on A. Since $u + \delta_1(u)t + \delta_2(u)t^2 + \cdots = u + s$, we have $d_1(u) = 1$ and $d_i(u) = 0$ for $i \ge 2$. Hence by Lemma 2 we see that A is isomorphic to a formal power series ring $A_0[[X]]$.

3. Power invariant rings and strongly power invariant rings

Let A be a ring. We say that A is *n*-power invariant if whenever B is a ring and $A[[X_1, \dots, X_n]] \cong B[[Y_1, \dots, Y_n]]$, then we have $A \cong B$. A is said to be strongly *n*-power invariant if whenever B is a ring and $A[[X_1, \dots, X_n]]$ $\cong B[[Y_1, \dots, Y_n]]$ under φ , then there exists a B-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ such that $\varphi(X_i) = \psi(Y_i)$ for $1 \le i \le n$. We first observe that if A is strongly *n*-power invariant and $A[[X_1, \dots, X_n]] \cong B[[Y_1, \dots, Y_n]]$ under φ , there is a B-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ such that $\varphi(X_i) = \psi(Y_i)$ for $1 \le i \le n$ and hence $\psi^{-1}\varphi$ is an isomorphism of $A[[X_1, \dots, X_n]]$ onto $B[[Y_1, \dots, Y_n]]$ satisfying $\psi^{-1}\varphi(X_i) = Y_i$ for $1 \le i \le n$. Hence we have

$$A \simeq A[[X_1, \dots, X_n]]/(X_1, \dots, X_n) \simeq B[[Y_1, \dots, Y_n]]/(Y_1, \dots, Y_n)$$

$$\simeq B.$$

Thus a strongly n-power invariant ring A is n-power invariant.

Theorem 4.*) A semisimple ring A (the Jacobson radical of A=(0)) is strongly n-power invariant for any n.

Proof. Let B be a ring and let φ be an isomorphism of $A[[X_1, \dots, X_n]]$ onto $B[[Y_1, \dots, Y_n]]$. By Proposition 1 we have

^{*} This result is essentially due to M.J. O'Malley [4].

ISOMORPHIC POWER SERIES RINGS

$$\varphi(X_i) = b_i + b_{i_1}Y_1 + \dots + b_{i_n}Y_n + \dots (1 \le i \le n),$$

$$\varphi^{-1}(Y_i) = a_{i_1}X_1 + \dots + a_{i_n}X_n + \dots (1 \le i \le n)$$

where $b_i \in \mathfrak{F}(B)$, $b_{ij} \in B$, $a_{ij} \in A$ and B is (b_1, \dots, b_n) -adic complete. Let $\varphi(a_{ij}) = b_{ij'} + b_{ij1}Y_1 + \dots + b_{ijn}Y_n + \dots$ for $1 \leq i, j \leq n$, where $b_{ij'}, b_{ijk} \in B$. Then by Propositon 1

$$\begin{split} Y_i &= \varphi(\varphi^{-1}(Y_i)) \\ &= \varphi(a_{i_1})\varphi(X_1) + \dots + \varphi(a_{i_n})\varphi(X_n) + \dots \\ &= \sum_{j=1}^n (b_{i_j}' + \sum_{k=1}^n b_{i_jk}Y_k + \dots) (b_j + \sum_{k=1}^n b_{jk}Y_k + \dots) + \dots \,. \end{split}$$

Equating the coefficients of Y's we have

 $\sum_{j=1}^{n} b_{ij'} b_{jk} \equiv \delta_{ik} \pmod{\Im(B)}$

because the coefficients of Y's in $\varphi(a)\varphi(X_1)^{i_1}\cdots\varphi(X_n)^{i_n}(a \in A, i_1+\cdots+i_n \geq 2)$ belong to $\Im(B)$. Then it is immediate to see that the matrix (b_{i_j}) is invertible. Thus it follows from Theorem 2 that there exists a *B*-automorphism ψ of $B[[Y_1, \cdots, Y_n]]$ satisfying $\varphi(X_i) = \psi(Y_i)$ for $1 \leq i \leq n$.

