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Nanobeam X-ray diffraction (nanoXRD) is a powerful tool for collecting in situ

crystal structure information with high spatial resolution and data acquisition

rate. However, analyzing the enormous amount of data produced by these high-

throughput experiments for defect recognition or discovering hidden structural

features becomes challenging. Machine learning (ML) methods have become

attractive recently due to their outstanding performance in analyzing large data

sets. This research utilizes an ML algorithm, uniform manifold approximation

and projection (UMAP), to enhance the nanoXRD-based crystal structure

analysis of a cross-sectional hydride vapor-phase epitaxy GaN wafer. Compared

with the results obtained by conventional fitting, UMAP gives a more precise

categorization of crystal structure based on the raw three-dimensional !–2�–’

diffraction patterns. The property that UMAP embeds the high-dimensional

data while retaining the data structure is valuable in guiding the analysis of

nanoXRD profiles. This research also demonstrates the capability of UMAP in

analyzing other spectroscopic or diffraction data sets to guide crystal structure

investigations.

1. Introduction

X-ray diffraction (XRD) is a fundamental technology in

structure and phase identification and materials discovery, and

it is diversely applied in research on batteries, catalysts,

semiconductors etc. (Ahmad et al., 2021; Billinge et al., 2019;

Hua et al., 2021; Kusne et al., 2014; Shadike et al., 2021).

Development in measurement automation, detectors and

X-ray sources has dramatically increased the resolution and

acquisition efficiency of diffraction patterns. In recent years,

the highly collimated and monochromatic photon flux

produced in synchrotron radiation facilities has given rise to

the nanobeam XRD (nanoXRD) technique, which can reach a

high spatial resolution on a nanometre scale. Synchrotron

X-ray sources and automation systems ensure high-

throughput nanoXRD experiments, including in situ

measurements with high spatial and time resolution. Mean-

while, it has been reported that, thanks to the development of

two-dimensional (2D) detectors, nanoXRD can provide

diffraction data in three-dimensional (3D) reciprocal space to

help us obtain position- and time-dependent crystalline

information (Aoyagi et al., 2022; Hamachi et al., 2024; Imai et

al., 2019; Kamada et al., 2016; Nagaoka et al., 2023; Onabe et

al., 2024; Shida et al., 2017; Shida et al., 2018; Shida et al., 2019;

Shiomi et al., 2021).
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However, challenges come with the enormous number of

diffraction patterns produced by nanoXRD measurements.

Outstanding advances in data acquisition techniques have

outpaced data analysis methods, which remain time

consuming and demand experienced researchers. One of the

important applications of nanoXRD is the analysis of loca-

lized structures and mapping of these structures using posi-

tion-dependent measurements for single-crystal materials,

such as semiconductor epitaxial films and bulk crystals

(Hamachi et al., 2024; Kamada et al., 2016; Onabe et al., 2024;

Shida et al., 2017; Shida et al., 2018; Shida et al., 2019). The

diffraction patterns from a single crystal contain local crys-

tallinity information, including strain and defects induced by

various sources during crystal growth. To investigate these

crystal structures in more detail, we have to refine and extract

the data of interest from raw diffraction images. Conven-

tionally, a refinement process includes (i) integration, trans-

forming raw images into 1D diffraction intensity spectra, and

(ii) subsequent curve fitting to extract the peak or full width at

half-maximum (FWHM) from the XRD spectra obtained at

all measurement positions for mapping, e.g. diffraction angle

2� values for lattice spacing and the incident angle ! for lattice

plane tilting.

The integration process is essential in the conventional

refinement process, since we lack a technique for efficiently

and directly analyzing the thousands of raw 3D diffraction

patterns in !–2�–’ space (’ is the angle of lattice plane

twisting). So we have to integrate the intensity along the other

angular axes to transform the raw 3D data into a 1D !, 2� or ’

intensity spectrum. A complete crystal structure analysis

usually needs thousands of sampling points from the sample,

i.e. 2D or 3D sampling in real space or 4D in temporal–spatial

sampling, and each point can have 3D data in reciprocal space.

The vast amount of raw 3D diffraction data makes the

conventional analysis process of extraction of hidden struc-

tural information extremely challenging.

The information obtained from the refinement of position-

dependent nanoXRD diffraction patterns helps us investigate

local crystal structure changes. However, with the conven-

tional method of data analysis we often encounter some

critical problems related to the refinement process described

in the previous section. The first crucial point is that, when the

raw 3D data are integrated into 1D data for further analysis,

some useful and valuable information relating to the crystal

structure may be lost during the integration process. Another

point is that we conventionally use Gaussian functions to fit

the diffraction profiles. However, the fit is not certain when the

diffraction profiles do not have a symmetric shape, especially

when the crystallinity is degraded. It is essential to use the

experience and expertise of scientists to address the various

challenges encountered during data analysis.

Given that collecting and analyzing crystal information

from the enormous amount of data by relying solely on human

power is error prone, machine learning (ML) or deep learning

(DL) can assist in classifying XRD patterns (Banko et al.,

2021; Chan et al., 2021; Maffettone et al., 2021a; Maffettone et

al., 2021b; Park et al., 2017; Stanev et al., 2018; Szymanski et al.,

2023). For most investigations that have applied ML or DL

models to materials science, the researchers have focused on

phase identification of mixtures of materials or organic

samples based on the XRD spectra (Banko et al., 2021; Chan et

al., 2021; Maffettone et al., 2021a; Maffettone et al., 2021b;

Park et al., 2017; Stanev et al., 2018; Szymanski et al., 2023). It

has been reported that ML or DL approaches achieve expert

accuracy in phase predictions and are robust against pattern

perturbation caused by factors like texture, strain and mix-

tures (Banko et al., 2021; Maffettone et al., 2021a; Maffettone

et al., 2021b; Park et al., 2017; Stanev et al., 2018). However,

most previously reported ML or DL models are trained with

known phase or component information on the mixture, i.e.

simulated diffraction spectra based on preexisting physical

knowledge are used to prepare the training data set. In con-

trast, in bulk and epitaxial crystal structure analysis, the lack of

a solid physical model that strictly describes the formation of

defects or microstructures during practical bulk crystal growth

and the resulting XRD patterns prevents us from training an

ML or DL model with simulation or known information.

