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space, which is called the leaf. When the dimension of the
space is at least 3, the leaf is a convex with respect to the
Poincaré metric, and contains all eigenvalues with nonnegative

MSC: imaginary part. Moreover, the leaf of a normal endomorphism
15A60 is the minimum Poincaré convex domain containing all
47A12 eigenvalues with nonnegative imaginary part. The most

commonly studied convex domain containing eigenvalues is
Keywords: number range. Numerical range is convex with respect to
Numerical range the Euclidean metric on C, so numerical range has less
Poincalré metric information than leaf about real eigenvalues. We provide a

Real inner product new visual approach to endomorphisms.

© 2025 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we define a subset of the closure of the upper half plane associated with
an endomorphism on a real inner product space, which is called the leaf, and show the
structure theorems (Theorem A, B and C). The structure theorems on leaf correspond to
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the fundamental theorems on numerical range (Theorem 5.1, 5.2 and 5.3), which is the
well-known convex domain containing all eigenvalues, as below. Both numerical range
and leaf are simply connected domains containing eigenvalues, but numerical range is
convex with respect to the Euclidean metric on C, and leaf is convex with respect to
the Poincaré metric on the closure of the upper half plane. The structure theorems on
leaf and the fundamental theorems on numerical range correspond to each other, but
they are proved in the different ways because of the difference in the shape of leaf and
numerical range. The most significant difference is in the points shared with the real axis,
whereas the intersection of numerical range and the real axis is an interval containing
all real eigenvalues, whereas that of leaf is the set of all real eigenvalues. Since leaf holds
information on individual real eigenvalues, it is possible to study the behavior of an
endomorphism around the eigenspace with respect to a real eigenvalue.

Let V be a finite dimensional inner product space over R. We denote the ring of
endomorphisms (R-linear maps) on V' by End(V'). Since the dimension of the space V
is important in this paper, an endomorphism on a d-dimensional space V is sometimes
simply referred to as an endomorphism of dimension d. The angle 6 = 0(vy, va) € [0, 7] C
R of two nonzero vectors vy, vo € V> (= V \ {0}) is defined by vy - vo = ||v1|| ||v2]| cosb.
Let ¢ be an endomorphism on V. We consider the continuous map L, : V* — C is
defined by
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=
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S
—
<
-
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<
S
=

forve V*.

When ¢(v) = 0, we don’t define the angle (v, ¢(v)), but can put L,(v) = 0 because of
le(v)]| = 0. Since 0 < O(v, ¢(v)) < 7, the imaginary part of L,(v) is nonnegative. L, (v)
belongs to the closure of the upper half plane = $ UR U {oo}, where $§ = {z € C |
Imz > 0}.

Definition 1.1. The image of L,
V(o) ={Ly(v)|veV*}CH
is called the leaf of the endomorphism ¢.

Example 1.2. Fig. 1 contains leaves of five endomorphisms on an real Euclid spaces R"

with standard inner product. Such endomorphisms are given by some square matrices

and direct sums of square matrices. Put E = (1 0), J= ( 0 1), K= (0 1), and
01 -10 10

J(A; d) be the Jordan cell with eigenvalue A € R and of degree d. The straight line at

the bottom on each figure is the real axis.

Leaf is a bounded closed set in the Euclidean metric on C. Numerical range is con-
vex with respect to the Euclidean metric on C, but, in generally, leaf is not convex on
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(a) (1) @ (3J+2K)
@(4E+mn

J(0;2) (d) J(0;3) (—2) & (6J)
@@E+n

Fig. 1. Examples of leaves.

the Euclidean metric on C. In §4, we will show that leaf is path-connected (see Proposi-
tion 4.2), and that leaf and the real axis share only all real eigenvalues (see Theorem 4.3).
In §6, we will see that leaf of endomorphism of dimension at most 2 is simple (see The-
orem 6.1). The purpose of this paper is to show the following structure theorems of leaf
of endomorphism of dimension at least 3.

Theorem A (Poincaré Converity). Leaf is convex with respect to the Poincaré metric.

Theorem B (FEigenvalue inclusion). Leaf contains all eigenvalues whose imaginary part
is nonnegative.

The smallest convex domain containing all eigenvalues with nonnegative imaginary
part is the convex filled geodesic polygon whose vertices are eigenvalues, that is called
the eigenvalue geodesic polygon. The structure Theorem A and B lead that the leaf of
an endomorphism of dimension at least 3 includes the eigenvalue geodesic polygon.

Theorem C (Normal case). Leaf of a normal endomorphism is the eigenvalue geodesic
polygon.

Remark 1.3. Although not covered in this paper, leaf can also be defined for any bounded
linear operator on any infinite dimensional inner product space, by taking the closure,
and the above structure theorems also hold.

In §2-3, there are some basic facts on a normal endomorphism and on the Poincaré
metric. In §4, we define the leaf of an endomorphism. In §5, we describe the difference
between numerical range and leaf. We decide the leaf of an endomorphism of dimension
1 or 2 in §6, and prove the structure theorems for the leaf of any endomorphism of
dimension at least 3 in §7-8.

2. Normal endomorphisms
Let V be a real inner product space of finite dimension, and ¢ a normal endomorphism

on V. Then V is the orthogonal direct sum of ¢-stable subspaces of dimension 1 or 2
(see Theorem 10.10 in [5]). In this section, we provide a brief introduction to this fact.
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Put Ve = V@r C =V @ +/—1V the coefficient extension of V to C. There exists a
Hermitian inner product on V¢ which extends the real inner product on V. The same
dot symbol is used for both inner products. Each v € Vo = V @ +/—1V is expressed by
v, + v/—1v; for some v,., v; € V. v, is called the real part of v, denoted by Rev, and v;
is called the imaginary part of v, denoted by Imv. Vv = v,, — v/—1v; is called the complex
conjugate of v. Each endomorphism ¢ on V can be extended to the endomorphism on
Ve over C. The same symbol ¢ is used for both endomorphisms.

Let v € V¢ be an eigenvector of ¢ corresponding to an eigenvalue \ € C.

o(v) = p(Rev ++v/—1Imv) = p(Rev) ++/—1¢(Imv)
¢o(v) = Av=(ReARev —ImAImv) ++/~1(Im ARev + Re A Imv)
(p(Rev), ¢(Imv)) = (Rev, Imv) (ReAE+Im A J)

where E and J are the quadratic matrices defined in Example 1.2. The complex conjugate
V is an eigenvector of o corresponding to the eigenvalue . If A € R, then Rev, Imv and v
are eigenvectors of ¢ corresponding to A. If A € R, since v and Vv are linearly independent
on C, {Rev, Imv} is a basis of the p-stable subspace (Rev, Imv) = (Cv4+Cv)NV.
Especially, if v and v are orthogonal in V¢, then Rev and Imv are orthogonal in V.
Because
Rev-Imv = % - 2"—\/__V1 _ T1(||v||2 VATV |¥]?) = %Re(v-v) — 0.