Corollary. An affine domain A over a field is strongly n-power invariant for any n.

Proof. By Hilbert's Nullstellensatz we see that $\Im(A)=(0)$. Now our assertion follows from Theorem 4.

From now on we exclusively consider local rings which may not be noetherian (see [2], p. 13) and for such a ring A we denote the unique maximal ideal by $\mathfrak{M}(A)$.

Theorem 5. Let A be a local ring which may not be noetherian and let φ be an isomorphism of $A[[X_1, \dots, X_n]]$ onto $B[[Y_1, \dots, Y_n]]$. Then we have the following facts:

(1) B is a local ring which may not be noetherian.

(2) There is either a B-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ satisfying $\varphi(X_i) = \psi(Y_i)$ for $1 \le i \le n$, or A(resp. B) contains a local ring $A_0(resp. B_0)$ which may not be noetherian and an element $a \in \mathfrak{M}(A)$ (resp. $b \in \mathfrak{M}(B)$) such that a (resp. b) is analytically independent over $A_0(resp. B_0)$ and $A = A_0[[a]]$ (resp. $B = B_0[[b]]$).

Proof. (1) It is obvious by Proposition 1.

(2) By Proposition 1 we can express

$$\varphi(X_i) = b_i + b_{i_1}Y_1 + \dots + b_{i_n}Y_n + \dots (1 \le i \le n),$$

$$\varphi^{-1}(Y_i) = a_i + a_{i_1}X_1 + \dots + a_{i_n}X_n + \dots (1 \le i \le n)$$

where $a_i \in \mathfrak{M}(A)$ and $b_i \in \mathfrak{M}(B)$ for $1 \leq i \leq n$. Here A is (a_1, \dots, a_n) -adic complete

and B is (b_1, \dots, b_n) -adic complete. Let

$$\varphi(a_i) = b_i' + b_{i_1}'Y_1 + \dots + b_{i_n}'Y_n + \dots (1 \le i \le n),$$

$$\varphi(a_{i_j}) = b_{i_j}'' + b_{i_j}Y_1 + \dots + b_{i_j}Y_n + \dots (1 \le i, j \le n).$$

We see that b_i' is in $\mathfrak{M}(B)$, as is $a_i \in \mathfrak{M}(A)$. If the matrix

(#)
$$\begin{pmatrix} b_{11} & b_{12} \cdots & b_{1n} \\ b_{21} & b_{22} \cdots & b_{2n} \\ \cdots & \cdots & \vdots \\ b_{n1} & b_{n2} \cdots & b_{nn} \end{pmatrix}$$

is invertible, then it follows from Theorem 2 that there exists a *B*-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ satisfying $\varphi(X_i) = \psi(Y_i)$ for $1 \le i \le n$. To the contrary we assume that matrix (#) is not invertible. From Proposition 1 we have

$$Y_{i} = \varphi(\varphi^{-1}(Y_{i}))$$

$$= \varphi(a_{i}) + \varphi(a_{i_{1}})\varphi(X_{1}) + \dots + \varphi(a_{i_{n}})\varphi(X_{n}) + \dots$$

$$= (b_{i}' + \sum_{k=1}^{n} b_{i_{k}}'Y_{k} + \dots) + \sum_{j=1}^{n} (b_{i_{j}}'' + \sum_{k=1}^{n} b_{i_{j_{k}}}Y_{k} + \dots)$$

$$(b_{j} + \sum_{k=1}^{n} b_{j_{k}}Y_{k} + \dots) + \dots$$

Comparing the coefficients of Y's we get

$$\sum_{j=1}^{n} b_{ij}'' b_{jk} + b_{ik}' \equiv \delta_{ik} \pmod{\mathcal{M}(B)}$$

because the coefficients of Y's in $\varphi(a)\varphi(X_1)^{i_1}\cdots\varphi(X_n)^{i_n}(a \in A, i_1+\cdots+i_n \geq 2)$ belong to $\mathfrak{M}(B)$. Thus we have

$$\begin{pmatrix} b_{11}'' & b_{12}'' & \cdots & b_{1n}'' \\ b_{11}'' & b_{12}'' & \cdots & b_{2n}'' \\ \cdots & \cdots & \vdots \\ b_{n1}'' & b_{n2}'' & \cdots & b_{nn}'' \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} \equiv \begin{pmatrix} 1 - b_{11}' & -b_{11}' & \cdots & -b_{1n}' \\ -b_{21}' & 1 - b_{22}' & \cdots & -b_{2n}' \\ \cdots & \cdots & \vdots \\ -b_{n1}' & -b_{n2}' & \cdots & 1 - b_{nn}' \end{pmatrix}$$

