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 A B S T R A C T

This paper proposes a selection strategy for enhancing population diversity in data-driven topology design 
(DDTD), a topology optimization framework based on evolutionary algorithms (EAs) using a deep generative 
model. While population diversity is essential for global search with EAs, conventional selection operators that 
preserve diverse solutions based on objective values may still lead to a loss of population diversity in topology 
optimization problems due to the high dimensionality of design variable space and strong nonlinearity of 
evaluation functions. Motivated by the idea that topology is what characterizes the inherent diversity among 
material distributions, we employ a topological data analysis method called persistent homology. As a specific 
operation, a Wasserstein distance sorting between persistence diagrams is introduced into a selection algorithm 
to maintain the intrinsic population diversity. We apply the proposed selection operation incorporated into 
DDTD to a stress-based topology optimization problem as a numerical example. The results confirm that 
topological features extracted via persistent homology can be appropriately quantified using the Wasserstein 
distance, and incorporating them into the selection operation significantly enhances the search performance 
of DDTD.
1. Introduction

Structural optimization is a methodology aimed at maximizing de-
sired performance by finding reasonable solutions through mathemati-
cal programming under computational models of physical phenomena. 
Among these methodologies, topology optimization, initially proposed 
by Bendsøe and Kikuchi [1], ensures maximum possible design freedom 
by designating material distribution within a given design domain as 
design variables. Its potential to yield high-performance structures has 
led to a wide variety of engineering applications.

Currently, various topology optimization approaches have been 
developed, as summarized in [2,3]. Prominent examples include the 
density-based method [4] and the level-set method [5], both of which 
update design variables based on sensitivity analysis, thus assuming 
differentiability of evaluation functions to be formulated as an opti-
mization problem. Moreover, in optimization problems with evalua-
tion functions exhibiting strong multimodality, even if differentiable, 
extensive parameter studies are necessary to avoid convergence to 
undesirable local optima, but still do not always yield high-performance 
structures. These challenges stemming from gradient-based optimizers 
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pose significant barriers for further engineering applications, for exam-
ple, minimax problems such as maximum stress minimization in stress-
based topology optimization, and strongly multimodal optimization 
problems due to complex physics such as turbulence.

Focusing on optimization problems with non-differentiable or
strongly multimodal evaluation functions, topology optimization with 
evolutionary algorithms (EAs) [6] has been developed. EAs, as typified 
by genetic algorithms (GAs) [7], are optimizers based on multi-point 
searching that mimic the emergent process of living organisms. Var-
ious EA-based topology optimization methods have been proposed 
depending on the choice of the algorithm and the representation of 
design variables, which corresponds to the genotype in GAs. Chapman 
et al. [8], Wang and Tai [9], Madeira et al. [10], and Nimura and 
Oyama [11] proposed GA-based methods with bit-array, graph, and 
quadtree representations, respectively. Wu and Tseng [12] and Luh 
et al. [13] proposed other methods using differential evolution and 
particle swarm optimization with bit-array representation, respectively. 
Fujii et al. [14] proposed another method using the covariance ma-
trix adaption evolution strategy (CMA-ES) with level-set boundary 
representation. Although these methods can yield reasonable material 
distributions as optimized solutions even for complex problems, EA-
based topology optimization methods are typically challenged by the
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curse of dimensionality. This issue arises because the computational cost 
increases exponentially with the length of the design variables, or ge-
netic sequences, limiting the dimensionality of optimization problems 
with an increasing number of design variables, i.e., the length of gene 
strings. Sigmund [15] has pointed out that the insufficient number 
of elements causes inaccurate physics and the loss of design freedom, 
resulting in only coarse optimized structures.

Data-driven design through the incorporation of machine learning 
offers a promising approach to avoiding the curse of dimensional-
ity in EA-based frameworks. As reviewed by Woldseth et al. [16], 
data-driven topology optimization can be categorized into several ap-
proaches, among which the use of machine learning techniques for 
direct design, dimensionality reduction, and generative design is con-
sidered particularly effective. As examples of direct design methods, 
Yu et al. [17] and Behzadi and Ilieş [18] have proposed approaches 
using generative adversarial networks (GANs), a type of deep genera-
tive model. These methods aim to predict optimal structures without 
iterations by leveraging pre-trained machine learning models. As an 
example of dimensionality reduction, Guo et al. [19] have proposed 
a structural design method using a variational autoencoder (VAE). 
This approach effectively solves topology optimization problems by 
exploiting the latent space of the VAE through a GA. As an example 
of generative design, Oh et al. [20] have proposed a framework using 
a GAN. Their method successfully obtains a diverse range of designs 
by iteratively learning data generated through topology optimization 
with GANs, starting from a limited set of existing designs. Common 
challenges associated with such data-driven design methods include the 
need for a vast dataset to train the machine learning models in advance 
and the fact that the resulting designs often perform worse compared 
to those obtained through traditional topology optimization, as pointed 
out in [16].

To achieve gradient-free optimization with a high degree of de-
sign freedom by integrating the EA and data-driven design, Yamasaki 
et al. [21] have proposed a framework of data-driven topology design 
(DDTD) using a deep generative model. Its core idea is that design can-
didates are iteratively updated by repeatedly selecting the superior ones 
from the dataset and generating new data by a deep generative model 
trained with them. Yaji et al. [22] have introduced an operation equiv-
alent to mutation and systematically deriving promising initial data, 
employing the concept of multifidelity design [23]. Kii et al. [24] have 
introduced a sampling method named latent crossover for deep gener-
ative models, positioning DDTD as a GA-based topology optimization 
framework. Compared to typical EA-based methods, DDTD employs 
significantly lower dimensional genotype—latent variables encoded 
by a deep generative model—for the high-dimensional phenotype—
i.e., discrete representations of material distributions, thereby avoiding 
the curse of dimensionality.

As mentioned above, while most studies on EA-based topology opti-
mization focus on how to represent material distributions to implement 
efficient crossover and mutation, there are still challenges in selection 
operations. Population diversity is crucial to prevent premature con-
vergence and to facilitate global search in evolutionary algorithms, 
and selection plays an important role in maintaining diversity [7]. 
While typical approaches involve retaining inferior solutions in the 
population, such simple methods become challenging for maintaining 
diversity in multi-objective optimization problems [25]. In addition, 
Tanabe and Ishibuchi [26] and Li et al. [27] have pointed out that for 
strong nonlinear optimization problems, the complexity of the relation-
ship between the design variable space and the objective function space 
makes it further difficult to maintain the population diversity.