{Rev/||Rev|, Imv/||[Imv||} is an orthonormal basis of (Rev, Imv). Moreover, since
|Rev| = [[Imv| = [Jv||/v/2, the matrix ReAE + Im AJ is the matrix representation
of the restriction of ¢ to the subspace (Rev, Imv) with respect to the orthonormal basis
{Rev/|Rev||, Imv/||Imv]||}.

The adjoint endomorphism ¢* of ¢ is defined by the endomorphism on V satisfying
that @(v1) - va = vy - ©*(v2) for any vi,vo € V. The adjoint endomorphism of ¢ as an
endomorphism on Vg is equal to the extension to V¢ of ¢* on V. An endomorphism
that commutative with its adjoint is said to be normal. Each normal endomorphism
on Vg is diagonalizable by an orthonormal basis consisting eigenvectors on Vg. Every
normal endomorphism on V' has as the matrix representation the direct sum of the real
eigenvalues and of the a E+b J-type quadratic matrices (a,b € R, b # 0) corresponding
to the non-real eigenvalues (a + by/—1), given an appropriate orthonormal basis.

3. The Poincaré metric on $

The Poincaré metric on the complex upper half plane §) is defined by ds = |dz|/Im z
for z € $. The distance p(z1, z2) between two points z1, 22 € $ is given by

1+6 —
p(21, 22) /|ds| log Jr (21’22) where (21, 22) = M

1—0(z1, 22) |z1 — Z2|
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We see that 0 < §(z1, 22) < 1, and the function log % is monotonic increasing on k.
R U {0} is called the line at infinity, because d(z1, 22) = 1 and p(z1, 22) = oo, if and
only if at least one of z; and 29 lies on R U {oo}. The geodesic on $) with respect to the
Poincaré metric is a part of a line parallel to the imaginary axis or a part of a semicircle
whose center is on the real axis. A geodesic circle whose center is zp € $ and radius is
r =log 1= Hk for 0 < k <1 is defined by

Cp(z0; k) ={2 € 9 [6(2, 20) = k} = {z € H [ p(2, 20) =7}

By putting z =z +yv/—-1, 20 =p+¢v/—-1 € HUR (z,y,p,q € R, y >0, ¢ > 0), the
equation §(z, z9) = k or p(z, z9) = r is equivalent to

14+ k2

2
(=) + (0~ T = (G 2

m) —1)¢* = (m q)*.

Therefore, the geodesic circle Cp(2o; k) is a ordinary circle in C with center p+ }'_H,:z qgv—1

and radius %q. A geodesic circle on the Poincaré metric is simply called a geodesic

circle, and an ordinary circle in the complex plane is simply called a circle.
4. Leaf and real eigenvalues

Let ¢ be an endomorphism on a real inner product space V of finite dimension. The
continuous map L, on V* (= V ~\ {0}) to C defining by

90 \'% \%
]LW(V) _ ” ”E/”)” V=10(v,¢(v)) (V c va)7

where the angle 8 = 0(v, ¢(v)) € [0 7] C R between v and ¢(v) is defined by v - p(v) =
IVl le(v)|| cos@. When ¢(v) = 0, we don’t define the angle 6, but can put L,(v) = 0
because of ||¢(v)|| = 0. L, (kv) = Sp( v) holds for any k& € R*, because ||o(kv)||/||kv] =
le(W)]|/IIv]l and 6(kv, @(kv)) = O(v, ¢(v)). So the continuous map L., is considered as
the continuous map on the projective space P(V) = V> /R*.

For any vi, vo € VX, put o(v1, v2) = \/[[v1][?[[va]|? — (v1 - v2)2. Then we have

vep(v) +o(v, o(v) V-1
[[v]I? '

Lw(v) =

The real part of L, (v) is equal to the Rayleigh quotient V”f”;') of ¢, and the square of

absolute value of L, (v) to that of ¢*p. The operator norm ||¢|| of ¢ is the supremum of
the absolute value of L, (v).

Definition 4.1 (leaf). The image of L,
U(p) = Lo (V) = Lo(P(V))

is called the leaf of the endomorphism .
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Proposition 4.2. U(p) is path connected.

Proof. Let A\, A2 € ¥(p), and take vi, vo € V* satisfying that \; = L,(vi) and
A2 =Ly (v2). The path [0, 1] 3 ¢ — L, ((1 —t)vi+tva) € ¥U(yp) in ¥(p) connects A\; and
A2. Hence, the leaf W(p) is path connected.

The leaf ¥U(p) is a bounded closed set in C because the projective space P (V) is
compact. Since an argument 6 belongs to the closed interval [0, 7], the value of L,
belongs to the closure of the upper half plane $§ =  UR U {oo}. The leaf is included
in $. We will see that the Poincaré metric of $3 plays an important role on the leaf in
the later chapters. In closing this section, we show the following theorem on the real
eigenvalues.

Theorem 4.3. The intersection of the leaf and the real axis is the set of real eigenvalues.

Proof. Let ¢ an endomorphism on a real inner product space of finite dimension V.
Let A € R a real eigenvalue of ¢, and v € V an eigenvector of ¢ corresponding to A.
If A =0, then ¢(v) =0, so L,(v) = 0 = A. Assume that A # 0. Since p(v) = Av is
parallel to v, the angle 8 = (v, p(v)) is equal to 0 if A > 0, and to = if A < 0. Since
leWNI/IIVIE = [IAv]I/IIvI = |A]l, and e?Y=T = signA = A/|A|, we have that L, (v) = .
Thus A = L, (v) € ¥(p) NR.

Conversely, we will show that each element A € () NR is an eigenvalue of ¢. Take
v € VX satisfying that A = L, (v). In the case that A = 0, it follows from L,(v) =X =0
that ||p(v)|| =0, i.e. p(v) =0 =0v, so 0 is an eigenvalue of p. Assume that A # 0. Since
leW) || = [Ly (V)] |Iv]] = A []v]| # 0, the angle 8 = 6(v, (v)) is defined. And 6 is also the
angle of the real number A = L,(¢), so § =0 or 7. ¢(v) is parallel to v, namely v is an
eigenvector of p. Put X' be the eigenvalue of ¢ satisfying that ¢(v) = X'v, then it follows
from the first step in this proof that L,(v) = A'. Hence A = L, (v) = X is an eigenvalue
of .

5. Numerical range vs. leaf

Well-known object as a convex domain containing all eigenvalues is a numerical range
(cf. [2], [3]). Here we introduce the fundamental theorems that were the starting point
for studies of numerical range, according to chapter 1 of Guatafson-Rao’s text book ([3]).