To overcome these addressed challenges in the preparation

of training data sets, we applied an unsupervised ML algo-

rithm, uniform manifold approximation and projection

(UMAP) (McInnes et al., 2018a; McInnes et al., 2018b), to

analyze raw diffraction images directly. UMAP is a powerful

dimensionality reduction algorithm that provides meaningful

low-dimensional representations of complex data sets. Unlike

classical approaches like principal component analysis (PCA)

or multidimensional scaling (MDS), which rely on linear

transformations, UMAP is designed to reveal nonlinear rela-

tionships (Roweis & Saul, 2000; Tenenbaum et al., 2000) and is

rooted in manifold learning and graph-based topology, making

it well suited to complex high-dimensional data structures. In

many real-world applications, data are collected in a high-

dimensional space, while meaningful structures within the data

often lie on a lower-dimensional manifold embedded in the

high-dimensional space. Manifold learning, a subfield of

machine learning, aims to uncover and represent lower-

dimensional structures while preserving the geometric rela-

tionships in the data (Meilă & Zhang, 2023; Izenman, 2012). A

conventionally known and popular manifold learning method

is t-distributed stochastic neighborhood embedding (t-SNE)

(Amir et al., 2013; Van Der Maaten & Hinton, 2008). On the

other hand, UMAP is widely reported to have been applied in

biological research on single-cell data sets for dimensionality

reduction, cluster identification and trajectory analysis with

high efficiency (Becht et al., 2019; Luo et al., 2022; Sainburg et

al., 2021). Unlike the variational autoencoder (VAE), which is

another popular artificial neural network algorithm that

compresses input data into a low-dimensional latent space

(Amarbayasgalan et al., 2018; Banko et al., 2021; Stein et al.,

2019), UMAP preserves the intrinsic geometric relationships

within a data set without enforcing a generative model,

whereas VAE learns a latent space by optimizing a probabil-

istic model to capture the data distribution for reconstruction.

Such features of UMAP may find their merit in structure

analysis based on vast diffraction data sets.
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This work aims to address the challenges of preparing

training data sets and to develop an ML-based method to

facilitate crystal structure analysis. The crystal structure and

defects in a bulk crystal are investigated using ML applied to a

hydride vapor-phase epitaxy (HVPE) gallium nitride (GaN)

wafer (Hamachi et al., 2021; Hamachi et al., 2023; Sato et al.,

2023), which serves as a test sample for collecting various

diffraction data sets to evaluate the performance of the ML

method. A series of nanoXRD measurements are performed

to uncover the growth structure and defect formation

processes through cross-sectional position-dependent

nanoXRD analysis, producing high-dimensional raw diffrac-

tion data; 2D sampling in real space plus 3D sampling in

reciprocal space results in a 5D hypercube of diffraction data.

Our results demonstrate that UMAP has outstanding perfor-

mance in clustering raw diffraction images, enabling the clas-

sification of crystal structures with less information loss than

conventional methods. Moreover, UMAP effectively high-

lights regions of the sample that contain valuable information,

guiding researchers towards deeper investigation.

2. Results

2.1. Details of nanoXRD measurements

An epitaxial GaN sample was grown on a low-defect-

density GaN substrate by HVPE. A nanoXRD experiment

was conducted on a rectanglular area from the cross-sectional

HVPE GaN sample (Fig. 1). Fig. 1 shows the boundary

between the epitaxial layer and the substrate located around

Y = 17 mm. The synchrotron X-ray beam (410 nm horizon-

tally � 700 nm vertically) on the BL13XU beamline at

SPring-8 was used for the experiments. Prior to the nanoXRD

measurements, the sample cross section was mapped by

research papers
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Figure 1
Sample and experiment setup. (a) Cross-sectional MPPL image of the
HVPE GaN sample. The interface between the thick HVPE-grown film
and the GaN substrate is located at around Y = 15 mm. The nanoXRD
measurement area is marked by a rectangle. (b) Schematic of the
diffraction geometry and the spatial step between sampling points of
�X = �Y = 1 mm with an angular step of �! = 0.002�.

Figure 2
UMAP ability on synthesized 1D nanoXRD profiles. We synthesized the distribution of (a) strain and (b) FWHM and peak height versus X position.
Selected points are marked in panels (a), (b) and (d). (c) Sampled XRD profiles at selected positions. (d) UMAP plot of reduced 1D nanoXRD profiles.



multiphoton photoluminescence (MPPL) (Hamachi et al.,

2021; Hamachi et al., 2023; Kim et al., 1997; Tanikawa et al.,

2018; Zipfel et al., 2003) to locate different crystal growth

sectors and defective areas. The measurement area of

nanoXRD has a size of X� Y = 30� 40 mm (the X and Y axes

are parallel to the a and c axes of the GaN crystal, respec-

tively). To obtain 3D !–2�–’ mapping, 2D (2�–’) diffraction

patterns were collected by a photon-counting 2D detector

with an angular (!) step of 0.002� in a range of 0.2� and a

spatial step of 1 mm. We collected data sets from both

symmetric ð2200Þ and asymmetric ð2202Þ diffraction planes to

ensure the input captured sufficient structural information.

From each of the two diffraction planes, we measured 1271

sampling grid points on the bulk crystal.

2.2. Estimation of UMAP’s performance by synthesized data

sets

Although UMAP shows a faster and clearer clustering

behavior in the field of biology compared with other dimen-

sionality reduction algorithms such as PCA and t-SNE (Amir

et al., 2013; Van Der Maaten & Hinton, 2008), it remains

unclear how the UMAP plot represents the crystal structural

characteristics recorded in nanoXRD patterns, due to the lack

of prior investigation. Before applying UMAP to practical

nanoXRD data sets, we evaluated the performance of UMAP

with synthesized 1D XRD data sets. To verify that UMAP can

detect continuity changes in the XRD spectra, we designed a

thought experiment by synthesizing a series of 1D XRD

spectra, as shown in Figs. 2 and 3. We simulated the 2�

intensity spectrum from the 2200 reflection with a = 3.189 Å.

A continuously distributed strain field along the X direction

with a sinusoidal shape was synthesized, as shown in Fig. 2(a).

Correspondingly, the FWHM decreases monotonically and the

peak height increases, as shown in Fig. 2(b). To capture posi-

tion-dependent results, we extracted nine points at T/4 posi-

tions of the strain field. Their corresponding XRD profiles are

shown in Fig. 2(c). Fig. 2(d) demonstrates that UMAP

successfully captures the synthesized XRD spectrum’s

continuously and monotonically evolving data structure.

