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We define a subset of the closure of the upper half plane 
associated with an endomorphism on a real inner product 
space, which is called the leaf. When the dimension of the 
space is at least 3, the leaf is a convex with respect to the 
Poincaré metric, and contains all eigenvalues with nonnegative 
imaginary part. Moreover, the leaf of a normal endomorphism 
is the minimum Poincaré convex domain containing all 
eigenvalues with nonnegative imaginary part. The most 
commonly studied convex domain containing eigenvalues is 
number range. Numerical range is convex with respect to 
the Euclidean metric on C, so numerical range has less 
information than leaf about real eigenvalues. We provide a 
new visual approach to endomorphisms.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we define a subset of the closure of the upper half plane associated with 
an endomorphism on a real inner product space, which is called the leaf, and show the 
structure theorems (Theorem A, B and C). The structure theorems on leaf correspond to 
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the fundamental theorems on numerical range (Theorem 5.1, 5.2 and 5.3), which is the 
well-known convex domain containing all eigenvalues, as below. Both numerical range 
and leaf are simply connected domains containing eigenvalues, but numerical range is 
convex with respect to the Euclidean metric on C, and leaf is convex with respect to 
the Poincaré metric on the closure of the upper half plane. The structure theorems on 
leaf and the fundamental theorems on numerical range correspond to each other, but 
they are proved in the different ways because of the difference in the shape of leaf and 
numerical range. The most significant difference is in the points shared with the real axis, 
whereas the intersection of numerical range and the real axis is an interval containing 
all real eigenvalues, whereas that of leaf is the set of all real eigenvalues. Since leaf holds 
information on individual real eigenvalues, it is possible to study the behavior of an 
endomorphism around the eigenspace with respect to a real eigenvalue.

Let V be a finite dimensional inner product space over R. We denote the ring of 
endomorphisms (R-linear maps) on V by End(V ). Since the dimension of the space V 
is important in this paper, an endomorphism on a d-dimensional space V is sometimes 
simply referred to as an endomorphism of dimension d. The angle θ = θ(v1, v2) ∈ [0, π] ⊂
R of two nonzero vectors v1, v2 ∈ V × (= V ∖ {0}) is defined by v1 · v2 = ∥v1∥ ∥v2∥ cos θ. 
Let ϕ be an endomorphism on V . We consider the continuous map Lϕ : V × → C is 
defined by

Lϕ(v) = ∥ϕ(v)∥
∥v∥ 

e
√−1 θ(v, ϕ(v)) for v ∈ V ×.

When ϕ(v) = 0, we don’t define the angle θ(v, ϕ(v)), but can put Lϕ(v) = 0 because of 
∥ϕ(v)∥ = 0. Since 0 ≤ θ(v, ϕ(v)) ≤ π, the imaginary part of Lϕ(v) is nonnegative. Lϕ(v)
belongs to the closure of the upper half plane ℌ = ℌ ∪ R ∪ {∞}, where ℌ = {z ∈ C |
Im z > 0}.

Definition 1.1. The image of Lϕ

Ψ(ϕ) = {Lϕ(v) | v ∈ V ×} ⊂ ℌ

is called the leaf of the endomorphism ϕ.

Example 1.2. Fig. 1 contains leaves of five endomorphisms on an real Euclid spaces Rn

with standard inner product. Such endomorphisms are given by some square matrices 

and direct sums of square matrices. Put E =
(︄

1 0
0 1

)︄
, J =

(︄
0 1

−1 0

)︄
, K =

(︄
0 1
1 0

)︄
, and 

J(λ; d) be the Jordan cell with eigenvalue λ ∈ R and of degree d. The straight line at 
the bottom on each figure is the real axis. 

Leaf is a bounded closed set in the Euclidean metric on C. Numerical range is con
vex with respect to the Euclidean metric on C, but, in generally, leaf is not convex on 
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Fig. 1. Examples of leaves. 

the Euclidean metric on C. In §4, we will show that leaf is path-connected (see Proposi
tion 4.2), and that leaf and the real axis share only all real eigenvalues (see Theorem 4.3). 
In §6, we will see that leaf of endomorphism of dimension at most 2 is simple (see The
orem 6.1). The purpose of this paper is to show the following structure theorems of leaf 
of endomorphism of dimension at least 3.

Theorem A (Poincaré Convexity). Leaf is convex with respect to the Poincaré metric.

Theorem B (Eigenvalue inclusion). Leaf contains all eigenvalues whose imaginary part 
is nonnegative.

The smallest convex domain containing all eigenvalues with nonnegative imaginary 
part is the convex filled geodesic polygon whose vertices are eigenvalues, that is called 
the eigenvalue geodesic polygon. The structure Theorem A and B lead that the leaf of 
an endomorphism of dimension at least 3 includes the eigenvalue geodesic polygon.

Theorem C (Normal case). Leaf of a normal endomorphism is the eigenvalue geodesic 
polygon.

Remark 1.3. Although not covered in this paper, leaf can also be defined for any bounded 
linear operator on any infinite dimensional inner product space, by taking the closure, 
and the above structure theorems also hold.

In §2-3, there are some basic facts on a normal endomorphism and on the Poincaré 
metric. In §4, we define the leaf of an endomorphism. In §5, we describe the difference 
between numerical range and leaf. We decide the leaf of an endomorphism of dimension 
1 or 2 in §6, and prove the structure theorems for the leaf of any endomorphism of 
dimension at least 3 in §7-8.

2. Normal endomorphisms

Let V be a real inner product space of finite dimension, and ϕ a normal endomorphism 
on V . Then V is the orthogonal direct sum of ϕ-stable subspaces of dimension 1 or 2
(see Theorem 10.10 in [5]). In this section, we provide a brief introduction to this fact.
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Put VC = V ⊗R C = V ⊕√−1V the coefficient extension of V to C. There exists a 
Hermitian inner product on VC which extends the real inner product on V . The same 
dot symbol is used for both inner products. Each v ∈ VC = V ⊕√−1V is expressed by 
vr +

√−1vi for some vr, vi ∈ V . vr is called the real part of v, denoted by Re v, and vi
is called the imaginary part of v, denoted by Im v. v = vr −

√−1vi is called the complex 
conjugate of v. Each endomorphism ϕ on V can be extended to the endomorphism on 
VC over C. The same symbol ϕ is used for both endomorphisms.

Let v ∈ VC be an eigenvector of ϕ corresponding to an eigenvalue λ ∈ C.

ϕ(v) = ϕ(Re v +
√−1 Im v) = ϕ(Re v) +

√−1ϕ(Im v)

ϕ(v) = λ v = (Reλ Re v − Im λ Im v) +
√−1 (Im λ Re v + Reλ Im v)

∴ (ϕ(Re v), ϕ(Im v)) = (Re v, Im v) (Reλ E + Im λ J)

where E and J are the quadratic matrices defined in Example 1.2. The complex conjugate 
v is an eigenvector of ϕ corresponding to the eigenvalue λ. If λ ∈ R, then Re v, Im v and v
are eigenvectors of ϕ corresponding to λ. If λ ̸∈ R, since v and v are linearly independent 
on C, {Re v, Im v} is a basis of the ϕ-stable subspace ⟨Re v, Im v⟩ = (C v + C v) ∩ V . 
Especially, if v and v are orthogonal in VC, then Re v and Im v are orthogonal in V . 
Because

Re v · Im v = v + v
2 

· v − v
2
√−1

= −1
4 

(∥v∥2 − v · v + v · v − ∥v∥2) = 1
2Re (v · v) = 0.

{Re v/∥Re v∥, Im v/∥Im v∥} is an orthonormal basis of ⟨Re v, Im v⟩. Moreover, since 
∥Re v∥ = ∥Im v∥ = ∥v∥/√2, the matrix Reλ E + Imλ J is the matrix representation 
of the restriction of ϕ to the subspace ⟨Re v, Im v⟩ with respect to the orthonormal basis 
{Re v/∥Re v∥, Im v/∥Im v∥}.