Given the above background, in this paper, we propose DDTD 
incorporating the selection operation to enhance the population di-
versity for multi-objective topology optimization problems with strong 
nonlinearity. The key feature of the proposed selection strategy is its 
focus on selecting diverse solutions in the design variable space rather 
than the objective space. However, quantifying the population diversity 
2 
among material distributions represented by high-dimensional design 
variables is not straightforward. In this context, we consider that the 
differences between material distributions are characterized by the 
topological differences of the structures. To capture these differences, 
we employ a topological data analysis method called persistent ho-
mology (PH) [28,29] and incorporate a sorting based on the analyzed 
topological features into the selection process. Fig.  1 shows a schematic 
of the proposed selection strategy, where the plots corresponding to 
the structural holes as topological features analyzed by PH are shown 
in a two-axis plot called a persistence diagram (PD). The acceptance 
or rejection of candidate solutions is determined by quantifying the 
differences between the PDs. The differences between PDs are quan-
tified using the Wasserstein distance whose basic idea is based on 
optimal transport. As a numerical example, we apply the proposed 
DDTD to a two-dimensional structural design problem and demonstrate 
the usefulness of PH for evaluating the topological features of material 
distribution data. Through comparison with optimization results by the 
original DDTD, we verify the effectiveness of the proposed selection 
operation.

The rest of this paper is organized as follows. In Section 2, we 
describe the details of DDTD and discuss issues related to the selection 
operation as the motivation for using PH. In Section 3, we provide a 
brief overview of persistent homology and the Wasserstein distance. 
In Section 4, we describe the proposed selection strategy in detail. 
In Section 5, the proposed method is applied to the structural design 
problem of an L-bracket, which is known as a benchmark for stress-
based topology optimization, and the results are discussed. Finally, 
Section 6 concludes the paper.

2. Overview of data-driven topology design

In this section, we first describe the details of data-driven topology 
design (DDTD) [21,22], which is a topology optimization framework 
based on EAs using a deep generative model. We then review the 
selection strategy used in the conventional DDTD and discuss the 
challenges in maintaining population diversity in topology optimization 
problems.

2.1. Optimization problem formulation

DDTD is targeted at solving a multi-objective topology optimization 
problem formulated in the general form as follows: 

minimize
𝜌(𝐱)

[

𝐹1(𝜌), 𝐹2(𝜌),… , 𝐹𝑟o (𝜌)
]

,

subject to 𝐺𝑗 (𝜌) ≤ 0 for 𝑗 = 1, 2,… , 𝑟c,

𝜌(𝐱) ∈ {0, 1}, ∀𝐱 ∈ 𝐷,

(1)

where 𝐹𝑖 (𝑖 = 1, 2,… , 𝑟o) and 𝐺𝑗 (𝑗 = 1, 2,… , 𝑟c) are the objective 
and constraint functions, respectively. Material distributions are rep-
resented as the design variable 𝜌(𝐱), where 𝐱 is the coordinates at an 
arbitrary point within the fixed design domain 𝐷. The design variable 
𝜌 takes discrete values of 0 or 1, where 𝜌(𝐱) = 1 and 0 mean the 
material and void, respectively. The original topology optimization 
problem in Eq. (1) is often difficult to solve directly because it involves 
a highly nonlinear optimization problem with significant multimodality 
and can be formulated using non-differentiable evaluation functions. 
Therefore, for some procedures described later, we formulate the low-
fidelity optimization problem using the idea of multifidelity design [23] 
as follows: 
minimize

𝜌(𝑘)(𝐱)
𝐹 (𝜌(𝑘)),

subject to 𝐺𝑙(𝜌(𝑘), 𝐬(𝑘)) ≤ 0 for 𝑙 = 1, 2,… , 𝑟̃c,

𝜌(𝑘)(𝐱) ∈ [0, 1], ∀𝐱 ∈ 𝐷,
(𝑘)

(2)
for given 𝐬 ,
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Fig. 1. Schematic illustration of the proposed selection strategy. The topological features analyzed by persistent homology are quantified by the Wasserstein distance, which 
determines candidate solutions accepted in the selection process.
where 𝐹  and 𝐺𝑙 (𝑙 = 1, 2,… , 𝑟̃c) are the objective and constraint 
functions of a low-fidelity optimization problem, respectively. They are 
simplified pseudo-functions for the original ones 𝐹𝑖 and 𝐺𝑗 , formulated 
to be computationally easier and differentiable. The low-fidelity opti-
mization problem in Eq. (2) is assumed to be solved by typical topology 
optimization methods such as the density-based method [30], and is 
reformulated as a single-objective optimization problem on the basis 
of the 𝜀-constraint method [31] or the weighted-sum method [32], 
as opposed to the original multi-objective problem in Eq. (1). Addi-
tionally, the design variable 𝜌(𝑘) is relaxed to continuous values in 
the range of 0 to 1. 𝐬 = [𝑠1, 𝑠2,… , 𝑠𝑁sd ] represents the set of 𝑁sd
types of artificial design parameters called seeding parameters, and 
𝐬(𝑘) represents the sample point of 𝐬. The seeding parameter 𝐬 includes 
optimization parameters such as filter radius and projection method 
parameters in density-based optimization, as well as constraint values.

2.2. Optimization procedure

After formulating the optimization problems as described above 
in advance, DDTD performs topology optimization through genetic 
algorithm-based procedures, i.e., iteratively updating solutions through 
three genetic operations: selection, crossover, and mutation. Fig.  2 
outlines the optimization flowchart of DDTD, and the details of each 
procedure are explained here.

2.2.1. Preparation of initial data set
Diverse and promising initial solutions for the original problem in 

Eq. (1) are derived by solving a simplified problem, the low-fidelity 
optimization problem in Eq. (2), under various parameter settings.

2.2.2. Evaluation
The candidate solutions are evaluated by the high-fidelity analysis 

model with the objective function 𝐹𝑖 and constraint functions 𝐺𝑗 in the 
original problem in Eq. (1). Note that design variables are binarized 
to {0, 1} for high-fidelity evaluation, and only forward analysis for the 
evaluation functions 𝐹𝑖 and 𝐺𝑗 is required.

2.2.3. Selection
Based on the objective values from high-fidelity evaluation, superior 

candidate solutions are selected to be preserved for the next generation. 
3 
Since the target problem in Eq. (1) is a multi-objective optimization 
problem, it is necessary to construct the dataset of solution sets under 
Pareto optimality. Here, the selection process in DDTD is responsible for 
constructing the VAE training data. Note the distinction from a typical 
GA, where selection involves not only eliminating inferior individuals 
but also choosing parents for crossover. The details of the selection 
operation in DDTD are discussed in Section 2.3.

2.2.4. Convergence check
The optimization computation is checked for convergence. When 

either the pre-determined maximum number of iterations is reached 
or the hypervolume indicator [33], a convergence performance mea-
sure in multi-objective optimization, has converged sufficiently, the 
optimization computation is terminated.