To evaluate UMAP’s sensitivity to structural disconti-

nuities, we introduced a strain field with an inserted segment,

as illustrated in Fig. 3(a), while all other conditions remained

unchanged. Fig. 3(d) shows that UMAP effectively detects the

inserted segment as a distinct discontinuity, highlighting its

ability to identify structural transitions on the basis of a

continuity change in the data structure.

Note that these simulations serve solely as a proof-of-

concept demonstration of UMAP’s performance; the simu-

lated data themselves do not correspond to any practical

conditions. In practical applications, the microstructural

characteristics of each bulk crystal sample vary significantly
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Figure 3
UMAP ability on synthesized 1D nanoXRD profiles with varying continuity. We synthesized the distribution of (a) strain and (b) FWHM and peak
height versus X position. Selected points are marked in panels (a), (b) and (d). We insert a new strain state at X 2 [6 mm, 13 mm]. (c) Sampled XRD
profiles at selected positions. (d) UMAP plot of reduced 1D nanoXRD profiles.



and their effects on nanoXRD spectra are often highly

complex and difficult to predict a priori.

2.3. UMAP analysis for nanoXRD data sets

Fig. 4 is a schematic diagram of how we obtain and deal with

the raw diffraction patterns using UMAP to reduce the input

data into 2D space. First, as shown in Figs. 4(a) and 4(b), 3D

!–2�–’ nanoXRD data are collected from the sample’s

surface. At a sampling point, e.g. point i, the sample is rocked

around the incident angle ! with an angular step of �! within

the range of !start to !end. So, at point i, the number of

collected diffraction images is

t ¼
!start � !end

�!
þ 1: ð1Þ

In this experiment, each sampling point contains t = 101

diffraction images, i.e. 2�–’ axis diffraction images were

collected at 101 scanning positions along the ! axis [Figs. 1 and

4(b)]. Figs. 4(b) and 4(c) show how t images, each of which has

a horizontal size p and vertical size q corresponding to the

angular ranges in the 2� and ’ directions, respectively, are

flattened into a vector with dimensions of

M ¼ t � p� qð Þ: ð2Þ

For the sampling area on the bulk crystal, by flattening the

diffraction patterns from N = 1271 sampling grid points in this

research, an array of N �M is finally obtained as input for

UMAP [Fig. 4(c)].

By applying UMAP to the raw N �M array data, the

dimensionality of the data can be reduced from M to 2, i.e.

non-numerical raw diffraction patterns are ‘embedded’ into a

point in 2D numerical space. In the M-dimensional space, the

distance between sampling points reflects the similarity

(McInnes et al., 2018a; McInnes et al., 2018b). In other words,

when the distance between two sampling points is small in the

M-dimensional space, the difference in diffraction patterns

from the two sampling points is small. With the help of a

hypothesized manifold structure, UMAP reduces the data

space from M-dimensional to 2D, while retaining the relative

distance between sampling points to visualize the data struc-

ture (McInnes et al., 2018a; McInnes et al., 2018b). Fig. 4(e)

shows the position of a random point i in the 2D UMAP plot,

which embeds the 2202 diffraction patterns from point i in Fig.

4(a). Note that the UMAP algorithm utilizes randomness to

speed up the calculation, which means that different runs of
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Figure 4
Schematic diagram of the workflow using UMAP to analyze a raw nanoXRD data set. (a) Schematic diagram of data acquisition in nanoXRD. (b) Each
diffraction image corresponds to a specific angular position ! and sampling point i, as shown in panel (a), during the online experiment. For each
diffraction image, the horizontal size p and vertical size q correspond to the angular range in the 2� and ’ directions, respectively. (c) Diffraction patterns
from point i are transformed to a vector, the dimensions of which are determined by the size of the diffraction patterns. Similar processes are repeated for
N sampling points. The data set prepared in (c) is fed into (d) the UMAP algorithm, which is (e) further embedded and clustered in a 2D space for
visualization.



UMAP can produce different results. Although UMAP is

relatively stable, we have verified the robustness of UMAP’s

results against the randomness and noise in Supplementary

Note 1 in the supporting information.

2.4. UMAP representation of nanoXRD results

We will first compare the UMAP plots with conventional

1D diffraction profiles, which are straightforward and

commonly used in research utilizing XRD. Then, we compare

the UMAP plots with 2D nanoXRD results.

Fig. 5 compares 2D UMAP results and several repre-

sentative 1D profiles obtained from raw nanoXRD data.

Although conventional 1D profiles can only partially repre-

sent the raw diffraction patterns, we can utilize 1D profiles to

conduct initial research on the properties of clustering made

by UMAP plots. In Figs. 5(a) and 5(c), � markers indicate

several sampling points in the UMAP plot and the corre-

sponding diffraction positions in the sample. When the

sampling points are located close to each other in the sample,

e.g. the blue�markers in Fig. 5(c), the 2� intensity profiles are

similar, as shown in panels (b-1) and (b-2), reflecting the

similarity in the structures. Meanwhile, Fig. 5(a) shows that the

distance between the blue � markers in the 2D UMAP plot is

also small. Similar results are observed for a different set of

points shown by the red � markers in Fig. 5(c) [Figs. 5(b-3)

and 5(b-4)]. Due to the significant differences between the

diffraction profiles of the blue and red � markers shown in

Fig. 5(b), the relative distance between the blue and red �

markers in the UMAP plot [Fig. 5(a)] is significant. The

relationship between the profiles’ similarity and distances in

the UMAP plot shown in Fig. 5 indicates that the distance

between sampling points in the reproducible 2D UMAP plot

gives a direct visualization of their similarity. Note that the

UMAP plots shown in Fig. 5(a) embed 3D !–2�–’ intensity

results instead of 1D ! or 2� intensity profiles. Although the

1D XRD profiles lose much information compared with the

raw 3D patterns, the results in Fig. 5(b) suggest that, to some

extent, 1D profiles partially represent the similarities between

raw 3D data sets. We also emphasize that the asymmetric

shapes of the 1D 2� intensity profiles shown in Fig. 5(b) do not

match an ideal fit by Gaussian functions, which means that we

cannot easily extract structural information from conventional

methods, thereby validating the efficiency and necessity of

utilizing UMAP.

A comparison between the UMAP plots and conventional

1D ! intensity profiles implies the importance of assistance

from UMAP, especially when one wants to analyze crystal

structure changes or classify crystal growth sectors according

to the similarities between diffraction patterns, and particu-

larly when the sample has a complex structure and an obscure

1D diffraction spectrum.

