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A B S T R A C T

Urban Building Energy Modelling (UBEM) application has become a powerful tool for stakeholders to understand 
the impacts of the building sector and its role in contributing to climate policies through the simulation of future 
scenarios. Current UBEM validation has not been explicitly tailored to these applications despite the growing 
demand from model ‘consumers’, such as policy makers, who may not be aware of UBEM limitations. A model 
agnostic temperature–time framework was developed and applied to three municipalities in Japan. This iden
tified the influence of temperature-related bias in energy demand estimates by examining the distribution of 
error across the temperature–time domain as well as comparing the temperature elasticity of modelled energy 
consumption. All municipalities recorded Coefficient of Variance Root Mean Square Error (CVRMSE) <30 % for 
both weekday and weekend conditions while only 4 municipal-day type pairs met the Normalized Mean Bias 
Error (NMBE) criteria of being within ±10 %. Despite meeting these conventional standards, no municipality 
was able to pass all the temperature–time criteria proposed in the framework highlighting a gap in conventional 
metrics due to the persistence of temperature–time biases. Notably, no city, and only 1 % of districts, were able to 
simulate cooling elasticity effectively. The stringent nature of the proposed temperature–time framework sug
gests it presents an aspirational target for ‘future-proof’ UBEM and a means for increased model transparency.

1. Introduction

Sustainable building design has been relatively preoccupied with 
reducing Greenhouse gas (GHG) emissions rather than designing 
buildings resilient against uncertain climate futures [1]. Tradeoffs be
tween climate adaption and mitigation strategies complicates decar
bonization policy design typically conducted at the municipal or 
regional level [2–4]. This can be further complicated by regional vari
ation in energy consumption across as seen in the US (e.g. Wang et al. 
[5]), Japan (e.g. Honjo & Fujii [6]) and globally (Santamouris et al. [7]) 
caused by evolving climate, socio-economic and policy conditions. 
These factors highlight the need for a localizable decarbonization 
evaluation tool considerate of both building emissions and potential 
climate impacts on buildings.

Urban Building Energy Modelling (UBEM) is a promising approach to 
address local, stock-level, carbon reduction strategies [8]. However, 
Dahlström et al. [9] recognize UBEM has not been widely used to 

explicitly examine climate change impacts under future scenarios 
despite the popularization of similar analysis for building stock and 
building energy models (BEM). Ang et al. [8] emphasize that the UBEM 
development process, including minimum performance standards, must 
be cognizant of the desired application of the UBEM. The emerging 
opportunity for UBEM application to model energy demand for unseen 
futures scenarios warrants the enhancement of current UBEM ap
proaches. An ideal model for future scenario analysis would perform 
equally across different scenarios. Extending the idea of a ‘future-proof’ 
building resilient to a range of plausible futures, ‘future-proof’ UBEM’s 
performance would be resilient to a range of projected scenarios [1]. 
However, conventional UBEM validation methods do not guarantee the 
development of future-proof models.

This work examined the relationship between estimated energy 
consumption and temperature-based errors to identify gaps in conven
tional validation metrics. A new temperature–time framework was 
proposed for local empirical validation congruent with the UBEM 
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development process for localized decarbonization planning.

1.1. Urban building energy modelling (UBEM)

UBEM upscales building energy demand simulations to represent 
urban level dynamics and interactions often at the cost of individual 
building model dexterity [10,11]. The UBEM development cycle con
ducts a process of data aggregation, model compilation, simulation, and 
validation and calibration tuned to data availability and model purpose 
[8]. The emergence of smart meter data has granted more spatially and 
temporally resolved data that can be used as an input (e.g. data-driven 
modelling leveraging smart meter defined archetypes by [12]) or for 
providing a baseline to conduct validation (e.g. Kusumoto et al. [13] 
used it to compare the diurnal patterns of their machine learning 
approach and observed conditions in Yokohama). Ang et al. [8] sub
divided UBEM application into four categories: proactive urban design, 
energy conservation and decarbonization measure evaluation at both 
stock and building-levels, and urban energy system analysis considering 
supply and demand dynamics. The diverse spectrum of applications has 
unsurprisingly led to a popularization of UBEM use by “consumers”, 
such as policymakers, who are not involved in model development and 
are unaware the model’s inherent limitations to inform decision making 
[14]. These ‘consumers’ rely on model validation robustness to confi
dently use outputs.

While a comprehensive review of UBEM approaches and specific 
tools is outside the scope of this work it is essential to differentiate UBEM 
types in the context of their synergy with local decarbonization plan
ning. Fundamentally, urban building energy models can be subdivided 
into top-down and bottom-up models. Top-down models are inherently 
incongruent for local decarbonization planning. Top-down models 
struggle to disaggregate energy behavior and test potential policy so
lutions as changing socio-economic drivers and technological improve
ments are often omitted from projections [15,16]. On the other hand, 
bottom-up models recreate building level dynamics that can be 
adjusted based on parameterizations and assumptions to test policy 
scenarios. For example, Papantonis et al. [17] used a bottom-up model 
to examine decarbonization pathways and the tradeoffs between pre
scribed policies in Greece to highlight the importance of near-term 
policy implementation. Ferrando et al. [14] differentiate bottom-up 
models into data-driven and physics based models, with the latter 
being further divided into the more popular reduced-order resis
tor–capacitor (RC) simulation and more detailed dynamic thermal 
simulation (i.e Energyplus). Similar to top-down approaches, data-driven 
bottom-up models tend to struggle extrapolating energy demand 
behavior beyond the extent of the historical data making them ill-suited 
for modelling for uncertain futures [14,18]. Bottom-up physics based 
urban building energy models are not subject to these limitations, 
making them the ideal approach for local decarbonization evaluation 
considering unseen future scenarios.

Bottom-up physics based UBEM, hereafter referred to solely as UBEM 
unless otherwise specified, provides a high level of detail and granu
larity at the building scale useful for exploring decarbonization path
ways and the tradeoffs between prescribed policies and technology 
transitions. UBEM has been benefiting recently from the growing 
availability of data and computing capacity that previously limited their 
use [14]. Kastner and Dogan [19] showcased the ability of UBEMs to 
conduct detailed measure evaluation, in their case PV adoption, to 
support municipal scale decision making in Ithaca, NY, USA. Yamaguchi 
et al. [20] used UBEM analysis to facilitate a comprehensive feasibility 
assessment of a net-zero energy system at the municipal level in Japan. 
However, Ali et al. [21] highlight that while the fine detail of UBEM 
makes it useful for targeted policy, it’s utility can be diminished by the 
multitude of imbedded assumptions needed to parameterize building 
dynamics in the absence of building scale data at the municipal or 
regional level. This emphasizes the need for robust model validation to 
ensure parameterizations are effective, particularly in areas with poor 

data coverage.

