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Abstract

Background: Male infertility is an intricate multifactorial disease involving the inter-
play between genetic and environmental factors. Genetic anomalies account for more
than 15% of all male infertility cases; however, diagnosing them exhibits enormous
challenges due to variable symptomatic presentations and limited knowledge of gene
functions. Therefore, a thorough investigation into gene regulatory networks under-
lying male reproduction is demanded to improve patient counseling and infertility
treatment.

Obijective: In this study, we aimed to identify testis-expressed genes essential for male
fertility.

Methods: We searched public databases, such as the National Center for Biotechnol-
ogy Information (NCBI), Ensembl genome browser, the Human Protein Atlas (HPA),
and the Mammalian Reproductive Genetics Database V2 (MRGDv2), to identify genes
predominantly expressed in male reproductive tissues. Genetically engineered mouse
lines lacking individual genes of interest were generated using either targeted gene
replacement or the CRISPR/Cas? system. To determine the gene functions, we ana-
lyzed fertility, testis weight, testis and epididymis histology, and sperm motility and
morphology in adult knockout (KO) male mice.

Results: Through the in silico screen, we identified 18 testis-expressed genes, includ-

ing coiled-coil domain containing 182 (Ccdc182), EF-hand calcium-binding domain
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15 (Efcab15), family with sequence similarity 187, member B (Fam187b), family
with sequence similarity 24, member A (Fam24a), family with sequence similarity
24, member B (Fam24b), glial cell line derived neurotrophic factor family receptor
alpha 2 (Gfra2), GLI pathogenesis-related 1 like 1, 2, and 3 (Glipr1l1-3), inter-
leukin 3 (I13), IZUMO family member 4 (Izumo4), peptidyl-prolyl cis/trans isomerase,
NIMA-interacting 1, retrogene 1 (Pinirt1), solute carrier family 22 (organic cation
transporter), member 16 (SIlc22a16), sperm microtubule inner protein 2 (Spmip2), testis
expressed 51 (Tex51), transmembrane and coiled-coil domains 2 (Tmco2), and tripartite
motif family-like 1 and 2 (Triml1/2). The KO males displayed no obvious health prob-
lems, and normal mating behavior, fecundity, testis and epididymis histology, and sperm
morphology and motility.

Discussion and Conclusion: Our findings indicate that these 18 testis-expressed genes
are individually dispensable for male reproduction in mice. Disseminating such genes
would promote our understanding of male reproduction and expedite the discovery
of novel key male factors. Although we anticipate that mutations in these genes may

not impair fertility in men, their enrichment in male germ cells makes them potential

KEYWORDS

1 | INTRODUCTION

A recent report by the World Health Organization estimated that one
in six people experience infertility at certain periods in their lives.:
Among couples unable to conceive, approximately 50% of cases are
partially or wholly attributed to male infertility.2~7

Recent advances in next-generation sequencing (NGS) have pro-
vided profound insights into the genetics of male infertility. Whole-
exome and whole-genome sequencing have enabled comprehensive,
high-throughput identification of causative genetic variants for aber-
rant sperm formation, morphogenesis, and functionality.~1* However,
defining genotype-phenotype correlations remains challenging, as the
majority of mutations detected by NGS have unknown significance for
reproductive health.1®

With the emergence of CRISPR/Cas9-mediated genome engineer-
ing in mice, precise targeting of genes highly expressed in the gonads
has become remarkably time and cost effective.’6"18 Such func-
tional genetics approaches have allowed the discovery of numerous
molecules essential for reproductive success. Typical examples include
Pdcl2,Y? Adad2,2° Tsks,2! Mettl16,22 and Ccer1,2% which regulate sperm
formation and differentiation; Nell2,2% Nicol,?> and Ros1%¢ that coor-
dinate lumicrine signaling essential for epididymal and sperm matu-
ration; and Izumo1,2” Spacaé, Sof1, Tmem95,28 Fimp,2? Dcst1/2,°° and
Tmem81,%1 which are involved in sperm-egg plasma membrane bind-
ing and/or fusion. Notwithstanding substantial progress in the field,
the etiology of genetically derived male infertility remains elusive,

biomarkers for sperm count, quality, and morphological anomalies.