The adjoint endomorphism ϕ∗ of ϕ is defined by the endomorphism on V satisfying 
that ϕ(v1) · v2 = v1 · ϕ∗(v2) for any v1, v2 ∈ V . The adjoint endomorphism of ϕ as an 
endomorphism on VC is equal to the extension to VC of ϕ∗ on V . An endomorphism 
that commutative with its adjoint is said to be normal. Each normal endomorphism 
on VC is diagonalizable by an orthonormal basis consisting eigenvectors on VC. Every 
normal endomorphism on V has as the matrix representation the direct sum of the real 
eigenvalues and of the a E+b J-type quadratic matrices (a, b ∈ R, b ̸= 0) corresponding 
to the non-real eigenvalues (a + b

√−1), given an appropriate orthonormal basis.

3. The Poincaré metric on 𝕳

The Poincaré metric on the complex upper half plane ℌ is defined by ds = |dz|/Im z

for z ∈ ℌ. The distance ρ(z1, z2) between two points z1, z2 ∈ ℌ is given by

ρ(z1, z2) =
z2∫︂

z1

|ds| = log 1 + δ(z1, z2)
1 − δ(z1, z2) 

where δ(z1, z2) = |z1 − z2|
|z1 − z2| .
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We see that 0 ≤ δ(z1, z2) ≤ 1, and the function log 1+k 
1−k is monotonic increasing on k. 

R ∪ {∞} is called the line at infinity, because δ(z1, z2) = 1 and ρ(z1, z2) = ∞, if and 
only if at least one of z1 and z2 lies on R ∪ {∞}. The geodesic on ℌ with respect to the 
Poincaré metric is a part of a line parallel to the imaginary axis or a part of a semicircle 
whose center is on the real axis. A geodesic circle whose center is z0 ∈ ℌ and radius is 
r = log 1+k 

1−k for 0 ≤ k ≤ 1 is defined by

CP(z0; k) = {z ∈ ℌ | δ(z, z0) = k} = {z ∈ ℌ | ρ(z, z0) = r}.

By putting z = x + y
√−1, z0 = p + q

√−1 ∈ ℌ ∪ R (x, y, p, q ∈ R, y ≥ 0, q ≥ 0), the 
equation δ(z, z0) = k or ρ(z, z0) = r is equivalent to

(x− p)2 + (y − 1 + k2

1 − k2 q)
2 = ((1 + k2

1 − k2 )2 − 1) q2 = ( 2 k 
1 − k2 q)2.

Therefore, the geodesic circle CP(z0; k) is a ordinary circle in C with center p+ 1+k2

1−k2 q
√−1

and radius 2 k 
1−k2 q. A geodesic circle on the Poincaré metric is simply called a geodesic 

circle, and an ordinary circle in the complex plane is simply called a circle.

4. Leaf and real eigenvalues

Let ϕ be an endomorphism on a real inner product space V of finite dimension. The 
continuous map Lϕ on V × (= V ∖ {0}) to C defining by

Lϕ(v) = ∥ϕ(v)∥
∥v∥ 

e
√−1 θ(v, ϕ(v)) (v ∈ V ×),

where the angle θ = θ(v, ϕ(v)) ∈ [0, π] ⊂ R between v and ϕ(v) is defined by v · ϕ(v) =
∥v∥ ∥ϕ(v)∥ cos θ. When ϕ(v) = 0, we don’t define the angle θ, but can put Lϕ(v) = 0
because of ∥ϕ(v)∥ = 0. Lϕ(kv) = Lϕ(v) holds for any k ∈ R×, because ∥ϕ(kv)∥/∥kv∥ =
∥ϕ(v)∥/∥v∥ and θ(kv, ϕ(kv)) = θ(v, ϕ(v)). So the continuous map Lϕ is considered as 
the continuous map on the projective space P (V ) = V ×/R×.

For any v1, v2 ∈ V ×, put σ(v1, v2) =
√︁∥v1∥2 ∥v2∥2 − (v1 · v2)2. Then we have

Lϕ(v) = v · ϕ(v) + σ(v, ϕ(v)) 
√−1

∥v∥2 .

The real part of Lϕ(v) is equal to the Rayleigh quotient v·ϕ(v)
∥v∥2 of ϕ, and the square of 

absolute value of Lϕ(v) to that of ϕ∗ϕ. The operator norm ∥ϕ∥ of ϕ is the supremum of 
the absolute value of Lϕ(v).

Definition 4.1 (leaf). The image of Lϕ

Ψ(ϕ) = Lϕ(V ×) = Lϕ(P (V ))

is called the leaf of the endomorphism ϕ.
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Proposition 4.2. Ψ(ϕ) is path connected.

Proof. Let λ1, λ2 ∈ Ψ(ϕ), and take v1, v2 ∈ V × satisfying that λ1 = Lϕ(v1) and 
λ2 = Lϕ(v2). The path [0, 1] ∋ t ↦→ Lϕ((1− t) v1 + t v2) ∈ Ψ(ϕ) in Ψ(ϕ) connects λ1 and 
λ2. Hence, the leaf Ψ(ϕ) is path connected.

The leaf Ψ(ϕ) is a bounded closed set in C because the projective space P (V ) is 
compact. Since an argument θ belongs to the closed interval [0, π], the value of Lϕ

belongs to the closure of the upper half plane ℌ = ℌ ∪ R ∪ {∞}. The leaf is included 
in ℌ. We will see that the Poincaré metric of ℌ plays an important role on the leaf in 
the later chapters. In closing this section, we show the following theorem on the real 
eigenvalues.

Theorem 4.3. The intersection of the leaf and the real axis is the set of real eigenvalues.

Proof. Let ϕ an endomorphism on a real inner product space of finite dimension V . 
Let λ ∈ R a real eigenvalue of ϕ, and v ∈ V an eigenvector of ϕ corresponding to λ. 
If λ = 0, then ϕ(v) = 0, so Lϕ(v) = 0 = λ. Assume that λ ̸= 0. Since ϕ(v) = λ v is 
parallel to v, the angle θ = θ(v, ϕ(v)) is equal to 0 if λ > 0, and to π if λ < 0. Since 
∥ϕ(v)∥/∥v∥ = ∥λ v∥/∥v∥ = |λ|, and eθ

√−1 = signλ = λ/|λ|, we have that Lϕ(v) = λ. 
Thus λ = Lϕ(v) ∈ Ψ(ϕ) ∩R.

Conversely, we will show that each element λ ∈ Ψ(ϕ) ∩R is an eigenvalue of ϕ. Take 
v ∈ V × satisfying that λ = Lϕ(v). In the case that λ = 0, it follows from Lϕ(v) = λ = 0
that ∥ϕ(v)∥ = 0, i.e. ϕ(v) = 0 = 0 v, so 0 is an eigenvalue of ϕ. Assume that λ ̸= 0. Since 
∥ϕ(v)∥ = |Lϕ(v)| ∥v∥ = |λ| ∥v∥ ̸= 0, the angle θ = θ(v, ϕ(v)) is defined. And θ is also the 
angle of the real number λ = Lϕ(ϕ), so θ = 0 or π. ϕ(v) is parallel to v, namely v is an 
eigenvector of ϕ. Put λ′ be the eigenvalue of ϕ satisfying that ϕ(v) = λ′v, then it follows 
from the first step in this proof that Lϕ(v) = λ′. Hence λ = Lϕ(v) = λ′ is an eigenvalue 
of ϕ.

5. Numerical range vs. leaf

Well-known object as a convex domain containing all eigenvalues is a numerical range 
(cf. [2], [3]). Here we introduce the fundamental theorems that were the starting point 
for studies of numerical range, according to chapter 1 of Guatafson-Rao’s text book ([3]).

Let ϕ be a bounded linear operator on a Hermite inner product space V . The numerical 
range of ϕ is the subset in C defined by

W (ϕ) = {v · ϕ(v)
∥v∥2 | v ∈ V ×} = {v · ϕ(v) | ∥v∥ = 1},

that is the range of the Rayleigh quotients v · ϕ(v)/∥v∥2, v ∈ V ×. The fundamental 
theorems of numerical range are following.
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Theorem 5.1 (Convexity, Toeplitz-Hausdorff, [4], [7]). The numerical range of an oper
ator is convex with respect to the Euclidean metric on C.

Theorem 5.2 (Spectral inclusion, [8]). The spectrum of a bounded linear operator is con
tained in the closure of its numerical range.