1.1.1. Challenges with UBEM validation
Validation and calibration, the last step of the UBEM development 

pipeline, are crucial to ensure UBEM performance is sufficient for its 
range of users and applications. However, Lefort et al. [22] note there is 
no standardized form of UBEM validation across the UBEM spectrum 
with empirical validation heavily relying on historical data availability. 
The absence of a standardized framework leads to less transparent and 
comparable models [10]. A review of UBEM by Kong et al. [11] illus
trates that UBEM outputs usable for validation tend to focus on energy 
consumption and energy use intensity at coarse temporal resolutions (i. 
e. Annual). The Coefficient of Variance Root Mean Square Error 
(CVRMSE) and Normalized Mean Bias Error (NMBE) co-opted from 
building energy modelling standards can be used to evaluate these 
outputs [8]. These provide quantitative assessments of the model’s 
ability to reconstruct energy demand behavior for a validation period for 
which observed data is available. Model validation relies on an implicit 
assumption that validating energy consumption empirically will ensure 
climate-energy dynamics are accurately captured. If this assumption 
fails, however, a hidden embedded temperature related bias can persist.

Fundamentally, validation metrics have not been designed to 
explicitly match model applications, such as future scenario analysis. 
Oraiopoulous and Howard [23] observed a lack novel tailored metrics 
and validation customized to model purpose. Kong et al [11] noted some 
progress towards climate focused metrics in the UBEM literature with 
calibration targets differentiated by heating and cooling regimes rep
resenting an intrinsic consideration of climate-energy relationships. For 
example, Deng et al. [24] demonstrated calibrating their model based on 
heating intensity rather than aggregate energy demand. Nevertheless, 
while calibrating models to fit specific circumstances described by the 
validation data helps improve the model’s ability to recreate observed 
realities, overzealous calibration can lead to over-fitting the model 
making it less generalizable in other contexts. This is a pitfall for models 
designed for the purpose of modelling future scenarios in different 
contexts where validation data provides a limited domain for 
evaluation.

The range of observable and available electricity demand measure
ments and corresponding historical outdoor air temperatures constrain 
model evaluation. This introduces a potential imbedded weakness for 
bottom-up models relative to top-down approaches. BEM energy de
mand estimates can be sensitive to the underlying weather data, an issue 
that extends to UBEM [25]. The constrained extent of weather condi
tions, particularly the range of outdoor air temperatures, observed 
during a validation period can present a hurdle to the feedback process 
of validation and calibration conducted during UBEM development. 
Top-down UBEM approaches explicitly use outdoor air temperature as 
an independent variable to model energy demand [26]. This provides an 
explicit relationship that can be extrapolated using projected ‘future’ 
climate conditions in the form of ‘future’ weather files (e.g. [27]) or by 
augmenting temperature response functions (TRF) to reflect future 
scenario conditions (e.g. [28]). Explicit integration of climate dynamics 
helps circumvent the domain issue by focusing on the climate-energy 
relationship. The inverse is true for bottom-up physics based UBEM 
which reconstruct energy demand behavior and, by extension, capture 
temperature response behavior implicitly. As a result, the ability of 
bottom-up models to represent energy demand behaviors in response to 
temperature changes are not as clear as top-down methods.

Insufficient validation resolution further hinders the ability to ensure 
electricity consumption behaviors are being reflected using UBEM. 
Hourly building energy demand varies with temperature and time. Local 
outdoor air temperature dictates heating and cooling demand. Occu
pancy and activity schedules of residential building occupants cause 
diurnal variations in energy demand. Model validation needs to assess 
whether all these underlying patterns are recreated. However, aggre
gated validation results indicate overall performance of the model but 
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they do not necessarily pinpoint circumstances where the model per
forms more poorly [23]. A shift in climate conditions to historically low 
frequency, extreme, temperatures can exacerbate errors obscured at 
typical validation aggregation levels such as months or years. Even 
disaggregation at the monthly or weekly time scales contain intrinsic 
assumptions about the consistency of weather conditions affecting these 
months and the historical continuity of heating and cooling periods. The 
reliability of these assumptions is decreasing as months shift away from 
their typical conditions due to various scales of climate change. Ulti
mately, low temporal resolutions introduce a challenge for UBEM vali
dation with a focus on recreating climate-energy relationships.

1.1.2. Towards a ‘future-proof’ UBEM
A ‘future-proof’ model should not exhibit heightened errors at 

certain external air temperatures. It also should be able to capture the 
building’s response to changing external air temperatures. Hekkenberg 
et al. [15] demonstrated that mischaracterizing the temperature- 
electricity demand relationship will lead to under or over estimation 
of future electricity demands. Temperature elasticity describes the un
derlying relationship between climate and energy. It quantifies the 
change in electricity demand in response to a unit change in outdoor air 
temperature. Hu et al. [29] showed temperature elasticity varies na
tionally or even regionally in response to occupant activity and prefer
ences as well as building and heating/cooling system conditions. Both 
these factors play a dynamic role in how buildings respond to external 
air temperatures. A case study of temperature elasticity at the district 
level in Tokyo revealed temporal (evening-day, weekend-weekday) and 
spatial differences (urban-suburban) in temperature elasticity [30]. 
Adequately describing the response of a building stock to climate 
changes requires validation at hourly temporal resolutions to ensure 
elasticity is represented. Achieving a ‘future-proof’ model necessitates a 
validation resolution capable of representing and investigating varia
tions in temperature–time.

1.1.3. Scope and contribution
The current body of literature suggests there is an inherent gap in the 

validation of bottom-up UBEM due to limited customization and stan
dardization of UBEM validation, temporally constrained historical 
validation data and the implicit description of climate-energy relation
ships. Fundamentally, the relationship between conventional validation 
approaches and temperature-based errors requires better understanding 
to ensure that temperature-based biases do not persist in conventionally 
validated models. These biases, while less impactful for historical con
ditions, can potentially manifest during more extreme future projected 
climate conditions. Hourly residential electricity consumption simulated 
using a bottom-up physics model was validated for three case study 
cities in Japan. This study proposed a novel validation framework for 
‘future-proof’ UBEM. It provided a unique comparison of conventional 
evaluation methods against the newly proposed tools designed to 
explicitly examine temperature–time biases and model behavior. This 
recognized the inability of conventional methods to ensure ‘future- 
proof’ models. The benefits of this framework were further demon
strated through a model calibration exercise guided by the new 
approach.

2. Method

Fig. 1 presents the workflow and the novel temperature–time 
framework presented in this study. The framework (Step 6- Section 2.2) 
utilizes the same inputs as conventional validation (Step 5- Section 2.1) 
relying on both simulated (Bottom-up physics-based model − Section 
2.3) and measured (smart meter data from case study area, Section 2.4) 
datasets.

The workflow allowed for a case study application of the temper
ature–time validation framework to contrast against conventional vali
dation of electricity demand at the local-hourly scale. District scale 

smart meter data alongside corresponding demographic, temperature 
and building floor areas were compiled (Step 1). Demographic and 
temperature data were used in a bottom-up physics-based simulation of 
the residential electricity demand (Step 2). This simulated data and the 
measured smart meter data was filtered to include only residential 
building dominated districts (Step 3) subsequently aggregated at both 
the municipal and district scales (Step 4). Validation was done at both 
these scales using the conventional (Step 5) and newly proposed tem
perature–time (Step 6) validation methods. Juxtaposing, the results of 
these two evaluations revealed whether conventional approaches 
obscured model weaknesses identified through temperature–time vali
dation. Finally, a calibration exercise informed by the new temper
ature–time framework demonstrated the benefits of using the proposed 
approach.