Since similar diffraction patterns are embedded to be

located close to each other in the UMAP plots, we can further

categorize the sample’s structure using clusters in the UMAP

plots, as shown in Fig. 6 for the 2202 and 2200 diffraction

patterns. Clusters were classified with the help of the

agglomerative hierarchical clustering method (Murtagh &

Contreras, 2012) and labeled for convenience in the discus-

sions below: labels for 2202 are from 0 to 7 [Fig. 6(a)] and

those for 2200 are from A to H [Fig. 6(c)]. More discussion on

the selection of the number of clusters can be found in

Supplementary Note 2. The measurement area is colored

according to the clusters in the UMAP plots [Figs. 6(b) and

6(d)].

When we compare the results for 2202 and 2200 and look at

the relationship between clusters by observing the relative

positions of the clusters in Fig. 6, the distribution of the

clusters for 2202 differs from that for 2200. The clusters 0 to 6,

i.e. excluding cluster 7, are elliptically distributed in the

UMAP plot [see the guide to the eye in Fig. 6(a)], suggesting

the detection of continuity of structures often seen in UMAP
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Figure 5
Comparison between UMAP results and conventional 1D diffraction profiles. (a) UMAP plot for ð2202Þ diffraction planes. Blue � markers correspond
to the 2� intensity profiles shown in panels (b-1) and (b-2), while red�markers correspond to those shown in panels (b-3) and (b-4). (c) Red and blue�
markers show the corresponding diffraction positions in the sample.
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analysis (Becht et al., 2019; Zheng et al., 2023), while the

relative positions between the clusters in Fig. 6(c) seem more

incoherent than those in Fig. 6(a). A comparison between the

UMAP plots and the map of clusters on the measurement area

implies more differences: clusters 0 to 7 in Fig. 6(b) are

distributed approximately along the c direction of the sample,

while clusters C to H in Fig. 6(d) are distributed along the m

direction. This difference is probably caused by the fact that

the c plane information dominates the 2202 diffraction

pattern, while the 2200 diffraction pattern reflects m plane

information, although both include the m plane information.

Note that the cluster derived from UMAP does not fully

coincide with the contrast changes in the MPPL images. For

example, the boundary of the region labeled 7 in the 2202

UMAP plot located at around Y = 27 mm [Fig. 6(b)] is not

apparently suggested by the MPPL image [Fig. 5(c)], whereas

the region labeled A in Fig. 6(d) has a boundary around Y =

17 mm which coincides with the boundary from the MPPL

image [Fig. 5(c)]. We believe this difference is due to the

following reason. Unlike XRD, which directly records struc-

tural information from the diffraction volume, the intensity

contrast in the luminescence image depends on the band

structure, which can be influenced by factors such as strain,

impurities and defects. While dislocations or impurities are

known to distort the luminescence spectrum in GaN (Hamachi

et al., 2021; Kim et al., 1997; Tanikawa et al., 2018; Zipfel et al.,

2003), it is difficult to establish a clear relationship between

the MPPL spectrum and potential defects or stress distribu-

tion in the measurement area. As a result, the luminescence

intensity change may not directly align with the distribution of

defects or stress in the measurement area. Consequently, we

think the MPPL data do not capture the structural changes in

the sample as thoroughly and clearly as the XRD data do.

As a reference, we also constructed crystal structure maps

of lattice constants a and c and lattice tilting fluctuations

derived from the FWHM of ! using the conventional method

(see Fig. S5 in Supplementary Note 3) However, although

these structure maps show some distribution of structural

components, the crystal information is not straightforwardly

understandable. The Gaussian fit quality on the nanoXRD

data set obtained in this work is evaluated by various metrics

and illustrated in Fig. 7, which shows the averaged value of R2,

root-mean-square error (RMSE) and reduced �2 values. The

relatively high reduced �2 values for the ! intensity suggest a

low fit quality, while the fit quality of the 2� intensity profiles is

relatively high (R2 close to 1, with low RMSE and low reduced

�2 values). Meanwhile, low R2 and high RMSE values reveal a

poor match between the raw and fitted data in the ’ direction.

Fig. 7 quantitively suggests that the quality of traditional
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Figure 6
Clustering results of the 2D UMAP plots. Results for (a) 2202 and (c)
2200 are listed. Clusters in panels (a) and (c) are colored according to
their labels. The elliptical arrow curve represents a guide to the eye to
illustrate the continuity of the cluster distribution. (b), (d) Mapping of the
UMAP clusters into the nanoXRD measurement area. Mapping colors in
panels (b) and (d) are linked to the clusters in panels (a) and (c),
respectively.

Figure 7
Fit quality metrics for traditional Gaussian fits. Results are calculated for (a) 2202 and (b) 2200. For each plot, averaged metrics calculated for !, 2� and ’
intensities are colored accordingly.
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Gaussian fitting is not stable and reliable in this research.

Further discussion of the fit quality can be found in Supple-

mentary Note 3.

More than the uncertain fitting of asymmetric profiles, we

believe the unintelligibility of results by the conventional

method is due to incomplete information obtained from the

1D diffraction spectrum. Neither the peak position nor width

of the 1D diffraction spectrum can wholly and solely describe

the evolution of crystal structure. In contrast, raw 3D data sets

provide richer structure information, such as the broadening

direction and shape of diffraction spectra, which can enhance

the understanding of crystal evolution. Remarkably, UMAP

can fully detect diffraction details, including peak position,

width and broadening, from the raw 3D data sets simulta-

neously, influencing the clustering results in UMAP plots.

2.5. Two-dimensional nanoXRD data analysis assisted by

clusters from UMAP

To utilize the UMAP cluster map for extracting physical

information on crystal structures, we compare the map with

some representative 2D intensity profiles taken from respec-

tive clusters. Even though we have stated that 1D ! or 2�

intensity profiles can represent the similarities between 3D

raw data sets to some extent, the loss of information due to the

processing from raw data to 1D profiles may lead to mistakes

in crystal structure analysis. To avoid this and fully understand

the clustering behavior by UMAP, we listed the 2D intensity

profiles of different projections from the 3D !–2�–’ diffrac-

tion results. Fig. 8 shows a matrix of 2D 2202 intensity profiles

taken from different Y positions at X = 25 mm, with corre-

sponding labels as shown in Fig. 6(b).