CRISPR/Cas?, fertilization, male fertility, spermatogenesis, sperm morphology, sperm motility

highlighting the need for continued efforts to uncover novel key male
factors.

In this study, we identified 18 testis-expressed genes through an
in silico screen of public databases. To interrogate their roles in the
male reproductive system, we generated knockout (KO) mouse lines by
CRISPR/Cas? or the conventional gene replacement method. Compre-
hensive phenotypic analyses on testis and epididymis histology, sperm
morphology and motility, and male fecundity revealed that these genes
are individually dispensable for male fertility in mice. Our findings
imply potential functional redundancy or compensatory mechanisms
within the gene regulatory networks governing male reproductive

function.

2 | MATERIALS AND METHODS

2.1 | Animals

All experiments were approved by the Institutional Animal Care and
Use Committees at The University of Osaka. B6D2F1 [hereafter
referred to as wild-type (WT)] and the Institute of Cancer Research
(ICR) mice were procured from Japan SLC. KO mice were gener-
ated on the genetic background of B6D2 and maintained under
specific-pathogen-free conditions with a 12-h light/dark cycle and
ad libitum feeding. Frozen spermatozoa of heterozygous KO mice
have been deposited to RIKEN BioResource Research Center (BRC;
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FIGURE 1 Tissue expression patterns of the candidate genes in mice and humans. (A) Digital polymerase chain reaction (PCR) of target genes
in mouse tissues and cells. Band intensity represents the average transcripts per million (TPM). The expression of the housekeeping gene Hprt is
shown as a positive control. (B) Digital PCR of target genes in human tissues and cells. The expression of the housekeeping gene UBE2R2 is shown
as a positive control. Spc, spermatocytes; Spg, spermatogonia.

web.brc.riken.jp/en) and Center for Animal Resources and Devel- 2.2 | Gene expression analyses
opment (CARD) at Kumamoto University (card.medic.kumamoto-
u.ac.jp/card/English). The RIKEN BRC and CARD IDs for the deposited The expression profiles of each gene in mouse tissues and spermato-

mouse lines are listed in Table S1. genic cells were retrieved from Mammalian Reproductive Genetics
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TABLE 1 Fertility tests of wild-type (WT) and knockout (KO) male mice.
No. of mice Mating period Average litter
Genotype analyzed No. of pups No. of litters (weeks) size + SD p value

WT +/+ 3 217 25 8 87+ 23 -

Ccdc182 —480/-480 3 193 23 8 8.4 +27 0.85
Efcab15 —/- 3 97 10 8 9.7 £ 15 0.34
Fam187b —12225/-12225 3 222 26 8 85+ 27 0.72
Fam24a —2277/-2277 3 123 16 8 77 £31 0.55
Fam24b -1214/-1214 8 249 29 8 8.6 + 32 0.61
Gfra23 —87933/-87933 3 138 16 8 8.6 +25 0.10
Gfra2Q —87933/-87933 8 194 25 10 7.8 +32 0.13
Glipr1l1-3 -10138/-10138 5 320 47 8 6.8 + 34 0.33
113 —1706/-1706 3 231 22 10 10.5 + 2.0 0.19
Izumo4 —2398/-2398 3 227 27 8 84 +28 0.75
Pin1rt1 —528/-528 3 231 26 8 89+ 15 0.55
Slc22a16 —33,732/-33,732 3 164 19 8 8.6 +23 0.82
Spmip2 —85,683/-85,683 3 207 22 8 94 + 33 0.17
Tex51 —4231/-4231 4 279 33 8 85+ 23 0.79
Tmco2 —3396/-3396 3 133 16 8 83+ 3.3 0.81
Triml1/Triml2 —623,666/-623,666 3 169 23 8 73+ 23 0.18

Database V2 (MRGDV2; orit.research.nocm.edu/MRGDv2)32 and a pre-

viously published single-cell RNA sequencing dataset,3 respectively.