Theorem 5.3 ([1], [6]). The closure of numerical range of a normal bounded linear oper
ator is the convex full of its spectrum.

Theorem 5.4 (Equivalent norm). Put w(ϕ) = sup{|λ| | λ ∈ W (ϕ)} (the numerical ra
dius), and ∥ϕ∥ = sup{∥ϕ(v)∥/∥v∥ | v ∈ V ×} (the operator norm). Then w(ϕ) ≤ ∥ϕ∥ ≤
2w(ϕ).

The structure theorems of leaf (Theorem A, B, C) correspond to the first three of the 
fundamental theorems above. The corresponding result to the last theorem on the leaf 
is that

∥ϕ∥ = sup{|λ| | λ ∈ Ψ(ϕ)}

which follows from the definition of leaf.
There is an essential difference between Theorem 5.1 and Theorem A: numerical range 

is convex with respect to the Euclidean metric, and leaf is convex with respect to the 
Poincaré metric. Different metrics lead to different appearances of the real eigenvalues in 
the figures. The intersection of numerical range and the real axis is an interval containing 
all real eigenvalues (Theorem 5.1, 5.2), whereas that of leaf is the set of all real eigenvalues 
(Theorem 4.3). The information on each of the real eigenvalues is lost in numerical range, 
but retained in leaf.

Theorem B and Theorem 5.2 have different ways of proving. In the case of numerical 
range, the Rayleigh quotient of an eigenvector is the eigenvalue. But, since any endo
morphism on a real vector space has no real eigenvector with respect to the non-real 
eigenvalue which is a non-real root of the characteristic polynomial, the same method 
cannot be use for leaf as for numerical range. We need to use Theorem A, to find a real 
vector for which the value of the function Lϕ is the non-real eigenvalue (Proposition 7.2).

Theorem A and Theorem 5.1 also have different ways to proving. The line connecting 
the two points of numerical range is given by the image by the Rayleigh quotient of real 
coefficient linear combination of two vectors giving the two points on numerical range. 
The geodesic connecting the two points of leaf is contained in the interior of the closed 
curve formed by the image by Lϕ of the subspace generated by the two vectors giving 
the two points (Proposition 7.3). It can be shown that the geodesic connecting the two 
points is contained in leaf, by continuously moving that closed curve using a third vector 
to fill the interior of that closed curve (Proposition 7.5).

In the case of a normal endomorphism, both numerical range and leaf are convex 
sets containing all eigenvalues. The metrics are different, so the geodesics are different 
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shapes. The edges which are geodesics connecting the eigenvalues have different shapes 
for numerical range and leaf.

6. Leaf of an endomorphism of dimension 1 or 2

In this section, we will show the following theorem.

Theorem 6.1. Leaf of an endomorphism of dimension 1 or 2 is either a single point set, 
a circle or a bended circle.

A bended circle is defined by a figure formed by bending a circle that intersects the 
real axis upward along the real axis. The center and the radius of a bended circle are 
defined by the center and the radius of the original circle, respectively. Let C be a circle 
in C crossing the real axis, and put C ′ be the complex conjugate of C. Then (C∪C ′)∩ℌ

is a bended circle.
Clearly leaf of each endomorphism of dimension 1 is a single point set.

Proposition 6.2. Let V be a real inner product space of dimension 2, and ϕ an endomor
phism on V .

(a) If ϕ has 
(︄
a b

c d

)︄
as a matrix representation with respect to an orthonormal basis of 

V , then the leaf Ψ(ϕ) contains a+ |b|√−1, a+ |c|√−1, d+ |b|√−1 and d+ |c|√−1.
(b) Put α = a+d

2 + |b−c|
2 

√−1 and r = 1
2
√︁

(a− d)2 + (b + c)2. Both α and r are 
independent of choice of orthonormal basis of V .

(c) Let C ⊂ C be the circle with center α and radius r. If ϕ does not have any real 
eigenvalues, then Ψ(ϕ) = C. Moreover, if r > 0, then the eigenvalue with positive 
imaginary part is located on the circumference or on the interior of C.

(d) If all eigenvalues of ϕ are real, then C crosses the real axis at the eigenvalues, and 
Ψ(ϕ) is a bended circle (C ∪ C ′) ∩ ℌ, where C ′ is the complex conjugate of C.

Proof. (a) Let {u1, u2} be an orthonormal basis of V satisfying that 
(︄
a b

c d

)︄
is the matrix 

representation of ϕ with respect to this basis. Then ϕ(u1) = a u1 + c u2. Since ∥u1∥ = 1, 
∥ϕ(u1)∥2 = a2 + c2, u1 ·ϕ(u1) = a and σ(u1, ϕ(u1)) = |c|, we have Lϕ(u1) = a+ |c|√−1. 
Similarly, we have Lϕ(u2) = d + |b|√−1, Lϕ((a − d)u1 + (b + c)u2) = a + |b|√−1 and 
Lϕ((b + c)u1 − (a− d)u2) = d + |c|√−1. Their four points belong to Ψ(ϕ).

(b) Let A =
(︄
a b

c d

)︄
and A′ =

(︄
a′ b′

c′ d′

)︄
be the matrix representations of ϕ with 

respect to the two orthonormal bases of V . Put P be the translation matrix between their 
orthonormal bases, then A′ = P−1AP = tPAP , because P is an orthogonal matrix. The 
column vectors p and q where P = (p q) are an orthonormal basis of R2. Comparing the 
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(1, 2) and (2, 1) components of A′ = tPAP yields b′ = tpAq and c′ = tqAp = tptAq. And 
then b′− c′ = tp(A− tA)q = tp(b− c)Jq = (b− c)tpJq, where J is defined in Example 1.2. 
J is the π/2-rotation on R2, so Jq = ±p. Hence, |b′ − c′| = |(b− c)(±∥p∥2)| = |b− c|.

The trace and the determinant of a matrix representation are independent of choice 
of basis. That is a + d = a′ + d′ and ad− bc = a′d′ − b′c′, then

α = a + d

2 
+ |b− c|

2 

√−1 = a′ + d′

2 
+ |b′ − c′|

2 

√−1

and

(2r)2 = (a− d)2 + (b + c)2 = (a + d)2 + (b− c)2 − 4(ad− bc)

= (a′ + d′)2 + (b′ − c′)2 − 4(a′d′ − b′c′) = (a′ − d′)2 + (b′ + c′)2.

We have that α and r are independent of choice of orthonormal basis of V .
(c) Let D be the discriminant of the characteristic polynomial of ϕ. ϕ does not have 

any real eigenvalues, so D is negative. Since D = (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc, 
we have bc < 0. Four points of (a) form the rectangle with center α and diagonal length 
2r. Therefore, four points in (a) lie on C.

Let λ′ = Lϕ(v) ∈ Ψ(ϕ) where v ∈ V ×, and put u = v/∥v∥. There exists an orthonormal 
basis of V containing u. Since C is independent of choice of orthonormal basis of V , 
λ′ = Lϕ(v) = Lϕ(u) lies on C. Ψ(ϕ) is included in C.

We will show that C ⊂ Ψ(ϕ). The leaf is path connected (Proposition 4.2), so the 
complement C ∖ Ψ(ϕ) is at most 1 connected component. For a matrix representation (︄
a′ b′

c′ d′

)︄
of ϕ with respect to an orthonormal basis of V , two points a′ + |c′|√−1 and 

d′ + |b′|√−1 ∈ Ψ(ϕ) are on the diagonal on C. Ψ(ϕ) is point symmetric with respect 
to the center α of C. The complement C ∖ Ψ(ϕ) is also point symmetric. Thus, the 
complement C∖Ψ(ϕ) is the empty set or whole of C. Since Ψ(ϕ) is not empty, C ⊂ Ψ(ϕ). 
So Ψ(ϕ) = C.

Let λ be an eigenvalue of ϕ with positive imaginary part. Then we have λ = a+d
2 +

√
D
2 . 

Since D+(b−c)2 = (a−d)2+(b+c)2 = (2r)2 ≥ 0 and D < 0, we have that 
√︁|D| ≤ |b−c|. 