2.1. Conventional model validation

Building energy demand model validation typically relies on calcu
lating the CVRMSE (Eq.1) and the NMBE (Eq. 2) established as industry 
standards by associations such as ASHRAE [26]. These methods 
compare the measured (m) and simulated (s) energy demand for every 
hour (i) in the set of hours within the year or month (n). The results were 
scaled based on the mean measured energy demand (m). The p value was 
set to 1 [31]. The primary difference between these measures is the 
range of values. Unlike CVRMSE, NMBE can be both positive and 
negative reflecting under or overestimation at the cost of being sus
ceptible to cancellation of errors [31]. 

CV(RMSE) =
1
m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(mi − si)
2

n − p

√

(1) 

NMBE =
1
m

∑n
i=1(mi − si)

n − p
(2) 

ASHRAE Guideline 14 specifies modelled results should achieve a 
CVRMSE <30 % and an NMBE < ±10 % for hourly energy data in line 
roughly with other standards such as the Federal Energy Management 
Program (FEMP) and the International Performance Measurement and 
Verification Protocol (IPMVP) [26,31]. These conventional quantitative 
thresholds assess the validity of the model.

2.2. Temperature-time framework

2.2.1. Temperature-time bias
An explicit temperature–time validation framework enabled valida

tion at distinct temperature and times. Fig. 2 illustrates how hourly 
simulated and measured electricity consumption data was binned by 
temperature, set at 1 ◦C interval bins, and time, based on a 24-hour 
cycle. The CVRMSE and NMBE were calculated using the hourly data 
assigned to each temperature–time bin. These form the basis of tem
perature–time (T-T) plots. A single T-T plot describes the timing and 
temperature bias of errors across the entire year. This provides a 
streamlined visualization compared to standard approaches using an 
increasing number of plots to contrast simulated and modelled hourly 
profiles for a day, week, or month. The occurrence of high CVRMSE or 
NMBE values identify temperatures and/or times where the model 
performs poorly. The T-T plots can help identify more complex dynamics 
that are a combination of temperature and time. For example, Wang and 
Bielicki [32] showed a lagged response to temperature when occupants 
are not actively controlling cooling systems. Larger errors for high 
temperatures overnight would suggest an underrepresentation of such 
dynamics. Vertical bands of high magnitude CVRMSE or NMBE, indi
cating poor mode performance, represent time dependent or tempera
ture independent error. Time dependent errors suggest examining 
occupant activity parameterization due to noticeable diurnal patterns in 
occupant schedules. Horizontal high magnitude bands indicate a 
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Fig. 1. Workflow (Steps 1–6) describing study specific data preparation (Steps 1–4) carried out before context agnostic conventional (Steps 5) and temperature–time 
validation (Step 6) frameworks. The use of data inputs (simulated-blue, measured-orange) as well as data sources (outdoor air temperature, building floor area, and 
census household demographic data-green) were delineated by corresponding-colored arrows. Decision points (yellow diamonds) are included to identify criteria for 
model validation. KS-test refers to the Kolmogorov-Smirnov Test applied to standardized CVRMSE and NMBE while the R2 is the coefficient of determination based 
on simulated and measured elasticities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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temperature-bias attributable to systemic issues with the model’s heat
ing and cooling parameterization. The temperature–time plot of con
ventional validation metrics grants a qualitative diagnostic tool for 
identifying model strengths and weaknesses. The latter can then inform 
subsequent focused calibration and model improvement.

While visual analysis of the temperature–time plot can help identify 
potential sources of error, users of the approach would benefit from 
understanding the significance of high error regions of the temper
ature–time plot. An ideal temperature–time plot would observe 
randomly distributed CVRMSE and NMBE binned by temperature and 
time. This would reflect no bias in temperature and time. The 
Kolmogorov-Smirnov (KS) test (implemented in Scipy [33]) provides a 
statistical test to compare distributions. The KS-test compared the 
CVRMSE and NMBE values binned by temperature–time against an 
assumed random distribution of values. Applying the KS-test in this way 
gauges whether model errors are randomly distributed in temper
ature–time. Temperature-time bins were omitted from the analysis if 
they represented less than 2 % of hourly samples. This was done to 
minimize the impact of low frequency T-T bins while avoiding over
aggressive filtering of T-T bins for subsequent analysis. Standardization 
was used on the remaining results to center and scale the data to 
compare against a common normal distribution representative of the 
ideal, random, distribution of errors. Values lower than the pre-defined 
p-value (0.05) suggest rejecting the null hypothesis that the distribution 
of CVRMSE or NMBE follows the normal distribution. Conversely, 

datasets where this is not the case provide confidence that the CVRMSE 
or NMBE distribution are effectively random and do not contain any 
bias. In this case, the dataset passed the temperature–time bias test.

2.2.2. Elasticity fit
A second layer of temperature-based validation compared simulated 

and measured temperature electricity demand elasticities. This was 
done using temperature response functions (TRF). TRFs describe elec
tricity consumption as a function of outdoor air temperature intrinsi
cally describing socio-economic conditions, thermal comfort 
preferences and system efficiencies [15]. They differentiate electricity 
consumption between heating and cooling temperature domains which 
tend to observe negative and positive proportionality with air temper
atures, respectively. TRF breakpoints delineate where electricity 
behavior transitions between heating and cooling regimes. Chen et al. 
[34] used a single threshold, or stationary point temperature (SPT), for 
the entire temperature domain due to the dominance of cooling and 
popularity of natural gas heating in their case study area, California, 
suggesting a V-shaped TRF. Choi and Yoon [35] explicitly defined the 
stationarity point temperature as the boundary where the minimum 
electricity demand, or base load, occurs. Similarly, modelling done for 
the Tokyo area using a segmented model assigned both heating and 
cooling thresholds separated by a zone of relatively temperature inde
pendent energy use representing a zone of thermal comfort (e.g. 
[30,36]). More robust Multivariate Adaptative Regression Splines 
(MARS) have also been used to model TRFs capable of representing non- 
linear behavior and integrating a range of meteorological information 
[37]. However, the success and interpretability of a heating, comfort 
and cooling segment model motivated the use of a three-segment linear 
model (Fig. 3).

A three-segment TRF model was developed to estimate heating and 
cooling elasticities for each hour. TRFs were generated for each hour to 
reduce the impact of differences in activity throughout the diurnal cycle 
which can manifest as different temperature response functions [37]. 
Equation 3 presents the TRF fitted assuming two distinct breakpoints for 
electricity consumption intensity (E, W/m2). The electricity intensity 
was defined using aggregate electricity consumption scaled by the total 
floor area estimated at the validation scale, either municipal or district 
level. The maximum (tmax) and minimum(tmin) temperatures observed 
within the annual dataset are set as boundaries of the segmented linear 
regression. Slopes (sH, sF, and sC) are defined for each linear segment 

Fig. 2. Conversion of hourly annual data by temperature–time bin assignment 
and aggregation to calculate CVRMSE or NMBE metrics for each temper
ature–time combination for measured (M) and simulated (S) results. Temper
atures (T) are assigned to an interval bin by rounding to the nearest integer 
value. The results are mapped to a temperature–time grid that can identify 
temperature independent and temperature dependent error regions in 
temperature–time.