2.2.5. Crossover
A deep generative model is trained with the dataset of solution sets 

constructed in the selection process. Representative deep generative 
models include variational autoencoders (VAEs) [34] and generative 
adversarial networks (GANs) [35], and in prior studies of DDTD [21,22,
24], VAEs have been preferred due to their learning stability. As shown 
in Fig.  3, a VAE consists of two neural networks called the encoder and 
the decoder; the former compresses high-dimensional input data to low-
dimensional latent variables 𝐳 with their mean 𝝁 and standard deviation 
𝝈, while the latter reconstructs the original dimensional output data 
from latent variables. A Gaussian distribution is assumed in the latent 
space of a VAE by defining the latent variable 𝐳 as follows: 
𝐳 = 𝝁 + 𝝈 ⊙ 𝜺, (3)

where ⊙ represents the element-wise product and 𝜺 is a random sample 
vector from a Gaussian distribution  (0, 𝐈). Based on the definition of 
latent variables in Eq. (3), the VAE assumes a probability distribution in 
the latent space and functions as a generative model, generating new 
data that inherits the features of the training data through sampling 
from the latent space and reconstructing it using the decoder. To define 
latent variables as the genotype of EAs in DDTD, latent crossover 
proposed in [24] is employed as a sampling technique. Note that in 
the original DDTD papers [21,22], design domain mapping [36] is 
employed to map material distributions into the unit square domain 
for normalization of training data. This normalization step is not always 
necessary for VAE training and is provided as an option.
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Fig. 2. Optimization flowchart of DDTD. It starts with solving a low-fidelity optimization problem to prepare initial data, followed by high-fidelity evaluation and selection. If 
convergence is not achieved, a crossover with a VAE is applied, followed by a mutation step. These processes repeat until convergence is reached.

Fig. 3. Schematic diagram of the variational autoencoder (VAE) used for crossover. The upper-half part illustrates the VAE’s function as a generative model, where the encoder 
compresses high-dimensional input data into low-dimensional latent variables 𝐳 characterized by their mean 𝝁 and standard deviation 𝝈, while the decoder reconstructs the original 
data from 𝐳. The lower-half part shows the latent crossover process, where new latent variables are sampled based on some input points.
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2.2.6. Mutation
The low-fidelity optimization problem in Eq. (2) is solved under the 

following overlapping-constraint: 

𝐺mut(𝜌(𝑚)) = ∫𝐷
𝜌(𝑚)𝜌ref d𝛺 − 𝐺maxmut ∫𝐷

d𝛺 ≤ 0, (4)

where 𝑚 = 1, 2,… , 𝑁mut is the index of mutants and 𝐺maxmut  is a parameter 
that controls the degree of overlapping between design variables 𝜌(𝑚)(𝐱)
and the reference density distribution 𝜌ref(𝐱), represented as follows: 

𝜌ref(𝐱) = 1
𝑁pop

𝑁pop
∑

𝑛=1
𝜌(𝑛)(𝐱). (5)

Herein, 𝑁pop is the population size, and the reference density distribu-
tion in Eq. (5) denotes the superposition of material distributions of all 
solutions in that generation, i.e., the average material distribution. In 
this way, by solving an easily solvable pseudo-problem, the low-fidelity 
optimization problem in Eq. (2), under the overlapping-constraint with 
the average material distribution, promising material distributions with 
new features not present in the current solution set are injected as 
mutants.

2.3. Issues in selection

DDTD solves multi-objective topology optimization problems and 
uses the selection strategy of the non-dominated sorting genetic algo-
rithm II (NSGA-II) [37,38], one of the representative GAs for multi-
objective problems. The details of its selection operation are pro-
vided in Section 2.3.1, and challenges in solving topology optimization 
problems are discussed in Section 2.3.2.

2.3.1. Selection operation of NSGA-II
The NSGA-II selection operation consists of ranking candidate solu-

tions by two sortings: non-dominated sorting and crowding distance 
sorting. The characteristics of the rules for selecting one out of the 
two candidates in the NSGA-II procedure can be summarized in the 
following two points [38]:

1. If two candidates have different ranks in the non-dominated 
sorting, then the one with the better rank is selected for the next 
generation.

2. If two candidates have the same ranks in the non-dominated 
sorting, the one with the larger crowding distance is selected for 
the next generation.

An outline of such selection rules is illustrated in Fig.  4, and their details 
are described here.

Non-dominated sorting In this procedure, candidate solutions are 
sorted based on the concept of Pareto dominance. Here, for the multi-
objective minimization problem in Eq. (1), the candidate 𝜌(2) is defined 
as dominating the candidate 𝜌(1) when the following conditions hold: 

𝐹𝑖(𝜌(1)) ≤ 𝐹𝑖(𝜌(2)) (∀𝑖 = 1, 2,… , 𝑟o), 𝐹𝑖(𝜌(1)) < 𝐹𝑖(𝜌(2)) (∃𝑖 = 1, 2,… , 𝑟o).

(6)

Based on the definition in Eq. (6), non-dominated solutions that are 
not dominated by any other candidates are initially assigned rank 1 and 
extracted from the population to form the first front. Subsequently, rank 
2 candidates are assigned similarly. As shown in Fig.  4(a), this iterative 
process continues until all candidate solutions are assigned to fronts.

Crowding distance sorting In this procedure, the crowding degree 
of the front in the objective space is calculated for candidate solutions 
assigned the same rank during the non-dominated sorting process. As 
shown in Fig.  4(b), the crowding distance 𝑑(𝑗) for the 𝑗th candidate 
𝜌(𝑗) is calculated based on the cuboid formed by neighboring ones as 
follows: 

𝑑(𝑗) =
𝑟o
∑ 𝐹𝑖(𝜌(𝑗+1)) − 𝐹𝑖(𝜌(𝑗−1))

max min , (7)

𝑖=1 𝐹𝑖 − 𝐹𝑖

5 
where 𝐹max𝑖  and 𝐹min𝑖  are the maximum and minimum values of 
objective function 𝐹𝑖 among all the candidates, respectively.

An overview of the overall NSGA-II procedure with the above two 
sorts is shown in Fig.  4(c). Here we consider selecting a population 
𝑃𝑡+1 of size 𝑁pop from the dataset 𝑃𝑡 ∪ 𝑄𝑡, in which 𝑃𝑡 and 𝑄𝑡 are 
the current population consisting of the solution set at generation 𝑡
and new candidate solutions obtained through crossover and mutation, 
respectively. If the number of rank 1 candidates is greater than or 
equal to 𝑁pop, then 𝑁pop solutions with larger crowding distances in 
Eq. (7) are selected from the first front to form 𝑃𝑡+1. In contrast, if 
the number of rank 1 candidates is less than 𝑁pop, the first front is 
directly transferred to 𝑃𝑡+1, and the remaining solutions are selected 
from the second front with larger crowding distances and added to 
𝑃𝑡+1. If the size of 𝑃𝑡+1 is still less than 𝑁pop, this process is repeated 
with the subsequent fronts until the size of 𝑃𝑡+1 reaches 𝑁pop. The 
constructed 𝑃𝑡+1 undergoes crossover and mutation to form a new set 
of candidate solutions 𝑄𝑡+1 for the next generation 𝑡 + 1, and the same 
selection process is applied to the new dataset 𝑃𝑡+1 ∪ 𝑄𝑡+1 to form 
the next population 𝑃𝑡+2. In the optimization process of NSGA-II, this 
series of genetic operations is repeated until the convergence criteria 
are satisfied.