The distance between λ and α (the center of C) is at most the radius of C, as below.

|λ− α|2 =
(
√︁|D| − |b− c|)2

4 
=

|D| + (b− c)2 − 2
√︁|D| |b− c|

4 

≤ |D| + (b− c)2 − 2|D|
4 

= r2.

Namely, λ is located on the circumference or on the interior of C.
(d) Let λ be a real eigenvalue of ϕ, which is denoted by a+d±√

D
2 .

|λ− α|2 = (λ− a + d

2 
)2 + ( |b− c|

2 
)2 = D + (b− c)2

4 
= r2.
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Hence, each real eigenvalue lies on the circumference of the circle C. Let C ′ be the circle 
with center α = a+d

2 − b−c
2 
√−1 and radius r. C ′ is symmetric with C about the real axis. 

Hence, each real eigenvalue also lies on the circumference of the circle C ′. We consider 
eight points a ± b

√−1, a ± c
√−1, d ± b

√−1 and d ± c
√−1. Four points a + b

√−1, 
a− c

√−1, d + b
√−1 and d− c

√−1 are the vertices of the rectangle with center α and 
diagonal length 2r, and are on C. Another four points a− b

√−1, a + c
√−1, d− b

√−1
and d+c

√−1 are the vertices of the rectangle with center α and diagonal length 2r, and 
are on C ′. Therefore these eight points are on the union of the circles C and C ′. Four of 
eight points, a+ |b|√−1, a+ |c|√−1, d+ |b|√−1 and d+ |c|√−1 belong to ℌ, and then 
are on the bended circle (C ∪ C ′) ∩ ℌ which is the shape made by bending the circle C
upward along the real axis. We have that Ψ(ϕ) is included in (C ∪C ′) ∩ℌ. The reverse 
inclusive relation (C ∪ C ′) ∩ ℌ ⊂ Ψ(ϕ) is valid in the same way as the proof of (c).

Proposition 6.3. Let ϕ be an endomorphism on a real inner product space V of dimension 
at least 2. Assume that ϕ has two different real eigenvalues λ1 and λ2. Let v1 and v2 ∈ V

be unit eigenvectors of ϕ corresponding to λ1 and λ2, respectively, and put β = v1 · v2. 
Then Lϕ(⟨v1, v2⟩×) is the bended circle with center α and radius r, where α = λ1+λ2

2 +
t
√−1, and t and r are nonnegative real numbers satisfying that

r2 = (λ1 − λ2

2 
)2 + t2, t = |λ1 − λ2|

2 
|β| √︁
1 − β2

, r = |λ1 − λ2|
2 

1 √︁
1 − β2

.

Proof. Since the last proposition leads that λ1 and λ2 lie on the circle with center α and 
radius r, we have that |λ1 − α| = |λ2 − α| = r, namely

(λ1 − λ2

2 
)2 + t2 = r2

Put w = v1 + v2 ∈ ⟨v1, v2⟩×, then

∥w∥2 = 2(1 + β), ∥ϕ(w)∥2 = λ2
1 + λ2

2 + 2λ1λ2β, w · ϕ(w) = (λ1 + λ2)(1 + β)

∴ |Lϕ(w)|2 = ∥ϕ(w)∥2

∥w∥2 = λ2
1 + λ2

2 + 2λ1λ2β

2(1 + β) , ReLϕ(w) = w · ϕ(w)
∥w∥2 = λ1 + λ2

2 

Hence

(ImLϕ(w))2 = |Lϕ(w)|2 − (ReLϕ(w))2 = (λ1 − λ2

2 
)2 1 − β 

1 + β
.

Since the real part of Lϕ(w) coincides with that of the center α of the bended circle 
Lϕ(⟨v1, v2⟩×).

ImLϕ(w) = (the radius of bended circle) ± Imα = r ± t.

We obtain that
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r2 − t2 = (λ1 − λ2

2 
)2, and r ± t = λ1 − λ2

2 

√︄
1 − β 
1 + β

Therefore

r = λ1 − λ2

2 
1
2

(︃√︄
1 − β 
1 + β

+

√︄
1 + β

1 − β 

)︃
= λ1 − λ2

2 
1 √︁

1 − β2
,

t = λ1 − λ2

2 
1
2

⃓⃓⃓
⃓
√︄

1 − β 
1 + β

−
√︄

1 + β

1 − β 

⃓⃓⃓
⃓ = λ1 − λ2

2 
|β| √︁
1 − β2

.

7. Leaf in 𝕳 and eigenvalues with nonnegative imaginary part

There are various shapes within the leaves of endomorphisms of dimension at least 
3. We will show the structure theorems on leaf. The first one is the geometric property 
that each leaf is convex on the Poincaré metric, and then each leaf is simply connected. 
The second one is the algebraic property that each leaf contains all eigenvalues with 
nonnegative complex part.

Let V be a real inner product space of finite dimension, and ϕ an endomorphism 
on V . Let W be a ϕ-stable subspace in V . Since the restriction ϕ|W of ϕ on W is the 
endomorphism on W , the subset Lϕ(W×) of Ψ(ϕ) is equal to the leaf Ψ(ϕ|W ) of ϕ|W . 
Lϕ(W×) = Ψ(ϕ|W ) is called the subleaf corresponding to W and denoted by Ψ(ϕ; W ).

Proposition 7.1. A subleaf corresponding to a 2-dimensional stable subspace is one of 
three kinds of figures on Theorem 6.1.

Proposition 7.2. If the leaf is simply connected, then it contains all eigenvalues with 
nonnegative imaginary part.

Proof. It is already shown that the leaf contains all real eigenvalues, by Theorem 4.3. 
Let λ ∈ ℌ be an eigenvalue of ϕ with positive imaginary part, and v ∈ VC an eigenvector 
of ϕ corresponding to λ. W = ⟨Re v, Im v⟩ is a ϕ-stable subspace of dimension 2. By 
Propositions 7.1 and 6.2, λ is located on the circumference or on the inside of the circle 
Ψ(λ; W ) = Lϕ(W×). By the assumption that Ψ(ϕ) is simply connected, Ψ(ϕ) includes 
the circumference or on the interior of the circle Ψ(λ; W ). Hence, λ belongs to Ψ(ϕ).

Put ℓ(W ) = Lϕ(W×) = Lϕ(P (W )) for any 2-dimensional subspace W in V . ℓ(W ) is 
a closed curve, because the projective space P (W ) = W×/R× is homeomorphic to the 
circle. Let 𝒟(W ) be the simple connected domain bounded by the closed curve ℓ(W ), 
and put 𝒟(W )◦ = 𝒟(W )∖ℓ(W ) the interior of 𝒟(W ).

Proposition 7.3. Let λ1, λ2 ∈ Ψ(ϕ) ⊂ ℌ with λ1 ̸= λ2. Take v1, v2 ∈ V × with ∥v1∥ =
∥v2∥ = 1, λ1 = Lϕ(v1) and λ2 = Lϕ(v2), and put W = ⟨v1, v2⟩ which is a 2-dimensional 
subspace of V . Let s(λ1, λ2) be the geodesic connecting λ1 to λ2 on ℌ.
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(a) The geodesic s(λ1, λ2) is included in the domain 𝒟(W ).
(b) If s(λ1, λ2) does not pass through the interior 𝒟(W )◦(= 𝒟(W )∖ℓ(W )), then the 

interior 𝒟(W )◦ is empty, and ℓ(W )(= ∂𝒟(W )) is a geodesic including s(λ1, λ2).
(c) If s(λ1, λ2) passes through the interior 𝒟(W )◦, then s(λ1, λ2) ∩ ℓ(W ) = {λ1, λ2}.
(d) If the interior 𝒟(W )◦ is not empty, then ℓ(W ) is a closed simple curve.

Proof. We observe the positional relationship between the closed curve ℓ(W ) and the 
geodesic s(λ1, λ2). Express a typical w ∈ P (W ) = W×/R× is the form by xv1 + v2 for 
some x ∈ P 2(R) = (R2)×/R× = R∪{∞}. Note that v1 = ∞v1 + v2 in this notation. We 
have that

∥w∥2 = x2 + 2x(v1 · v2) + 1,

∥ϕ(w)∥2 = x2∥ϕ(v1)∥2 + 2x(ϕ(v1) · ϕ(v2)) + ∥ϕ(v2)∥2,

w · ϕ(w) = x2(v1 · ϕ(v1)) + x(v1 · ϕ(v2) + v2 · ϕ(v1)) + v2 · ϕ(v2).

