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A B S T R A C T

Idiopathic pulmonary fibrosis (IPF) is an independent risk factor for lung cancer, especially squamous cell car
cinoma (SCC). The prognosis of patients with both IPF and SCC is poorer than that of patients with only IPF, and 
preventive measures against SCC in patients with IPF remain elusive. Understanding the distinct mechanisms 
that induce both diseases is crucial for mitigating SCC onset in patients with IPF. We developed highly accurate 
machine learning (ML) models to classify patients with IPF or SCC using public RNA sequencing data. To 
construct the ML models, a random restart technique was applied to the five algorithms. To identify the 
differentially expressed genes (DEGs) between IPF and SCC, feature importance was calculated in the classifi
cation models. Furthermore, we detected somatic mutations affecting gene expression using SCC data. The ML 
models identified VCX2, TMPRSS11B, PRUNE2, PRG4, PZP, SCARA5, DES, HPSE2, HOXD11, S100A7A, and 
PLA2G2A as DEGs. Somatic mutations were detected in four transcription factors, BHLHE40, MYC, STAT1, and 
E2F4, which regulate the expression of these 11 genes. Furthermore, a molecular network comprising four 
transcription factors and 11 downstream genes was discovered. This newly identified molecular network en
hances our understanding of the distinct mechanisms underlying IPF and SCC onset, and provides new insights 
into preventing SCC complications in patients with IPF.

1. Introduction

Idiopathic pulmonary fibrosis (IPF), a common and prognostically 
unfavorable idiopathic interstitial pneumonia (IIP), is characterized by 
inflammatory and fibrotic changes in the lung parenchyma. IPF, 
constituting 55–60 % IIP cases, has no curative treatment, and the two 
recommended antifibrotic drugs only slow disease progression (Raghu 
et al., 2015). Briefly, 10–20 % IPF cases concurrently involve lung 
cancer (Ozawa et al., 2009), and the incidence of lung cancer in IPF 
cases is 7–14 times higher than in non-IPF cases (Matsushita et al., 1995; 
Turner-Warwick et al., 1980). Both conditions are more prevalent in old 
adults, males, and smokers, sharing risk factors, such as smoking and 
exposure to environmental or occupational hazards (Zaman and Lee, 
2018). Additionally, IPF is an independent risk factor for lung cancer.

Patients with both IPF and lung cancer have a significantly worse 
prognosis than those with lung cancer or IPF (Tomassetti et al., 2015; 
Yoon et al., 2018). Squamous cell carcinoma (SCC) is the most common 
lung cancer type in patients with IPF, whereas adenocarcinoma (ADC) is 
the most common non-small-cell lung cancer (NSCLC) subtype in the 
general population (Ballester et al., 2019). Surgical intervention is a 
treatment option for patients with both IPF and lung cancer; however, 
the postoperative incidence of acute exacerbation (AE) of IPF is 10.1 % 
(Sato et al., 2014). Postoperative AE is associated with 35.6–43.9 % 
mortality, indicating poor prognosis (Sato et al., 2015, 2014). Thus, 
preventing lung cancer occurrence is crucial to avoid AE, but no pre
ventive measures have been established for patients with both IPF and 
lung cancer. To prevent lung cancer in patients with IPF, it is essential to 
understand the molecular mechanisms by which lung cancer cells in 
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patients with both IPF and lung cancer arise from lung cells in patients 
with only IPF. This requires an understanding of the differences in the 
onset mechanisms of both diseases; however, such analyses remain 
underexplored.

One reason is that surgical intervention in patients with both IPF and 
lung cancer carries AE risk, making the collection of clinical samples 
ethically challenging. However, Hata et al. showed that the somatic 
mutation profiles were highly similar in SCC patients, regardless of the 
presence of IPF (Hata et al., 2021), suggesting that genetic information 
from the cancerous tissues of patients with both IPF and SCC could be 
substituted for that from patients with only SCC. Since data on IPF 
without lung cancer and lung cancer without IPF are relatively abundant 
in public databases, these datasets may be analyzed to understand the 
differences between the onset mechanisms of both diseases.

Classical statistics and machine learning (ML) differ in terms of 
computational tractability, with increasing variables per subject. Clas
sical statistical modeling, designed for data with a few dozen input 
variables and small to moderate sample sizes, focuses on unobserved 
system aspects. Conversely, ML focuses on predictions using general- 
purpose learning algorithms to search for patterns in complex and un
wieldy data (Bzdok, 2017; Bzdok et al., 2018, 2017); these methods can 
be effective even without a carefully controlled experimental design or 
complicated nonlinear interactions (Bzdok et al., 2018).