2.3.2. Challenges in maintaining diversity
Selection plays an important role in EAs for maintaining population 

diversity and facilitating global search, and various selection schemes 
have been proposed, such as roulette wheel selection, ranking selec-
tion, and tournament selection in GAs [7]. These approaches involve 
selecting not only superior solutions with higher fitness values but also 
inferior solutions to preserve a diverse set of solutions for the next 
generation. This strategy is also exemplified by NSGA-II discussed in 
Section 2.3.1, which employs the crowding distance sorting based on 
a similar principle. In other words, DDTD considers the diversity of 
material distribution 𝜌 based on the objectives 𝐹𝑖 in the multi-objective 
topology optimization problem in Eq. (1).

Tanabe and Ishibuchi [26] and Li et al. [27] have pointed out an 
issue with such selection approaches in multi-objective optimization 
problems with strong nonlinearity. In the case of strong nonlinear 
optimization problems, the evaluation functions are extremely sensitive 
to the design variables, i.e., even slight changes in the variables may 
cause significant fluctuations in the objective values. As a result, even 
if distant solutions are selected in the objective space, they may still be 
located in proximity in the design variable space, as shown in Fig.  5(a), 
which shows an example of a two-objective optimization problem with 
two design variables for simplicity. The reverse is also true, as shown 
in Fig.  5(b), where solutions that are close in the objective space may 
be far apart in the design variable space. In other words, conventional 
selection approaches, which ensure diversity based on objective values, 
may result in a population filled with solutions with similar design 
variables, and crossover and mutation cannot produce new candidates, 
potentially leading to premature convergence. Particularly in topology 
optimization, where complex physics often leads to strongly nonlinear 
optimization problems, it becomes crucial to adopt a selection strategy 
that maintains the intrinsic population diversity in the design variable 
space for global search through EAs.

It is theoretically possible to quantitatively measure diversity in the 
design variable space, i.e., to quantify the differences between material 
distribution in topology optimization and incorporate this into the 
selection algorithm. For the topology optimization problem in Eq. (1) 
to be solved, the simplest method to measure the difference between 
material distributions 𝜌(1) and 𝜌(2) is the 𝐿𝑝 norm, defined as follows: 

‖

‖

‖

𝜌(1) − 𝜌(2)‖‖
‖𝑝

=
(

∫𝐷
|

|

|

𝜌(1) − 𝜌(2)||
|

𝑝
d𝛺

)
1
𝑝
. (8)

While such norm measures are commonly used to evaluate the dis-
tance between functions or vectors, their effectiveness in capturing 
the structural differences between material distributions in topology 
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Fig. 4. Schematic illustration of selection operation in NSGA-II. (a) Non-dominated sorting; (b) Crowding distance sorting; (c) Overall procedure.
optimization is questionable. Although the material distribution 𝜌(𝐱)
in the optimization problem in Eq. (1) is theoretically represented as 
a continuous function, in typical topology optimization such as the 
density-based method [30], it is generally discretized into a finite 
number of design variables for computational procedures. The num-
ber of elements required for discretization typically exceeds several 
thousand to achieve a high degree of design freedom. Even if the 
norm in Eq. (8) is calculated for such a design variable vectors, it 
merely sums up the differences of each element and does not measure 
the essential structural differences between the material distributions. 
For example, the 𝐿𝑝 norm between structures where each member 
is shifted by one pixel, as shown in Fig.  6, would be excessively 
large. A typical example of a distance function that resolves these 
𝐿𝑝 norm problems is the Wasserstein metric based on the idea of 
optimal transport. Computing the Wasserstein distance requires solving 
a minimization problem about the transportation cost of material from 
one distribution to another within the design domain. However, in 
topology optimization, which often involves complex domains such 
as perforated or nonconvex geometries, solving the optimal transport 
problem within the design domain is not straightforward. In addition, 
while there are several techniques to speed up the computation such 
as entropy regularization [39], this process becomes computationally 
impractical for thousands of discretized material distributions, as it 
would require repeatedly solving this optimization problem during the 
selection process at each iteration.

3. Persistent homology

To overcome the challenges of selection in DDTD discussed in 
Section 2.3.2, it is necessary to employ an efficient diversity measure 
6 
of material distributions with low computational cost. In structural 
optimization problems, the overall shape of a structure is typically 
determined uniquely by the predefined design domain and boundary 
conditions, suggesting that the diversity among structures is largely 
influenced by their topology. Therefore, this paper focuses on a topo-
logical data analysis method as a means to condense the topological 
information of material distribution data, based on the premise that 
topology is the crucial determinant of population diversity. Then, by 
applying a measure based on optimal transport to calculate the distance 
on the condensed topological data, the differences between material 
distributions can be quantified at a practical computational cost. In the 
following, we describe persistent homology as a method for analyzing 
the phase of material distribution data and the Wasserstein distance for 
quantifying the difference between them.

3.1. Overview of persistent homology

Persistent homology (PH) [28,29] is a type of topological data 
analysis method that mathematically quantifies geometric features of 
targeting complex data using the concept of topology. Its scope of 
application covers a wide variety of data sets, including point clouds, 
images, graphs, and so on. Here, topology refers to geometric properties 
and spatial relations unaffected by the continuous change of shape or 
size, which is different from its context in structural optimization. The 
fundamental idea of PH is to track the birth and death of topolog-
ical features over time through an operation called filtration, which 
involves gradually increasing a scale parameter [40,41]. Assuming an 
application to material distribution data in topology optimization, PH 
for a binary image is shown in Fig.  7. Here, we discuss 0th PH for a 
2-dimensional image, which involves identifying voids by considering 
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Fig. 5. Relationship between design variable space and objective space in multi-objective optimization problems with significant nonlinearity. (a) Solutions with similar design 
variables for different objective values; (b) Solutions with different design variables for similar objective values.
Fig. 6. Examples of material distributions where structural differences are difficult to quantify in the 𝐿𝑝 norm..
the connected components of the white regions in Fig.  7(a). First, we 
consider a level-set function 𝜙 ∶ Z2 → Z that assigns integer values to 
each pixel using a signed distance function with the Manhattan distance 
for the boundary between white and black pixels [42]: 

𝜙(𝐱) =
⎧

⎪

⎨

⎪

⎩

min
𝐲∈𝜕𝛺

‖𝐱 − 𝐲‖1 if 𝜌(𝐱) = 1,

− min
𝐲∈𝜕𝛺

‖𝐱 − 𝐲‖1 if 𝜌(𝐱) = 0,
(9)

where 𝐱 ∈ Z2 denotes a pixel location, 𝜌 ∶ Z2 → {0, 1} is the 
image of binarized material distribution, and 𝜕𝛺 is the set of boundary 
pixels such that a pixel has at least one neighbor with a different 
value. The values of 𝜙 serve as the scale parameter in this example, 
and the filtration considers shapes obtained as their union set. In Fig. 
7(a), two voids can be visually identified in the binary image under 
analysis, and in the filtration process in Fig.  7(b), as 𝜙 increases from its 
7 
minimum value, they appear at a certain stage and eventually disappear 
by merging with other voids in the resulting shape. More specifically, 
void 0 first appears at 𝜙 = 𝜙0, and void 1, which appears at 𝜙 = 𝜙1, and 
disappears by merging with void 0 at 𝜙 = 𝜙3. Similarly, void 2 is born 
at 𝜙 = 𝜙2 and dies at 𝜙 = 𝜙4. These birth–death pairs are represented 
as points on a two-dimensional plot, known as a persistence diagram 
(PD), with the birth time on one axis and the death time on the other. 
The persistence diagram 𝐷 can be defined as follows: 