A geodesic on the Poincaré metric is a part of a line parallel to the imaginary axis 
and semicircle with center on the real axis. s(λ1, λ2) is a part of a line, if Reλ1 = Reλ2, 
or a part of a semicircle, otherwise.

(i) In the case that Reλ1 = Reλ2. Put a = Reλ1 = Reλ2 (= v1 · ϕ(v1) = v2 · ϕ(v2)). 
s(λ1, λ2) is a part of the line whose real part is a.

ReLϕ(w) − a = w · ϕ(w)
∥w∥2 − v1 · ϕ(v1) = R 

x 
∥w∥2 ,

where

R = v1 · ϕ(v2) + v2 · ϕ(v1) − a (v1 · v2).

Since ∥w∥2 = O(x2) as x → ∞, we remark that ReLϕ(x v1+v2)−a = O(x−1) as x → ∞.
(ii) In the case that Reλ1 ̸= Reλ2. s(λ1, λ2) is a part of semicircle. Let c ∈ R be the 

center of the semicircle and d the radius. Since

d2 = |λi − c|2 = (Reλi − c)2 + (Imλi)2 = |λi|2 − 2c Reλi + c2 (i = 1, 2),

we have that

d2 − c2 = |λi|2 − 2c Reλi, c = |λ1|2 − |λ2|2
2(Reλ1 − Reλ2)

.

Thus,

|Lϕ(w) − c|2 − d2 = |Lϕ(w)|2 − 2c ReLϕ(w) = R 
x 

∥w∥2 ,
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where

R = 2(ϕ(v1) · ϕ(v2) + c(v1 · ϕ(v2) + v2 · ϕ(v1)) + (c2 − d2)(v1 · v2)).

In this case, we also remark that |Lϕ(x v1 + v2) − c|2 − d2 = O(x−1) as x → ∞.
In both cases (i) and (ii), the sign of R t/∥w∥2 shows the position on Lϕ(w) relative 

to s(λ1, λ2). Let K be the geodesic extending from the both endpoints of s(λ1, λ2) to 
R ∪ {∞}. K divides the upper half plane ℌ∖K into two connected areas K1 and K2. 
In the case that K is a line, put K1 be the right area of K, and K2 the left area. In the 
case that K is a semicircle, put K1 be the outer area of K, and K2 the inner area. Then 
Lϕ(w) belongs to K if R x/∥w∥2 = 0, to K1 if R x/∥w∥2 > 0, and to K2 if R x/∥w∥2 < 0. 
Since R is independent of t, and ∥w∥ is always positive, the sign change of R t/∥w∥2

coincides with the sign change of t. We separate two cases R = 0 and R ̸= 0.
(A) In the case that R = 0, Lϕ(w) is always on K, so ℓ(W ) is a part of K. ℓ(W )

contains λ1 and λ2. Hence s(λ1, λ2) ⊂ ℓ(W ).
(B) In the case that R ̸= 0. If x ̸= 0, ∞, then R x/∥w∥2 ̸= 0, so Lϕ(w) does not 

belong to K. Lϕ(w) belongs to one of K1 or K2 if x > 0, and to the other if x < 0. ℓ(W )
goes around s(λ1, λ2) as below: starts at λ1 which is one of endpoints of the geodesic 
s(λ1, λ2), goes through K1, crosses K at λ2 which is the other endpoint of s(λ1, λ2), 
goes through K2, and returns to λ1. Hence, s(λ1, λ2) is included in 𝒟(W ).

In both cases (A) and (B), s(λ1, λ2) is included in 𝒟(W ), so (a) holds. (b) follows 
from (A), and (c) from (B).

Finally, we will show that (d) holds. Let λ3 be a self-intersection point of ℓ(W ). If 
ℓ(W ) has a normal crossing at λ3, then there exist two geodesics that tangent to ℓ(W ) at 
λ3. Each geodesic between these geodesic intersects ℓ(W ) in at least three points. This 
contradicts (c), so there exists only one tangent geodesic at λ3. There exists a geodesic 
that displaces the tangent geodesic just a little and crosses ℓ(W ) by more than two 
points. This also contradicts (c). Therefore, ℓ(W ) does not intersect itself.

Proposition 7.4. Let v1, v2 ∈ V ×. Assume that v1 and v2 satisfy the orthogonal condition:

⟨v1, ϕ(v1)⟩ ⊥ ⟨v2, ϕ(v2)⟩.

Then the curve ℓ(⟨v1, v2⟩) is the geodesic connecting Lϕ(v1) to Lϕ(v2).

Proof. Put λ1 = Lϕ(v1), λ2 = Lϕ(v2) and W = ⟨v1, v2⟩. The orthogonal condition leads 
that R = 0, where R is defined in the proof of the last proposition. Hence, ℓ(W ) is a 
geodesic connecting λ1 to λ2.

Express a typical w ∈ V × is the form by x v1 + y v2 for some x, y ∈ R with (x, y) ̸=
(0, 0). It follows from the orthogonal condition that

∥w∥2 = x2∥v1∥2 + y2∥v2∥2,
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∥ϕ(w)∥2 = x2∥ϕ(v1)∥2 + y2∥ϕ(v2)∥2,

w · ϕ(w) = x2v1 · ϕ(v1) + y2v2 · ϕ(v2).

Hence,

ReLϕ(w) = w · ϕ(w)
∥w∥2 = (x ∥v1∥)2 Reλ1 + (y ∥v2∥)2 Reλ2

(x ∥v1∥)2 + (y ∥v2|)2 ,

|Lϕ(w)|2 = ∥ϕ(w)∥2

∥w∥2 = (x2 ∥v1∥)2|λ1|2 + (y ∥v2∥)2|λ2|2
(x ∥v1∥)2 + (y ∥v2|)2 .

ReLϕ(w) divides Reλ1 and Reλ2 into the ratio (y∥v2∥)2 : (x∥v1∥)2. And |Lϕ(w)|2
divides |λ1|2 and |λ2|2 into the same ratio. Since each point on ℓ(W ) lies between λ1 and 
λ2, ℓ(W ) is the geodesic with the endpoints λ1 and λ2.

Proposition 7.5. If dimV ≥ 3, then 𝒟(W ) ⊂ Ψ(ϕ) for any 2-dimensional subspace 
W ⊂ V .

Proof. It is enough to show the assertion in the case that 𝒟(W ) has an interior point. 
In this case, ℓ(W ) is a closed simple curve. Let U be a 3-dimensional subspace of V
including W . Put P+(U) = U×/R>0. P+(U) is the quotient set of U× identified by 
multiplying by positive real numbers, namely the set of half-lines starting at the origin. 
P+(U) is homeomorphic to a spherical surface, and double covering of the projective 
plane P (U). The map Lϕ is also regarded as a map on P+(U). We have that Lϕ(U×) =
Lϕ(P (U)) = Lϕ(P+(U)). For any 2-dimensional subspace W1 ⊂ U , the quotient space 
P+(W1) = W×

1 /R>0 is a great circle on a spherical surface P+(U).
Let {v0, v1, v2} be a basis of U satisfying that {v0, v1} is a basis of W . Put λ0 =

Lϕ(v0), λ1 = Lϕ(v1), λ2 = Lϕ(v2) ∈ ℌ, and T = ⟨v1, v2⟩. For any t ∈ P+(T ), we define 
the closed oriented curve c(t) by

c(t) : [0, 1] ∋ θ ↦→ Lϕ(cos(π θ)v0 + sin(π θ)t)) ∈ ℓ(⟨v0, t⟩) ⊂ Lϕ(U×) ⊂ Ψ(ϕ).

c(t) is a closed curve passing through λ0, because c(t)(0) = c(t)(1) = Lϕ(±v0) = λ0. 
{c(t)}t is the continuous deformation of a closed curve on the complex plane. c(v1) and 
c(−v1) are the same curve ℓ(W ), but have different orientations. Through the continuous 
deformation {c(t)}t, the closed curve ℓ(W ) is superimposed on itself in the opposite 
orientation. Therefore, the continuous deformation passes through all interior points 
of 𝒟(W ). Any interior point of 𝒟(W ) lies on a curve c(t) for some t ∈ P+(T ). So, 
𝒟(W ) ⊂ Ψ(ϕ) holds.