In the left-hand column of the matrix [Fig. 8(b)], dark

arrows indicate that the diffraction peak in the !–2� intensity

profile shifts continuously in the ! direction as the sampling

point changes sequentially from clusters 0 to 4. Such contin-

uous shifting coincides with the aforementioned elliptical

distribution of these clusters on the UMAP plot of Fig. 6(a),

which suggests that UMAP can probably visualize continuity

in the data and embed the diffraction patterns into the same

cluster according to their similarity.

Compared with cluster 4, the peak area in cluster 6 is

considerably broadened. The peak abruptly broadens in the !

direction in cluster 7, regardless of the small distance of about

1 mm between the sampling points in clusters 6 and 7. The

abrupt broadening in cluster 7 explains its isolation from the

elliptical and continuous distribution collectively formed by

clusters 0 to 6. Such a continuous shift in the peak positions,

i.e. an increase in ! values as the sampling points change from

clusters 0 to 4, and a sudden broadening in the ! direction in

cluster 7, are also observed in the !–’ intensity profiles

[Fig. 8(d)].

In contrast, in the 2�–’ profiles of Fig. 8(c), the change in

the peak shape in cluster 7 is not as evident as those in the !–

2� and !–’ profiles. Unlike the continuous shift and the

considerably elongated shape in the ! direction of the peak,

the shift and broadening of the peak in both 2� and ’ direc-

tions are limited. This fact suggests that the crystal structure

changes reflected in the 2202 diffraction patterns are domi-

nated by lattice plane tilting.

We further compared the UMAP cluster map and repre-

sentative 2D 2200 intensity profiles at X = 25 mm. As shown in

Fig. 9, there are only two clusters along the Y axis, which

differs from the six vertically distributed clusters seen in Fig. 8

for the 2202 reflection. It is apparent that the features of the

diffraction patterns of cluster A are distinguishable from those

of the diffraction patterns of cluster D. For example, in

diffraction patterns from cluster A, only minor changes have

occurred with increasing Y position: an appearance of minor

structure near the peak marked by red arrows in the !–2�

profiles and a slight broadening of the diffraction peaks in the

! direction with negligible shifting in the ’ direction. In

contrast, in cluster D, the diffraction peaks exhibit notable

variation with a shift in the ’ direction towards higher angles

and a narrowing in the ! direction with negligible shifting in

the 2� direction (dark arrows in Fig. 9).
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Figure 8
(Right) Matrix of representative 2D 2202 intensity profiles at X = 25 mm
positions along the Y direction in (a) the UMAP cluster map. (b)–(d)
Columns of raw 3D diffraction patterns projected onto 2D space. The
coloring of each profile is based on logarithmic values of intensity.
Column (b) in the matrix is for !–2� space, column (c) is for 2�–’ space
and column (d) is for !–’ space. Each row of the profiles is labeled
according to the UMAP cluster map shown in panel (a). For each image, a
white crosshair is used as a guideline to help determine the positions of
the diffraction peaks, and black arrows are used to indicate the peak
positions. Because of the zone plate in the optical system of nanoXRD,
two separate peaks are observed along the ’ direction. The values of ’
are shown to be relative since a reference diffraction point along the ’
direction is not given.
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2.6. Interpretation of structure categorization by UMAP

This section discusses how UMAP categorizes diffraction

patterns in terms of the similarity and continuity of their

data structures. In UMAP, the similarity is represented by

the relative distances between sampling points in a high-

dimensional Euclidean space, while the continuity can be

understood from the perspective of the distribution of

sampling points. Three representative types of sampling point

distribution in high-dimensional Euclidean space are exem-

plified in Figs. 10(a) to 10(c), and related results of the 2D

UMAP plot are shown in Figs. 10(d) to 10( f). Here, the

nearest neighbors of point i have data structures similar to that

of point i, and different distribution branches marked by

dashed lines I and II represent different continuities of the

change in data structure. The sampling points in Fig. 10(a) are

distributed along branch I with a large gap, which results in the

sampling points being classified into two clusters divided by

the gap, as shown in Fig. 10(d). If the data structure has a

different continuity, branch II is introduced, as shown in

Fig. 10(b). Although we expect clusters to be classified on the

basis of continuity, the high similarity between neighbors

around point i prevents them from separating and causes

a single cluster, as shown in Fig. 10(e). On the other hand,

if the similarity is low between neighbors in different

branches or in the same branch, as shown in Fig. 10(c), we can

expect a rather incoherently clustered result, as shown in

Fig. 10( f).

The scenario depicted in Fig. 10 implies that not only does

the distribution of clusters reflect the continuity of the data

structure, as shown in Fig. 6(a), but also the relative positions

between sampling points within the cluster reflect their

continuity. As an example, the results of the UMAP analysis

focusing solely on cluster D are shown in Figs. S8 and Fig. S9 in

Supplementary Note 4. Even within a cluster, diffraction

patterns are found to be distributed according to their conti-

nuity, which again validates that both similarity and continuity

are crucial factors in analyzing data structures.

research papers

J. Appl. Cryst. (2025). 58 Zhendong Wu et al. � Machine learning assisted nanoXRD on HVPE GaN 9 of 15

Figure 9
(Right) Matrix of representative 2D 2200 intensity profiles at X = 25 mm
positions along the Y direction in (a) the UMAP cluster map. (b)–(d)
Columns of raw 3D diffraction patterns projected onto 2D space. The
coloring of each profile is based on logarithmic values of intensity.
Column (b) in the matrix is for !–2� space, column (c) is for 2�–’ space
and column (d) is for !–’ space. Each row of the profiles is labeled
according to the UMAP cluster map shown in panel (a). For each image, a
dark crosshair is used as a guideline to help determine the positions of the
diffraction peaks, and dark arrows in panels (b) and (d) indicate how the
diffraction patterns shrink or broaden in the ! direction, while dark
arrows in panel (c) emphasize the movement in the ’ direction. Red
arrows in panel (b) mark the position of a minor structure near the peak.
Because of the zone plate in the optical system of nanoXRD, two sepa-
rate peaks are observed along the ’ direction. The values of ’ are relative
since a reference diffraction point along the ’ direction is not given.

