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Review 

Crosstalk between environmental factors and sex 
determination pathway: insights from lepidopteran 
insects and cladoceran crustaceans
Yasuhiko Kato1,2 and Hajime Watanabe1,2

Insects exhibit a remarkable diversity of sex determination 
systems. Sex determining mechanisms have been extensively 
analyzed using the genetic model insects, such as Drosophila 
melanogaster, revealing that insect sex is determined in a cell- 
autonomous manner. The sexual identity of each cell is governed 
by the conserved transcription factor Doublesex, while the 
regulatory mechanisms controlling its expression are 
species specific. In contrast, our understanding of how 
environmental factors modulate the sex determination pathway 
remains limited. In this review, we summarize recent discoveries 
on the crosstalk between environmental factors and sex 
determination pathways in the lepidopteran insects and the 
cladoceran crustaceans, which are closely related to insects. We 
discuss how the symbiotic bacterium Wolbachia hijacks the host 
WZ/ZZ sex determination pathway in the lepidopteran Ostrinia 
furnacalis. In addition, we highlight how males that are genetically 
identical to females are produced in response to environmental 
stimuli in the cladoceran crustacean Daphnia magna. Based on 
these findings, we explore the evolutionary, ecological, and 
applied implications of the molecular mechanisms underlying 
environmentally influenced sex determination.
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Introduction
Insects exhibit a remarkable diversity of sex determina
tion systems, including male and female heterogamety 
as well as haplodiploidy [1,2]. In addition to genetic 
factors, a variety of environmental influences — both 
abiotic (e.g. temperature, photoperiod) and biotic 
(e.g. symbiotic microbes) — can modulate sex in ar
thropods [3]. While classical environmental sex de
termination, in which environmental cues directly 
determine sex, is rare in insects, sex manipulation by 
environmental factors is widespread in this clade [4]. We 
use the term ‘environmentally influenced sex determi
nation’, including direct and indirect modulation of sex.

In insects, sex determination generally occurs in a cell- 
autonomous manner, where each cell establishes its sexual 
identity through an intrinsic genetic pathway [5]. This 
sex determination pathway has been extensively studied in 
insects with sex chromosomes, revealing that the con
served key factor is the transcription factor Doublesex 
(DSX) [6•]. However, the regulatory mechanisms con
trolling DSX expression have diversified throughout evo
lution [2,7•]. In contrast, our understanding of how 
environmental factors modulate the sex determination 
pathway remains limited. This review first provides a brief 
overview of sex determination pathways in insects. We 
then summarize recent discoveries on the crosstalk be
tween environmental factors and sex determination path
ways in lepidopteran insects and cladoceran crustaceans. 
Finally, we discuss the evolutionary and ecological im
plications of environmental factor–mediated sex determi
nation, as well as potential applications of these insights.

Sex determination pathways in insects
In insect sex determination pathways, the dsx gene un
dergoes sex-specific splicing through a genetic cascade 
(Figure 1). The sex-specific splicing of dsx was first eluci
dated in Drosophila melanogaster. sex-lethal (sxl) is activated 
in XX but not XY embryos due to X-linked transcription 
factors [8]. In females, sxl promotes its own splicing, 
skipping a premature stop codon. The resulting functional 
SXLF regulates the splicing of the transformer (tra), pro
ducing functional TRAF [9]. TRAF, together with Trans
former-2 (TRA2), directs the female-specific splicing of 
doublesex (dsx), leading to female development. In males, 
the default splicing cascade produces nonfunctional SXLM 

and TRAM, resulting in the male-specific isoform DSXM, 
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which drives male differentiation [10] (Figure 1, D. mela
nogaster). The sex-specific splicing of dsx is widely con
served across insects [11] and is even found in the 
apterygote firebrat [6•], suggesting that this regulatory 
mechanism is ancestral. However, the splicing regulators of 
dsx differ in certain orders, such as Lepidoptera, as dis
cussed later. Outside of insects, sex-specific dsx transcripts 
have not been reported, except in the anostracan crusta
cean Artemia franciscana [12], suggesting that dsx regulation 
in noninsect arthropods is primarily controlled at the 
transcriptional level. DSX regulates the transcription of 
numerous genes involved in oogenesis, spermatogenesis, 
and sexual dimorphism, ultimately directing the develop
ment of sexual traits [13–15].