𝐷 = {(𝑏𝑖, 𝑑𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}, (10)

where (𝑏𝑖, 𝑑𝑖) is the 𝑖th birth–death pair and 𝑛 is the number of birth–
death pairs, respectively. For example, the PD in Fig.  7(c) is given by 
{(𝜙1, 𝜙3), (𝜙2, 𝜙4)}. Note that the birth–death pair for void 0, which 
appears first and persists as 𝜙 increases, is (𝜙0,∞), and it is not included 
in the PD. The value 𝑑 − 𝑏 , indicating the length of time a feature 
𝑖 𝑖
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Fig. 7. Schematic illustration of persistent homology. (a) Target binary image; (b) Filtration based on signed distance function with the Manhattan distance; (c) Persistence diagram.
persists from its appearance to its disappearance, is called the lifetime, 
which corresponds to how far the plot is from the diagonal. In the 
persistence diagram of Fig.  7(c), the plot corresponding to void 1 is 
further from the diagonal than that of void 2, indicating that void 1 
has a greater persistence with a larger lifetime. While many image 
processing techniques such as breadth-first search (BFS) are capable 
of merely identifying the number of holes or connected components, 
it should be noted that PH is known to offer a more robust analysis of 
topological features, particularly under the influence of noise [41,43]. 
This robustness arises from the correspondence between the lifetime 
lengths and the relative sizes of the holes, enabling PH to capture 
more nuanced and stable topological information. In this way, the sizes, 
numbers, and spatial relationships of connected components, holes, and 
voids analyzed by PH are summarized in the PD, enabling the rational 
extraction of these topological features from the targeting data set. Note 
that while PH can also be applied to grayscale images in the same way, 
we intentionally apply it to binarized images in this study to capture 
topological features such as the size of holes, which are more relevant 
to discrete structural differences.

3.2. Wasserstein distance between PDs

To compare complex data using PH, distance metrics between PDs 
have been proposed [44]. The basic idea is based on the concept of 
optimal transport, where the matching of points between two PDs is 
considered. The cost of the matching, minimized to the least possible 
value, is used as the distance between the two PDs. However, based on 
the concept of PH discussed in Section 3.1, points near the diagonal 
of PDs correspond to holes that disappear as soon as they appear, and 
they are insignificant points like noisy plots and should not affect the 
matching cost. Therefore, let 𝑞1 ∈ 𝐷1 and 𝑞2 ∈ 𝐷2 be the points on 
𝐷1 and 𝐷2, and the partial matching between 𝐷1 and 𝐷2 is given by a 
subset 𝑀 ⊂ 𝐷1 ×𝐷2 as follows:

• For every 𝑞1 ∈ 𝐷1, there is at most one 𝑞2 ∈ 𝐷2 such that 
(𝑞1, 𝑞2) ∈ 𝑀 .

• For every 𝑞2 ∈ 𝐷2, there is at most one 𝑞1 ∈ 𝐷1 such that 
(𝑞1, 𝑞2) ∈ 𝑀 .

Such a partial matching 𝑀 is represented as 𝑀 ∶ 𝐷1 ↔ 𝐷2, where 
(𝑞1, 𝑞2) ∈ 𝑀 denotes a pair of matched points on 𝐷1 and 𝐷2. On the 
other hand, the remaining unmatched points are denoted as 𝑞 ∈ 𝐷 ⊔𝐷 , 
1 2
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then the transportation cost based on the concept of optimal transport 
is formulated as follows: 

𝑐𝑝(𝑀) =

(

∑

(𝑞1 ,𝑞2)∈𝑀
(‖
‖

𝑞1 − 𝑞2‖‖𝑝)
𝑝 +

∑

𝑞∈𝐷1⊔𝐷2

(‖𝑞 − 𝜋(𝑞)‖𝑝)𝑝
)

1
𝑝

, (11)

where 𝜋(𝑞) is the orthogonal projection of 𝑞 onto the diagonal. The 
Wasserstein distance between 𝐷1 and 𝐷2 is calculated as the minimum 
transportation cost of Eq. (11) as follows: 
𝑊𝑝(𝐷1, 𝐷2) = inf

𝑀 ∶𝐷1↔𝐷2
𝑐𝑝(𝑀). (12)

An example of partial matching between PDs in the calculation of 
Wasserstein distance is shown in Fig.  8. Fig.  8(a) and (b) are PDs with 
6 and 5 points, respectively, it is not possible to consider a point-
to-point matching for all plots due to the differing number of them. 
The transportation cost in Eq. (11) allows us to consider matching not 
only to points but also to the diagonal, resulting in the optimal partial 
matching as shown in Fig.  8(c). Additionally, in the calculation of the 
Wasserstein distance using the transportation cost in Eq. (11), noise-
like plots with nearly the same birth and death times are matched with 
the diagonal and have little effect on the cost. The commonly used 
Wasserstein distance 𝑊2 at 𝑝 = 2 in Eq. (12) corresponds to the sum 
of the lengths of the line segments connecting the matchings in Fig. 
8(c). In this way, topological differences between complex data can be 
quantified as Wasserstein distances between PDs.

3.3. Previous research and novelty in this study

Persistent homology, which enables the analysis of topological fea-
tures, has a high affinity with topology optimization, which targets the 
shape and phase of a structure, and a few previous studies have been 
reported in recent years. Wang et al. [45] have proposed a method for 
implementing topological constraints in the SIMP method [46] based 
on the concept of PH. They successfully obtained a compliance mini-
mization design that satisfies inequality constraints related to the holes 
within the structure. Depeng et al. [47] have proposed a method to 
determine the effective relative density range of triply periodic minimal 
surfaces (TPMSs) based on PH. They successfully obtained high-stiffness 
porous structures through topology optimization by determining the 
effective thresholds of TPMSs from a topological perspective using PH. 
Behzadi and Ilieş [18] and Hu et al. [48] have proposed a topology 
optimization framework using generative models, specifically GANs 
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Fig. 8. Schematic illustration of partial matching between persistence diagrams (PDs) that minimizes the transportation cost in Wasserstein distance calculation. (a) PD1; (b) PD2; 
(c) Partial matching between PD1 and PD2.
and VAEs, respectively, incorporating a loss function based on PH. They 
showed that training the neural network with the distance between 
persistence diagrams as a topological loss improves the connectivity of 
the generated structures compared to general generative models that 
minimize only the reconstruction loss.

In this paper, we propose a selection operation of EAs that enhances 
population diversity, focusing on the quantification of differences in 
material distributions as the Wasserstein distance between PDs. In other 
words, compared to the aforementioned previous studies, the novelty 
of this research lies in the topology optimization framework with an 
EA that incorporates topological features analyzed using PH.