Theorem A. Leaf is convex on the Poincaré metric, for any endomorphism of dimension 
at least 3
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Proof. Let ϕ be an endomorphism on a real inner product space V of dimension at least 
3. Let λ1, λ2 ∈ Ψ(ϕ), v1, v2 ∈ V with λ1 = Lϕ(v1) and λ2 = Lϕ(v2), and s(λ1, λ2) be the 
geodesic connecting λ1 to λ2. By Proposition 7.3, s(λ1, λ2) is included in 𝒟(⟨v1, v2⟩). 
By Proposition 7.5, 𝒟(⟨v1, v2⟩) is included in Ψ(ϕ). Hence, the leaf is convex on the 
Poincaré metric.

The last theorem leads that the leaf of an endomorphism of dimension at least 3 is 
simply connected, so the following theorem holds by Proposition 7.2. It is interesting to 
note that the following algebraic property is derived from the geometric property.

Theorem B. Leaf contains all eigenvalues whose imaginary part is nonnegative, for any 
endomorphism of dimension at least 3

8. Leaf and the eigenvalue geodesic polygon

For any endomorphism on the real inner product space of finite dimension, the small
est convex domain in ℌ containing all eigenvalues with nonnegative imaginary part is 
a filled geodesic polygon whose vertexes are eigenvalues with nonnegative imaginary 
part. The domain is called the eigenvalue geodesic polygon. By the structure theorems 
(Theorems A and B), the leaf includes the eigenvalue geodesic polygon, for each endo
morphism on a real inner product space of dimension at least 3. In generally, the leaf is 
larger than the eigenvalue geodesic polygon. We will show that they coincide for each 
normal endomorphism (Theorem C) in this section.

Let ϕ be an endomorphism on a real inner product space V of finite dimension.

Proposition 8.1. Let λ ∈ ℌ be an eigenvalue of ϕ with positive imaginary part, and v ∈ VC
an eigenvector of ϕ corresponding to λ. Put W = ⟨Re v, Im v⟩ ⊂ V and ℓ(W ) = Lϕ(W×).

(a) W is a 2-dimensional ϕ-stable subspace of V . Hence ℓ(W ) is the subleaf.
(b) Put λ+ = Lϕ(Re v), λ− = Lϕ(Im v) and β = v · v/∥v∥2. Then

|λ±|2 = |λ|2 ± Re (λ2β)
1 ± Reβ , Reλ± = Reλ± Re (λβ)

1 ± Reβ , Imλ± = Imλ 

√︁
1 − |β|2

1 ± Reβ .

(c) λ± = λ holds, if and only if v ⊥ v.
(d) If v ⊥ v, then ℓ(W ) = {λ}.
(e) Three points λ, λ+ and λ− ∈ Ψ(ϕ) lie on the same geodesic.
(f) ℓ(W ) is a geodesic circle CP(λ; 1−√︁

1−|β|2
|β| ). (rem. limβ→0

1−√︁
1−|β|2
|β| = 0)

Proof. (a) The assertion is already shown in §2.
(b) Since Re v = (v + v)/2, Im v = (v − v)/(2

√−1), and v is an eigenvector of ϕ
corresponding to λ, we have that
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∥Re v∥2 = ∥v∥2

2 
(1 + Reβ), ∥Im v∥2 = ∥v∥2

2 
(1 − Reβ),

∥ϕ(Re v)∥2 = ∥v∥2

2 
(|λ|2 + Reλ2β), ∥ϕ(Im v)∥2 = ∥v∥2

2 
(|λ|2 − Reλ2β),

Re v · ϕ(Re v) = ∥v∥2

2 
(Reλ + Reλβ), Im v · ϕ(Im v) = ∥v∥2

2 
(Reλ− Reλβ),

and then

|λ+|2 = ∥Lϕ(Re v)∥2 = |λ|2 + Reλ2β

1 + Reβ , Reλ+ = ReLϕ(Re v) = Reλ + Reλβ
1 + Reβ ,

|λ−|2 = ∥Lϕ(Im v)∥2 = |λ|2 − Reλ2β

1 − Reβ , Reλ− = ReLϕ(Im v) = Reλ− Reλβ
1 − Reβ .

The imaginary parts of λ± (> 0) are given by 
√︁|λ±|2 − (Reλ±)2.

(Im λ±)2 = |λ±|2 − (Reλ±)2

= |λ|2 ± Reλ2β

1 ± Reβ − (Reλ± Reλβ
1 ± Reβ )2 = (Im λ)2 (1 − |β|2)

(1 ± Reβ)2 .

Since Cauchy-Schwarz inequality leads |β| ≤ 1 and |Reβ| ≤ 1, we have that

Imλ± = Imλ 

√︁
1 − |β|2

1 ± Reβ .

(c) By the above formulae, |λ±| = |λ| if and only if λβ ∈ R and λβ ≤ 0. Reλ± = Reλ
if and only if β ∈ R. Hence, λ± = λ if and only if β = 0, i.e. v ⊥ v.

(d) λ and λ are the eigenvalues of the restriction ϕ|W of ϕ on the two-dimensional 
ϕ-stable subspace W . By Propositions 7.1 and 6.2, the closed curve ℓ(W ) is a circle 
(or a single point set), and λ lies on the circumference or the inside of ℓ(W ). By §2, 
Reλ E+Imλ J is the matrix representation of ϕ|W with respect to the basis Re v, Im v of 
W . Since v and v are orthogonal, Re v and Im v are also orthogonal and equal in length. 
ℓ(W ) is the circle with radius 0 by Proposition 6.2, so the single point set {λ}.

(e) Each geodesic of ℌ is a part of line parallel to the imaginary axis or a semicircle 
whose center is on the real axis. The geodesic connecting through λ+ and λ− is a part 
of line if Reλ+ = Reλ−, or a part of semicircle if Reλ+ ̸= Reλ−.

• In the case that Reλ+ = Reλ−. It follows from (b) that

(Reλ+ =) Reλ + Reλβ
1 + Reβ = Reλ− Reλβ

1 − Reβ (= Reλ−)

(Reλ + Reλβ)(1 − Reβ) = (Reλ− Reλβ)(1 + Reβ)

∴ Reλ Reβ = Reλβ
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∴ Reλ± = Reλ± Reλβ
1 ± Reβ = Reλ± Reλ Reβ

1 ± Reβ = Reλ.

λ lies on the line which is the geodesic connecting through λ+ and λ−.
• In the case that Reλ+ ̸= Reλ−. The geodesic connecting through λ+ and λ− is a 

semicircle. Put c ∈ R be the center of the semicircle, and d the radius. The calculation 
in the proof of Proposition 6.2 leads that

d2 − c2 = |λ±|2 − 2c Reλ± c = |λ+|2 − |λ−|2
2 (Reλ+ − Reλ−)

To show that λ is on the semicircle, we need only show that |λ− c| = d holds. Since the 
equality |λ− c| = d is equivalent to

d2 = |λ− c|2 = |λ|2 − 2c Reλ + c2,

we show that d2 − c2 = |λ|2 − 2c Reλ.

d2 − c2 = |λ±|2 − 2c λ± = |λ±|2 − |λ+|2 − |λ−|2
Reλ+ − Reλ−Reλ± = |λ−|2 Reλ+ − |λ+|2 Reλ−

Reλ+ − Reλ−

|λ|2 − 2c Reλ = |λ|2 (Reλ+ − Reλ−) − (|λ+|2 − |λ−|2) Reλ
Reλ+ − Reλ−

Substituting (b) into the right-hand side of the two equations above, both are equal to 
the following:

2(|λ|2 Reλβ − Reλ Reλ2β) 
(1 + Reβ)(1 − Reβ)(Reλ+ − Reλ−) .