This study used various public RNA sequencing (RNA-Seq) data from 
the lungs of patients with IPF or SCC and employed a random restart 
technique to construct high-performance ML models for classifying IPF 
and SCC. These models highlight the differences in IPF and SCC onset 
mechanisms, contributing to a clear understanding of lung cancer onset 
and prevention mechanisms in patients with IPF.

2. Methods

2.1. Public RNA-Seq analysis and batch-effect correction

Public RNA-Seq datasets were obtained from the NCBI Sequence 
Read Archive (https://trace.ncbi.nlm.nih.gov/Traces/sra/; Table 1). 
The quality of FASTQ file data was confirmed using FastQC (htt 
p://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmo
matic version 0.36 (http://www.usadellab.org/cms/?page=trimmoma 
tic) (Bolger et al., 2014) was used to trim the reads using the Illumina 
TruSeq adapter removal process (2:30:10) with the following parame
ters: LEADING, 20; TRAILING, 20; SLIDINGWINDOW, 4:20; and MIN
LEN, 25. The trimmed reads were mapped to the reference human 
genome (version GRCh38) available in Ensembl using HISAT2 version 
2.1.0 (http://daehwankimlab.github.io/hisat2/) with default parame
ters (Kim et al., 2019). The resulting BAM files were input into featur
eCounts version 2.0.1 (http://subread.sourceforge.net/) (Liao et al., 
2014) to generate read count data. Genes listed in Ensembl BioMart (htt 
ps://www.ensembl.org/info/data/biomart/index.html) as protein- 
coding genes, long non-coding RNAs (lncRNAs), and microRNAs (miR
NAs) were selected for further analysis using the biomaRt package 
(version 2.54.1) in R version 4.2.3 (https://www.r-project.org/). Count 
data were converted into transcripts per million (TPM) and subsequently 
transformed into log2 (TPM + 1).

Subsequently, the transformed values were fed into the ComBat_seq 
function of the sva package (version 3.46.0) in R to perform batch-effect 
corrections (BEC) among the datasets. The BEC outcomes were esti
mated using a uniform manifold approximation and projection (UMAP) 
via the umap function of the umap package (version 0.2.10.0). The 
UMAP visualization was performed using the ggplot function in the 
ggplot2 package (version 3.4.4). The normal samples after BEC were 
excluded from subsequent analyses.

2.2. ML model construction and feature importance

We selected the dataset with the largest sample size for each disease 

and designated it as the training data, whereas the remaining datasets 
were assigned as the test data. The training data were oversampled and 
downsampled using the synthetic minority oversampling technique 
(SMOTE) (Chawla et al., 2002) function of the DMwR package (version 
0.4.1) in R. Classification models were constructed using the training 
function of the caret package (version 6.0–94). The training samples 
were split into 8:2 training: validation data and trained using 5-fold 
cross-validation. The algorithms k-nearest neighbors (knn), support 
vector machines (SVM) with radial basis function kernel (svmRadial), 
SVM with linear kernel (svmLinear), eXtreme gradient boosting 
(xgbTree), and random forest (rf) were selected to construct the classi
fication models because these algorithms are commonly used in super
vised learning of RNA-Seq data (Liñares Blanco et al., 2019; Gakii et al., 
2023) and high explainability. The hyperparameter settings for each ML 
algorithm used in the grid search are presented in Supplementary Table 
1. A random restart was performed with seed values 1–2000 in in
crements of 1. The accuracy, area under the curve (AUC), and kappa 
value were calculated using the confusion matrix function of the caret 
package.

2.3. Permutation test

To evaluate the stability of the high-feature-importance genes, per
mutation tests were performed using R. For one or more genes, the 
values for each sample were shuffled among the samples, and the clas
sification models were built as described above. A random restart was 
not performed in the permutation test, and the seed value with the 
highest performance from the original data was selected. Additionally, 
permutation tests were conducted only for the knn, svmLinear, and 
xgbTree models, which calculated the feature importance. P-values were 
calculated using the following formula: 

Pvalue =
b
m 

where b is the number of permutations that yielded values equal to or 
greater than the original accuracy and m is the total number of permu
tations (100 times).