4. Proposed selection strategy

Based on the selection operation of NSGA-II described in Sec-
tion 2.3.1, this paper proposes a selection strategy that incorporates 
the analysis of topological features of material distributions using PH. 
Specifically, to address the challenges of directly using the NSGA-II 
selection operation in DDTD described in Section 2.3.2, we propose 
a new sorting method, named Wasserstein distance sorting between 
PDs, as an alternative to crowding distance sorting. The details of the 
proposed sorting procedure are as follows:

1. For all candidate solutions, PH is computed from the material 
distribution 𝜌(𝑖) to obtain the corresponding PD, 𝐷(𝑖).

2. For each 𝐷(𝑖), the Wasserstein distance is calculated in a pairwise 
manner to generate the following 𝑁cand ×𝑁cand distance matrix:
𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑊𝑝(𝐷(1), 𝐷(1)) 𝑊𝑝(𝐷(1), 𝐷(2)) ⋯ 𝑊𝑝(𝐷(1), 𝐷(𝑁cand ))
𝑊𝑝(𝐷(2), 𝐷(1)) 𝑊𝑝(𝐷(2), 𝐷(2)) ⋯ 𝑊𝑝(𝐷(2), 𝐷(𝑁cand ))

⋮ ⋮ ⋱ ⋮

𝑊𝑝(𝐷(𝑁cand ), 𝐷(1)) 𝑊𝑝(𝐷(𝑁cand ), 𝐷(2)) ⋯ 𝑊𝑝(𝐷(𝑁cand ), 𝐷(𝑁cand ))

⎞

⎟

⎟

⎟

⎟

⎠

,

(13)

where 𝑁cand is the total number of candidate solutions given by 
𝑁cand = 𝑁pop + 𝑁VAE + 𝑁mut, where 𝑁pop, 𝑁VAE and 𝑁mut are 
the population size, the number of generated data by crossover 
using a VAE, and the number of mutants, respectively.

3. The Wasserstein distance for the PD of the 𝑖th candidate is 
calculated as the sum of the 𝑖th row of the distance matrix 𝐴
as follows: 

𝑑(𝑖) =
𝑁cand
∑

𝑗=1
𝑊𝑝(𝐷(𝑖), 𝐷(𝑗)). (14)

4. Based on the 𝑑(𝑖) of Eq. (14), the candidate solutions are sorted 
in descending order.

The sorting obtained through the above operations replaces the 
crowding distance sorting in NSGA-II. The overall scheme of the pro-
posed selection method is similar to that of NSGA-II: the non-dominated 
9 
Fig. 9. Design domain and boundary conditions of L-bracket. The L-shaped design 
domain 𝐷 has one end fixed, while a distributed downward vertical load is applied to 
the other end.

sorting ranks 𝑁cand candidate solutions based on Pareto dominance, 
while the Wasserstein distance sorting between PDs determines priority 
among the rank containing the 𝑁popth candidate. Note that if rank 1 is 
assigned to all 𝑁cand candidates in the non-dominated sorting, indicat-
ing that the optimization process has entered the convergence stage, the 
crowding distance sorting is employed instead of the proposed sorting 
to obtain a continuous Pareto front. This division of the optimization 
process is based on exploration and exploitation in EAs [49], where the 
former corresponds to the Wasserstein distance sorting and the latter 
corresponds to the crowding distance sorting.

The proposed sorting method allows selection of GAs to preserve 
diverse solutions for the next generation based on the topology calcu-
lated from the material distribution using PH, whereas the conventional 
method selects them based on the objective values. Structural topology 
is the most distinctive factor characterizing the diversity of material dis-
tributions in topology optimization. It is expected that mating through 
crossover and mutation of GAs for topologically diverse material distri-
bution allows the population to spread out more widely in the solution 
space, facilitating global search.

5. Numerical example

In this section, we demonstrate the usefulness of the proposed se-
lection strategy incorporated into DDTD through a numerical example. 
First, we confirm that topology can be analyzed through the application 
of PH to material distributions and that the Wasserstein distances be-
tween persistence diagrams can be calculated appropriately. Then, we 
verify the effectiveness of the proposed selection strategy by comparing 
the optimization results with those from the original DDTD.
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Table 1
Parameters for the overall procedures of DDTD.
 Description Symbol Value  
 Maximum iterations 𝑡max 200  
 Number of initial data 𝑁ini 100  
 Population size 𝑁pop 50, 100, 200  
 Number of generated data in crossover using a VAE 𝑁VAE 50, 100, 200  
 (aligned with 𝑁pop) 
 Number of mutants 𝑁mut 16  
 Iteration interval of mutation 𝑡mut 5  
 Overlapping parameter for mutation 𝐺max

mut 0.01  
5.1. Problem settings

As a numerical example, we solve the structural design problem of 
a two-dimensional L-bracket whose design domain and boundary con-
ditions are shown in Fig.  9. It is widely used as a benchmark for stress-
based optimization [50–54] and is known for causing strong nonlinear-
ity due to stress concentration at the reentrant corner within the design 
domain. Its optimization problem is formulated as a multi-objective 
optimization problem as follows: 
minimize

𝝆
𝐹1 = max

𝑒

(

𝜎𝑒
)

,

𝐹2 =
∑𝑁

𝑒=1 𝑣𝑒𝜌𝑒
∑𝑁

𝑒=1 𝑣𝑒
,

subject to 𝜌𝑒 ∈ {0, 1} (𝑒 = 1, 2,… , 𝑁),

(15)

where 𝜎𝑒 is the von Mises stress in the 𝑒th element. 𝑣𝑒 and 𝑁 are the 
elemental volume and the number of elements, respectively. In this 
paper, 𝑁 is set to 6400, indicating that the design domain is discretized 
into 6400 finite elements using structured meshes. One of the objective 
𝐹1 is the maximum stress, making the optimization problem of Eq. (15) 
a minimax one, while the other objective 𝐹2 represents the volume 
fraction. Note that each element 𝜌𝑒 of the design variable vector 𝝆 takes 
discrete values of 0 or 1, representing a material distribution without 
intermediate densities known as grayscale.

While the optimization problem in Eq. (15) is the original one to 
be solved, the low-fidelity optimization problem in Eq. (16), which is 
solved for initial data preparation and mutation in DDTD, is formulated 
as follows: 
minimize