Let ¢ be a bounded linear operator on a Hermite inner product space V. The numerical
range of ¢ is the subset in C defined by

W(p) = {w [veV*h={v-o) [vll =1},

that is the range of the Rayleigh quotients v - ¢(v)/|v||?, v € V*. The fundamental
theorems of numerical range are following.
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Theorem 5.1 (Convezity, Toeplitz-Hausdorff, [4], [7]). The numerical range of an oper-
ator is convex with respect to the Euclidean metric on C.

Theorem 5.2 (Spectral inclusion, [8]). The spectrum of a bounded linear operator is con-
tained in the closure of its numerical range.

Theorem 5.3 ([1], [6]). The closure of numerical range of a normal bounded linear oper-
ator is the convex full of its spectrum.

Theorem 5.4 (Fquivalent norm). Put w(p) = sup{|\| | A € W(p)} (the numerical ra-
dius), and ||¢|| = sup{lle()|I/IIv]l | v € V*} (the operator norm). Then w(p) < |l¢| <

2w(ep).

The structure theorems of leaf (Theorem A, B, C) correspond to the first three of the
fundamental theorems above. The corresponding result to the last theorem on the leaf
is that

el = sup{[Al [ A € ¥()}

which follows from the definition of leaf.

There is an essential difference between Theorem 5.1 and Theorem A: numerical range
is convex with respect to the Euclidean metric, and leaf is convex with respect to the
Poincaré metric. Different metrics lead to different appearances of the real eigenvalues in
the figures. The intersection of numerical range and the real axis is an interval containing
all real eigenvalues (Theorem 5.1, 5.2), whereas that of leaf is the set of all real eigenvalues
(Theorem 4.3). The information on each of the real eigenvalues is lost in numerical range,
but retained in leaf.

Theorem B and Theorem 5.2 have different ways of proving. In the case of numerical
range, the Rayleigh quotient of an eigenvector is the eigenvalue. But, since any endo-
morphism on a real vector space has no real eigenvector with respect to the non-real
eigenvalue which is a non-real root of the characteristic polynomial, the same method
cannot be use for leaf as for numerical range. We need to use Theorem A, to find a real
vector for which the value of the function L, is the non-real eigenvalue (Proposition 7.2).

Theorem A and Theorem 5.1 also have different ways to proving. The line connecting
the two points of numerical range is given by the image by the Rayleigh quotient of real
coefficient linear combination of two vectors giving the two points on numerical range.
The geodesic connecting the two points of leaf is contained in the interior of the closed
curve formed by the image by L, of the subspace generated by the two vectors giving
the two points (Proposition 7.3). It can be shown that the geodesic connecting the two
points is contained in leaf, by continuously moving that closed curve using a third vector
to fill the interior of that closed curve (Proposition 7.5).

In the case of a normal endomorphism, both numerical range and leaf are convex
sets containing all eigenvalues. The metrics are different, so the geodesics are different



H. Ogawa / Linear Algebra and its Applications 724 (2025) 62-82 69

shapes. The edges which are geodesics connecting the eigenvalues have different shapes
for numerical range and leaf.

6. Leaf of an endomorphism of dimension 1 or 2

In this section, we will show the following theorem.

Theorem 6.1. Leaf of an endomorphism of dimension 1 or 2 is either a single point set,
a circle or a bended circle.

A bended circle is defined by a figure formed by bending a circle that intersects the
real axis upward along the real axis. The center and the radius of a bended circle are
defined by the center and the radius of the original circle, respectively. Let C' be a circle
in C crossing the real axis, and put C’ be the complex conjugate of C. Then (CUC’)N$
is a bended circle.

Clearly leaf of each endomorphism of dimension 1 is a single point set.

Proposition 6.2. Let V' be a real inner product space of dimension 2, and ¢ an endomor-
phism on V.

b
(a) Ifp has <a d> as a matriz representation with respect to an orthonormal basis of
c

V, then the leaf U(p) contains a+|bl/—1, a—|—|c\\/ , d+1|blv/—1 and d+|c|v/-1.
(b) Puta:“TH—l—lb;—c‘\/—l and r = 2\/a— + (b+¢)?. Both « and r are
independent of choice of orthonormal basis of V.

(c) Let C C C be the circle with center a and radius r. If ¢ does not have any real
eigenvalues, then (@) = C. Moreover, if r > 0, then the eigenvalue with positive
imaginary part is located on the circumference or on the interior of C.

(d) If all eigenvalues of ¢ are real, then C crosses the real axis at the eigenvalues, and
U () is a bended circle (CUC") N $H, where C' is the complex conjugate of C.

Proof. (a) Let {u1, uz} be an orthonormal basis of V' satisfying that “ Z is the matrix
c

representation of ¢ with respect to this basis. Then ¢(u1) = auy + cus. Since |Ju1]| =1,
lo(u)||? = a® +c%, ug - ¢(u1) = a and a(ul, @(u1)) = |e|, we have L, (u1) = a+ |e[v/—1
Similarly, we have L, (u2) = d + [b|v/—1, Lo ((a — d)ui + (b + c)uz) = a + [b]v/—1 and
Lo((b+ c)ur — (a — d)uz) = d + |c[v/—1. Thelr four points belong to ¥(y).
b "y
(b) Let A = “ d and A’ = a/ J be the matrix representations of ¢ with
c c

respect to the two orthonormal bases of V. Put P be the translation matrix between their
orthonormal bases, then A’ = P"*AP = tPAP, because P is an orthogonal matrix. The
column vectors p and q where P = (p q) are an orthonormal basis of R?. Comparing the
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(1,2) and (2,1) components of A’ = PAP yields b’ = 'pAq and ¢’ = t{qAp = 'p'Aq. And
then v/ — ¢’ ='p(A—1'A)q = tp(b—c)Jq = (b—c)'pJq, where J is defined in Example 1.2.
J is the 7/2-rotation on R?, so Jq = +p. Hence, |t/ — | = |(b— ¢)(£||p||*)| = |b — ¢|.

The trace and the determinant of a matrix representation are independent of choice
of basis. That isa+d=a' +d and ad — bc = a’d’ — V', then

+d b_ /+d/ b/_/
a=5 ! 26|V_ -5 +! 26|”_1

and

2r)?=(a—d)?+(b+c)’=(a+d)?+(b—c)* —4(ad — bc)
_ (a/ + d/)2 + (b/ _ Cl)2 o 4(a’d’ o b/cl) _ (a/ . d/)Q 4 (b/ + CI)Q.

We have that a and r are independent of choice of orthonormal basis of V.

(¢) Let D be the discriminant of the characteristic polynomial of . ¢ does not have
any real eigenvalues, so D is negative. Since D = (a + d)? — 4(ad — bc) = (a — d)? + 4bc,
we have be < 0. Four points of (a) form the rectangle with center o and diagonal length
2r. Therefore, four points in (a) lie on C.

Let N =L, (v) € ¥(p) wherev € V*, and put u = v/||v||. There exists an orthonormal
basis of V' containing u. Since C' is independent of choice of orthonormal basis of V,
N =Ly(v) =Ly, (u) lies on C. ¥(yp) is included in C.