2.4. Somatic mutation analysis using RNA-Seq data

Somatic mutation analysis was conducted using the SRP114315 
samples with reference to the GATK Best Practices workflow for RNA- 
Seq data (https://github.com/broadgsa/gatk/blob/master/doc_archiv 
e/methods/Calling_variants_in_RNAseq.md). The reads were trimmed 
as previously described and then mapped to the hs37d5 reference 
human genome from the 1000 Genome Project (https://www.inter 
nationalgenome.org/) using multi-sample 2-pass mapping in STAR 
version 2.7.0b (https://github.com/alexdobin/STAR?tab=readme-ov-fi 
le) (Dobin et al., 2013) with the outFilterMismatchNmax 2 option to 
generate BAM files. These files were input into the MarkDuplicates of 
Picard (version 2.21.8, https://broadinstitute.github.io/picard/) to 
identify and tag duplicate reads. The marked BAM files were sorted 
using Picard SortSam with the SORT_ORDER=coordinate option, input 
into SplitNCigarReads of GATK version 4.1.4.1 (https://gatk.broadinstit 
ute.org/) to split reads that contained Ns in their cigar string, and then 
input into BaseRecalibrator of GATK to generate a recalibration table for 
Base Quality Score Recalibration (BQSR). The BQSR and BAM files were 
then inputted into ApplyBQSR of GATK to apply the BQSR results. The 
final BAM files were input into the GATK Mutect2 to call somatic mu
tations, generating variant call format (VCF) files for each sample. 
SnpEff version 4.3 t (https://pcingola.github.io/SnpEff/) was used for 
variant annotation and impact prediction in the VCF files, and variants 
with high or moderate impact were filtered through SnpSift (version 
4.3 t). The selected VCF files were converted into mutation annotation 
format (MAF) files using vcf2maf (version v1.6.17). Finally, MAF files 
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were integrated using the merge_mafs function of the maftools package 
(version 2.10.05) in R. When conducting somatic mutation analysis, 
whole genome sequencing or whole exome sequencing (WES) is 
commonly used because RNA-Seq data may have insufficient depth. 
Therefore, when using RNA-Seq, mutations detected in only few samples 
have low confidence. To address this issue, we focused on mutations 
detected in > 50 % samples.

2.5. Network construction

Network construction consisted of two steps. The first step detected 
13,538 mutated genes in 101 MAF files. After filtering out genes with 
< 50 % mutation frequency across all samples, 727 genes remained. Of 
these, 26 genes were identified as transcription factor (TF)-encoding 
genes using the Human Transription Factors, a public database (http://h 
umantfs.ccbr.utoronto.ca/index.php) (Lambert et al., 2018). In the 
second step, we examined the TFs regulating the expression of the 20 
genes identified via feature importance using ChIP-Seq data from 
Encyclopedia of DNA Elements (ENCODE) (Consortium, 2011) down
loaded from Harmonizome 3.0 (https://maayanlab.cloud/Har 
monizome/). In total, 22,819 downstream genes were identified using 
ENCODE ChIP-Seq data.

2.6. Statistical analyses

Classical statistical methods were performed in order to identify the 
differentially expressed genes (DEGs). DEGs were determined using 
Welch’s t-test and Storey’s method with a threshold of FDR < 0.001 
(Storey and Tibshirani, 2003). We defined the top 10 genes with the 
highest fold-change that were more highly expressed in IPF than in SCC, 
and the top 10 genes with the highest fold-change that were more highly 
expressed in SCC than in IPF as the DEGs. AUC values were calculated 
using the roc function of the pROC package in R. Spearman’s rank 
correlation coefficient was performed using the cor function.

3. Results

3.1. BEC among multiple datasets

To detect differences in gene expression between IPF and SCC, we 
constructed ML models using public RNA-Seq datasets. We focused on 
protein-coding genes, lncRNAs, and miRNAs involved in lung cancer and 
IPF development (Ali et al., 2022; Hadjicharalambous and Lindsay, 
2020; Schmitt and Chang, 2016; Wang et al., 2015, 2020). The ML 
model construction strategy is illustrated in Fig. 1. BEC was necessary 
because multiple datasets were deposited in different countries 
(Table 1). The pre-BEC training and test data were projected onto a 

UMAP embedding for each dataset (Supplementary Fig. 1), whereas the 
post-BEC training and test data were projected for each sample category 
with a distinct separation in the training data (Fig. 2).