Fig. 3. A conceptual schematic of the TRF used in this work based on three- 
segments (heating, comfort and cooling) defined by heating (tH) and cooling 
(tC) thresholds. The slope of each segment is based on a superimposition of 
parameters defined for the slope of previous segments. SH describes the slope 
for heating, while sF is the added parameter for defining the comfort segment. 
SC the added parameter for the cooling segment that defines the cooling 
segment slope described by the sum of all parameters, sH, sF, and sC.
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with new terms being added when surpassing a breakpoint to ensure 
continuity [38]. The slope (sH) of the linear function when temperatures 
were below the heating threshold temperature (tH) defined heating 
elasticity. The sum of sH, sF, and sC, or the slope of the function when 
temperatures exceed the cooling threshold temperature (tC) represented 
the cooling elasticity. The three-segment linear model simplifies to a 
similar form typically used; however, this approach does not assume 
temperature elasticity to be zero in the thermal comfort region (≥ tH 
and < tC). 

E =

⎧
⎨

⎩

E0 + sH(T − tmin)

E0 + sH(T − tmin) + sF(T − tH)
E0 + sH(T − tmin) + sF(T − tH) + sC(T − tC)

tmin ≤ T < tH
tH ≤ T < tC

tC ≤ T ≤ tmax

(3) 

The pwlf python package was used to determine the breakpoints and 
slopes of three segment temperature response functions [38]. This 
package uses a double loop optimization algorithm where break points 
are optimized based on a least square exploration of segment slopes for 
the given specified number of segments. The breakpoints were limited to 
15–20 ◦C for heating (tH) and 20–25 ◦C for cooling (tC) in line with 
empirical studies and standards identified (e.g. [29,35,36]). Using a 
smaller range, rather than the entire possible domain where the heating 
threshold temperature is lower than the cooling threshold temperature 
(tH < tc) spurred faster model convergence. It also ensures breakpoints 
agreed with observed and understood temperature response behavior. 
Optimizing breakpoint values for a given hour avoided imposing a fixed 
threshold for the entire diurnal cycle and instead sought to replicate the 
variability of breakpoint temperatures throughout the diurnal cycle due 
to acclimatization [32]. Defining TRF slopes on an hourly basis 
described the diurnal variation of temperature elasticities reflective of 
temperature-based behavior.

Simulated and measured hourly temperature elasticities for heating 
and cooling were compared using R2 and CVRMSE. A low R2 would 
represent a poor representation of the variation in temperature elasticity 
using the model. An R2 threshold of 0.75 can provide a quantitative test 
to validate the model’s temperature elasticity [31]. This threshold 
served as the primary determinant of the simulation’s ability to capture 
measured temperature elasticity. This provides additional validation of 
the model’s intrinsic climate-energy relationship.

2.3. Bottom-up building energy demand modelling

The bottom-up Total Residential End-use Energy Simulation (TREES) 
model has been used previously to evaluate residential decarbonization 
policy by Shimoda et al. [39] and Taniguchi-Matsuoka et al. [40] as well 
as more comprehensive energy system analysis by Yamaguchi et al. 
[20]. Fig. 4 outlines how the model uses census district level population 
information to generate a synthetic population reflective of de
mographics at the local level. However, prefectural level data was used 
to inform building construction periods since district level data was not 
available. The household and building characteristics are then used to 
predict detailed information on building systems and behavior that is 
not available at the household level, such as appliances and occupant 
behavior. A person-based stochastic occupant behavior model is used to 
generate profiles of household members’ occupancy and activity status 
at 5-min resolution. The model employs a stochastic discrete-event 
approach to predict the occurrence and sequence of activities charac
terized by several activity modeling parameters and probability distri
butions modeled by logistic regression models developed based on 
Japanese time use survey data considering household member de
mographics [20,41]. This allows for an estimation of household activ
ities, and resultant appliance use, based on demographic lifestyles. 
Home appliance operation schedules correspond to occupant activity 
schedules, for example water heater use is triggered by occupant bath
ing. These interactions are estimated using probabilistic relationships 
between appliance operation and occupant activity. System appliance 
types, for example gas vs electric water heating, are assigned using a 
logit model relying on household demographic, building geometry and 
regional characteristics [40]. Aggregating appliance energy use 
modelled in the building physics model generate temporally and 
spatially evolved estimates of residential energy demand differentiated 
by fuel types. The electricity demand can then be extracted to compare 
against measured electricity demand.

Weather station data informed two model modules impacted by 
outer air temperatures. A dynamic thermal load simulation relying on a 
thermal network model estimated heating and cooling energy demand 
at 5-min intervals [42]. This approach integrated outdoor air tempera
ture alongside building characteristics, and occupant behavior and 
preset temperatures to determine the operational schedule. Similarly, 

Fig. 4. Framework illustrating the data (left) used to generate the synthetic population and building stock and parameters synthetically assigned (middle). Synthetic 
data was generated for each district based on district-level census data. This information defines occupant activity patterns and subsequently the appliance use 
schedules (right) used to inform aggregated energy demand at high temporal resolutions.

A.M. Zajch et al.                                                                                                                                                                                                                                Energy & Buildings 345 (2025) 116033 

6 



water heater energy demand was based on occupant bathing schedules 
and the city water temperature, with the latter being influenced by 
outdoor air temperature. The intricacies of the imbedded modules 
within the TREES model are outside the focus of this work intended to be 
model agnostic. Readers interested in the details of the model’s pa
rameterizations are directed to the several case studies conducted using 
the TREES model such as the work previously highlighted by Taniguchi- 
Matsuoka et al. [40].

This work presents for the first time validation results for the TREES 
model at the hourly and district level providing new insights into the 
localization possible with the bottom-up approach. The model validated 
in this work was identical to the one presented by Yamaguchi et al. [20] 
albeit for the addition of a miscellaneous electric load (MELs) parameter 
used in previous applications of the model by Taniguchi et al. [43] 
approximated as 70 W/household. Butzbaugh et al. [44] identified that 
MELs encompass a wide range of technologies and energy consumption 
behavior, such as entertainment and elective kitchen appliances, that 
can have a material impact on energy consumption. For example, the 36 
of the best understood MELs contribute an estimated 12 % of residential 
and commercial building consumption in the United States of America 
[44]. The addition of the MELs parameter to the TREES model output is 
therefore necessary to account for MELs not explicitly described in the 
model.

2.4. Case study

The temperature–time framework was applied to a case study area in 
Japan where significant climate goals have been mandated. Japan has 
set a national emission reduction target of 46 % for the year 2030, 
relative to its 2013 emissions levels, on the path to achieve net-zero by 
2050 [45]. According to Japan’s Ministry of Environment ~17 % of 
national CO2 emissions were attributed to residential buildings in 2013 
[46]. Achieving decarbonization in Japan’s residential sector would 
result in significant emissions reductions.