𝝆(𝑘)
𝐹 = 𝐟T𝐮,

subject to 𝐊𝐮 = 𝐟 ,

𝐺 =
∑𝑁

𝑒=1 𝑣𝑒𝜌
(𝑘)
𝑒

∑𝑁
𝑒=1 𝑣𝑒

− 𝑉 max
f ≤ 0,

𝜌(𝑘)𝑒 ∈ [0, 1] (𝑒 = 1, 2,… , 𝑁),

for given 𝐬(𝑘),

(16)

where the vectors 𝐟 and 𝐮 represent the external force and displace-
ment, respectively, which form the equilibrium equations with the 
global stiffness matrix 𝐊. The objective 𝐹  and constraint function 
𝐺 are the mean compliance and volume fraction, respectively. The 
low-fidelity optimization problem of Eq. (16) is a general stiffness 
maximization problem, which is easily solved using the density-based 
method [30] with design variables 𝜌(𝑘)𝑒  relaxed to continuous values be-
tween 0 and 1. In this paper, filter radius 𝑟 in the density filter [55,56] 
and constraint values of volume fraction 𝑉 max

f  are employed as seeding 
parameters 𝐬, i.e., they can be denoted as 𝐬 = [𝑟, 𝑉 max

f ].
Tables  1 and 2 list the parameters regarding the overall proce-

dures of DDTD and the VAE, respectively. Previous studies [24,58] 
have demonstrated the effectiveness of DDTD in stress-based topology 
optimization, and this study investigates the impact of the proposed 
selection strategy on the solution search performance of DDTD under 
different parameter settings. Among the various parameters, population 
size is known to significantly influence the search performance of GAs 
in the literature [7,59], thus we compare the optimization results with 
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Table 2
Parameters for the VAE and latent crossover.
 Description Value  
 Size of input and output Data 6400  
 Size of latent space 8  
 Number of neurons for hidden layers 512  
 Structure of the encoder network [6400, 512, 8]  
 Structure of the decoder network [8, 512, 6400]  
 Activation function for each layer Relu (hidden layers)  
 Sigmoid (output layer)  
 Optimizer Adam  
 Reconstruction loss function Mean squared error  
 Weight for Kullback–Leibler (KL) divergence 0.001  
 Number of epochs 500  
 Batch size 10  
 Learning rate 0.001  
 Operator for latent crossover Simplex crossover (SPX) [57] 
 Number of parent individuals for SPX 9  
 Expansion rate of simplex for SPX √

10  

Table 3
Computational results of 2-Wasserstein distance between persistence diagrams (PDs) 
and 𝐿2 norm between material distributions shown in Fig.  10. Larger and smaller 
distances are shown in bold.
 Pair of PDs 2-Wasserstein distance 𝐿2 norm 
 (a) & (b) 46.05 51.72  
 (a) & (c) 52.52 42.97  
 (a) & (d) 20.14 34.53  
 (a) & (e) 39.54 33.84  
 (a) & (f) 27.92 22.97  
 (b) & (c) 41.46 40.60  
 (b) & (d) 45.99 39.95  
 (b) & (e) 36.52 40.93  
 (b) & (f) 33.67 47.70  
 (c) & (d) 53.41 50.82  
 (c) & (e) 28.93 21.45  
 (c) & (f) 44.86 36.17  
 (d) & (e) 42.25 42.25  
 (d) & (f) 25.69 36.57  
 (e) & (f) 32.10 24.83  

the three values shown in Table  1. The prior study on DDTD [24] 
has also demonstrated that large population size leads to superior 
optimized solutions.

5.2. Verification of topological analysis using persistent homology

First, we verify whether the topological features are correctly ex-
tracted from the material distribution data using PH. The material 
distributions of the initial data and mutants for them were binarized 
into black and white images with a threshold of 𝜌(𝑘)𝑒 = 0.5. PH was 
computed for these images, which were output at a resolution of 
511 × 511 pixels, and Fig.  10 shows a portion of the resulting PDs. 
Python software HomCloud [60] (version 4.4.1) was employed for the 
calculation. The material distribution in Fig.  10(a) confirms that the 
structure has a total of seven holes, including those consisting of the 
boundaries of the design domain. Its PD shows seven points correspond-
ing to these holes in the region far from the diagonal. Similarly, for the 
more complex material distribution in Fig.  10(b) with a greater number 
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Fig. 10. Examples of a pair of material distribution and its persistence diagram (PD). Six examples (a)–(f) are shown, each consisting of a material distribution in the lower right 
half of its PD. The material distributions are defined on a design domain discretized into 6400 elements (100 per edge) and are output as binary images with a resolution of 
511 × 511 pixels. The color bar indicates the number of overlapping birth–death pairs.
of holes, corresponding points can be observed on the PD. All PDs in 
Fig.  10 show several plots near the diagonal, which can be regarded as 
noise and have little effect on the Wasserstein distance as described 
in Section 3.2. The PD calculated from the material distribution in 
Fig.  10(f), which includes two small holes added at the connections 
between each component in the material distribution of Fig.  10(a), 
shows two additional points corresponding to them. Based on the 
definition of scale parameter in Eq. (9), points further to the right 
on the PD correspond to smaller holes that appear earlier, and four 
additional plots in Fig.  10(d) correspond to the small holes in the 
structure. The PDs corresponding to various structures, including Fig. 
10(b) with many holes and Fig.  10(c) with few holes, demonstrate that 
the number and size of the holes can be effectively captured, confirming 
that the topological features are analyzed using PH.

Next, we validate whether the Wasserstein distance between PDs 
is accurately measured. Table  3 compares the Wasserstein distance 
between PDs to the 𝐿2 norm of material distributions shown in Fig. 
10. Here we discuss the 2-Wasserstein distance calculated with 𝑝 = 2 in 
Eq. (12). Based on the Wasserstein distances between PDs, the furthest 
material distributions are those in Fig.  10(a) and (c), as well as Fig. 
10(c) and (d), while the closest material distributions are Fig.  10(a) 
and (d). The 𝐿2 norm similarly measures Fig.  10(c) and (d) as a distant 
pair, while the pair Fig.  10(a) and (b) also has a large value. On the 
other hand, The closest pairs are Fig.  10(a) and (f), as well as Fig. 
10(c) and (e), resulting in completely different results compared to 
the Wasserstein distance. In particular, focusing on Fig.  10(a) and (d), 
where their topology is similar but the position of each component is 
off by a few pixels, as shown in Fig.  6, the Wasserstein distance assesses 
them as close, whereas the 𝐿2 norm shows a large value, indicating that 
it does not accurately measure their similarity. These results illustrate 
that the Wasserstein distance between PDs can appropriately measure 
the topological differences between material distributions.

Finally, to investigate the impact of resolution, material distribu-
tions shown in Fig.  10 were output as binary images with a higher-
resolution of 1022 × 1022 pixels. Wasserstein distances between their 
PDs were then calculated for these images, and the results are shown in 
Table  4. It is worth noting that, despite differences in birth and death 
times, the relative positions of the plots in their PDs remain consistent 
with those in Fig.  10, regardless of resolution. Although the scale of 
the Wasserstein distances varies with resolution, a comparison between 
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Table 4
Computational results of 2-Wasserstein distance between persistence diagrams (PDs) for 
high-resolution binary images of material distributions shown in Fig.  10. Larger and 
smaller distances are shown in bold.
 Pair of PDs 2-Wasserstein distance 
 (a) & (b) 90.81  
 (a) & (c) 107.90  
 (a) & (d) 41.94  
 (a) & (e) 82.61  
 (a) & (f) 51.95  
 (b) & (c) 82.49  
 (b) & (d) 90.66  
 (b) & (e) 72.40  
 (b) & (f) 66.72  
 (c) & (d) 107.37  
 (c) & (e) 56.79  
 (c) & (f) 90.34  
 (d) & (e) 84.73  
 (d) & (f) 52.39  
 (e) & (f) 63.98  

Tables  3 and 4 shows that the overall pattern of relative distances is 
largely preserved. While there are slight changes in the ranking among 
the six examples, this does not pose a problem for the selection process, 
as the proposed Wasserstein distance sorting is performed based on 
the sum of distances to other candidate solutions in the population, as 
defined in Eq. (14). These results suggest that the relative topological 
variety within a population can be effectively quantified using the 
Wasserstein distance between PDs, regardless of resolution.