2.3 | Phylogenetic analyses

Phylogenetic trees depicting gene conservation across species were
obtained from TreeFam (treefam.org®*; Figure S1A-I). Alternatively,
the orthologous sequences of each protein were acquired from
Ensembl (asia.ensembl.org), aligned using the ClustalW algorithm,®>
and converted into phylogenetic trees with GENETYX Ver.11 (Nihon
Server; Figure S1J-P).

2.4 | Generation of KO mice by CRISPR/Cas9

Ccdc182, Fam187b, Fam24a, Fam24b, Gfra2, Glipr1l1-3, 113, 1zumo4,
Pin1rt1, Slc22a16, Spmip2, Tex51, Tmco2, and Triml1/TrimI2 KO mouse
lines were generated by the CRISPR/Cas9 system. Two single guide
RNAs (sgRNAs) targeting the 5’ and 3’ regions of each gene were
designed by using webtools including CRISPRdirect (crispr.dbcls.jp),3¢
Benchling (benchling.com), and CRISPOR (crispor.tefor.net®’; Table
S2). WT females were intraperitoneally injected with 0.1 mL CARD
HyperOva (Kyudo) and 5 IU human chorionic gonadotropin (hCG; Aska
Animal Health) at noon, 48 h apart. Upon hCG administration, the
female mice were individually caged with a WT male mouse. After
20 h, fertilized eggs were extracted from the oviductal ampulla of
the superovulated females and treated with 330 pg/mL hyaluronidase

(Sigma-Aldrich) to remove the cumulus cells. The zygotes with two

pronuclei were batch electroporated in Opti-MEM (Thermo Fisher
Scientific) containing CRISPR RNA (crRNA; Integrated DNA Technolo-
gies), trans-activating crRNA (tracrRNA; Integrated DNA Technolo-
gies), and Cas9 (Thermo Fisher Scientific) ribonucleoprotein complex
using a NEPA21 Super Electroporator (Nepa Gene). The electropo-
rated zygotes were cultured in Potassium Simplex Optimized Medium
(KSOM) until two-cell stage and were transplanted into the oviductal
ampulla of 0.5-day post-coitum pseudopregnant ICR female mice. Off-
spring were naturally delivered or obtained through cesarean section
19-day post-transplantation and genotyped by polymerase chain reac-
tion (PCR) using primers enumerated in Table S3. The precise deletion
patterns were determined by Sanger sequencing of the PCR amplicons
representing the KO alleles.

2.5 | Generation of Efcab15 KO mice

Efcab15 KO mice were generated by the conventional gene replace-
ment method. Briefly, a 2.9 kb short and a 5.7 kb long homology arm
were cloned and inserted into a pNT1.1 vector.38 To disrupt Efcab15,
the targeting vector was linearized by enzymatic digestion with Clal
(New England Biolabs) and electroporated into EGR-G101 embryonic
stem cells (ESCs).3? The second to the ninth exons of Efcab15 were
replaced with a thymidine kinase (tk) expression cassette for negative
selection and a neomycin resistance cassette (neo") flanked by flippase
recognition target (FRT) sites (Figure S2). ESC clones harboring homol-
ogous recombinations were selected by 150 pg/mL G418 and 2 uM
ganciclovir, validated by genomic PCR, and microinjected into eight-cell

ICR embryos by a piezo-driven micromanipulator (PRIME TECH). The
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injected embryos were cultured overnight in KSOM and transplanted
into the uterine horns of 2.5-day pseudopregnant ICR females. The
chimeric male offspring obtained from the recipient mice were paired
with WT females, and the resultant offspring were genotyped by PCR.

2.6 | Fertility analyses of KO mice

Sexually mature (8-20 weeks old) WT and KO male mice were caged
individually with one to three 6-week-old WT female mice for at least
8 weeks. After the mating period, the males were removed from the
cages and the female mice were kept for additional 3 weeks to deliver
the final litters. Copulatory plugs were recorded every morning and the
numbers of pups were counted at birth. To analyze the fertility of Gfra2
KO females, two 6-week-old KO females were caged with an 8- to 10-
week-old WT male for 10 weeks. The females were then maintained for

3 more weeks to record the final litters.