Hence |λ− c| = d. Namely, λ lies on the geodesic connecting through λ+ and λ−.
(f) In §3, we already see that the geodesic circle CP(λ; k) with center λ = p + q

√−1
for some 0 ≤ k ≤ 1 is the circle with center p + 1+k2

1−k2 q
√−1 and radius 2 k 

1−k2 q. We give 
k ∈ R such that ℓ(W ) = CP(λ; k). In the case v ⊥ v, we already get ℓ(W ) = {λ} in (c). 
Since 1−

√︁
1−β2

|β| → 0 as β → 0, we consider that CP(λ; 1−
√︁

1−β2

|β| ) = CP(λ; 0) = {λ} for 
β = 0. v ⊥ v means β = 0, so the assertion holds in this case.

Assume that v ̸⊥ v, i.e. β ̸= 0. Let 
(︄
a b

c d

)︄
be a matrix representation of ϕ|W with 

respect to an orthonormal basis of W . Then λ = (a+d)+
√
D

2 , where D = (a+d)2−4(ad−
bc). By Proposition 6.2, the subleaf ℓ(W ) = Ψ(ϕ; W ) corresponding to W is the circle 

with center (a+d)+|b−c|√−1
2 and radius 

√︁
(a−d)2+(b+c)2

2 . For the centers of circles CP(λ; k)
and ℓ(W ) to coincide, p, q and k satisfy that

p = a + d

2 
, q =

√−D

2 
, 

1 + k2

1 − k2 q = |b− c|
2 

.
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And then the radiuses of the circles coincide as the following.

( 2 k 
1 − k2 q)2 = ((1 + k2

1 − k2 )2 − 1) q2 = ( |b− c|
2 

)2 − (
√−D

2 
)2 = (

√︁
(a− d)2 + (b + c)2

2 
)2.

Hence ℓ(W ) = CP(λ; k). λ+ lies on the geodesic circle CP(λ; k), so we have that

k2 = δ(λ, λ+)2 = |λ− λ+|2
|λ− λ+|2 = (Reλ− Reλ+)2 + (Im λ− Imλ+)2

(Reλ− Reλ+)2 + (Im λ + Imλ+)2 =
1 −√︁

1 − |β|2
1 +

√︁
1 − |β|2 .

Hence,

√︁
1 − |β|2 = 1 − k2

1 + k2 ∴ |β| = 2k 
1 + k2 .

Since k is the root of the quadratic equation |β| k2 − 2 k + |β| = 0 lying on the interval 
[0, 1], we obtain that

k =
1 −√︁

1 − |β|2
|β| .

Corollary 8.2. Let λ be an eigenvalue of ϕ with positive imaginary part. If there exist two 
C-linearly independent eigenvectors corresponding to λ, then λ belongs to Ψ(ϕ).

Proof. Let v1, v2 ∈ VC be C-linearly independent eigenvectors corresponding to λ. If 
v1 ⊥ v1, then the last proposition (c) leads that Lϕ(Re v1) = λ, i.e. λ ∈ Ψ(ϕ). Assume 
that v1 ̸⊥ v1. Put v = t v1 + v2 ∈ Vλ (t ∈ C). The quadratic equation v · v = (v1 · v1) t2 +
2 Re (v1 · v2) t + (v2 · v2) = 0 has a root t0 ∈ C, because the coefficient of the leading 
term is nonzero. Put v0 = t0v1 + v2, and then v0 ⊥ v0. The last proposition (c) leads 
that Lϕ(Re v0) = λ, i.e. λ ∈ Ψ(ϕ).

The last corollary is included in Theorem B. By Theorem B, there exists a vector 
whose value of the function Lϕ is the given eigenvalue. However, by the last corollary, 
one such vector is explicitly given by eigenvectors, if the eigenspace is of dimension at 
least 2.

Let λ ∈ ℌ be an eigenvalue of ϕ with nonnegative imaginary part, and Vλ ⊂ VC the 
eigenspace corresponding to λ. The real part ReVλ = {Re v | v ∈ Vλ} of Vλ is a subspace 
of V . It is easy to show that ReVλ = (Vλ + Vλ) ∩ V = ImVλ and Vλ = Vλ. Moreover, 
since ReVλ is ϕ-stable, Lϕ((ReVλ)×) is the subleaf Ψ(ϕ; ReVλ) corresponding to ReVλ. 
In Proposition 8.1, we use the closed curve ℓ(⟨Re v, Im v⟩) for some v ∈ Vλ, to see Ψ(ϕ)
around λ. We need the subleaf Ψ(ϕ; ReVλ) to look at the relationship between λ and 
the other point on Ψ(ϕ).

Proposition 8.3. Let λ ∈ ℌ be an eigenvalue with non-negative imaginary part.
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(a) If λ ∈ R, then Ψ(ϕ; ReVλ) = {λ}.
(b) Assume that λ ̸∈ R. Ψ(ϕ; ReVλ) = {λ} holds, if and only if Vλ ⊥ Vλ.
(c) Assume that λ ̸∈ R and Vλ ̸⊥ Vλ. Then Ψ(ϕ; ReVλ) is a geodesic circle with center 

λ when dim ReVλ = 2, and a geodesic disc (a filled geodesic circle) with center λ
when dim ReVλ > 2.

Proof. (a) Since λ ∈ R, ReVλ is the eigenspace in V corresponding to λ. It follows 
from the proof of Proposition 4.3 that Ψ(ϕ; ReVλ) = Lϕ((ReVλ)×) = {Lϕ(v) | v ∈
(ReVλ)×} = {λ}.

(b) Assume that Vλ ⊥ Vλ. Each v1 ∈ Vλ is orthogonal to its conjugate. Proposition 8.1
(c) leads that Lϕ(Re v1) = λ. Then, Ψ(ϕ; ReVλ) = Lϕ((ReVλ)×) = {λ}.

Conversely, we assume that Vλ ̸⊥ Vλ. Take v1, v2 ∈ Vλ satisfying that v1 ̸⊥ v2. At 
least one of v1, v2 and v1 + v2 is not orthogonal to the conjugate of itself. Because, if 
v1 ⊥ v1 and v2 ⊥ v2, then (v1 + v2) ̸⊥ v1 + v2 as the following:

(v1 + v2) · (v1 + v2) = v1 · v1 + v1 · v2 + v2 · v1 + v2 · v2 = v1 · v2 + v2 · v1 = 2 v1 · v2 ̸= 0.

Put v0 one of v1, v2, v1 + v2 which is not orthogonal to the conjugate of itself. Proposi
tion 8.1 (c) leads that Lϕ(Re v0) ̸= λ. Hence, Ψ(ϕ; ReVλ) = Lϕ((ReVλ)×) ̸= {λ}.

(c) If dim ReVλ = 2, then the subleaf Ψ(ϕ; ReVλ) is a geodesic circle with center 
λ. Assume that dimVλ ≥ 3. Then the subleaf Ψ(ϕ; ReVλ) is simply connected. By 
Proposition 8.1 (f), ℓ(⟨Re v, Im v⟩) is a geodesic circle with center λ for any v ∈ Vλ. 
Since ReVλ =

⋃︁
v∈Vλ

⟨Re v, Im v⟩, we see that Ψ(ϕ; ReVλ) =
⋃︁

v∈Vλ
ℓ(⟨Re v, Im v⟩), the 

union of geodesic circle with same center. The simply connected domain Ψ(ϕ; ReVλ) is 
a geodesic disc with center λ.

Remark 8.4. The geometric property (Theorem A) was used in the above proof of the 
last proposition (c). However, it can be shown without it. The subleaf Ψ(ϕ; ReVλ) is 
the union of concentric geometric circles ℓ(⟨Re v, Im v⟩) (v ∈ ReVλ) with center λ, by 
Proposition 8.1 (f). Moreover, Proposition 8.1 (f) and the argument of the proof of 
Corollary 8.2 lead that the set of radiuses of the geometric circles ℓ(⟨Re v, Im v⟩) is a 
closed interval from 0 to some nonnegative real number. So, the leaf Ψ(ϕ; ReVλ) is a 
geodesic disc with center λ.

Definition 8.5. For any subset A, B ⊂ ℌ, the union of all geodesics connecting a point 
on A to a point on B is called the geodesic bridge connecting A to B, denoted by A ≍ B.