3.2. ML model construction

Biomedical datasets for rare diseases, such as IPF, are often severely 
imbalanced, rendering most ML algorithms unsuitable (Mirza et al., 
2019). To address this, we used SMOTE, a common tool when per
forming ML with RNA-Seq data (Chen et al., 2022; Mahin et al., 2022), 
to oversample IPF and downsample SCC in the training data. We then 
constructed classification models using five algorithms to classify IPF 
and SCC with 2000 different seed values based on the known impact of 
seed values on ML model performance (Goldberg, 2017). Optimal 
hyperparameters were searched during the learning process using a grid 
search and evaluated via 5-fold cross-validation (Supplementary Fig. 2). 
The model with the highest performance was selected for all seed values. 
Owing to test data imbalance, the final performance evaluations were 
conducted based on the kappa values. The kappa values for knn, 
svmLinear, and xgbTree were generally high, whereas those for 
svmRadial and rf were low (Fig. 3A). The highest kappa values for knn, 
svmRadial, svmLinear, xgbTree, and rf were 0.7670, 0.4909, 0.7630, 
0.7855, and 0.6383, respectively (Table 2). The AUC and receiver 
operating characteristic (ROC) curves of each model with the highest 

Table 1 
Public RNA sequencing data used in this study.

Accession 
ID

Disease 
type

No. of 
diseased 
samples

No. of 
normal 
samples

Data 
from

Ref.

GSE92592 IPF 20 19 U.S.A (Schafer et al., 
2017)

GSE99621 IPF 18 8 U.S.A (Luzina et al., 
2018)

GSE52463 IPF 8 7 U.S.A (Nance et al., 
2014)

GSE83717 IPF 6 5 Serbia (Vukmirovic 
et al., 2017)

GSE138239 IPF 11 4 U.S.A (Yin et al., 
2020)

SRP114315 SCC 101 101 Korea (Seo et al., 
2018)

GSE81089 SCC 67 19 Sweden (Mezheyeuski 
et al., 2018)

Fig. 1. Overview of machine learning (ML) model construction and validation 
using test data. RNA sequencing data for both the training and testing datasets 
were obtained from a public database. Subsequently, the data were analyzed 
and batch-effect corrected using Combat_seq. Training data imbalance was 
addressed using the synthetic minority oversampling technique (SMOTE), and 
models were constructed using five algorithms through 5-fold cross-validation 
and a grid search. From the SMOTE to grid search cross-validation, 2000 
seed values were used. The model accuracies were evaluated using test data, 
and the feature importance of the highest-performing model was calculated. 
QC, quality control; GS, grid search; CV, cross-validation; SCC, squamous cell 
carcinoma; IPF, idiopathic pulmonary fibrosis.
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kappa values are shown in Fig. 3B. The accuracy, kappa, and AUC in 
5-fold cross-validation of each model with the highest kappa value were 
approximately 1 for each fold and each algorithm (Supplementary Fig. 
3). According to Landis et al., kappa value 0.61–0.80 is considered 
“substantial” and 0.81–1.00 is considered “almost perfect” (Landis and 
Koch, 1977). Thus, we selected the knn, svmLinear, and xgbTree models 

with the highest kappa values close to 0.8 for downstream analysis.
To evaluate the effect of BEC on model performance, the classifica

tion models were constructed using a learning process without applying 
BEC to the training data. Consequently, the accuracy decreased signifi
cantly (Supplementary Fig. 4).

Fig. 2. Uniform manifold approximation and projection (UMAP) of training and test data after batch-effect correction. Plot colors indicate sample categories, 
whereas plot shapes indicate the accession numbers of publicly available RNA sequencing data. IPF: idiopathic pulmonary fibrosis; SCC: squamous cell carcinoma. 
(A) training and (B) test data.