We will show that C C ¥(yp). The leaf is path connected (Proposition 4.2), so the
complement C' \ ¥(p) is at most 1 connected component. For a matrix representation

a

dd
d' + |b'|[v/—1 € ¥(yp) are on the diagonal on C. ¥(y) is point symmetric with respect
to the center a of C. The complement C \ ¥(y) is also point symmetric. Thus, the

of ¢ with respect to an orthonormal basis of V| two points a’ + |¢/|v/—1 and

complement C\¥(¢p) is the empty set or whole of C'. Since ¥(y) is not empty, C C ¥(¢p).
So ¥(p) =C.

Let A be an eigenvalue of ¢ with positive imaginary part. Then we have A\ = %d + ‘/2—5.
Since D+ (b—c)? = (a—d)?+(b+c)? = (2r)2 > 0 and D < 0, we have that \/|D| < |b—c|.
The distance between A and « (the center of C) is at most the radius of C, as below.

A—af? = (VDI —b—c))* _|DI+(b—c)*—2y/[D[|b— ]
4 4

<D= -2D_

Namely, A is located on the circumference or on the interior of C.

. . . a+d+vD
(d) Let A be a real eigenvalue of ¢, which is denoted by %

_a+d |b—c\2:D—|—(b—c)2 5

A=aff = (= 4507+ (559 bl
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Hence, each real eigenvalue lies on the circumference of the circle C. Let C’ be the circle

with center @ = ‘IT"'d — bgc\/—_l and radius r. C’ is symmetric with C' about the real axis.
Hence, each real eigenvalue also lies on the circumference of the circle C’. We consider
eight points a + bv/—1, a &+ c/—1, d + by/—1 and d & c/—1. Four points a + by/—1,
a—cv/—1, d+by/—1 and d — cv/—1 are the vertices of the rectangle with center a and
diagonal length 2r, and are on C. Another four points a — bv/—1, a 4+ ¢v/—1, d — b\/—1
and d+ cy/—1 are the vertices of the rectangle with center @ and diagonal length 2r, and
are on C’. Therefore these eight points are on the union of the circles C and C’. Four of
eight points, a + |b|v/—1, a + |c|v/—1, d + |b|v/—1 and d + |c|«/—1 belong to $, and then
are on the bended circle (C' U C") N $ which is the shape made by bending the circle C
upward along the real axis. We have that ¥(y) is included in (C'U C’) N §. The reverse
inclusive relation (C'UC’) N $ C ¥(yp) is valid in the same way as the proof of (c).

Proposition 6.3. Let ¢ be an endomorphism on a real inner product space V' of dimension
at least 2. Assume that ¢ has two different real eigenvalues Ay and Ay. Let vi and vy € V
be unit eigenvectors of ¢ corresponding to \1 and Ao, respectively, and put 8 = vy - va.
Then L, ({v1, v2)*) is the bended circle with center o and radius r, where o = % +
tv/—1, and t and r are nonnegative real numbers satisfying that

A1 — A2

2 2 2
= (L2 g,

LS W N 1 N S e | N

2 /1 — BZ’ 2 /1 — 62'
Proof. Since the last proposition leads that A; and Ay lie on the circle with center a and
radius r, we have that |A\; — a| = |\ — a| = r, namely

AL — A2

5 )2+t2:7"2

(

Put w=vy 4 va € (v, vo)*, then

Iw[* = 2(1+ 8), llow)[[* = AT+ A3+ 22X 228, w-p(w) = (A1 +A2)(1+ f)

) o _ lleW)I* AT+ A3+ 2008 B
R T T

wep(w) A+ A
[[wi® 2

Hence

A1 — A
2

)21*5

(ImLy(w))? = [Lye(w)* = (ReLy(w))* = ( 175

Since the real part of L,(w) coincides with that of the center o of the bended circle
Ly ({v1, v2)*).

ImL,(w) = (the radius of bended circle) £ Ima = r % ¢.

We obtain that
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Ay —
a2 )\2)2, and T:tt—)\ — A B
2 1+5

/\1 )\2 1+ﬂ >\1 >\2 1
1+f3 2 /12

‘= A — )\2 ’ 1+ﬂ _ A=A |5‘
1+5 2 J1-p2

7. Leaf in § and eigenvalues with nonnegative imaginary part

T27t2:(

Therefore

There are various shapes within the leaves of endomorphisms of dimension at least
3. We will show the structure theorems on leaf. The first one is the geometric property
that each leaf is convex on the Poincaré metric, and then each leaf is simply connected.
The second one is the algebraic property that each leaf contains all eigenvalues with
nonnegative complex part.

Let V be a real inner product space of finite dimension, and ¢ an endomorphism
on V. Let W be a y-stable subspace in V. Since the restriction |y of ¢ on W is the
endomorphism on W, the subset L, (W *) of ¥(¢p) is equal to the leaf ¥(¢|w) of ¢|w.
L,(W*) = ¥(p|w) is called the subleaf corresponding to W and denoted by ¥(p; W).

Proposition 7.1. A subleaf corresponding to a 2-dimensional stable subspace is one of
three kinds of figures on Theorem 0.1.

Proposition 7.2. If the leaf is simply connected, then it contains all eigenvalues with
nonnegative imaginary part.

Proof. It is already shown that the leaf contains all real eigenvalues, by Theorem 4.3.
Let A € $) be an eigenvalue of ¢ with positive imaginary part, and v € V¢ an eigenvector
of ¢ corresponding to \. W = (Rev, Imv) is a ¢-stable subspace of dimension 2. By
Propositions 7.1 and 6.2, A is located on the circumference or on the inside of the circle
V(A W) =L,(W*). By the assumption that ¥(yp) is simply connected, ¥(y) includes
the circumference or on the interior of the circle ¥(\; W). Hence, A belongs to ¥(y).

Put (W) = L,(W*) =L, (P(W)) for any 2-dimensional subspace W in V. £(W) is
a closed curve, because the projective space P(W) = W* /R* is homeomorphic to the
circle. Let D(W) be the simple connected domain bounded by the closed curve £(W),
and put D(W)° = D(W)~L(W) the interior of D(W).

Proposition 7.3. Let A1, Ao € ¥(p) C H with \; # Xp. Take vy, vo € VX with |vi| =
Iva]| =1, Ay = Ly(vi) and Ay = L, (v2), and put W = (vi,va) which is a 2-dimensional
subspace of V. Let s(\1, \2) be the geodesic connecting A1 to Ay on §.
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(a) The geodesic s(A1, \2) is included in the domain D(W).

(b) If s(A1, A2) does not pass through the interior D(W)°(= D(W)~L(W)), then the
interior D(W)° is empty, and {(W)(= 0D(W)) is a geodesic including s(A1, A2).