2.7 | Analyses of testis and epididymis histology

Testis and epididymis dissected from adult WT and KO males were
fixed in Bouin’s solution (Polysciences) at 4°C for overnight, embed-
ded in paraffin wax, and cut into 5 pm thin sections using a Microm
HM 325 Rotary Microtome (Thermo Fisher Scientific). The paraf-
fin sections were rehydrated, stained with periodic acid (Nacalai
Tesque) and Schiff’s reagent (Wako), counterstained with Mayer’s
hematoxylin solution (Wako), mounted with Entellan™ new rapid
mounting medium for microscopy (Merck) and imaged under an Olym-
pus BX53 microscope equipped with an Olympus DP74 color camera
(Evident).

2.8 | Analyses of sperm motility and morphology

An incision was made at the tip of cauda epididymis, and spermato-
zoa were gently squeezed out and dispersed in the Toyoda, Yokoyama,
and Hoshi (TYH) medium, followed by incubation at 37°C, 5% CO,.
Motility parameters of non-capacitated and capacitated spermato-
zoa were analyzed at 10 and 120 min post-incubation, respectively,
using the CEROS Il sperm analysis system (Hamilton Thorne Bio-
sciences). Sperm morphology was observed and captured under an
Olympus BX53 microscope equipped with an Olympus DP74 color

camera.

2.9 | Statistical analysis

Statistical differences were evaluated by the two-tailed Welch'’s t-test
using Microsoft Excel 2024 or by multiple Mann-Whitney tests using
GraphPad Prism 9. Significance was attributed to p values below 0.05.

The data are presented as mean + standard deviation (SD).

ANDROLOGY
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3 | RESULTS

3.1 | |Insilico screen and expression analyses of
testis-expressed genes

Through a preliminary search of the National Center for Biotech-
nology Information (NCBI; ncbi.nlm.nih.gov/gene) and the Mouse
Genome Informatics (MGI; informatics.jax.org) databases and a thor-
ough literature review, we identified 18 evolutionarily conserved,
testis-expressed genes, Ccdc182, Efcab15, Fam187b, Fam24a, Fam24b,
Gfra2, Glipr1l1, Glipr1l2, Glipr1l3, 113, Izumo4, Pinirtl, Slc22a16,
Spmip2, Tex51, Tmco2, Triml1, and Triml2, whose physiological func-
tions had not been reported in mice. According to the Encyclope-
dia of DNA Elements (ENCODE) transcriptome database (encode-
project.org) and MRGDv2,32 Ccdc182, Fam187b, Fam24a, Fam24b,
Gfra2, Glipr1l1, Glipr1l2, Izumo4, Slc22a16, Spmip2, Tex51, Tmco2,
Triml1, and Triml2 are highly expressed in mouse and human testis
and epididymis (Figure 1). Notably, Fam24b exhibits predominant
expression in mouse testis but is ubiquitously expressed among
human tissues and organs (Figure 1). Efcab15 is a protein-coding
gene highly expressed in mouse testis (Figure 1A), while in humans,
it is annotated as a pseudogene, EFCAB15P (NCBI gene identi-
fier: 118568824). 113 shows biased expression in mouse testis (data
retrieved from Expression Atlas; ebi.ac.uk/gxa; Figure S3A), whereas
its human ortholog is expressed in testis, epididymis, and bone
marrow (data retrieved from Human Protein Atlas [HPA]; pro-
teinatlas.org; Figure S3B). Pinlrtl is identified as a retrogene of
Pin1, highly expressed in mouse testis and epididymis (Figure 1A).
Phylogenetic analyses indicated that several candidate genes, such
as SIc22a16 and Tex51, are highly conserved among Eukaryota,
whereas the remainders, such as Ccdc182, Fam24a, Fam24b, Gfra2,
Glipr1l2, 113, and Tmco2 exhibit limited conservation across Mam-
malia (Figure S1). Notably, Glipr1l3 and Pinirtl are only found

in mice.