The validation of residential energy demand and comparison with 
temperature-based energy behavior was conducted for three case study 
areas located in central Japan. Fig. 5 shows the locations of Tama city 
and Edogawa City in Tokyo prefecture as well as Sosa City in Chiba 
prefecture. Edogawa City was in the urban core of central Tokyo while 
Tama City was in Tokyo’s suburban fringe. Sosa City represented a rural 
area located well outside Tokyo along the Pacific Coast boasting larger 
homes and families. The case study areas represent a diversity of urban 
form reflected in the underlying synthetic data generated (Appendix A).

Annual hourly electricity consumption smart meter data was 
compiled for all three cities by census districts from April 2022- March 

2023. The dataset recorded low-voltage (50 kW) electricity consumption 
which typically describes residential buildings and less energy intensive 
non-residential buildings. Districts with a small number of buildings 
were omitted due to a lack of data and/or privacy issues. Building point 
data from the Japanese geospatial data provider Zenrin defined the 
proportion of non-residential to residential buildings to focus the anal
ysis on residential districts (Appendix B). Tama City, Edogawa City and 
Sosa City retained districts with at least 50 % residential floor area for 
analysis resulting in only 36, 76 and 55 districts, respectively. District 
scale residential floor areas used to filter districts were also used to 
calculate electricity consumption intensity. Disaggregating district data 
into weekday and holiday day types yielded 72, 152 and 110 district-day 
type datasets for subsequent analysis.

3. Result

3.1. Measured and simulated electricity consumption and elasticity

Examining electricity consumption and temperature related 
behavior showed a divergence between simulated and measured data. 
Fig. 6 shows all three cities displayed a good agreement in the diurnal 
pattern of electricity consumption. However, certain times and months 
observed poorer agreement. Notably, Sosa City showed consistent un
derestimation of consumption in May. Meanwhile, Edogawa City over
estimated February morning and evening peaks. Fig. 7 revealed 
Edogawa and Tama cities showed a slight bias towards greater cooling 
elasticities. This agrees with the higher rate of electrification for cooling 
systems compared to a mixture of electric and fuel based heating systems 
which decouples electricity consumption from heating demand [32]. 
However, Sosa City recorded markedly higher simulated cooling elas
ticities compared to heating elasticities. Fig. 8 illustrated this poor 
agreement in Sosa City extended to the number of cooling hours. These 
were based on cooling and heating temperature thresholds defined from 
TRFs for simulated and measured datasets.

3.2. Model validation at the municipal level

Contrasting the results from conventional metrics against temper
ature–time approaches in Table 1 revealed a more stringent level of 
evaluation introduced by the temperature–time framework that was 
difficult to meet for all cities. Four of the city-day pairs were conven
tionally validated meeting both CVRMSE and NMBE criteria. Only 
Edogawa and Tama cities were able to meet multiple temperature–time 
criteria. None of the city-day pairs met all the temperature–time criteria 
due to poor cooling elasticity agreement. The Tama-Holiday case came 
the closest with meeting all but the cooling elasticity criteria. Comparing 
approaches revealed diverging conclusions despite lower CVRMSE and 
NMBE values often corresponding to better temperature–time perfor
mance. This is exemplified by the ability of all cases to meet the <30 % 
CVRMSE threshold but not many of the temperature–time criteria. 
Moreover, comparing CVRMSE calculated for heating and cooling hours 
and differences in heating and cooling elasticity, respectively, revealed 
no tangible correlation (Appendix D). This demonstrates that the 
CVRMSE does not necessarily reflect the ability of the model’s simula
tions to accurately represent the elasticity of the measured data, and 
temperature related behavior overall.

3.3. Temperature-time plots at the municipal level

Temperature-time plots for municipalities revealed temperature 
dependent and independent errors. Fig. 9 showed regions of high 
CVRMSE in temperature–time plots across all cases despite passing the 
CVRMSE threshold tests. Sosa City and Tama City observed a vertical 
band of high errors from midnight to the early morning (12-4am) 
extending from ~22 ◦C to 3 ◦C. Edogawa City had a more pronounced 
vertical band of high CVRMSE centered around 5 am. Conversely there is 

Fig. 5. Case study areas (1. Tama City, 2-Edogawa City, 3-Sosa City) located in 
central Japan (A) spread across the Tokyo and Chiba prefectures(B). Retrieved 
on 1/9/2025.
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a band of high errors that extends from ~8 am to 6 pm, coinciding with 
business hours and commuting times, observed only for temperatures 
>27 ◦C for Sosa City. Edogawa City also observed horizontal bands 
during daytime hours, more obvious in the holiday case, at temperature 
extremes. Fig. 10 depicted similar patterns in the occurrence of high 
magnitude NMBE regions in city-day pairs. However, due to the 
cancellation of errors the aggregate NMBE values can be low despite 
clear variability in NMBE in temperature–time. Sosa City, which passed 
the conventional NMBE threshold, observed zones of large magnitude 
positive and negative NMBEs. Other cities where there was only one 
mode of NMBE values in temperature–time expectedly observed higher 
magnitude conventional NMBE values. The added utility of the tem
perature–time plots is evident through these examples as high error 
zones, and their potential drivers, appear within a single figure for the 
entire year.

3.4. Heating and cooling elasticities at the municipal level

Comparing estimated elasticities revealed a poorer ability to capture 
cooling behavior. Fig. 11 revealed high agreement between measured 
and simulated heating elasticities for Tama and Edogawa cities. Both 
weekday and holiday conditions for these cities recorded R2 values 
>0.75. Tama City and Edogawa City- Weekday recorded CVRMSE <30 
% for hourly elasticity values. Edogawa-holiday was the only case where 

interpretation of the fit diverged between the R2 and CVRMSE. 
Continuously higher simulated heating elasticity led to a larger devia
tion from the mean measured behavior and higher CVRMSE. This con
trasts with the Edogawa-weekday case where simulated elasticities are 
both under and overestimated across the range of elasticities. Sosa city 
displayed a low R2 (<0.75) and high CVRMSE (>30 %) driven by an 
overestimation during daytime hours. Nevertheless, these results were 
markedly better than those for cooling.

Fig. 12 displayed a lower agreement between measured and simu
lated cooling elasticities with none of the city-day type pairs observing 
an R2 > 0.75. Only Tama city cases had a CVRMSE <30 % with Edogawa 
and Sosa cities being subject to systemic overestimation of cooling 
elasticities. This was particularly noticeable for Sosa City which dis
played daytime and overnight cooling elasticities with more than double 
the magnitude of measured elasticity. Fig. 13 provided insight into the 
poorer performance observed for Sosa City and better agreement for 
Tama and Edogawa cities by showing the estimated heating and cooling 
threshold temperatures defined by TRFs. The higher simulated cooling 
thresholds for Sosa City contribute to the overestimation of cooling 
elasticities since the estimation is based on a smaller and more extreme 
temperature domain, rather than a larger temperature domain where 
the change would be anticipated to be more gradual. Edogawa and Tama 
cities had a good agreement in the heating and cooling thresholds esti
mated using TRFs.