0

Fig. 3. Model performance in each algorithm validated using test data. (A) Kappa value density in each algorithm. (B) Receiver operating characteristic curve of the 
best-performing model in each algorithm.
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3.3. Feature importance

Significant genes were identified using the classification models 
(knn, svmLinear, and xgbTree) based on feature importance. The top 10 
genes included melanoma-associated antigen 4 (MAGEA4) in all models; 
a class A scavenger receptor (SCARA5), a member of phospholipase A2 
(PLA2G2A), ENSG00000234638, HPSE2, ENSG00000279712, desmin 
(DES), and a human homolog of the Drosophila prune gene (PRUNE2) in 
knn and svmLinear; and proteoglycan 4 (PRG4) in svmLinear and 
xgbTree. ENSG00000250920 and pregnancy zone protein (PZP) were 

Table 2 
Kappa value statistics in each algorithm validated against test data.

knn svmRadial svmLinear xgbTree rf

Max 0.7670 0.4909 0.7630 0.7855 0.6383
Mean 0.4172 0.03324 0.5658 0.5845 0.09426
Median 0.4361 0.02819 0.5871 0.5945 0
Min 0.09213 0 0.1669 0.2364 − 0.05373

Fig. 4. Identification of significant genes based on feature importance. (A) Overlap among the top 10 genes based on feature importance in knn, svmLinear, and 
xgbTree. Top 10 genes based on feature importance in (B) knn, (C) svmLinear, and (D) xgbTree. (E) P-values obtained from the permutation test for each number of 
shuffled genes. The x-axis is shown on a logarithmic scale. (F) Log2(FC) values of the top 20 differentially expressed genes between normal and IPF, or normal and 
SCC. Red and blue indicate positive and negative values, respectively. FC; fold change; SCC, squamous cell carcinoma; IPF, idiopathic pulmonary fibrosis.
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exclusive to knn; LINC00602 to svmLinear; and LINC02990, MAFA-AS1, 
VCX2, S100A7A, GPR50, ENSG00000272715, Homeobox D11 
(HOXD11), and transmembrane serine protease (TMPRSS11B) to 
xgbTree (Fig. 4A). The scaled importance of the top 10 genes was > 90 
in knn and svmLinear (Fig. 4B, C), and 2.83–100 in xgbTree (Fig. 4D). 
The P-values of some genes when performing the permutation test were 
not < 0.05 (Fig. 4B–D). However, when multiple genes were shuffled 
simultaneously in the descending order of feature importance, the model 
performance decreased below the original level at the point of shuffling 
the top 50 and 400 genes for svmLinear and knn, respectively (Fig. 4E). 
For xgbTree, performance fell below the original level when at least one 
top-ranked gene was shuffled (Fig. 4E). The expression levels of these 20 
genes were substantially and slightly altered in SCC and IPF lung tissue, 
respectively, than in normal lung tissue (Fig. 4F).

3.4. Somatic mutation analysis of TFs regulating gene expression 
identified via feature importance

Intratumor heterogeneity refers to cellular variations within tumors 
(Ono et al., 2021), with unique genomic profiles even in adjacent tumors 
of the same patient; this phenomenon is also observed in SCC (Bruin 
et al., 2014). This makes it challenging to associate gene expression data 
from a tumor sample with somatic mutation data from an adjacent 
sample. Although the dataset with accession no. SRP114315 includes 
both RNA-Seq and WES data, we used the RNA-Seq data to identify 
genomic profiles causing gene expression differences, as the tumor tis
sue samples for RNA-Seq and WES were different (Seo et al., 2018). 
Genome-wide sequencing studies have detected a higher number of 
somatic mutations in NSCLC than in other cancers, indicating a signifi
cant role for gene mutations in NSCLC onset (Vogelstein et al., 2013). 
Therefore, we investigated somatic mutations affecting gene expression, 
focusing on mutations in TF-encoding genes that directly affect gene 
expression. The identification process shown in Fig. 5 consists of two 
steps. Variant classification after the first step revealed that frameshift 
insertions were the most common mutations, followed by missense 
mutations, with a median of 32 variants per sample (Fig. 6A, B). 
Twenty-six TFs with mutations in > 50 % samples are shown in Fig. 6C 
and Supplementary Fig. 5. After the second step, 13 downstream genes 
overlapped with the important feature genes detected by the ML models 
and chromatin immunoprecipitation sequencing (ChIP-Seq) data from 
the ENCODE, which were regulated by one or more of the 128 TFs 
(Fig. 7A, Supplementary Data 1).