3.2 | Generation of KO mice

KO mouse lines were generated to investigate the physiological
functions of the 18 testis-expressed genes in the male reproduc-
tive system. All genes were deleted using CRISPR/Cas9, except for
Efcab15, which was disrupted by the conventional gene replacement
method (see Materials and Methods section). Given that Triml1 and
Triml2 are neighboring genes with considerable sequence homology
(Figure S4A,B), we created a KO model lacking both genes. All rele-
vant information about the mouse lines, including the sequences of
crRNA protospacers and mutant alleles, embryo implantation out-
comes, genome editing efficiency, and the primer sets and PCR
conditions for genotyping, is presented in Tables S2-S4. The KO
strategies of Fam24a, Gfra2, 113, Triml1/2, and Spmip2 are shown in
Figure S5.
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FIGURE 2 Phenotypic analysis of Ccdc182 knockout (KO) male mice. (A) Genomic structure and KO strategy of mouse Ccdc182. To delete
Ccdc182, sgRNA#1 and sgRNA#2 were employed to target its coding exon. Two primers (Fw, forward primer; Ry, reverse primer) flanking the
truncated region were used to analyze the mouse genotype. The mutant sequence was cloned and analyzed by Sanger sequencing. (B) Genotypic
validation of Ccdc182 KO mice by polymerase chain reaction (PCR). The upper and lower bands represent the wild-type (WT) and KO alleles,
respectively. (C) Gross appearance and relative testis weight of WT and Ccdc182 KO mice. Relative testis weight was calculated by dividing the
testis weight (mg) by the corresponding body weight (g). (D) Sperm morphology of WT and Ccdc182 KO males. (E) Histological analyses of testis,
caput epididymis, and cauda epididymis in WT and Ccdc182 KO males. Scale bars = 100 um. (F) Motility of WT and Ccdc182 KO spermatozoa. (G)
Progressive motility of WT and Ccdc182 KO spermatozoa.
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FIGURE 3 Phenotypic analysis of Fam24b knockout (KO) male mice. (A) Genomic structure and KO strategy of mouse Fam24b. To delete
Fam24b, sgRNA#1 and sgRNA#2 were employed to target its coding exons. Two primers flanking the truncated region were used to analyze the
mouse genotype. The mutant sequence was cloned and analyzed by Sanger sequencing. (B) Genotypic validation of Fam24b KO mice by
polymerase chain reaction (PCR). The upper and lower bands represent the wild-type (WT) and KO alleles, respectively. (C) Relative testis weight
of WT and Fam24b KO mice. (D) Sperm morphology of WT and Fam24b KO males. (E) Histological analyses of testis, caput epididymis, and cauda
epididymis in WT and Fam24b KO males. Scale bars = 100 um. (F) Motility of WT and Fam24b KO spermatozoa. (G) Progressive motility of WT and
Fam24b KO spermatozoa.
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FIGURE 4 Phenotypic analysis of Glipr1l11-3 knockout (KO) male mice. (A) Genomic structure and KO strategy of mouse Glipr111 and Glipr1I3.
The direction of genes relative to the genome is indicated by arrows. Glipr1l1 and Glipr1I3 are, respectively, located at the forward and reverse
strands of mouse chromosome 10. sgRNA#1 and sgRNA#2 were used to delete Glipr1l1, Glipr112, and Glipr1I3. Three primers (Fw, Rv1, and Rv2)
were used to analyze the mouse genotype. The mutant sequence was cloned and analyzed by Sanger sequencing. (B) Genotypic validation of
Glipr111-3 KO mice by polymerase chain reaction (PCR). The upper and lower bands represent wild-type (WT) (amplified by Fw-Rv1) and KO
alleles (amplified by Fw-Rv2), respectively. (C) Relative testis weight of WT and Glipr1/1-3 KO mice. (D) Sperm morphology of WT and Glipr1/1-3
KO males. (E) Histological analyses of testis, caput epididymis, and cauda epididymis in WT and Glipr1/1-3 KO males. Scale bars = 100 pym. (F)
Motility of WT and Glipr1/1-3 KO spermatozoa. (G) Progressive motility of WT and Glipr1/1-3 KO spermatozoa.
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FIGURE 5 Phenotypic analysis of [zumo4 knockout (KO) male mice. (A) Genomic structure and KO strategy of mouse Izumo4. sgRNA#1 and
sgRNA#2 were employed to target its coding exons. Three primers (Fw, Rv1, and Rv2) were used to analyze the mouse genotype. The mutant
sequence was cloned and analyzed by Sanger sequencing. (B) Genotypic validation of Izumo4 KO mice by polymerase chain reaction (PCR). The
upper and lower bands represent the wild-type (WT; amplified by Fw1-Rv1) and KO alleles (amplified by Fw1-Rv2), respectively. (C) Relative
testis weight of WT and Izumo4 KO mice. (D) Sperm morphology of WT and Izumo4 KO males. (E) Histological analyses of testis, caput epididymis,
and cauda epididymis in WT and Izumo4 KO males. Scale bars = 100 pm. (F) Motility of WT and Izumo4 KO spermatozoa. (G) Progressive motility of