(c) If s(A1, A2) passes through the interior D(W)°, then s(A1, A2) NL(W) = {1, A2}

(d) If the interior D(W)° is not empty, then £(W) is a closed simple curve.

Proof. We observe the positional relationship between the closed curve £(WW) and the
geodesic s(A1, A2). Express a typical w € P(W) = W*/R* is the form by zv; 4 vo for
some r € P?(R) = (R?)*/R* = RU{oo}. Note that v; = oovj +v» in this notation. We
have that

||W||2 =%+ 2x(vy - va) + 1,
low)[I? = 2?[le(vi)[|* + 2z(o(v1) - @(v2)) + [le(va) I,
wp(w) =27 (vi - (v1)) + 2(v1 - p(va) + V2 - p(v1)) + vz - p(va).

A geodesic on the Poincaré metric is a part of a line parallel to the imaginary axis
and semicircle with center on the real axis. s(A1, A2) is a part of a line, if Re \; = Re A,
or a part of a semicircle, otherwise.

(i) In the case that ReA\; = Re Ag. Put a = ReA\; = Re Aa (= vy - ¢(v1) = va - o(va)).
s(A1, A2) is a part of the line whose real part is a.

w - o(w) x
WOW) o) =R
[lwl[®

ReL,(w) —a = )
’ [[wl®

where

R=v;-p(va) +va-p(vi) —a(vy-va).

Since |w||? = O(2?) as & — 0o, we remark that ReL,(zvi+vs)—a = O(z™!) as z — oc.
(ii) In the case that Re A\; # Re Aa. s(A1, A2) is a part of semicircle. Let ¢ € R be the
center of the semicircle and d the radius. Since

d> =1\ —c|* = (ReXi —c)* + (Im)\;)? = N> —2cRe N+ (i=1,2),

we have that

|A1]? = [Ag]?

2 2 2
—c =[N =2 i €= .
d°—c [As] cRe \ c 3(Re A — Re )

Thus,

T

Ly (w) — | —d* = |]L¢(w)|2 —2cRely(w) = RW,
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where

R =2(p(v1) - p(v2) + clvi - @(va) +v2 - p(v1)) + (¢* = d*)(v1 - va)).

In this case, we also remark that [L,(zvi +v2) — ¢|* —d? = O(z™!) as z — oc.

In both cases (i) and (ii), the sign of R¢/||w||* shows the position on L (w) relative
to s(A1, A2). Let K be the geodesic extending from the both endpoints of s(A1, A2) to
R U {co}. K divides the upper half plane  \ K into two connected areas K; and Ko.
In the case that K is a line, put K7 be the right area of K, and K5 the left area. In the
case that K is a semicircle, put K7 be the outer area of K, and K5 the inner area. Then
L, (w) belongs to K if Rz/||w||*> = 0, to K if Rz/||w||* > 0, and to K> if Rx/||w||? < 0.
Since R is independent of ¢, and ||w]|| is always positive, the sign change of Rt/|w/||?
coincides with the sign change of t. We separate two cases R =0 and R # 0.

(A) In the case that R = 0, L,(w) is always on K, so £(W) is a part of K. {(W)
contains A\; and Ay. Hence s(A1, A2) C £(W).

(B) In the case that R # 0. If z # 0, oo, then Rz/||w|?* # 0, so L,(w) does not
belong to K. L, (w) belongs to one of K; or K if x > 0, and to the other if x < 0. £(W)
goes around s(A1, A2) as below: starts at A; which is one of endpoints of the geodesic
s(A1, A2), goes through K, crosses K at Ag which is the other endpoint of s(\1, A2),
goes through Ky, and returns to A;. Hence, s(A1, A2) is included in D(W).

In both cases (A) and (B), s(A1, A2) is included in D(W), so (a) holds. (b) follows
from (A), and (c) from (B).

Finally, we will show that (d) holds. Let A3 be a self-intersection point of ¢(W). If
£(W) has a normal crossing at Az, then there exist two geodesics that tangent to (W) at
As. Each geodesic between these geodesic intersects ¢(W) in at least three points. This
contradicts (c), so there exists only one tangent geodesic at A3. There exists a geodesic
that displaces the tangent geodesic just a little and crosses ¢(W) by more than two
points. This also contradicts (c). Therefore, /(W) does not intersect itself.

Proposition 7.4. Let vy, vo € V*. Assume that vi and v satisfy the orthogonal condition:

(vi, p(v1)) L (v2, (va))-
Then the curve £({v1, v2)) is the geodesic connecting L. (v1) to L,(v2).

Proof. Put A\ =L, (v1), A2 = L,(v2) and W = (vy, v). The orthogonal condition leads
that R = 0, where R is defined in the proof of the last proposition. Hence, {(W) is a
geodesic connecting A1 to Ao.

Express a typical w € V* is the form by z vy + yvs for some z, y € R with (z,y) #
(0,0). It follows from the orthogonal condition that

Iwll* = 2 [va[|* + 52 [vall?,
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le(w)[1? = 2®[lp(vi) [l + 52l (va) I,
w - p(w) = 2%V - p(v1) + yPva - p(va).
Hence,

. 2 2
RelL,(w) = %200 _ (@l)?Reds + (y[val) * Re X

W] @Val? T (v Va2
o LI @2 )P + o a2 12al?
Ll = Pl = T DT el

ReLL,(w) divides ReA; and Re)s into the ratio (y|lval[)? : (z|vi1]))%. And |L,(w)|?
divides |A;]? and |A2|? into the same ratio. Since each point on £(W) lies between \; and
A2, £(WW) is the geodesic with the endpoints A\; and As.

Proposition 7.5. If dimV > 3, then D(W) C ¥(yp) for any 2-dimensional subspace
wcVv.

Proof. It is enough to show the assertion in the case that D(W) has an interior point.
In this case, /(W) is a closed simple curve. Let U be a 3-dimensional subspace of V'
including W. Put PT(U) = U*/Rso. PT(U) is the quotient set of U* identified by
multiplying by positive real numbers, namely the set of half-lines starting at the origin.
P+ (U) is homeomorphic to a spherical surface, and double covering of the projective
plane P(U). The map L, is also regarded as a map on P*(U). We have that L,,(U*) =
L,(P(U)) = L,(P*(U)). For any 2-dimensional subspace Wi C U, the quotient space
P+ (W;) = W /R is a great circle on a spherical surface PT(U).

Let {vo, vi, va} be a basis of U satisfying that {vg, vi} is a basis of W. Put Ay =
Loy(vo), A1 = Ly(vi), A2 = Ly(va) € H, and T = (v1,v2). For any t € PH(T), we define
the closed oriented curve ¢(t) by

c(t) : [0, 1] 3 0 — L (cos(m )vg + sin(m 0)t)) € £({vo,t)) C L, (U*) C ¥(yp).

c(t) is a closed curve passing through Ao, because ¢(t)(0) = ¢(t)(1) = Ly (£vo) = Ao.
{c(t)}+ is the continuous deformation of a closed curve on the complex plane. ¢(vy) and
¢(—v1) are the same curve £(W), but have different orientations. Through the continuous
deformation {c(t)}t, the closed curve ¢(W) is superimposed on itself in the opposite
orientation. Therefore, the continuous deformation passes through all interior points
of D(W). Any interior point of D(W) lies on a curve ¢(t) for some t € P*(T). So,
D(W) C ¥(yp) holds.