Symbiotic bacteria modulate a 
sex determination pathway in the 
lepidopteran insects
In lepidopteran insects, maternally inherited symbiotic 
bacteria such as Wolbachia can manipulate host sex de
termination through two distinct modes: male killing and 

male-to-female sex reversal (feminization). In 
male killing, infected male embryos fail to develop and 
die during early embryogenesis, resulting in strongly 
female-biased sex ratios. This phenomenon has been 
documented in several species, including Homona mag
nanima [16], Acraea encedon [17], and Ostrinia furnacalis 
[18]. In contrast, feminization refers to the development 
of genetic males as phenotypic females, as observed in 
Eurema mandarina [19,20] and Eurema hecabe [21]. In this 
review, we focus on male killing because its molecular 
mechanisms have recently been elucidated in greater 
detail. This phenomenon has been recognized since the 
early 1900s [22].

The discovery of the sex determination mechanism in 
the model lepidopteran Bombyx mori has laid the foun
dation for unraveling the molecular basis of the 
male killing phenomenon in lepidopteran species. In B. 
mori, sex is genetically determined by the WZ/ZZ 
system, with females being WZ and males ZZ [23]. The 
splicing regulation of the dsx gene has been reported to 

Figure 1  
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Sex determination pathways and their crosstalk with environmental factors. Regions in purple, green, and orange indicate male and female heterogamety, 
environmental factors, and conserved DSX transcription factors orchestrating sexual trait development, respectively. Solid and dotted lines represent direct 
and indirect relationships between factors. Question marks indicate that the corresponding factor has not been identified. The dsx1 gene, which is normally 
silenced but may be expressed due to stochastic gene expression in females, is written in white text. Abbreviations: SXL, Sex-lethal; TRA, Transformer; 
TRA2, Transformer 2; DSX, Doublesex; Fem, Feminizer; MASC, Masculinizer; PSI, P-element somatic inhibitor; OSCAR, Osugoroshi protein containing CifB 
C-terminus-like domain and many Ankyrin Repeats; SHEP, Alan Shepard; DAPALR, Dsx1 alpha promoter-associated long RNA.  
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differ from that in D. melanogaster. In B. mori, PSI, a 
homolog of P-element somatic inhibitor, promotes male- 
specific splicing of dsx [24,25]. A recent breakthrough in 
B. mori sex determination research was the discovery 
that PIWI-interacting RNAs (piRNAs) are expressed 
from the sex determination locus. This finding led to the 
identification of the masculinizer (masc) gene on the Z 
chromosome, which encodes a transcription factor con
taining a CCCH-tandem zinc finger domain [26]. MASC 
not only regulates male-specific splicing of dsx but also 
plays a role in dosage compensation, ultimately directing 
male development [26]. Conversely, the female-specific 
Feminizer (Fem) piRNA targets and cleaves masc mRNA, 
initiating female development [26] (Figure 1, B. mori).

In the male killing phenomenon of O. furnacalis, male 
offspring infected with Wolbachia fail to develop properly 
and die during early embryogenesis [27,28]. This phe
notype closely resembles the embryonic lethality ob
served in B. mori male embryos subjected to masc RNAi. 
Since O. furnacalis masc exhibits the same functions as B. 
mori masc [29] (Figure 1, O. furnacalis,), researchers hy
pothesized that masc might be targeted by factors pro
duced by Wolbachia, leading to male-specific lethality. To 
test this hypothesis, cell lines derived from O. furnacalis 
embryos infected with Wolbachia were established and 
used to identify Wolbachia proteins that interact with the 
MASC protein. This approach led to the discovery of the 
OSCAR protein, which associates with the CCCH-type 
zinc finger domain ZF1 of MASC via its ankyrin repeats 
[30••]. This interaction promotes MASC degradation, 
likely through the proteasome pathway. The interaction 
between OSCAR and MASC provides crucial insight into 
how endosymbiotic bacteria can hijack the lepidopteran 
genetic sex determination system.