WT and Izumo4 KO spermatozoa.
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3.3 | Fertility tests of KO mice

For each mouse line, three sexually mature KO males were individually
caged with one to three WT females for at least 8 weeks. The KO male
mice sired offspring with average litter sizes comparable to those of
WT males (Table 1). Furthermore, we bred heterozygous KO males with
homozygous KO females to maintain the mouse lines and observed no
obvious reduction in the fecundity of KO females. A fertility test was
conducted for Gfra2 KO females, where three WT males were individu-
ally housed with two KO females for 10 weeks. The resultant litter size
is comparable to that of WT mice (Table 1).

3.4 | Phenotypic analyses of KO males

Despite that the KO males exhibited normal fecundity, we conducted
detailed analyses to rule out subtle impairments in their reproductive
system that might not resultin a detectable reductionin litter sizes. The
phenotypic analyses of male mice lacking Ccdc182 (Figures 2 and S6A),
Fam24b (Figures 3 and S6B), Glipr1l1-3 (Figures 4 and S6C), Izumo4
(Figures 5 and S6D), Tex51 (Figures 6 and S6E) are described herein,
whereas the analyses of Fam187b, Pin1rt1, Slc22a16, and Tmco2 KO
males are depicted in Figures S6F-H and S7-510. Phenotypic analyses
for Efcab15, Fam24a, Gfra2, 113, Spmip2, and Triml1/Triml2 KO mice were
not conducted.

Ccdc182 is a single-exon gene located on the forward strand of
mouse chromosome 11. To delete this gene, two sgRNAs target-
ing its coding exon and Cas9 were electroporated into WT zygotes
(Figure 2A). The resultant 480 bp deletion in the Ccdc182 locus was
confirmed by genomic PCR and Sanger sequencing (Figure 2AB).
Notably, Ccdc182 KO mice showed an increased relative testis weight
compared with WT mice (Figure 2C). However, there were no appar-
ent abnormalities in their sperm morphology (Figure 2D), testis
and epididymis histology (Figure 2E), and sperm motility parameters
(Figures 2F,G and S6A).

Fam24b is located on the reverse strand of mouse chromosome 7. By
employing two sgRNAs targeting its two coding exons, we generated
Fam24b KO mice carrying a 1214 bp deletion, which was confirmed
by PCR and Sanger sequencing (Figure 3A,B). The KO males exhibited
relative testis weight comparable to WT males (Figure 3C), as well as
normal sperm morphology (Figure 3D) and testis and epididymis histol-
ogy (Figure 3E). Computer-aided sperm analysis revealed no significant
differences in the motility, progressive motility, and swimming velocity
between WT and Fam24b KO spermatozoa (Figures 3F,G and S6B).

Glipr1l1, Glipr1l2, and Glipr1l3 are neighboring genes located on
mouse chromosome 10 (Figure S11A). They encode proteins belong-
ing to the glioma pathogenesis-related 1 (GLIPR1) family and show
homology in their amino acid sequences*®-42 (Figure S11B). Two
sgRNAs were designed to delete all three genes; a 10138 bp dele-

tion was detected in the KO mice by genomic PCR and Sanger
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sequencing (Figure 4A,B). Glipr1l1-3 KO males exhibited no anoma-
lies in their testis weight, testis and epididymis histology, or sperm
morphology and motility (Figures 4C-G and S6C).