(mod. $\mathfrak{M}(B)$). By our assumption the matrix (\sharp) is not invertible and so det $(b_{ij}) \in \mathfrak{M}(B)$. Since $\det(\delta_{ij} - b_{ij'}) \equiv \det(b_{ij'}) \det(b_{ij}) \pmod{\mathfrak{M}(B)}$, we must have $\det(\delta_{ij} - b_{ij'}) \in \mathfrak{M}(B)$ where δ_{ij} is the Kronecker's symbol. Hence there exists $a \ b_{ij} \in \mathfrak{M}(B)$. Then it is easy to see that the matrix

$$j \supset \begin{pmatrix} 1 \\ \ddots \\ 1 \\ b_{i_1} \cdots b_{i_j} \cdots b_{i_n} \\ 1 \\ \ddots \\ 1 \end{pmatrix}$$

426

is invertible. Now we shall show that B is (b_i') -adic complete. Let $\{c_k\}$ be a Cauchy sequence in B under the (b_i') -adic topology. Then there is a subsequence $\{d_k\}$ of $\{c_k\}$ such that $d_k = \sum_{j=0}^{k} r_j b_i'^j$ for each k, where $r_j \in B$. Let $f_j = \varphi^{-1}(r_j)$ and we set $f = \sum_{j=0}^{\infty} a_i^{j} f_j$ which is a well defined power series in $A[[X_1, \cdots, X_n]]$, because A is (a_1, \cdots, a_n) -adic complete. Then $\varphi(f) = \sum_{j=0}^{\infty} \varphi(a_i)^j r_j = \sum_{j=0}^{\infty} r_j b_i'^j + g$ in $B^*[[Y_1, \cdots, Y_n]]$, where B^* denotes the (b_i') -adic completion of B and g has no constant term. Since $\varphi(f) \in B[[Y_1, \cdots, Y_n]]$, we see that $\sum_{j=0}^{\infty} r_j b_i'^j \in B$, that is, $\{d_k\}$ converges in B and hence $\{c_k\}$ converges in B. Together with $b_i' \in \mathfrak{M}(B)$, it follows from Theorem 2 that there exists a B-automorphism σ of $B[[Y_1, \cdots, Y_n]]$ such that $\sigma(Y_j) = \varphi(a_i)$ and $\sigma(Y_k) = Y_k$ for $k \neq j$, that is, $\varphi(a_i)$ is analytically independent over $B[[Y_1, \cdots, Y_{j-1}, Y_{j+1}, \cdots, Y_n]]$. We consider the following sequence of ring homomorphisms:

$$A \xrightarrow{\iota} A[X_1, \dots, X_n]] \xrightarrow{\varphi} B[[Y_1, \dots, Y_n]] = B[[Y_1, \dots, Y_{j-1}, \varphi(a_i), Y_{j+1}, \dots, Y_n]] \xrightarrow{\tau} B[[Y_1, \dots, Y_{j-1}, \varphi(a_i), Y_{j+1}, \dots, Y_n]]$$
$$\overset{\widetilde{\varphi}^{-1}}{[[t]]} \xrightarrow{\varphi} A[[X_1, \dots, X_n]][[t]] \xrightarrow{\nu} A[[t]]$$