The TFs MYC, BHLHE40, STAT1, and E2F4 were identified as over
laps between the 26 TFs from the first step and the 128 TFs from the 

second step. All somatic mutations detected in the four TF genes are 
shown in Supplementary Data 2. In MYC, BHLHE40, and STAT1, Fra
me_Shift_Ins mutations were the most frequently detected, followed by 
Missense_Mutation (Fig. 6C and Supplementary Fig. 6A–C). The most 
somatic mutations in E2F4 were In_Frame_Del (Fig. 6C and Supple
mentary Fig. 6D). The most common mutations in BHLHE40 and E2F4 
were not located in domains (Supplementary Fig. 6A, D). In contrast, the 
most frequent mutations in MYC and STAT1 were located in the HLH 
and STAT_alpha domains, respectively (Supplementary Fig. 6B, C). Less 
frequent mutations were scattered throughout the sequence 
(Supplementary Fig. 6A–D). Based on ENCODE data, the expression of 
11 downstream genes was regulated by one or more of these four TFs 
(Fig. 7B). In addition, missense mutations in these four TFs were 
detected in at least one of the 14 samples in the TCGA-LUSC dataset 
(Supplementary Fig. 7).

4. Discussion

In this study, we constructed ML models to classify patients with IPF 
or SCC using RNA-Seq data from seven datasets. The benefits of merging 
gene expression datasets to improve the ML model performance are 
often undermined by batch effects, which are unwanted data variations 
caused by the technical differences across batches (Zhang et al., 2020). 
Therefore, minimizing these batch effects, particularly for training data, 
is crucial. The training data after BEC were distinctly distributed for 
each sample category, indicating successful correction of batch effects. 
Although the test data were more widely spread than the training data, 
the normal and diseased samples were separately distributed, indicating 
successful BEC. The model performance significantly decreased when 
BEC was not applied to the training data, indicating that BEC application 
to the training data significantly contributed to the model performance.

ML methods are particularly useful when dealing with data where 
the number of samples (n) is considerably greater than the number of 
features (p). However, the scenario is reversed in omics data, with the 
number of features (such as genes and proteins) significantly exceeding 
the number of samples, leading to a data structure expressed as n < < p 
(Teschendorff, 2019). This can result in overfitting when ML methods 
are applied to the omics data. Overfitting occurs when the derived 
predictive model fits a random variation in the data, which does not 
represent the true biological variation associated with the phenotype of 
interest (Simon et al., 2003; Teschendorff, 2019). Therefore, the per
formance of ML models should be validated using test data constructed 
independently from training data when conducting ML with omics data 
(Teschendorff, 2019). When training complex structures, employing 

Fig. 5. Flowchart for the identification of somatic mutations in transcription factors (TFs) regulating the expression of genes identified via feature importance. 
Diagram was generated using draw.io (https://app.diagrams.net/). MAF, mutation annotation format; ENCODE, Encyclopedia of DNA Elements.
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various random seeds can result in different final solutions, each with its 
own accuracy (Goldberg, 2017). This method is known as random 
restart (Goldberg, 2017). In a random restart, the algorithm begins with 
several initial solutions (random initial states) and conducts an opti
mization process for each solution. In other words, the same problem is 
addressed multiple times under various initial conditions, and the 
optimal solution is selected based on the outcomes of each attempt. This 
method is beneficial as it mitigates the risk of local optimum entrap
ment, thus enabling an extensive solution search by testing multiple 
initial solutions. However, this could increase computational costs, 
necessitating efficient implementation. Therefore, the training process 
should be executed multiple times with varying random seeds when 
computational resources are available, followed by selecting the random 
seed that performs best on the development sets (Goldberg, 2017). In 
this study, the random restart technique was employed to select a 
high-performance classification model. The classification models 
exhibited high performance in 5-fold cross-validation, indicating po
tential overfitting. Therefore, independently constructed test data were 
used for the evaluation with 2000 seed values. The svmLinear, knn, and 
xgbTree classification models were selected based on their kappa values 
after validation against the test data. The kappa values for all the three 
models exceeded 0.75, which indicates substantial model performance 
(Landis and Koch, 1977). This demonstrates the feasibility of con
structing high-performing ML models, even for omics data with n < < p, 
when independently constructed test data and random restarts tech
nique are available. As mentioned above, the classification model con
structed in this study consistently exhibited high performance during the 
grid search, regardless of the hyperparameter conditions, indicating that 
random restarts are more critical and warrant greater consideration than 
model-specific hyperparameters in studies using ML for omics data with 
n < < p. When the goal is to detect differences between two classes by 
extracting feature importance from the model, as in this study, selecting 
the seed value that yields the highest accuracy among those obtained 
through random restarts is effective in achieving a highly accurate 
model. In contrast, accuracy results may vary depending on the test data 
used, even with the same seed value. Therefore, the random restart 
technique may be inappropriate for constructing a general-purpose ML 
model.