Fig. 6. Simulated and measured mean (line) and distribution (boxplots) of hourly electricity consumption for representative months. Note the different scales of 
electricity consumption for each city (row) were driven by the variable sizes of city building stocks. The boxplot box bounds represent the 1st and 3rd quartiles, with 
outliers being defined as data points passed the 1st or 3rd quartile by 1.5 times the data’s interquartile range.
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3.5. Model validation by district

Validating model results for each district-day pair highlighted the 
varied ability of the model across cities and relatively poor performance 
when evaluated using the temperature–time approaches (Table 2). 
Notably, 212 (63 %) of district-day pairs met the ASHRAE guideline of 
CVRMSE (%) < 30 %. Only 39 % of district-day pairs meet the pre
scribed level of NMBE (%), a slight increase compared to the 38 % of 
district-day pairs which met both NMBE and CVRMSE threshold 
guidelines. Fig. 14 indicated that both underestimation and over
estimation were occurring across districts within the cities due to the U- 
shape of the scatter plots of CVRMSE and NMBE. Districts in Sosa City 
underestimated demand indicated by positive NMBE. The inverse situ
ation was observed for Edogawa and Tama cities which predominantly 

overestimated demand. The higher incidence of meeting the < 30 % 
CVRMSE criteria agrees with the higher success rate for CVRMSE (7 %) 
KS tests compared to the NMBE (1 %) KS tests.

Heating and cooling elasticities showed a tangible contrast in test 
results. Heating elasticity demonstrated a higher agreement with 59 % 
of district-day pairs observing an R2 over 0.75. Only three district-day 
pairs surpassed this threshold for cooling elasticities. The lower per
formance of cooling elasticity estimates is evident by comparing the R2 

values for heating and cooling elasticities in Fig. 14. Unsurprisingly, no 
district-day pair passed all six tests. Only one district-day pair was able 
to pass four tests, failing the KS-tests. These results suggest that the 
combination of all six tests presents a significantly higher validation 
threshold when compared to standard CVRMSE and NMBE guidelines. 
This also underscores that energy estimates may not be representing 

Fig. 7. Magnitude of hourly heating and cooling elasticities (W/◦C m2) compared for all six city-day type pairs highlighting the tendency for higher magnitude 
cooling elasticities. The dotted line represents a one-to-one fit between heating and cooling elasticity magnitudes.
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Fig. 8. The number of heating and cooling hours estimated per week for weekdays based on the temperature thresholds determined from hourly TRFs for both 
measured and simulated conditions. Note the last week saw a marked decrease in hours due to it being an incomplete week.

Table 1 
Results for six validation tests used to evaluate each city-day type pair. Values annotated with a * represent that the criteria were met for the validation metric. 
Temperature-time bins with less than 5 and 2 incidences in the annual hourly dataset for weekday and holiday type days, respectively, were omitted for KS-tests.

City Day type CVRMSE (%) NMBE (%) CVRMSE T-T KS NMBE 
T-T KS

Heating elasticity 
R2

Cooling elasticity 
R2

Sosa Weekday 20.88* 9.88* ​ * 62.2 21.9
Holiday 21.85* 5.71* ​ * 35.5 68.5

Edogawa Weekday 20.63* − 7.28* ​ * 92.8* 59.3
Holiday 24.62* − 14.74 ​ * 91.0* 62.1

Tama Weekday 19.35* 13.21 ​ * 95.3* 60.2
Holiday 17.56* 8.71* * * 80.8* 53.9
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temperature related behavior effectively on a local scale despite the 
relatively high rate of success based on conventional metrics.

3.6. Temperature-time framework application to calibration at the 
municipal scale

Edogawa City temperature–time plots (Figs. 9 and 10) displayed a 
noticeable vertical high error band around 5 am that was targeted for 
temperature–time guided calibration. The error bands represented 
consistent overestimation across the entire annual temperature domain 
during the morning. The proportion of electric water heaters was cali
brated for Edogawa City since water heating tends to maximize output in 
the early morning. The proportion of electric water heating was 
decreased by 50 % for the simulation based on hourly electric water 
heating estimates. In addition, the miscellaneous electric load added in 
this study was also reduced by 50 % to address the consistent over
estimation in T-T exhibited by the NMBE T-T plot. The temper
ature–time framework was re-applied to gauge the impact of the 
calibration exercise.

Fig. 15 revealed both CVRMSE and NMBE values improved with 
calibration. CVRMSE decreased by ~1 % and ~4 % for weekday and 
holiday cases, respectively. NMBE showed a more noticeable improve
ment, particularly for the holiday case which observed a reduction of 
~10 %. This resulted in the calibrated Edogawa City − Holiday case 
meeting the conventional NMBE threshold. These improvements were 

also reflected in the KS-test results. The Edogawa City − Weekday no 
longer exhibited T-T bias based on the CVRMSE KS-test result. Finally, 
heating elasticity R2 values improved while cooling elasticity R2 values 
were slightly lower following calibration. This did not change the 
interpretation of the model’s ability to reflect elasticity in Edogawa City. 
However, this exercise was not expected to significantly influence 
elasticity since the vertical, temperature-independent, band of error was 
targeted. Further calibration is required to reduce the under and over 
estimations of electricity consumption at high temperatures (>26 ◦C) in 
overnight and daytime periods, respectively, still evident in NMBE T-T 
plots. Nevertheless, this example highlights how temperature–time 
guided calibration efforts helped Edogawa City achieve conventional 
validation thresholds and improve T-T metrics.

4. Discussion

Comparing conventional and temperature–time validation results in 
Section 3.2 revealed a variable performance across cities and heating/ 
cooling regimes. Tama City- Holiday saw the best performance 
recording both favorable CVRMSE and NMBE values and a lower degree 
of temperature–time biases. Section 3.3 showed high error regions, 
notably a vertical band overnight and into the morning, punctuating T-T 
plots despite meeting conventional NMBE and CVRMSE thresholds. The 
worst performing case was Sosa City which was only able to meet the T-T 
NMBE KS-test. The poor representation of both heating and cooling 

Fig. 9. CVRMSE (%) calculated for hourly data assigned to each temperature–time bin. Aggregate CVRMSE is shown in the Fig. titles for comparison.
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elasticities, shown in Section 3.4, agreed with higher errors at temper
ature extremes, more noticeable in the holiday case. Other cities also 
observed the consistent divergence between measured and simulated 
cooling elasticity. The model does not consider passive cooling which 
may be more likely in more open sub-urban and rural areas leading to 
deviations in simulated and actual cooling behavior, particularly for 
Sosa City.

District level validation, described in Section 3.5, mirrored conven
tional results at the municipal level but differed in their T-T framework 
results. For example, hardly any districts were able to pass the T-T NMBE 
KS-test unlike in the city cases where all cities met this criterion. This is 
due to the absence of cancellation effects at the district scale which 
manifests at the municipal scale. Moreover, since the construction 
period was estimated based on prefectural estimates it did not capture 
district level variations. This introduces errors at the district level that 
are muted at the aggregate municipal level. Comparing cities, Edogawa 
City performed well at the district scale. The lower variability in de
mographic conditions across districts in Edogawa City may have coun
tered this behavior as there was less variability required by 
parameterizations of the population and building stock. Nevertheless, 
the results show that localization of the bottom-up model may still 
require improvement if stakeholders are seeking district level results.