where $\iota(a) = a$ for $a \in A$, φ is the given isomorphism, $\tau(\varphi(a_i)) = \varphi(a_i) + t$, $\tau(Y_k) = Y_k + t$ for $k \neq j$, $\tilde{\varphi}^{-1}$ is the isomorphism induced by φ^{-1} , and $\nu(X_i) = 0$ for $1 \leq i \leq n$. We set ρ the composite of these homomorphisms. Then ρ is a ring homomorphism of A into A[[t]] such that $\pi\rho(a) = a$ where π is the homomorphism: $\sum_i a_i t^i \to a_0$. Thus we can express $\rho(a) = a + \delta_1(a)t + \delta_2(a)t^2 + \cdots$. Thence $\{1, \delta_1, \delta_2, \cdots\}$ is a higher derivation on A by Lemma 1. Since $\rho(a_i) = a_i + t$, we have $\delta_1(a_i) = 1$, $\delta_j(a_i) = 0$ for $j \geq 2$ and by Lemma 2 we see that A contains a subring A_0 satisfying the properties: a_i is analytically independent over A_0 and $A = A_0[[a_i]]$. It is obvious that A_0 is a local ring which may not be noetherian. On the other hand

$$X_{l} = \varphi^{-1}(\varphi(X_{l}))$$

= $\varphi^{-1}(b_{l}) + \varphi^{-1}(b_{l})\varphi^{-1}(Y_{1}) + \dots + \varphi^{-1}(b_{l})\varphi^{-1}(Y_{n}) + \dots$

We set

$$\varphi^{-1}(b_l) = a_l' + a_{l_1}'X_1 + \dots + a_{l_n}'X_n + \dots (1 \le l \le n),$$

$$\varphi^{-1}(b_{l_m}) = a_{l_m}'' + a_{l_{m_1}}X_1 + \dots + a_{l_{m_n}}X_n + \dots (1 \le l, m \le n).$$

Here a_i is in $\mathfrak{M}(A)$, as is $b_i \in \mathfrak{M}(B)$. Thus

$$X_{l} = (a_{l}' + \sum_{k=1}^{n} a_{lk}' X_{k} + \cdots) + \sum_{m=1}^{n} (a_{lm}'' + \sum_{k=1}^{n} a_{lmk} X_{k} + \cdots)$$
$$(a_{m} + \sum_{k=1}^{n} a_{mk} X_{k} + \cdots) + \cdots .$$

Comparing the coefficients of X's we get

$$\sum_{m=1}^{n} a_{lm}'' a_{mk} + a_{lk}' \equiv \delta_{lk} \pmod{\mathfrak{M}(A)}.$$

In the matrix notation

$$(a_{ij}'')(a_{ij}) \equiv (\delta_{ij} - a_{ij}') \pmod{\mathfrak{M}(A)}.$$

Now we have $\det(\varphi^{-1}(b_{lm})) \equiv \det(a_{lm}'') \pmod{(X_1, \dots, X_n)}$. Since $\det(\varphi^{-1}(b_{lm})) = \varphi^{-1}(\det(b_{lm}))$ and $\det(b_{lm}) \in \mathfrak{M}(B)$ by our assumption, it is immediate to see that $\det(a_{lm}'') \in \mathfrak{M}(A)$. Thus the same argument as above implies that some $a_{lm}' \notin \mathfrak{M}(A)$ and we have $A[[X_1, \dots, X_n]] = A[[X_1, \dots, X_{m-1}, \varphi^{-1}(b_l), X_{m+1}, \dots, X_n]]$. Then we see that B contains a subring B_0 satisfying the properties: b_l is analytically independent over B_0 and $B = B_0[[b_l]]$. Obviously B_0 is a local ring which may not be noteherian and our proof is now complete.

Theorem 6. Let A be a local ring which may not be noetherian. Then we have only one of the followings:

- (1) A is strongly n-power invariant for any n.
- (2) A is isomorphic to a formal power series ring $A_0[[X]]$.

Proof. We assume that A is not strongly *n*-power invariant for some *n*. Then we have a ring B and an isomorphism $\varphi: A[[X_1, \dots, X_n]] \cong B[[Y_1, \dots, Y_n]]$ such that there is never a B-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ satisfying $\varphi(X_i) = \psi(Y_i)$ for $1 \le i \le n$. Now Theorem 5 implies that A must be isomorphic to a power series ring $A_0[[X]]$. Conversely it is easy to see that a power series ring $A_0[[X]]$ is not strongly *n*-power invariant for any *n*.