The geodesic bridge ≍ is a commutative semigroup on the power set of ℌ, that is, 
it satisfies the associativity: (A ≍ B) ≍ C = A ≍ (B ≍ C), and the commutativity: 
A ≍ B = B ≍ A. The geodesic bridge connecting finite convex subsets is the smallest 
convex set including all those subsets. Hence, the eigenvalue geodesic polygon of an 
endomorphism ϕ is represented by {λ1} ≍ · · · ≍ {λr} where λ1, . . . , λr are the eigenvalue 
of ϕ with nonnegative imaginary part.
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Proposition 8.6. Let ϕ be an endomorphism on a real inner product space V , and W1
and W2 two nonzero ϕ-stable subspaces of V satisfying that W1 ⊥ W2. Then

Ψ(ϕ; W1 ⊕W2) = Ψ(ϕ; W1) ≍ Ψ(ϕ; W2).

Proof. dim(W1 + W2) ≤ 2 leads dimW1 = dimW2 = 1, so Ψ(ϕ; W1) and Ψ(ϕ; W2)
are single point sets. The elements λ1 and λ2 ∈ R of these sets are eigenvalues of ϕ|W1

and ϕ|W2 , respectively. Since W1 ⊥ W2, the representation matrix of ϕ|W1⊕W2 of an 
orthonormal bases is the diagonal matrix whose components of diagonal are λ1 and λ2. 
By Proposition 6.2, the subleaf Ψ(ϕ; W1 ⊕ W2) is a geodesic connecting through λ1
and λ2, that is the geodesic bridge connecting {λ1} to {λ2}. Hence, Ψ(ϕ; W1 ⊕W2) =
Ψ(ϕ; W1) ≍ Ψ(ϕ; W2).

Assume that dim(W1⊕W2) ≥ 3. The subleaf Ψ(ϕ; W1⊕W2) is convex, so Ψ(ϕ; W1⊕
W2) includes Ψ(ϕ; W1) ≍ Ψ(ϕ; W2)). We will show the inverse inclusion relation. By 
looking at the end points of the geodesics, Ψ(ϕ; W1) and Ψ(ϕ; W2) are included in 
Ψ(ϕ; W1 ⊕W2). Let λ ∈ Ψ(ϕ W1 ⊕W2) ∖ (Ψ(ϕ; W1) ∪ Ψ(ϕ; W2)). Take v = w1 + w2 ∈
W1 ⊕ W2 such that λ = Lϕ(v), w1 ∈ W1 and w2 ∈ W2. Since w1 and w2 satisfy the 
orthogonal condition in Proposition 7.4, the curve ℓ(⟨w1, w2⟩) is the geodesic connecting 
Lϕ(w1) to Lϕ(w2). Since λ = Lϕ(w1 + w2) ∈ ℓ(⟨w1, w2⟩), Lϕ(w1) ∈ Ψ(ϕ; W1) and 
Lϕ(w2) ∈ Ψ(ϕ; W2), λ lies on the geodesic bridge connecting Ψ(ϕ; W1) to Ψ(ϕ; W2). 
Hence,

Ψ(ϕ; W1 ⊕W2) = Ψ(ϕ; W1) ≍ Ψ(ϕ; W2).

Theorem C. Leaf is the eigenvalue geodesic polygon, for any normal endomorphism of 
dimension at least 3,

Proof. Let ϕ be a normal endomorphism on a real inner product space V of finite 
dimension. Then, eigenvectors of ϕ corresponding to different eigenvalues are orthogonal. 
V is the orthogonal sum of real parts of eigenspaces of all eigenvalues with nonnegative 
imaginary part. Let Λ = {λ1, . . . , λr} be the set of all eigenvalues with nonnegative 
imaginary part, Λ the set of all eigenvalues, and Vλ the eigenspace corresponding to λ ∈
Λ. Since ϕ is normal, Vλ ⊥ Vλ′ for any λ, λ′ ∈ Λ with λ ̸= λ′. And then Ψ(ϕ; ReVλ) = {λ}
for any λ ∈ Λ by Proposition 8.3, and V is the ϕ-stable orthogonal sum of ReVλ1 , · · · , 
ReVλr

. Namely, V = ReVλ1 ⊕ · · · ⊕ ReVλr
, ReVλi

⊥ ReVλj
(i ̸= j), and each ReVλi

is 
ϕ-stable. By Proposition 8.6,

Ψ(ϕ) = Ψ(ϕ; ReVλ1) ≍ · · · ≍ Ψ(ϕ; ReVλr
) = {λ1} ≍ {λ2} ≍ · · · ≍ {λr}

Remark 8.7. In general, the converse of the last theorem does not hold. For example, 
take the endomorphism ϕ = (−1) ⊕ (0) ⊕ (1) ⊕ ((3 J + K)/4) on R5, where J and K are 
quadratic square matrices defined in Example 1.2. (3 J+K)/4 is not normal, so ϕ is also 
not. The eigenvalues with nonnegative imaginary part are −1, 0, 1 and 

√︁−1/2. The 
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filled geodesic triangle Δ with vertexes −1, 0 and 1 is surrounded by three semicircles 
with center 1/2 and radius 1/2, with center −1/2 and radius 1/2, and with center 0
and radius 1. The eigenvalue λ =

√︁−1/2 lies on the interior of Δ, so Δ is also the 
eigenvalue geodesic polygon of ϕ. Put W = ReVλ, then we have that ϕ|W = (3 J + K)/4
and ϕ|W⊥ = (−1) ⊕ (0) ⊕ (1). The subleaf Ψ(ϕ; W ) is a circle with center α = 3

√−1/4
and radius 1/4 by Proposition 6.2, and the subleaf Ψ(ϕ; W⊥) = Δ by the last theorem. 
We see that the circle Ψ(ϕ; W ) is included in Δ, by calculating the distance between 
the center α of the circle and the edges of Δ. Therefore, the leaf Ψ(ϕ) is the eigenvalue 
geodesic polygon. ϕ and ϕ|W⊥ have the same leaf. By replacing or increasing the direct 
sum factor appropriately, it is possible to obtain infinitely many endomorphisms with 
the same leaf.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The author would like to thank Hiroaki Nakamura, Yu Yasufuku, Michihisa Wakui and 
Kanji Namba for several crucial remarks and valuable information on relevant researches. 
Special thanks are due to Hiroaki Nakamura for his support and suggestions on various 
aspects of the author’s continued research.

This research did not receive any specific grant from funding agencies in the public, 
commercial, or not-for-profit sectors.

Data availability

No data was used for the research described in the article.

References

[1] S.K. Berberian, The numerical range of a normal operator, Duke Math. J. 31 (1964) 479--483.
[2] M. Elin, S. Reich, D. Shoikhet, Numerical Range of Holomorphic Mappings and Applications, 

Birkhäuser, 2019.
[3] Karl E. Gustafson, Duggirala K.M. Rao, Numerical Range, Springer-Verlag, 1995.
[4] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919) 314--316.
[5] S. Roman, Advanced Linear Algebra, Springer GTM, 3rd edition, 2007.
[6] M.H. Stone, Linear Transformations in Hilbert Space, American Mathematical Society, R.I., 1932.
[7] O. Toeplitz, Das algebraische Analogon zu einem Satz von Fejer, Math. Z. 2 (1918) 187--197.
[8] A. Wintner, Zur Theorie der beschrankten Bilinearformen, Math. Z. 30 (1929) 228--282.

http://refhub.elsevier.com/S0024-3795(25)00256-3/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib1E7F7EDEB06DE02F2C2A9319DE99E033s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib1E7F7EDEB06DE02F2C2A9319DE99E033s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibC1D9F50F86825A1A2302EC2449C17196s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibB9ECE18C950AFBFA6B0FDBFA4FF731D3s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib61E9C06EA9A85A5088A499DF6458D276s1

	Leaf as a Poincaré convex domain associated with an endomorphism on a real inner product space
	1 Introduction
	2 Normal endomorphisms
	3 The Poincaré metric on H
	4 Leaf and real eigenvalues
	5 Numerical range vs. leaf
	6 Leaf of an endomorphism of dimension 1 or 2
	7 Leaf in H and eigenvalues with nonnegative imaginary part
	8 Leaf and the eigenvalue geodesic polygon
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