Theorem A. Leaf is convex on the Poincaré metric, for any endomorphism of dimension
at least 3
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Proof. Let ¢ be an endomorphism on a real inner product space V' of dimension at least
3. Let A1, Ao € ¥(p), vi,ve € V with Ay = Ly (vi) and g = L, (v2), and s(A1, A2) be the
geodesic connecting A; to Ag. By Proposition 7.3, s(A1, A2) is included in D({v1, va)).
By Proposition 7.5, D({vi, va)) is included in ¥(p). Hence, the leaf is convex on the
Poincaré metric.

The last theorem leads that the leaf of an endomorphism of dimension at least 3 is
simply connected, so the following theorem holds by Proposition 7.2. It is interesting to
note that the following algebraic property is derived from the geometric property.

Theorem B. Leaf contains all eigenvalues whose imaginary part is nonnegative, for any
endomorphism of dimension at least 3

8. Leaf and the eigenvalue geodesic polygon

For any endomorphism on the real inner product space of finite dimension, the small-
est convex domain in § containing all eigenvalues with nonnegative imaginary part is
a filled geodesic polygon whose vertexes are eigenvalues with nonnegative imaginary
part. The domain is called the eigenvalue geodesic polygon. By the structure theorems
(Theorems A and B), the leaf includes the eigenvalue geodesic polygon, for each endo-
morphism on a real inner product space of dimension at least 3. In generally, the leaf is
larger than the eigenvalue geodesic polygon. We will show that they coincide for each
normal endomorphism (Theorem C) in this section.

Let ¢ be an endomorphism on a real inner product space V of finite dimension.

Proposition 8.1. Let A € §) be an eigenvalue of ¢ with positive imaginary part, andv € V¢
an eigenvector of ¢ corresponding to . Put W = (Rev, Imv) C V and (W) = L,(W*).

(a) W is a 2-dimensional @-stable subspace of V.. Hence ((W) is the subleaf.
(b) Put At =L, (Rev), A~ =Ly,(Imv) and 8 =v-V/||v|?. Then
2 + 2 + /1 — 2
|)\i|2:‘)\| R‘e()\ ﬁ),ReAi:ReA Re(Aﬁ),Im)\i:Im)\ ‘Bl .
1+ Rep 1+ Rep 1+ Rep
(c

) AT = X holds, if and only if v L V.
(d) L

)

)

fv LV, then (W) = {\}.
Three points A\, At and A= € U(p) lie on the same geodesic.

L(W) is a geodesic circle Cp(\; =vI-IPE W) (rem. limg_,o ﬁ =0)

(e
(f

Proof. (a) The assertion is already shown in §2.
(b) Since Rev = (v +V)/2, Imv = (v —¥V)/(2v/—1), and V is an eigenvector of ¢
corresponding to A\, we have that



H. Ogawa / Linear Algebra and its Applications 724 (2025) 62-82 e

IviP? [vi®

[Rev|® = 25 (14 Re), 1 v]? = P05 (1 - Re ),

2 ||VH2 2 2 2 ||V||2 2 2

[eRev)|” = (A +ReA"B),  lle(Imv)|[” = (IAIF = Re A*B),
IIVH2 ||V||2
Rev - p(Rev) = (ReA+ReA3), Imv-p(Imv) = (Re A — Re \3),
and then
A2 +Re A% ReA+Re g
+2: L 2:| +: ]L —

N = g (Rew)l = SR, ReXt = ReLy (Rev) = ~ 0
A2 —ReM%p _ ReA —Re)As
2 _ L, (Imv) |2 = AL ZReAS =ReLy(Imv) = —————

A = Lptmy) | = PE=gE2 Red” = ReL(lmy) = =5 €

The imaginary parts of A* (> 0) are given by 1/|]A¥[2 — (Re \¥)2.

(Im AF)2 = A2 — (Re A*)?

_ |A2£ReA28 ReA+Re)j

B N s (X201 |57)
1+ Repf 1+ Repf

(1+Rep)?

)

Since Cauchy-Schwarz inequality leads |5| < 1 and |Re 8| < 1, we have that

/1= 132
It — T A YL OF

1+ Ref

(c) By the above formulae, |A\*| = |)| if and only if A3 € R and A3 < 0. Re A* = Re \
if and only if B € R. Hence, A* = X if and only if 3 =0, i.e. v L V.

(d) A and X are the eigenvalues of the restriction ¢|y of ¢ on the two-dimensional
-stable subspace W. By Propositions 7.1 and 6.2, the closed curve ¢(WW) is a circle
(or a single point set), and A lies on the circumference or the inside of ¢(W). By §2,
Re AE+1Im A J is the matrix representation of |y with respect to the basis Rev, Imv of
W. Since v and V are orthogonal, Rev and Imv are also orthogonal and equal in length.
£(W) is the circle with radius 0 by Proposition 6.2, so the single point set {A}.

(e) Each geodesic of §) is a part of line parallel to the imaginary axis or a semicircle
whose center is on the real axis. The geodesic connecting through A\™ and A~ is a part
of line if Re A™ = Re A™, or a part of semicircle if Re AT # Re \™.

e In the case that Re AT = Re A™. It follows from (b) that

ReA+ReA3 ReA—Relj
1+Ref  1—Rep
(ReA+ReA3)(1 —Ref) = (ReA —ReAB)(1 +Rep)
. ReARe =Re s

(Re At =) (=ReX™)
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~ ReAxReAB ReAxReARef

. +
R = R T 1+Res Re A

A lies on the line which is the geodesic connecting through AT and A~.

e In the case that Re A\ # Re A~. The geodesic connecting through AT and A~ is a
semicircle. Put ¢ € R be the center of the semicircle, and d the radius. The calculation
in the proof of Proposition 6.2 leads that

AP

d2_ 2 _ )\j:2_2 )\i _
¢ = cRe 2(ReAT —Re)™)

To show that A is on the semicircle, we need only show that |\ — ¢| = d holds. Since the
equality |A — ¢| = d is equivalent to

d>=|X—¢c|> = |\? —2cRe\ + ¢,

we show that d? — ¢? = |A|? — 2cRe \.