Thus a local ring which may not be noetherian can simply be called to be stronly power invariant without reference to the number n of variables.

Corollary 1. An artinian local ring is strongly power invariant.

Proof. An artinian local ring A is not isomorphic to a power series ring $A_0[[X]]$ and hence A is strongly power invariant.

Corollary 2. Let P be a point on an irreducible affine algebraic curve over an algebraically closed field k and let A be the local ring of P. Then the following conditions are equivalent:

- (1) P is a singular point.
- (2) The completion \hat{A} is strongly power invariant.

Proof. Let us suppose that P is non-singular. Then it is obvious that \hat{A} is isomorphic to the power series ring k[[X]] and hence by Theorem 6 \hat{A} is not strongly power invariant. Conversely we assume that \hat{A} is not strongly power invariant. Then it follows from Theorem 6 that \hat{A} is isomorphic to a

428

formal power series ring $A_0[[X]]$. Since \hat{A} is reduced and dim $\hat{A}=1$, A_0 is reduced and dim $A_0=0$. Now it is immediate to show that $A_0\cong k$ and therefore $\hat{A}\cong k[[X]]$. Hence P is non-singular.

Corollary 3. Let V be an irreducible affine varety over a field of characteristic zero and let A be the local ring of a component of the singular locus of V. Then the completion \hat{A} is strongly power invariant.

Proof. If \hat{A} is not strongly power invariant, \hat{A} is isomorphic to a formal power series ring $A_0[[X]]$. Then we can obtain a contradiction by the same argument as that of Theorem 5 in [5].

Theorem 7. Let A be a complete local ring. Then A is strongly power invariant if and only if the maximal ideal $\mathfrak{M}(A)$ of A is differential.

Proof. The assertion follows from Theorem 3 and Theorem 6 immediately.

Theorem 8^{**)} A noetherian local ring is n-power invariant for any n.

Proof. Let A be a noetherian local ring. We shall prove our assertion by induction on Krull dimension of A. If dim A=0, then A is strongly power invariant by Corollary 1 of Theorem 6 and hence A is *n*-power invariant for any *n* according to the remark preceding to Theorem 4. Let us suppose dim A>0. Let B be a ring and let $A[[X_1, \dots, X]] \cong B[[Y_1, \dots, Y_n]]$ under φ . If there exists a B-automorphism ψ of $B[[Y_1, \dots, Y_n]]$ such that $\varphi(X_i) = \psi(Y_i)$ for $1 \leq i \leq n$, then $A \cong B$ by the remark preceding to Theorem 4. Unless such an automorphism exists, it follows from Theorem 5 that A(resp. B) is a power series ring $A_0[[a]]$ (resp. $B_0[[b]]$). Here A_0 and B_0 are local rings. Thus we have an isomorphism $A_0[[a, X_1, \dots, X_n]] \cong B_0[[b, Y_1, \dots, Y_n]]$. Since dim A_0 $< \dim A$, our induction hypothesis means that A_0 is *n*-power invariant for any *n*. Hence we have $A_0 \cong B_0$ and $A = A_0[[a]] \cong B_0[[b]] = B$, as desired.

FUKUOKA UNIVERSITY OF EDUCATION

References

- S. Abhyankar, W. Heinzer and P. Eakin: On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
- [2] M. Nagata: Local Rings, Interscience, New York, 1962.
- [3] M.J. O'Malley: *R-automorphisms of R*[[X]], Proc. London Math. Soc. (3) 20 (1970), 60-78.

^{**} After this paper is completed, the author has observed that E. Hamann obtained the result: a quasi-local ring is *n*-power invariant for any *n*, in her paper "On Power Invariance", to appear.

Y. Ishibashi

- [4] M.J. O'Malley: Isomorphic power series rings, Pacific J. Math. 41 (1972), 503-512.
- [5] A. Seidenberg: Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42.