Despite general agreement between the implied performance of the 
model using both conventional and temperature–time approaches, the 
suite of temperature–time analysis emphasized that there are biases in 
temperature–time that persist in conventionally validated simulations. 
As a result, intrinsic temperature-based bias or errors can persist despite 
conventional validation. This has implications particularly for analysis 
which are concerned with energy demand at higher temporal resolu
tions and temperature extremes such as peak energy demand timings. 
For example, while Tama City − Holiday was validated at the municipal 
level based on conventional NMBE and CVRMSE conditions it failed to 
capture cooling elasticity. While this may appear irrelevant since the 
model captured electricity consumption directly, it is important to 
recognize that cooling elasticity represents the change in consumption 
with increasing temperatures. As a result, an overestimation of elasticity 
will result in a growing divergence between actual and simulated elec
tricity consumption as temperatures grow. Conventional approaches 
failed to recognize the model’s limitation in terms of cooling elasticity. 
This can influence the ability of the model to inform analysis pertaining 
to hourly cooling demand, such as resilience to extreme heat, where the 
cooling reactivity and consumption at extreme temperatures needs to be 
reflected accurately. Accounting for these effects and accurately 
capturing demand at higher temporal resolutions is expected to grow as 

Fig. 10. NMBE (%) calculated for hourly data assigned to each temperature–time bin. Aggregate NMBE is shown in the Fig. titles for comparison.
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demand response programs and smart design become more widespread.
Temperature-time validation grant modelers a sober second look at 

the model performance to inform specific calibration targets towards 
building a ‘future-proof’ model as demonstrated in Section 3.6. The 
ability of the temperature-based validation framework to inform more 
targeted calibration can streamline the validation-calibration process. 
Poor fits between measured and simulated elasticities can reflect po
tential issues with the parameterization of system efficiencies and geo
metric properties of the household. Weak representation of the heating 
or cooling elasticity can be indicative of inaccurate parameterization of 
heating system electrification and the prevalence of passive cooling, 
respectively. On the other hand, T-T plots differentiate between 

temperature dependent and independent errors caused by heating and 
cooling parameterization and occupant behaviors, respectively. The 
framework therefore supports more targeted calibration that can 
directly improve the temperature-based validation of the model by 
targeting underlying model weaknesses.

The intention of the framework is to provide an additional layer of 
analysis for modelers, and by extension policymakers and stakeholders, 
to understand the limitations of their model in the context of anticipated 
future climate changes. The low success rate of model validation using 
the temperature–time framework, with no city or district meeting all six 
criteria, suggests that the ‘future-proof’ model may present an aspira
tional target rather than a goalpost to discredit models deemed sufficient 

Fig. 11. Comparison of measured and simulated heating elasticities. CVRMSE (%) was calculated based on hourly plotted values. The blue solid line represents the 
R2 fit. The red dotted line represents an agreement between measured and simulated results. Note that each plot’s axis is scaled to their minimum and maximum 
values. Note that R2 values have been multiplied by a factor of 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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using conventional metrics.
The increased resolution and focus of the analysis treads new ground 

that will ideally start a discussion about more tailored validation 
frameworks as data resolution and availability improve. The dissemi
nation of Artificial Intelligence of Things (AIoT) technology and Home 
Energy Management Systems (HEMS) will undoubtedly spur the de
mand for more sophisticated validation approaches as stakeholders seek 
to leverage the deluge of data from these technologies. On the other 
hand, low data demands promote the adoption of the framework for a 
wider array of contexts. The framework’s design deliberately considers 
both these opportunities. The framework leverages low data demands, 
relying solely on electricity demand and weather data, to provide a more 

informative validation process whose resolution can be improved in 
response to available data. Modelers can gauge their model’s ‘future- 
proof’ status using the proposed framework intended to be model 
agnostic. While the framework is presented for the physics-based bot
tom-up TREES model, it can be valuable for other bottom-up approaches 
as well. Data-driven bottom-up UBEM stands to benefit the most since 
building dynamics are more implicit than for physics-based models. 
Other physics-based models relying on more sophisticated building 
model engines (i.e Energyplus) can use the framework to validate and 
calibrate parameterizations rather than internal model dynamics. Ulti
mately, modelers can flag models failing to meet ‘future-proof’ status for 
stakeholders at the interface of science and policy. Hong et al. [47] 

Fig. 12. Comparison of measured and simulated cooling elasticities. CVRMSE (%) was calculated based on hourly plotted values. R2 fit is represented by the blue 
solid line. The red dotted line represents an agreement between measured and simulated results. Note that R2 values have been multiplied by a factor of 100. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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advocate for such improved transparency through the identification of 
potential limitations, particularly for policy evaluation considering un
certain futures.

5. Conclusions

The residential bottom-up TREES model was validated at the district 
and municipal levels for three municipalities in Japan. This study 
observed the persistence of temperature-based errors despite sufficient 
scores based on conventional industry standards. Notably, elasticity was 
identified as a blind spot of conventional metrics. The growing popu
larization of Urban Building Energy Modelling (UBEM) application to 
evaluate future energy demand, emission and policy scenarios should be 
cognizant of these inherent limitations, particularly as the desired level 

of detail increases to hourly temporal and local spatial scales. 
Temperature-time plots provide a more robust qualitative assessment of 
model errors and can ideally help address this gap and inform future 
model improvements.

Framework improvement is needed to address potential shortcom
ings of the approach. Examining cooling elasticity using outdoor air 
temperatures introduced a potential weakness to the approach. Analysis 
by Cao et al. [48] of cooling demand and a wet-bulb temperature-based 
cooling degree day index revealed the latter’s effectiveness at describing 
cooling energy demand since it encompassed both sensible and latent 
energy demands. Future work will look to assess the applicability of a 
wet-bulb temperature-based analysis expected to have added utility in 
hot and humid climate conditions such as Japan’s megacities and other 
rapidly developing nations. A parsimonious approach was sought in this 

Fig. 13. Temperature threshold for heating (dashed lines) and cooling (solid lines) defined by hourly TRFs. Temperatures above and below the ranges identified by 
vertical lines represent cooling and heating conditions, respectively.

Table 2 
Number of district-day type pairs which passed the validation evaluation for different validation metrics.

City Districts CVRMSE (%) NMBE (%) CVRMSE T-T KS NMBE 
T-T KS

Heating elasticity 
R2

Cooling elasticity 
R2

Sosa 110 60 41 4 1 3 1
Edogawa 152 114 71 10 2 146 2
Tama 72 38 19 8 2 47 0
Total 334 212 131 15 5 196 3
% of total 63 39 7 1 59 1
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work to reduce the barrier to entry for framework implementation. 
Future framework iterations can use more robust temperature response 
functions if modelling capacity and data availability are sufficient. 
Furthermore, focusing solely on-air temperature fails to consider the 
impact from covariates, such as daylight hours, which can also explain 
the error during these periods. A tiered approach should be applied to 
investigate the most likely issues first. If there is minimal change by 
exploring that domain within logical bounds, the covariates can then be 
explored. Ultimately, the temperature–time approaches presented in 
this work describe a starting point for developing a more robust suite of 
analysis to inform calibration pathways that modelers can develop 

holistically to ensure model resilience against climate change and 
shifting socio-economic conditions.