Interestingly, the top 10 feature importance scores calculated based 
on the svmLinear and knn classification models were 90–100. In 
contrast, those calculated based on the xgbTree classification model 
showed a wide range of values from 2 to 100, indicating a high degree of 
variability. This suggests that the svmLinear and knn models make 
predictions using a larger geneset, whereas the xgbTree model relies on 
a smaller and more selective geneset. This was also supported by the 
results of permutation tests when multiple genes were shuffled. This 
difference likely stems from algorithmic variations. The top 10 genes 
with high feature importance in knn and svmLinear largely overlapped, 
unlike those in xgbTree. Despite this, the kappa values and accuracies of 
the three models were similar, suggesting that predictions could be 
made using two distinct gene lists. We also used classical statistical 
methods to identify the DEGs between patients with IPF and those with 
SCC. The gene lists differed from those selected based on feature 
importance in the ML models. This suggests that ML-based methods 
should not replace classical statistical approaches but it should be used 
in combination. However, when calculating the AUC for each DEG 
selected using classical statistical methods, the highest AUC was found 
to be 0.8671 (Supplementary Table 2). Therefore, except for svmRadial, 
the ML-based approach demonstrated a higher performance, suggesting 
its potential to provide more generalizable DEGs between IPF and SCC.

The feature importance based on the three classification models 
revealed 20 key genes for IPF and SCC classification. SCARA5 suppresses 
lung cancer cell proliferation, and increased methylation levels in 
SCARA5 promoter region are associated with reduced gene expression in 
patients with SCC (Peng et al., 2021). PLA2G2A induces pyroptosis in 
alveolar epithelial cells, resulting cell death, thereby contributing to 
lung tissue destruction, and its gene and protein expressions are high in 
patients with IPF (Bauer et al., 2015; Jaiswal et al., 2023). In addition, 
PLA2G2A expression is decreased owing to somatic mutations in tumor 
suppressor genes (TSGs; TP53, CDKN2A, PTEN, RB1, and BRCA1) in the 
lung tissues of patients with SCC (Kim et al., 2021). Among the 101 
patients with SCC, 78 had somatic mutations in at least one TSG 
(Supplementary Data 3). Thus, the PLA2G2A reduction in SCC may be 
caused by mutations in TSGs. Although the role of desmin in lung cancer 
and IPF is unclear, DES expressions are lower in the lung tissues of pa
tients with SCC than in those with IPF (Fallahian et al., 2018). PRUNE2 

Fig. 6. Summary of somatic mutation analysis in squamous cell carcinoma (SCC) samples. Variant (A) classification and (B) type. In both cases, the horizontal axis 
represents the number of variants detected across all samples. (C) List of transcription factors (TFs) with a mutation in > 50 % samples. Horizontal axis represents the 
number of variants detected for each TF. Plots were constructed using the plotmafSummary function of the maftools package (version 2.10.05) in R. TNP, triple 
nucleotide polymorphism; SNP, Single nucleotide polymorphism; INS, Insertion; DNP, Double nucleotide polymorphism; DEL, Deletion.
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suppresses colorectal and prostate cancer cell proliferation and invasion 
(Li et al., 2022; Salameh et al., 2015), and its expression is lower in SCC 
lung tissues than in normal lung tissues (Wu et al., 2020). PZP expression 
is low in tumor tissues; its downregulation is correlated with poor 
clinical outcomes in lung ADC and hepatocellular carcinoma, and its 
gene expression is lower in lung SCC tissues than in normal lung tissues 
(Chen et al., 2023; Su et al., 2020). PRG4 represses the genesis and 
metastasis of osteosarcoma (Zhang et al., 2024) and is correlated with 
longer survival in hepatocellular carcinoma (HCC) patients　(Dituri 
et al., 2020). In addition, its gene expression is downregulated in SCC 
lung tissues than in normal lung tissues (Wu et al., 2020). HOXD11 
promotes cell invasion and metastasis in penile squamous cell carcinoma 
(Tan et al., 2022), and its gene expression is higher in the lung tissues of 
patients with lung SCC than in normal lung tissue (Zhang et al., 2017). 
MAFA-AS1, a long non-coding RNA, is a candidate biomarker for poor 
prognosis in HCC, and its expression is high in the lung tissue of patients 
with SCC (Tian et al., 2023). TMPRSS11B promotes tumor trans
formation and growth in lung SCC (Updegraff et al., 2018). S100A7, a 
member of the S100 multigenic family, promotes lung ADC to squamous 
carcinoma transdifferentiation and is selectively expressed in lung SCC, 
but not lung ADC (Wang et al., 2017; Zhang et al., 2008). MAGEA4 is 
uniquely expressed in SCC lung tissue, but not in ADC and normal lung 
tissues (Peikert et al., 2006). VCX2, identified as a cancer/testis antigen, 
is also expressed in SCC lung tissues (Taguchi et al., 2014). Although 
HPSE2 and GPR50 expression profiles in SCC and IPF remain to be 
elucidated, they play a role in suppressing tumorigenesis (Kayal et al., 
2023; Saha et al., 2020). LINC00602, LINC02990, ENSG00000272715, 
ENSG00000234638, ENSG00000279712, and ENSG00000250920 are 
listed as lncRNAs in the Ensembl Genome Database. However, despite 
their potential roles in carcinogenesis, no studies have investigated 
them. Therefore, further investigation is required to elucidate their roles 
in SCC and IPF development.