A2 = [A]? IAT[2Re AT — A2 Re A~
d2*2:)\i2*2 :ﬁ::)\:lz27| + _
¢ = AT = 2eAT = IV - g TRea- ReA Re AT — Re \—
A2 (Re At —ReA™) — (]AT]2 — ]A~[2) Re A
A2 —2cRer = |
A cRe ReAt —Re A~

Substituting (b) into the right-hand side of the two equations above, both are equal to
the following:

2(]A2Re AB — Re ARe A2)
(1+Rep)(1 —Rep)(ReAt —ReA)’

Hence |\ — ¢| = d. Namely, X lies on the geodesic connecting through A™ and A\~

(f) In §3, we already see that the geodesic circle Cp(A; k) with center A = p + g/—1

for some 0 < k < 1 is the circle with center p + ﬁzz qv/—1 and radius %q. We give

k € R such that £(W) = Cp(A; k). In the case v L ¥, we already get £(W) = {A} in (c).

Since “YZE 5 0 -as 8 — 0, we consider that Cp(A; *Y5=) = Cp(); 0) = {A} for

B8 =0.v L Vmeans § =0, so the assertion holds in this case.

b
Assume that v / v, i.e. 8 # 0. Let (a d) be a matrix representation of ¢|y with
c

respect to an orthonormal basis of W. Then A = w, where D = (a+d)? —4(ad —

bc). By Proposition 6.2, the subleaf ¢(W) = ¥ (p; W) corresponding to W is the circle
with center M and radius —W. For the centers of circles Cp(A; k)
and ¢(W) to coincide, p, ¢ and k satisfy that

a+d V=D 1+k  |b—(

9 0 17T 1 p2dT




H. Ogawa / Linear Algebra and its Applications 724 (2025) 62-82 79

And then the radiuses of the circles coincide as the following.

- (=

2k, 14k

(g = (e = (P

2

Vi(e—d)?+(b+c)?

2 )2'

Hence £(W) = Cp(); k). AT lies on the geodesic circle Cp(A; k), so we have that

5 A=A (ReA—ReAt)? 4 (ImA—TmAt)2  1—/1—[3]
S A=2F2 (ReA—=ReAt)2+ (ImA+ImA+)2 14 .,/1— B2

k% =8\ A1)
Hence,

1— k2 2k
VI—BE= —% g =2
BE=1rm -~ Pl=1

Since k is the oot of the quadratic equation |3| k% — 2k + |3| = 0 lying on the interval
[0, 1], we obtain that

L= VIZ TP
R I

Corollary 8.2. Let \ be an eigenvalue of ¢ with positive imaginary part. If there exist two
C-linearly independent eigenvectors corresponding to A, then X\ belongs to ¥(yp).

Proof. Let vi, vo € V¢ be C-linearly independent eigenvectors corresponding to A. If
vi L V7, then the last proposition (c) leads that L,(Revi) = A, i.e. A € ¥(y). Assume
that vi J V1. Put v =tv; +vy € V) (t € C). The quadratic equation v -V = (vy - 1) t% +
2Re(v1 - V2)t + (v2 - V2) = 0 has a root ty € C, because the coefficient of the leading
term is nonzero. Put vog = tov1 + vo, and then vy L vg. The last proposition (c) leads
that L,(Revg) = A, i.e. A € ¥(p).

The last corollary is included in Theorem B. By Theorem B, there exists a vector
whose value of the function L, is the given eigenvalue. However, by the last corollary,
one such vector is explicitly given by eigenvectors, if the eigenspace is of dimension at
least 2.

Let A € § be an eigenvalue of ¢ with nonnegative imaginary part, and V) C V¢ the
eigenspace corresponding to . The real part Re V), = {Rev | v € V3 } of V, is a subspace
of V. It is easy to show that ReVy = (Vi + Vy) NV = ImV, and V) = Vix. Moreover,
since Re V}, is ¢-stable, L, ((Re Vi) *) is the subleaf W(yp; Re Vy) corresponding to Re V.
In Proposition 8.1, we use the closed curve £((Rev, Imv)) for some v € Vy, to see U(¢p)
around A. We need the subleaf U(p; ReV)) to look at the relationship between A and
the other point on ¥(yp).

Proposition 8.3. Let A € $ be an eigenvalue with non-negative imaginary part.
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(a) If A € R, then U(p; ReVy) = {\}.

(b) Assume that A € R. U(p; Re V) = {\} holds, if and only if Vi L V.

(c) Assume that A\ € R and Vs f V. Then ¥(p; ReVy) is a geodesic circle with center
A when dimReVy = 2, and a geodesic disc (a filled geodesic circle) with center A
when dim Re V) > 2.

Proof. (a) Since A € R, ReV) is the eigenspace in V corresponding to A. It follows
from the proof of Proposition 4.3 that W(p; ReVy) = Ly((ReVy)*) = {Ly(v) | v €
(ReVy)*} = {A}. B

(b) Assume that V), L V). Each v; € V), is orthogonal to its conjugate. Proposition 8.1
(c) leads that L,(Revi) = A. Then, ¥(p; ReVy) =L, ((ReVy)*) = {A}.

Conversely, we assume that V\ £ V. Take vi, vo € V) satisfying that v; [ V3. At
least one of vy, vo and vy 4 vo is not orthogonal to the conjugate of itself. Because, if
vi L vy and vy L V3, then (vi + va) £ vi + vy as the following:

(V1+V2)~(V1+V2):V1'W+V1'@+V2'W+V2'@:V1'@+V2'W:2V1~@7£0.

Put vy one of vq, va, vi 4+ vo which is not orthogonal to the conjugate of itself. Proposi-
tion 8.1 (c) leads that L,(Revg) # A. Hence, ¥(¢p; ReV)) = Ly ((ReVy)™) # {A}.

(¢) If dimReVy = 2, then the subleaf ¥(y; ReV)) is a geodesic circle with center
A. Assume that dim V) > 3. Then the subleaf ¥(p; ReV),) is simply connected. By
Proposition 8.1 (f), ¢((Rev, Imv)) is a geodesic circle with center A for any v € V.
Since Re Vi = U, ¢y, (Rev, Imv), we see that ¥(p; Re Vi) = U,ey, {((Rev, Imv)), the
union of geodesic circle with same center. The simply connected domain ¥(yp; ReV)) is
a geodesic disc with center A.

Remark 8.4. The geometric property (Theorem A) was used in the above proof of the
last proposition (c). However, it can be shown without it. The subleaf ¥(p; ReV)) is
the union of concentric geometric circles ¢((Rev, Imv)) (v € ReVy) with center A, by
Proposition 8.1 (f). Moreover, Proposition 8.1 (f) and the argument of the proof of
Corollary 8.2 lead that the set of radiuses of the geometric circles ¢({(Rev, Imv)) is a
closed interval from 0 to some nonnegative real number. So, the leaf U(¢; ReV)) is a
geodesic disc with center .

Definition 8.5. For any subset A, B C §, the union of all geodesics connecting a point
on A to a point on B is called the geodesic bridge connecting A to B, denoted by A < B.