The new framework presents a pathway forward for UBEM appli
cation for policy analysis. It is an inherent goal of this work to propel 
discourse past the science-policy divide about the limitations and critical 
assumptions of modelling future projected scenarios. This study pro
vides a more transparent and rigorous approach to improve the inter
pretation of model outputs for future climate scenarios. This is essential 
to avoid the propagation of erroneous conclusions by model consumers 
as model complexity and scenario uncertainty expands. Future work will 
apply this framework to improve the development of more robust UBEM 

Fig. 14. CVRMSE (%) and NMBE (%) metrics (left) and R2 scores for heating and cooling elasticities (right) for each district differentiated by weekday (blue circle) 
and holiday (orange triangle) conditions. Shaded regions represent desired validation metrics. Elasticity R2 values were based on the linear relationship between 
measured and simulated hourly elasticity values in W/C◦m2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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and explore purpose-driven calibration towards the creation of a value- 
driven model for future scenario modelling and policy assessments.
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Appendix A. Case study conditions

Table A1 
Population and household numbers are based on the 2020 national census2.

Tama City Edogawa City Sosa City

Population (#) 146,951 697,932 35,040
Households (#) 68,354 332,895 12,848
Area (km2) 20.8 49.3 96.9
Population Density (persons/ km2) 7065 14,157 362
Districts (#) 89 200 63

2[Population, Households, Sex, Age and Marital status] Number of households and Household members by Type of 
household − Japan, Prefectures, Municipalities (including Municipalities as of 2000). Accessed on January 24th, 2025. 
https://www.e-stat.go.jp/en/stat-search/database?statdisp_id = 0003445098.

Fig. A1. Outdoor air temperature for four representative months of the seasonal cycle for each municipality. The blue line indicated the monthly mean diurnal 
signal. The varying range of the y axis between months and cities should be noted prior to comparison.
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Fig. A2. Proportion of household sizes for each district within the case study cities. Sosa city had a noticeably larger household size compared to the denser Edogawa 
and Tama cities.
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Fig. A3. Proportion of household floor area (m2) derived from synthetic population data generated for each district. The larger floor areas in Sosa compared to 
Tama/Edogawa cities emphasize the difference in building stock between case study municipalities.
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Fig. A4. Proportion of detached (blue) and owned (green) homes based on synthetic population data generated for each municipality.
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Fig. A5. Proportion of water heating system types based on synthetic population data generated for each municipality demonstrating the dominance of gas water 
heaters (green) in the case study areas. ASHP represented Air Source Heat Pumps.
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Fig. A6. Proportion of space heating system types based on synthetic population data generated for each municipality showing a mixture of space heating types led 
by Air Source Heat Pumps (ASHP, orange).
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Table A2 
Building parameters adopted by the TREES model used for simulating case study areas.

Thermal resistance (m2 K/W) of insulation material of exterior wall [49]

​ Attached House Detached House

1980 Standard 0.50 0.60
1992 Standard 0.77 0.86
1999 Standard 1.10 2.20

Rated COP of RACs [40]

Cooling 2.62–5.13
Heating 3.19–5.69

Set Room Temperature (◦C)

​ Heating Cooling

No insulation 18 ◦C

27 ◦C
1985 Standard 21 ◦C
1992 Standard 22 ◦C
1999 Standard

Ventilation rate (times/hour)

No insulation 3.0
1985 Standard 1.0
1992 Standard 0.5
1999 Standard

Appendix B. Residential district filtering

Building data compiled from building point data contained the coordinates and floor area, grouped by use type, for each building. A spatial join 
aggregated building information attributed to each district. Summary statistics calculated for each district describe the sum of residential and total 
building floor area. The residential floor area ratio estimated the proportion of residential to total building floor area, providing a proxy of the in
fluence of residential buildings in the district. Districts with residential floor area < 50 % of total building floor area were omitted from subsequent 
analysis at both the district and city levels. Fig. B.1 showed the distribution of floor areas by district relative to the threshold. This helped avoid areas 
with considerable influence from non-residential buildings which are outside the scope of the modelling. 
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Fig. B1. Histogram of the ratio of residential floor area to total building area for each city, based on district level aggregation, compared against the threshold of 0.5 
(red vertical line) used to filter districts for subsequent analysis.
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Appendix C. Temperature-time supplementary figures- counts and histograms

The KS-test compared the distribution of CVRMSE (Fig. C.1) and NMBE (Fig. C.2) for all city-day type pair against the assumption that the binned 
results were randomly distributed in T-T. Comparison of the distribution of CVRMSE in temperature–time bins revealed an underlying bias in all cases 
except for Tama City- Holiday. On the other hand, all city-day pairs passed the KS-test for NMBE based on T-T bins.

Fig. C1. Histogram of standardized CVRMSE based on temperaturetime bins compared against a random normal distribution (red line). Values with a * indicate that 
the CVRMSE was randomly distributed based on the KS-test at a 0.05 alpha level.
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Fig. C2. Histogram of standardized NMBE based on temperaturetime bins compared against a random normal distribution (red line). Values with * indicate that the 
NMBE was randomly distributed based on the KS-test at a 0.05 alpha level.

Fig. C.3 Plotted the number of hourly data points in each temperature–time bin showing no clear patterns between the data count and the patterns 
in the CVRMSE and NMBE plots. This demonstrates that the CVRMSE and NMBE values appear to track the qualitative interpretation of temper
ature–time plots rather than being a relic of unequal data binning. 
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Fig. C3. Temperature-time bin counts highlighting the most frequently occurring bins for hourly data.

Appendix D. Hourly heating and cooling elasticity metric comparison against CVRMSE

Heating and cooling specific CVRMSE revealed the relationship between elasticity and CVRMSE. Heating and cooling hourly data separated based 
on the TRF heating and cooling thresholds from measured data for each hour. CVRMSE was calculated for each hour annually for heating and cooling 
separately. Comparison of the CVRMSE calculated for only heating (Fig. D.1) or cooling (Fig. D.2) hourly data binned by hour and the hourly 
aggregated differences in measured and simulated elasticity revealed no tangible correlation between these metrics. This demonstrates that elasticity 
and CVRMSE based on energy consumption are not necessarily related. 
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Fig. D1. CVRMSE (%) of electricity demand for heating hours, defined as hourly data with temperatures below the heating threshold for hourly measured data, 
compared against the difference in measured and simulated heating elasticity.
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Fig. D2. CVRMSE (%) of electricity demand for cooling hours, defined as hourly data with temperatures above the cooling threshold for hourly measured data, 
compared against the difference in measured and simulated heating elasticity.

Data availability

The authors do not have permission to share smartmeter data but 
model results data are available upon request.
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N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D.A. Nicholson, D. 
R. Hagen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, 
F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen, G.R. Lee, H. Audren, 
I. Probst, J.P. Dietrich, J. Silterra, J.T. Webber, J. Slavič, J. Nothman, J. Buchner, 
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