1IZUMO4 is a secreted glycoprotein that belongs to the Izumo
sperm-egg fusion family. By targeting its first exon and 3’ UTR, we
generated KO mice with a 2398 bp deletion at the Izumo4 locus
(Figure 5A,B). The relative testis weight of KO mice was comparable
to that of WT mice (Figure 5C). Furthermore, no obvious abnor-
malities were observed in the testis and epididymis histology, and
sperm morphology, motility, and swimming velocity of the KO males
(Figures 5D-G and S6D).

Tex51 is located at the reverse strand of mouse chromosome 18.
Similar to the structure of 1ZUMO1, TEX51 is predicted as a type-
| single-pass transmembrane protein harboring a four-helix bundle
and a B-hairpin at its ectodomain by the AlphaFold Protein Struc-
ture Database®® (AlphaFold DB Identifier: AF-AOA140LIV7-F1-v4). A
KO mouse line carrying a 4231 bp deletion was generated by the
CRISPR/Cas9 system using two sgRNAs targeting the first coding exon
and 3’ UTR. The mutant allele was detected by genomic PCR and val-
idated by Sanger sequencing (Figure 6A,B). Despite that Tex51 KO
males showed no overt abnormalities in their relative testis weight,
testis and epididymis histology, and sperm motility, over 80% of the KO
spermatozoa exhibited head malformations (Figures 6D-H and S6E).

Overall, our fertility tests and phenotypic analyses indicate that
Ccdc182, Efcabl5, Fam187b, Fam24a, Fam24b, Gfra2, 113, 1zumo4,
Pinirt1, Slc22a16, Spmip2, Tex51, and Tmco2 are individually dispens-
able, whereas Glipr1l1, Glipr1l2, and Glipr1l3, as well as Triml1 and
Triml2, are collectively nonessential for male reproduction in mice.
Notably, Ccdc182 KO males displayed increased relative testis size and
weight, and a portion of Tex51 KO spermatozoa exhibited abnormal
head morphogenesis. Although some subfertility indicators (e.g., aber-
rant sperm swimming trajectory, abnormal sperm morphology, reduced
sperm count) might exist in several KO lines, subtle abnormalities did
not negatively affect their fertility.

4 | DISCUSSION

The male reproductive system expresses more than 1000 tissue-
specific genes, coordinating diverse and dynamic regulatory pathways
across multiple cell types to support complex physiological pro-
cesses such as testicular development, spermatogenesis, and hormone
production.*4~4¢ Despite their abundant expression in testis or epi-
didymis, many of these genes have demonstrated dispensable for male
fertility through mouse mutagenesis studies.*”~>° One proposed expla-
nation of this phenomenon is transcriptional adaptation, in which the
loss of a gene is compensated by the upregulation of other genes.”!
Another hypothesis is transcriptional scanning, whereby the exten-
sive transcription of genes safeguards the genome integrity of male

germ cells.>2 Although the depletion of such genes generally exhibits

of WT and Tex51 KO spermatozoa. (F) Histological analyses of testis, caput epididymis, and cauda epididymis in WT and Tex51 KO males. Scale
bars = 100 um. (G) Motility of WT and Tex51 KO spermatozoa. (H) Progressive motility of WT and Tex51 KO spermatozoa.
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minimal impact on male fecundity under standard laboratory condi-

tions, these genes may confer evolutionary advantages in the natural
settings through some underexplored mechanisms such as sperm
heteromorphism,>3 sperm competition,”* or sexual selection.>”

Among the 18 genes analyzed in this study, several are reportedly
implicated in sperm functionality. GLIPR1L1 interacts with IZUMO1,
an acrosomal membrane protein crucial for sperm-egg fusion, and
localizes to the sperm acrosome. Glipr1l1 KO spermatozoa exhibit a
reduced ability to undergo the acrosome reaction and fertilize eggs in
vitro*142; however, KO males sire pups with an average litter size com-
parable to WT males, suggesting that GLIPR1L1 alone is nonessential
for male fertility. Driven by a hypothesis that the three GLIPR1-like
proteins are collectively indispensable for the acrosome reaction, we
created a Glipr1/1-3 KO mouse line. Nevertheless, phenotypic analyses
revealed that depletion of all three genes does not significantly affect
male fertility (Figure 4).