Figure 10
Schematic models for distribution of sampling points. (a)–(c) Three types
of model around a point i in high-dimensional space, and (d)–( f ) the
corresponding hypothesized clustering results obtained by the UMAP
analysis, in which dashed rectangles mark the positions of the clusters.
The obtained 2D UMAP plots shown in Fig. 6 can be modeled by these
distributions. For example, the continuous distribution of clusters 0 to 5
observed in Fig. 6(a) is modeled here by panels (a) and (d), the branches
observed in most clusters are modeled here by panels (b) and (e), and the
incoherent distribution of the clusters observed in Fig. 6(c) can be
modeled here by panels (c) and ( f ).
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2.7. Assessment of the crystal structure assisted by UMAP

clusters

With the help of the data structure, including similarity and

continuity, supplied by the UMAP analysis, the structural

characteristics of the sample are discussed. Due to the

inherent continuity of a perfect crystal structure during

epitaxial growth, the obtained diffraction data are expected to

exhibit unique continuity. However, unavoidable structural

imperfections can lead to changes in this continuity. Such

imperfections may include deformations in the unit cell or

interplanar spacing, which are related to defects and external

strain introduced by changing crystal growth modes or

impurity incorporation. These changes, in turn, affect the

diffraction patterns. It is also presumed that diffraction

patterns of structures experiencing stable and uniform defor-

mation exhibit consistent and continuous changes. For

instance, a continuous peak shift may relate to a consistently

increasing strain introduced by a persistent strain source, such

as dislocations. Therefore, the different distributions of

diffraction patterns in the high-dimensional space probably

imply various structural deformations.

On the basis of the above evaluation criteria, we discuss the

structural changes in the present sample with the help of

Figs. 8 and 9 in more detail. Firstly, the continuous distribution

of clusters in Fig. 6(a) infers a gradual shift of the 2202

diffraction peak in the ! direction up to around Y = 27 mm, as

shown in Fig. 8, indicating that the c planes are continuously

tilted. This continuous change with a relatively constant rate is

likely to be due to two contributing factors. The first factor is

the long-range effect of stress originating from regions beyond

the measurement range, probably due to the inhomogeneity of

defect distribution in the sample, which causes the tilting of c

planes observed in clusters 0 to 6. The second factor is related

to the bright/dark contrast change around Y = 17 mm observed

in the MPPL image [Fig. 5(c)], of which more details will be

discussed later from the point of view of the 2200 diffraction

data.

On the other hand, for cluster 7 in Fig. 8 (2202 reflection),

there is a sudden broadening of the diffraction peak in both !

and 2� directions around the boundary at Y = 27 mm,

suggesting a c-plane fluctuation. This sudden change in cluster

7 is probably caused by a new deformation source, such as

stacking faults. Fig. 11(b) illustrates that stacking faults

introduced in the c planes induce significant fluctuation of the

c planes. The fact that stacking faults introduced in the c plane

have only a limited effect on m-plane fluctuations explains the

results for the 2200 diffraction data in Fig. 9, that is, the

absence of a boundary at Y = 27 mm in the UMAP cluster map

for 2200.

Meanwhile, for the 2200 reflection characterizing the m-

plane structure (Fig. 9), there is a significant and discontinuous

difference in the diffraction peak’s shape and positions in the

! direction across the boundary around Y = 17 mm, which

reflects the incoherent distribution of clusters A and D in

Fig. 6(c). Since the formation of the gap between these clusters

can be attributed to the different continuities, the m planes

above Y = 17 mm are deduced to suffer from another type of

defect that has limited influence on the m planes below Y =

17 mm. As a main source of this defect, we can consider misfit

dislocations. As shown in Fig. 9, a peak shift towards higher ’

positions was observed at Y > 17 mm. We attribute this shift to

the introduction of misfit dislocations in that region. We also

observed a minor variation in ’ towards the lower position,

but this may be attributed to the effect of X-ray penetration

and the appearance of stacking faults (see Supplementary

Note 5 and Figs. S10 to S13 for a detailed discussion). The

different trends in peak shifts in the ’ direction imply various

structural deformations. Since dislocations behave as non-

radiative recombination centers, the appearance of dark

contrast at the boundary observed in Fig. 5(c) probably signals

the existence of misfit dislocations. The threading components

of the misfit dislocations and partial dislocations associated

with stacking faults generally have a mixed character and

cause both tilting and twisting effects on the m plane, as

research papers

10 of 15 Zhendong Wu et al. � Machine learning assisted nanoXRD on HVPE GaN J. Appl. Cryst. (2025). 58

Figure 11
Schematic diagrams of the crystal structure. (a) Sketch of the crystal
structure relating to the c planes around the positions of Y = 17 mm (Y1)
and Y = 27 mm (Y2) with the symbols representing the type and distri-
bution of defects. The structure morphologies correspond to different
defects, including (b) stacking faults, (c) misfit dislocations of basal planes
and (d) threading segments of the misfit dislocation.

Figure 12
Analysis of continuity of the 2202 diffraction data. (a) MPPL image of the
sample with the overlaid map of secondary clusters in panel (b). (b)
UMAP plot of the cluster 7 area only, where the tree-like structure’s stem
and branches named SC0 to SC6 are manually colored.
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illustrated in Fig. 11(d). Dislocations only induce a local

change in lattice plane spacing around the dislocation core,

which explains the minor change observed in the diffraction

patterns in the 2� direction. Note also that, since the degree of

change in structural morphology depends on the density of

defects, the gradual movement of diffraction patterns in the ’

direction indicates a varying density of dislocations, which

probably originates from the annihilation or generation of

dislocations in the highly distorted area.

2.8. Interpretation of local crystal structure evolution

assisted by data continuity

Here, we conduct a more detailed analysis of the local

structural variations using the 2202 diffraction data. In the

previous section, it was concluded that clusters 0 to 6 in

Fig. 6(a) have a similar continuity attributed to the long-range

effect of stress originating from regions beyond the

measurement range and the boundary around Y = 17 mm.

With the help of the aforementioned discussions, we now

demonstrate that within cluster 7 as a representative example,

the relative positions between sampling points reflect the

continuity, and different kinds of structural imperfections

induce the different continuities observed in the UMAP plot.

Fig. 12(b) shows the UMAP plot only containing the data of

cluster 7. A tree-like data structure is observed with a

manually colored stem and branches, named secondary clus-

ters (SCs). As shown in Supplementary Note 6, to achieve an

intuitive segmentation that reflects the tree-like data structure,

we employed manual (visual) classification of SCs, acknowl-

edging that this approach inherently introduces a degree of

subjectivity. Specifically, (i) we examined the data structure

across different UMAP parameter settings, (ii) we initially

applied several clustering techniques to obtain preliminary

clusters for identifying distinct branches, as the relatively weak

connections between the main stem and branches can guide

cluster boundaries, and (iii) after establishing these branches,

we ensured the main stem remained as long and thin as

possible. The distribution of sampling points corresponding to

different parts of the UMAP plot is marked in Fig. 12(a).