5.3. Validation of effectiveness of proposed selection strategy

Based on the verification of PH, we validate the effectiveness of 
the proposed selection strategy on the solution search performance of 
DDTD through comparing it with the conventional selection operation 
with the crowding distance sorting. Note that, considering the cost 
required for computing Wasserstein distance between PDs, we use the 
lower of the two resolutions presented in Section 5.2, in which the 
design domain is discretized into 6400 elements and PH is computed 
for binary images with a resolution of 511 × 511 pixels. As a search 
performance metric of DDTD, we use the hypervolume indicator [61], 
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Fig. 11. Iteration histories of the mean hypervolume over ten trials in different 
population size (PS): 𝑁pop = 50, 100, 200.

which is a measure of diversity and convergence performance in multi-
objective optimization. In the case of the two-objective optimization 
problem of Eq. (15), the hypervolume is calculated as the area formed 
by the non-dominated solutions of rank 1 and a predetermined refer-
ence point in the objective space. Thus, a larger hypervolume value 
indicates a more advanced Pareto front. Since the training process 
of VAEs involves randomness in DDTD, we compare the optimization 
results over ten trials in the three different population sizes shown in 
Table  1.

Fig.  11 shows the iteration history of the mean hypervolume over 
ten trials. Note that the reference point used for hypervolume cal-
culations is common regardless of the population size. Additionally, 
until iteration 1, the hypervolume values are nearly identical due to 
mutation, as represented by the black solid line in Fig.  11. In all cases, 
it can be confirmed that the proposed selection operation with the 
Wasserstein distance sorting between PDs outperforms the conventional 
one with the crowding distance sorting. Quantitatively, the proposed 
method shows an increase of 8.19%, 10.67%, and 9.66% over the 
conventional one for 𝑁pop = 50, 100, and 200, respectively.

Fig.  12 shows the hypervolume history based on the number of 
evaluations. Here, the number of evaluations refers to the count of 
structural performance evaluations of candidate solutions, which incre-
ments by 𝑁VAE per iteration. Note that the dominant computational 
cost within DDTD lies in the evaluation process, as in other common 
EAs, even including the computations of Wasserstein distance between 
PDs, and Fig.  12 is practically equivalent to the comparison in terms 
of computational cost. Although it is expected that the hypervolume 
value increases with a larger population size based on its definition, 
the final value for the proposed method with 𝑁pop = 50 is equivalent 
to that of the conventional method with 𝑁pop = 100. Similarly, the 
proposed method with 𝑁pop = 100 requires only half the number of 
evaluations to yield results comparable with the conventional method 
with 𝑁pop = 200. The original paper [22] also states that the most 
computationally expensive part of DDTD is the performance evaluation 
using the finite element method, and these results indicate that the 
proposed selection method can significantly reduce the computational 
time of DDTD. It should be noted that the results suggest the potential 
usefulness of the proposed selection strategy for more complex topology 
optimization problems that involve higher computational costs for fi-
nite element analysis, such as three-dimensional problems or turbulent 
flow problems.

For the case of population size 𝑁pop = 50, Fig.  13 shows the Pareto 
front and some optimized structures from the trial with the maximum 
12 
Fig. 12. History of the mean hypervolume for the number of evaluations over ten 
trials in different population size (PS): 𝑁pop = 50, 100, 200. The number of evaluations 
refers to the count of times the objective and constraint functions are evaluated.

hypervolume value out of the ten trials illustrated in Figs.  11 and 12. 
As indicated by the hypervolume shown in Fig.  11, the Pareto front 
obtained by the proposed method is much more advanced, especially 
in terms of volume reduction. Focusing on material distributions, solu-
tions with relatively large maximum stress values tend to have similar 
structures. In contrast, solutions obtained by the proposed method with 
the maximum von Mises stress of less than 12 have unique structures, 
which contribute to the large hypervolume values. Investigating when 
these unique solutions first appeared in the optimization calculations 
using the proposed method, they appeared as a mutant in iteration 6, 
as shown in Fig.  14(a). Through subsequent generation, at iteration 11, 
it has multiplied through crossover, and an even superior solution with 
the maximum stress value of less than 10 has appeared, as shown in 
Fig.  14(b). These results suggest that the proposed selection operation 
effectively enhances the population diversity, maintaining the popu-
lation with a variety of design variables, and allowing crossover and 
mutation to produce novel superior ones that could not be achieved by 
conventional methods. Additionally, as shown in Fig.  14, the proposed 
Wasserstein distance sorting, unlike the crowding distance sorting, 
does not consider the proximity of solutions in the objective space 
during the early stage of optimization, resulting in scattered solution 
distributions with gaps in the front. On the other hand, a continuous 
and uninterrupted Pareto front is eventually obtained as shown in Fig. 
13, indicating that the proposed strategy of switching to the crowding 
distance sorting works correctly based on the theory of exploration and 
exploitation in EAs.

Although this paper focuses on the structural design problem of an 
L-bracket, the proposed method is not specific to this setting. Since it 
is based on analyzing the topological features of material distributions 
using PH and quantifying their differences with Wasserstein distances, 
the method is generally applicable to any topology optimization prob-
lem where design solutions can be represented as binary images. As 
DDTD has already been extended to various application domains, such 
as structural mechanics [21,24,58,62], thermofluids [22,63,64], and 
electromagnetic fields [65], we believe that the proposed selection 
strategy is also adaptable to such problems.

6. Conclusions

This paper proposed a selection strategy enhancing the popula-
tion diversity of solutions for data-driven topology design (DDTD). 
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Fig. 13. Objective space and some material distributions in optimization results population size 𝑁pop = 50.
Fig. 14. Objective space and extraction of superior solutions in the early stages for population size 𝑁pop = 50. (a) Iteration6; (b) Iteration 11.
Motivated by the need to consider the inherent diversity of material 
distributions in optimization problems with significant nonlinearity, 
we focused on persistent homology (PH) as a method for analyz-
ing topology. As a specific selection operation, we introduced the 
Wasserstein distance sorting between persistence diagrams instead of 
the crowding distance sorting in the non-dominated sorting genetic 
algorithm II (NSGA-II), a type of evolutionary algorithm for multi-
objective optimization problems. In the numerical example of stress-
based topology optimization, it was confirmed that PH effectively 
analyzes the holes in material distribution data and that the Wasserstein 
distance between persistence diagrams is appropriately calculated. It 
was demonstrated that the proposed selection operation improves the 
solution search performance of DDTD and leads to the discovery of 
unique and high-performance structures.

One of the significant achievements of this paper is demonstrating 
that solution search performance in DDTD is not compromised even 
with reduced population size. Our future work will focus on tack-
ling large-scale or complex optimization problems that involve high 
computational costs for physical performance analysis.
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