Recent mouse mutagenesis analyses have shown that many testis-
enriched CCDC family proteins play pivotal roles in sperm formation,
morphogenesis, and movement. CCDC38 interacts with CCDC42,
intraflagellar transport protein 88 (IFT88), and outer dense fiber pro-
tein 2 (ODF2); ablation of CCDC38 impairs the flagellar formation and
male fertility.>® CCDC181, a sperm flagellar protein, interacts with
hook microtubule tethering protein 1 (HOOK1) in the manchette of
early spermatids.’” Ccdc181 KO male mice display reduced sperm
counts, aberrant sperm head morphogenesis and flagellar formation,
and impaired motility, collectively leading to male sterility. CCDC181
interacts with leucine-rich repeat-containing protein 46 (LRRC46), and
its depletion diminishes the abundance of LRRC46.°8 Notably, Lrrc46
KO spermatozoa show morphological abnormalities resembling that
of Ccdc181 KO spermatozoa.”? CCDC189 is localized to the radial
spoke of sperm axoneme and interacts with ciliary-associated calcium-
binding coiled-coil protein 1 (CABCOCO1). Ccdc189 KO male mice
show smaller testis weight, impaired spermiogenesis, and infertility,
which phenocopies Cabcocol KO mice.f%¢1 Likewise, male patients
carrying homozygous mutations in CCDC family proteins, such as
CCDC9,%2 CCDC28A,5364 CCDC65,5> CCDC155,5¢ CCDC157,%7 and
CCDC188,%847 are infertile due to impaired sperm motility and/or
morphology. In this study, we revealed that disruption of Ccdc182
solely does not compromise male fertility in mice; however, it remains
possible that CCDC182 ensures normal sperm functioning in coordina-
tion with other CCDC proteins.

This study indicates that Fam24a and Fam24b are individually dis-
pensable for male reproduction. The two genes encode proteins with
high sequence homology (Figure S12A) and similar expression patterns
in mouse spermatogenic cells (Figure 1A). Thus, it is tempting to spec-
ulate that these paralogous proteins compensate for each other in
single KO mouse lines. Future investigation is warranted to determine
whether FAM24A and FAM24B together play a significant role in male
reproduction by creating a double KO mouse model.

Pini1rt1 is annotated as a retrogene of Pin1, and the two genes
encoding proteins with high sequence similarity (Figure S12B) and
biased expression in mouse testis. While Pinl1rtl is abundantly

expressed in round spermatids, Pin1 shows elevated expression
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in spermatogonia and Sertoli cells (Figure S12C). PIN1 regulates
the architecture and function of serine/threonine (Ser/Thr)-
phosphorylated proteins by catalyzing the isomerization of Ser/Thr
bonds preceding a proline (Pro) residue. PIN1 directly binds to a cell
cycle regulator, cyclin D1, phosphorylated on its Thr-286 succeeded
by a proline.”% Truncation of Pin1 in mice reduces the abundance
of cyclin D1 and leads to defective proliferation of primordial germ
cells, thus impairing both male and female fertility.”? We suspected
that testis-enriched PIN1RT1 may have a similar function given its
sequence homology with PIN1. However, Pin1rt1 KO males exhibit
normal histology of seminiferous tubules and fertility (Figure S8),

suggesting its dispensability in male reproduction.

5 | SUMMARY

To permit precise diagnosis of male infertility, researchers have been
exploring potential biomarkers using omics technologies.”>74 Pro-
teomics, especially, has facilitated the high-throughput identification of
proteins with differential abundance in the seminal plasma of infertile
men compared with healthy individuals. In this study, we discovered 18
genes dispensable for male reproduction. While these genes may have
limited biological relevance, their enrichment in testis may make them
potential biomarkers of sperm quality in men. Further clinical investiga-
tions are required to validate whether our observations in laboratory

mice are applicable to male patients.
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