Interestingly, the bright/dark contrast in MPPL images is

roughly related to the distribution of different SCs, e.g. the

bright area in the upper right-hand corner of Fig. 12(a)

corresponds to SC0, while SC2 covers most of the dark

contrast in cluster 7. The correspondence between the MPPL

image and the SC distribution provides additional evidence

that SC0 and SC2 represent crystal structures with different

characteristics.

To give a further comparison of the differences between

SCs, we averaged the 2D 2202 intensity profiles of all sampling

points from the same SC and show the results in Fig. 13. To

summarize briefly, all peaks except for those of SC5 exhibit

similar large broadening along the ! direction, while there are

no significant shifts in either the ! or 2� directions. Compared

with the ! and 2� directions, the variation in the peak intensity

profile in the ’ direction is more pronounced with each

different SC. On the basis on the characteristics of this ’

variation, we can categorize the SCs into the following three

types: (1) peaks are distributed on both sides of ’ = 2.6� [white

vertical lines in Figs. 13(b) and 13(c)] for SC0 and SC5; (2)

peaks are primarily distributed on the smalle-angle side for

SC1, SC2, SC3 and SC6; (3) peaks are distributed mainly on

the larger--angle side for SC4.

Firstly, we infer that SC0 and SC5 in the first type are

formed from different origins. SC0 represents the stem

structure because SC0 encompasses the richest data features

that allow us to observe peaks distributed over a wide range of

’ direction. In contrast, SC5 is located away from the stem,

with a relatively sharp peak around the center representing a

data structure with a relatively lower defect density. As shown

in Fig. 12(a), most of the data in the second type are distrib-

uted on the lower side of the cluster 7 area with significant

broadening in the ! direction, corresponding to a relatively

lower crystallinity. However, as shown in Fig. 12(b), SC2 and

SC3 are the branches that separate from the stem, indicating

that their crystal structure shares the same origin as SC0.

Besides, SC1 and SC6 are somewhat separated from the stem

in Fig. 12(b), so these regions are likely to be derived from a
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Figure 13
Matrix of averaged 2D 2202 intensity profiles from the cluster 7 area.
Each profile is the averaged map of all sampling points from the same SC.
The coloring of the 2D profiles is based on logarithmic intensity. (a)–(c)
Columns of raw 3D diffraction patterns projected onto 2D space.
Columns (a), (b) and (c) in the matrix are for !–2�, 2�–’ and !–’ spaces,
respectively. Each row of the profiles is labeled according to the UMAP
cluster map in Fig. 12. For each image, a white crosshair is used as a
guideline to help determine the positions of the diffraction peaks.
Because of the zone plate in the optical system of nanoXRD, two sepa-
rate peaks are observed along the ’ direction. The values of ’ are relative
since a reference diffraction point along the ’ direction is not given.

http://doi.org/10.1107/S1600576725004169


different source than the area of SC2, SC3 and the stem. When

we further focus on SC4 in the third type, a correlated

distribution of the stem SC0, SC4 and SC5 implies that SC4

represents the transition area of the crystal structure from a

region with high defect density (SC0) to a region with low

defect density (SC5). Interestingly, the considerable distance

between SC6 and the other SCs in the UMAP plot means that

SC6 has a weak relationship with the other SCs. However,

contrary to such a large distance, the SC6 area connects

directly with the SC5 area, as shown in Fig. 12(a). This

structural relationship between SC5 and SC6 is interpretable

by assuming the occurrence of overgrowth: overgrowth from

SC4 and SC5 that covers the crystal from SC6 can explain the

continuity between SC4 and SC5 and the cluster distance

between SC5 and SC6, regardless of the spatial proximity.

From the above analysis, the changes in the crystal structure

within the cluster 7 region can be summarized: SC0, SC1, SC2

and SC3 probably share a similar origin of crystal structure,

distinct from SC6; meanwhile, the broadened diffraction

patterns along the ! direction imply areas SC0, SC1, SC2, SC3

and SC6 have a relatively high density of defects, i.e. stacking

faults and misfit dislocations. As the crystal grows, the defect

density gradually decreases, leading to the formation of the

SC4 region. The crystals from SC4 cover the lower part of the

cluster 7 region, i.e. SC6 (possibly by an overgrowth), ulti-

mately resulting in SC5 with a rather perfect crystal structure.

Thus, an inspection of the continuity and distance of UMAP

clusters can give insight into the hidden origins of crystallinity

and crystal growth mechanisms that are not readily accessible

by conventional analysis.

3. Discussion and conclusion

To ensure the reproducibility of the results listed in the main

text and supplementary notes, parameters of used algorithms

are listed in Appendix A and Appendix B. As we described in

earlier sections, UMAP can offer robust and efficient clus-

tering and visualization of the complex nanoXRD raw data

structure in low-dimensional space. Notably, the application of

UMAP is closely linked to the hypothesis on the relationship

between spectral nanoXRD data structure and crystal struc-

ture, i.e. that a continuously evolving crystal structure is

reflected in a continuous data structure, as shown in Section

2.2. The results of simulated 1D XRD data sets support the

claim that UMAP efficiently identifies points where the

structural continuity is disrupted, providing insights into

potential microstructural transformations.

We believe that UMAP has the potential to generalize to

other nanoXRD data sets, as its core mechanism does not rely

on data-set-specific assumptions. The present study demon-

strates the general applicability of UMAP to nanoXRD data

sets, given that the analyzed data sets exhibit several typical

features found in nanoXRD measurements of cross-sectional

bulk crystals. These include continuous variations in diffrac-

tion patterns associated with structural evolution, as well as

complex nonlinear changes that disrupt structural continuity

due to microstructure formation during crystal growth.

As shown in Supplementary Note 7, applying UMAP in

combination with agglomerative hierarchical clustering

outperforms t-SNE and other dimensionality reduction

methods, particularly in balancing the interpretability and

structural representation of the data. We further compare

UMAP results with those obtained by clustering directly on

the raw data in Supplementary Note 7. We conclude that,

although clustering on raw data provides meaningful insights,

its reduced sensitivity to local data differences and its inability

to give a visual guide to the relationships between clusters

significantly limit its practical application. We note that

methods such as spectral embedding yield clustering results

most similar to those of UMAP, highlighting the potential of

alternative approaches for nanoXRD data analysis in future

studies. The findings in Supplementary Note 7 reinforce our

confidence in UMAP’s potential applicability to other

nanoXRD data sets, suggesting that it can serve as a powerful

tool for analyzing complex diffraction patterns across a broad

range of materials or measurement conditions.