The geodesic bridge = is a commutative semigroup on the power set of §, that is,
it satisfies the associativity: (A < B) < C = A < (B = (), and the commutativity:
A =< B = B =< A. The geodesic bridge connecting finite convex subsets is the smallest
convex set including all those subsets. Hence, the eigenvalue geodesic polygon of an
endomorphism ¢ is represented by {A1} =< -+ < {\.} where A1, ..., A, are the eigenvalue
of ¢ with nonnegative imaginary part.
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Proposition 8.6. Let ¢ be an endomorphism on a real inner product space V', and Wi
and W two nonzero p-stable subspaces of V' satisfying that W1 L Wy. Then

U(p; W1 @ Wa) = U(p; W1) < U(p; Wa).

Proof. dim(W; + Ws) < 2 leads dimW; = dim Wy = 1, so U(p; W1) and U(p; Wa)
are single point sets. The elements A; and Ay € R of these sets are eigenvalues of ¢|w,
and ¢|w,, respectively. Since W7 L Ws, the representation matrix of ¢|w,ew, of an
orthonormal bases is the diagonal matrix whose components of diagonal are \; and As.
By Proposition 6.2, the subleaf U(p; Wy @ Wh) is a geodesic connecting through A
and Ag, that is the geodesic bridge connecting {A1} to {A2}. Hence, ¥(¢p; W1 @ Wa) =
U(p; W) < W(p; Wa).

Assume that dim(W; & Ws) > 3. The subleaf ¥(p; W1 ® W) is convex, so ¥(p; W1 @
W3) includes ¥(gp; W1) =< ¥(yp; Wa)). We will show the inverse inclusion relation. By
looking at the end points of the geodesics, ¥(p; W1) and ¥(p; Wa) are included in
U(p; W1 @ Wa). Let A € U(oeW1 @ Wa) N (¥(p; W1) U U(p; Wy)). Take v =w; +wy €
Wi @ Wy such that A = L,(v), wi € Wi and wy € W, Since wy and wy satisfy the
orthogonal condition in Proposition 7.4, the curve £({wy, ws)) is the geodesic connecting
L,(wi) to Ly(ws). Since A = Ly (wy + wa2) € £((wi, wa)), Lo(wy) € ¥(p; Wi) and
L,(w2) € W(p; Wa), A lies on the geodesic bridge connecting W(p; Wi) to U(p; Wa).
Hence,

U(p; W1 @ Wa) = U(p; W1) < WU(p; Wa).

Theorem C. Leaf is the eigenvalue geodesic polygon, for any normal endomorphism of
dimension at least 3,

Proof. Let ¢ be a normal endomorphism on a real inner product space V of finite
dimension. Then, eigenvectors of ¢ corresponding to different eigenvalues are orthogonal.
V is the orthogonal sum of real parts of eigenspaces of all eigenvalues with nonnegative
imaginary part. Let A = {A1, ..., A} be the set of all eigenvalues with nonnegative
imaginary part, A the set of all eigenvalues, and V) the eigenspace corresponding to A €
A. Since @ is normal, Vi L Vi forany A\, \ € A with A # \. And then ¥(p; ReV3) = {)\}
for any A € A by Proposition 8.3, and V is the ¢-stable orthogonal sum of Re V), -- -,
ReVy,. Namely, V =ReVy, @ ---®ReV) , ReVy, L ReV), (i #j), and each ReV), is
-stable. By Proposition 8.6,

U(p) = U(p; ReVy,) < X U(p; ReVy, ) = {\} < {do} < =< {\}

Remark 8.7. In general, the converse of the last theorem does not hold. For example,
take the endomorphism ¢ = (—1) @ (0) @ (1) @ ((3J + K)/4) on R®, where J and K are
quadratic square matrices defined in Example 1.2. (3J+ K)/4 is not normal, so ¢ is also
not. The eigenvalues with nonnegative imaginary part are —1, 0, 1 and y/—1/2. The
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filled geodesic triangle A with vertexes —1, 0 and 1 is surrounded by three semicircles
with center 1/2 and radius 1/2, with center —1/2 and radius 1/2, and with center 0
and radius 1. The eigenvalue A\ = /—1/2 lies on the interior of A, so A is also the
eigenvalue geodesic polygon of ¢. Put W = Re V), then we have that p|w = (3J+K)/4
and ¢y = (—1) @ (0) @ (1). The subleaf ¥(p; W) is a circle with center o = 3/—1/4
and radius 1/4 by Proposition 6.2, and the subleaf ¥(y; W) = A by the last theorem.
We see that the circle ¥(p; W) is included in A, by calculating the distance between
the center « of the circle and the edges of A. Therefore, the leaf U(p) is the eigenvalue
geodesic polygon. ¢ and ¢|y 1 have the same leaf. By replacing or increasing the direct
sum factor appropriately, it is possible to obtain infinitely many endomorphisms with
the same leaf.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The author would like to thank Hiroaki Nakamura, Yu Yasufuku, Michihisa Wakui and
Kanji Namba for several crucial remarks and valuable information on relevant researches.
Special thanks are due to Hiroaki Nakamura for his support and suggestions on various
aspects of the author’s continued research.

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Data availability
No data was used for the research described in the article.

References

[1] S.K. Berberian, The numerical range of a normal operator, Duke Math. J. 31 (1964) 479-483.

[2] M. Elin, S. Reich, D. Shoikhet, Numerical Range of Holomorphic Mappings and Applications,
Birkhauser, 2019.

[3] Karl E. Gustafson, Duggirala K.M. Rao, Numerical Range, Springer-Verlag, 1995.

[4] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919) 314-316.

[5] S. Roman, Advanced Linear Algebra, Springer GTM, 3rd edition, 2007.

[6] M.H. Stone, Linear Transformations in Hilbert Space, American Mathematical Society, R.I., 1932.

[7] O. Toeplitz, Das algebraische Analogon zu einem Satz von Fejer, Math. Z. 2 (1918) 187-197.

[8] A. Wintner, Zur Theorie der beschrankten Bilinearformen, Math. Z. 30 (1929) 228-282.


http://refhub.elsevier.com/S0024-3795(25)00256-3/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib1E7F7EDEB06DE02F2C2A9319DE99E033s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib1E7F7EDEB06DE02F2C2A9319DE99E033s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibC1D9F50F86825A1A2302EC2449C17196s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bibB9ECE18C950AFBFA6B0FDBFA4FF731D3s1
http://refhub.elsevier.com/S0024-3795(25)00256-3/bib61E9C06EA9A85A5088A499DF6458D276s1

	Leaf as a Poincaré convex domain associated with an endomorphism on a real inner product space
	1 Introduction
	2 Normal endomorphisms
	3 The Poincaré metric on H
	4 Leaf and real eigenvalues
	5 Numerical range vs. leaf
	6 Leaf of an endomorphism of dimension 1 or 2
	7 Leaf in H and eigenvalues with nonnegative imaginary part
	8 Leaf and the eigenvalue geodesic polygon
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