Environmental sex determination in Daphnia 
magna
Daphnia magna is a freshwater crustacean belonging to the 
order Cladocera within the class Branchiopoda and is the 
closest relative of insects for which genetic manipulation, 
including genome editing, has been successfully applied 
[31,32]. In cladoceran crustaceans, environmental signals 
serve as the primary cue for sex determination. Adults 
reproduce by parthenogenesis, producing genetically 
identical female and male offspring. Male offspring are 
produced only in response to environmental stimuli, such 
as crowding and a shortening photoperiod. Under dete
riorating environmental conditions, sexual females also 
appear, mate with males, and produce sexual eggs, known 
as resting eggs, which are resistant to environmental 
hardships, such as desiccation and can remain viable for 
decades. They hatch when conditions improve [33,34]
(Figure 2). The cyclical parthenogenesis in Daphnia was 
first documented in 1857 [34].

In the early 2000s, juvenile hormone agonists were 
shown to stimulate male production [35,36••], sug
gesting that sesquiterpenoids act as mediators between 
environmental signals and sex determination. The 
commitment of sex by environmental factors and ses
quiterpenoids occurs during ovarian maturation 
[36••,37], suggesting that mothers detect environmental 
cues in the brain and produce sesquiterpenoid hormones 
via the neuroendocrine system. These signals may reach 
oocytes, inducing male-destined eggs [36••] (Figure 3). 
During the development of male-destined embryos, the 
insect dsx ortholog dsx1 is activated and expressed in 
male-specific traits, leading to male development [38]. 
Unlike insect dsx genes, dsx1 does not produce sex- 
specific splice variants [38], indicating that sesquiterpe
noids activate dsx1 transcription (Figure 1, D. magna). 
However, there is a time lag of more than 12 hours be
tween the critical period for sesquiterpenoid-induced 
male commitment and the activation of dsx1 during 
embryonic development, suggesting that dsx1 is not a 
direct target of sesquiterpenoids. Interestingly, in male- 
destined embryos, vrille is activated around the gas
trulation stage, before the initiation of dsx1 expression 
(D. magna, Figure 1) [39]. vrille encodes a bZIP tran
scription factor and activates dsx1 expression (Figures 1 
and 3). Since vrille does not exhibit sexually dimorphic 
expression after dsx1 activation, it may function as a 
transcriptional driver of dsx1 [39].

In D. magna females, dsx1 remains repressed throughout 
life. Ectopic expression of dsx1 in females or reduction of 
its activity in males results in intersex phenotypes 
[38,40], suggesting strict regulation of dsx1 expression for 
establishing sexual identity. A previous study proposed 
that female development is ensured by the translational 
repression of unintended dsx1 transcripts arising from 
stochastic gene expression. In this model, the RNA- 

Figure 2  
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Cyclical parthenogenesis of the cladoceran crustaceans. 
Parthenogenetic mothers can produce genetically identical females and 
males. Under favorable conditions, indicated in orange, females 
reproduce parthenogenetically to produce clonal females. Under 
deteriorating conditions, indicated in blue, females produce males that 
mate with sexual females to generate resting eggs. When environmental 
conditions improve, the diapause of the resting eggs ends, leading to 
the emergence of parthenogenetic females.  
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binding protein SHEP binds to the 5′ UTR of dsx1 and 
represses its translation, raising the threshold for dsx1 
expression and thereby preventing sexual ambiguity 
[41]. Although SHEP is also expressed in males, it may 

be sequestered away from the dsx1 5′ UTR by the long 
noncoding RNA DAPALR, which overlaps in the sense 
direction with the dsx1 5′ UTR [42]. This suggests that 
DAPALR counteracts SHEP-dependent translational 

Figure 3  
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Developmental and molecular events during male determination in D. magna. Male determination in response to environmental cues occurs 
intergenerationally. A mother detects environmental cues and may release a sesquiterpenoid hormone via the neuroendocrine system. The oocyte 
receives this sesquiterpenoid signal and develops into male-destined eggs. Commitment to the male sex results in the activation of vrille in the 
gastrula, leading to the derepression of dsx1, which orchestrates male differentiation. VRILLE also activates the long noncoding RNA DAPALR, which 
functions as a decoy for the translational repressor SHEP, thereby lowering the threshold for dsx1 expression. Words written in gray indicate that the 
responsible gene(s) have not yet been identified. The red-colored regions of the embryo indicate tissues expressing dsx1. Relationships represented 
by gray arrows have not been experimentally elucidated. Abbreviations: a1, first antenna; a2, second antenna; t1, first thoracopod; t2, second 
thoracopod; t3, third thoracopod.  
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repression of dsx1 in males [41•]. Like dsx1, DAPALR 
expression is triggered by VRILLE and is activated only 
in male-destined embryos [42] (Figure 1, D. magna). In 
other Daphnia species, epigenetic silencing of dsx1 in 
females has been suggested [43]. Identifying the silen
cing factors and how environmental signals affect epi
genetic regulators is a key future direction.