In conclusion, in this research, we have examined the crystal

structure evolution of an HVPE GaN sample using a position-

dependent nanoXRD method. To overcome the challenges

associated with conventional analysis, we applied a novel ML

technique, UMAP, for analyzing position-dependent 3D (or

5D) diffraction data from nanoXRD experiments. Unlike

conventional refinement processes that rely heavily on fit

quality and diffraction peak properties, UMAP circumvents

uncertainties by directly detecting and visualizing enormous

numbers of XRD data structures from raw diffraction patterns

taken at points.

We have evaluated UMAP’s performance in analyzing

nanoXRD data sets from a cross-sectional HVPE GaN wafer,

interpreting its results based on 2D projections of the raw 3D

nanoXRD patterns. UMAP’s clustering capabilities have been

explored, revealing the similarity and continuity of the

diffraction pattern data. Notably, we observed significant

differences between 2202 and 2200 diffraction results for

identical regions. This distinction is attributed to the rela-

tionship between data structure and recorded crystallographic

information in the XRD patterns; the 2200 diffraction pattern

reflects changes in m planes, while the 2202 diffraction pattern

primarily conveys c-plane characteristics. We further exam-

ined representative structural changes of the sample based on

the characteristics of clusters obtained through UMAP.

Specifically, we inferred possible defects present in the GaN

crystal and their introduction mechanisms, as well as the

modes and mechanisms of crystal growth.

Our findings demonstrate that UMAP effectively distin-

guishes between complex diffraction patterns while simulta-

neously enabling visualization and clustering for the

exploratory analysis of nanoXRD data sets. Unlike conven-

tional methods, UMAP makes use of all features of the data

rather than relying solely on peak-related information. Clus-

ters produced by UMAP allow for deeper insight into the

crystal structure based on the diffraction data, enhancing the

review of similarities and continuities between patterns. The

proposed method shows promise for broader spectroscopic or
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diffraction-based analyses, such as Raman spectroscopy and

scanning/tunneling electron microscopy diffraction imaging

(4D-STEM). These results highlight UMAP’s versatility and

its potential to improve analysis and experimental efficiency

across various physics and materials science applications.

4. Related literature

For further literature related to the supporting information,

see Berger et al. (2010), Cullity & Stock (2001) and Hagberg et

al. (2008).

APPENDIX A

Hyperparameters of UMAP

UMAP is a flexible nonlinear dimensional reduction algo-

rithm sensitive to the set of hyperparameters and randomness

introduced to the algorithm. In this research, we set the

primary hyperparameters as

n_neighbors=4,

min_dist=0.001,

n_components=2 and

metric=’euclidean’

and checked that the produced results and their shapes are

robust and reproducible against the randomness.

APPENDIX B

Parameters of clustering and alternative dimensionality

reduction methods

Regarding the settings and parameters used in the agglom-

erative hierarchical clustering method, the clustering was

performed using the scikit-learn (Version 1.2.2) library in

Python (Pedregosa et al., 2011). The parameters were set as

follows:

n_clusters=8

metric=’euclidean’

memory=None

connectivity=None

compute_full_tree=’auto’

linkage=’single’

distance_threshold=None

compute_distances=False

We adopted linkage=’single’ in clustering the UMAP

embeddings, because our data exhibited clearly separated

clusters alongside a prominent chain-like data structure.

Single linkage is especially suitable for capturing such elon-

gated or chain-like patterns effectively, making it the ideal

choice for our UMAP analysis.

However, in scenarios involving raw data or other embed-

ding plots, we strongly recommend the ’ward’ linkage due

to its robustness against noise and outliers, ensuring more

stable and balanced clusters in cases where clear separations

were less evident.

For the visualizations presented in the main text, the

number of clusters was selected subjectively based on objec-

tive calculations to ensure clarity and interpretability. At this

stage, clustering primarily serves as a tool to visualize the

relationship between data structure and crystal structure,

rather than as an independent analytical objective. The

specific cluster assignments are not of primary importance, as

they are used to explore the data structure of the patterns

rather than to establish definitive classifications. More

discussions of the choice of the number of clusters can be

found in Supplementary Note 2.

We acknowledge that this selection process is not yet fully

optimized. In future work, we aim to refine the criteria for

determining the number of clusters to ensure that cluster

assignments are both interpretable and reproducible, aligning

more closely with the sample’s underlying physical and

structural properties.

When comparing with other dimensionality reduction

methods performed by the scikit-learn (Version 1.2.2) library

in Python (Pedregosa et al., 2011), we set the parameters as

follows:

(i) Spectral clustering:

n_clusters=8

eigen_solver=None

random_state=42

n_init=10

gamma=1.0

affinity=’nearest_neighbors’

n_neighbors=10

eigen_tol=0.0

assign_labels=’kmeans’

degree=3

coef0=1

kernel_params=None

(ii) PCA:

n_components=2

copy=True

whiten=False

svd_solver=’auto’

tol=0.0

iterated_power=’auto’

n_oversamples=10

power_iteration_normalizer=’auto’

random_state= 42

(iii) t-SNE:

n_components=2

perplexity=4

early_exaggeration=12.0

learning_rate=’auto’

n_iter=1000

n_iter_without_progress=300

min_grad_norm=1e-07

metric=’euclidean’

metric_params=None

init=’pca’

verbose=0

random_state=42

method=’barnes_hut’

angle=0.5

n_jobs=-1

square_distances=’deprecated’
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(iv) MDS:

n_components=2

metric=True

n_init=4

max_iter=300

verbose=0

eps=0.001

n_jobs=-1

random_state=42

dissimilarity=’euclidean’

normalized_stress=’warn’

(v) Isomap:

n_neighbors=4

radius=None

n_components=2

eigen_solver=’auto’

tol=0

max_iter=None

path_method=’auto’

neighbors_algorithm=’auto’

n_jobs=-1

metric=’minkowski’

p=2

metric_params=None

(vi) Spectral embedding:

n_components=2

affinity=’nearest_neighbors’

gamma=None

random_state=None

eigen_solver=None

eigen_tol=’auto’

n_neighbors=4

n_jobs=-1
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