The expression profiles of the above-mentioned genes in IPF and SCC 
have been partially reported, which is consistent with the findings of this 
study. Thus, beyond the computational accuracy, the classification 
model accurately distinguished SCC from IPF.

The top 20 genes identified based on their high feature importance 
were linked to carcinogenesis rather than fibrosis. Through the analysis 
of SCC samples, somatic mutations regulating these genes were detec
ted, with a focus on TFs. ChIP-Seq data from ENCODE revealed a 
connection between these 20 genes and four TFs: BHLHE40, MYC, 
STAT1, and E2F4. Somatic mutations in these four TFs were identified 
using the TCGA-LUSC dataset despite the low mutation frequency, 
suggesting that they are not dataset-specific mutations. Somatic muta
tions in these four TF genes may influence the expression of downstream 
genes associated with SCC pathology, including VCX2, TMPRSS11B, 
PRUNE2, PRG4, PZP, SCARA5, DES, HPSE2, HOXD11, S100A7A, and 
PLA2G2A. In addition, the gene expression levels of PRUNE2, PRG4, 
PZP, SCARA5, DES, HPSE2, S100A7A, and PLA2G2A were related to 
pathological tumor size and/or stage (Supplementary Fig. 8). In certain 
cases where a usual interstitial pneumonia pattern is suspected on CT, 
IPF can be diagnosed without a surgical lung biopsy. However, patients 
cannot be diagnosed with IPF definitively solely based on clinical find
ings or CT imaging; additional examinations including surgical lung 
biopsy may be considered (Lynch et al., 2018). Such mutations and 
altered gene expression, if present in the biopsy specimen, could be 
considered potential carcinogenic risk factors. Therefore, these muta
tions and gene expression levels may serve as biomarker candidates for 
diagnosing SCC complications in patients with IPF, and for predicting 
clinical outcomes in patients with both IPF and SCC. With more clinical 
data available in the future, our results can be directly compared with 
them.

ML models for classifying patients with SCC and healthy controls, as 
well as models for classifying SCC subtypes, have been reported with 
AUCs of 0.965 and 0.819, respectively (Duan et al., 2025; Joon et al., 
2023). However, the genes with high feature importance identified by 

these models are completely different from those identified by the ML 
models in this study. Therefore, the ML models in this study may spe
cifically capture the genes that differ between IPF and SCC.

In this study, only the RNA-Seq data were used. However, if other 
omics data could be collected from the lung tissues of patients with IPF 
and SCC, the differences between the two diseases could be further 
clarified. Particularly, epigenetic differences between these two diseases 
are known (Antoniou et al., 2015), making them important omics layers. 
Future multilayer analysis may enable a clear understanding of the 
pathophysiological differences between these two diseases by inte
grating multi-omics data.

5. Conclusions

In this study, we developed ML models to distinguish SCC from IPF, 
achieving high accuracy even with omics data where n < < p. The model 
identified 20 DEGs between IPF and SCC samples, indicating their po
tential roles in SCC pathogenesis. We also detected somatic mutations in 
four TFs regulating 11 of the 20 identified genes. These findings enhance 
our understanding of the molecular mechanisms underlying SCC com
plications in patients with IPF, and offer new perspectives for preventing 
SCC complications in these patients.
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