Evolutionary and ecological perspectives
Studies on sex determination in lepidopteran insects and 
cladoceran crustaceans illustrate how environmental 
factors can modulate a sex determination pathway. It has 
long been hypothesized that natural selection influences 
the transition between genetic and environmental trig
gers of sex determination [44]. A laboratory experiment 
using D. melanogaster supported this hypothesis by de
monstrating that a mutation in a sex determination 
pathway gene can shift the primary cue for sex de
termination from genetic factors to temperature [45]. 
Interactions between environmental factors and the 
sex determination pathway may be acquired and fine- 
tuned throughout evolution.

The evolutionary arms race between Wolbachia and its 
lepidopteran hosts involves continuous adaptations and 
counter-adaptations. Hosts can evolve suppressor muta
tions to counteract male killing [46]. In response, Wol
bachia may evolve new male killing mechanisms [47]. 
The male killing mechanism mediated by the OSCAR 
protein is conserved across multiple lepidopteran species 
[48•], suggesting that this mechanism provides a mole
cular framework for understanding the ongoing arms 
race driven by the complex interplay between en
dosymbionts and their hosts. This interaction may also 
play a role in shaping arthropod evolution [47,49].

Species with environmentally influenced sex determina
tion systems are vulnerable to environmental changes, 
leading to skewed sex ratios and population decline. 
Insect growth regulators, including juvenile hormone 
analogs, have been used as insecticides and are considered 
more environmentally friendly due to their specificity and 
lower toxicity [50]. However, studies on environmental 
sex determination in D. magna have demonstrated that 
juvenile hormone analogs can alter sex ratios by mod
ulating the sex determination pathway in nontarget cla
doceran crustaceans. Understanding how environmental 
factors influence sex determination is crucial for predicting 
ecological consequences and developing conservation 
strategies for arthropod populations.

Conclusion and future perspectives
Environmentally influenced sex determination has long 
been recognized [3,22,34]. Recent studies on lepi
dopteran insects and cladoceran crustaceans have de
monstrated that environmental factors can influence sex 

determination in at least two distinct ways: by hijacking 
the sex determination pathway at an intermediate stage 
or by acting as a primary signal to drive the pathway. 
Feminization by symbiotic bacteria has also been re
ported in isopods such as Armadillidium vulgare, where 
genetic males develop as phenotypic females due to 
early embryonic infection [51]. However, the molecular 
mechanisms underlying symbiont-induced sex manip
ulation in isopods remain largely unexplored [52]. In
vestigating the interaction between environmental 
factors and the sex determination pathway in other ar
thropod species is also important, as it will provide 
deeper insights into both the diversity and commonality 
of these mechanisms.

To understand how environmental factors modulate sex 
determination in nonmodel arthropods, identifying key 
regulators of sex determination is essential. High- 
throughput transcriptomic approaches, such as short- 
read RNA-seq and long-read RNA-seq, have proven 
invaluable for identifying candidate sex-specific tran
scripts, as demonstrated in studies on sex determination 
in silkworms and Daphnia [26,53]. Furthermore, the es
tablishment of cell culture systems, such as those used to 
identify the male killing factor OSCAR, enables bio
chemical analyses that significantly advance our under
standing of sex determination mechanisms [30••].

Unraveling these mechanisms opens up possibilities for 
developing molecular-based environmental control stra
tegies. For instance, analyzing the universality and di
versification of male-killing genes like oscar could 
contribute to the development of pest control strategies 
[48•]. Similarly, investigating species-specific differ
ences in the affinity between the juvenile hormone and 
its receptor could lead to the development of species- 
specific insecticides that do not affect sex determination 
in nontarget organisms [54]. Thus, understanding the 
regulatory mechanisms of environmentally influenced 
sex determination is a crucial research priority not only 
for basic biology fields such as evolution, development, 
and genetics but also for applied disciplines, including 
environmental toxicology and agriculture. Further re
search will yield biological and applied insights.
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