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Abstract
In this article, we study the group structure of the Galois group of the maximal

pro-p extension unramified outsidep of imaginary quadratic fields by using Iwasawa
theory.

1. Results

Let k be a number field. Throughout this article, denote byp an odd prime num-
ber. Let Mk=k be the maximal pro-p extension unramified outside all primes lying
above p and Gk(p) = Gal(Mk=k) its Galois group. In the casek is a finite extension
of Q, many deep investigations on extensions with restricted ramification have been
made under several motivation, which was originated in Shafarevich’s work [17].

The most basic invariants ofGk(p) are the minimal number of topological gener-
ators (the generator rank) and the minimal number of definingrelations (the relation
rank), of Gk(p). These invariants can be expressed by the dimensions of cohomology
groups as follows;

dimFp H1(Gk(p), Z=p) = the minimal number of topological generators ofGk(p),

dimFp H2(Gk(p), Z=p) = the minimal number of defining relations ofGk(p).

HereF stands for the field ofp-elements. It is also well known that thep-cohomological
dimension ofGk(p) is less than 3, the Euler-Poincaré characteristic satisfies the equation

(1)
2∑

i =0

(−1)i dimFp Hi (Gk(p), Z=p) = −r2(k),

where r2(k) is the number of complex primes ofk, and Leopoldt’s conjecture fork
and p implies that H2(Gk(p), Qp=Zp) = 0, and so on, see Section 8 and 10 of [14]
for reference.

It is known that the generator rank and the relation rank ofGk(p) can be expressed
by arithmetic invariants ofk (see Section 8.7 of [14]). Also, there are two types of
relation,the first one is “local relation”, which comes fromthe relation of Galois groups
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42 S. FUJII

of local fields. The second one is called “unknown relation”,which is suggested by
Koch [8]. We shall explain the definition of unknown relationfor the extensionMk=k.
Let p be a prime of a number fieldk lying above p, kp the completion ofk at p

and Gkp
(p) the Galois group of the maximal pro-p extensionMkp

=kp. By the natural
mappingGkp

(p)→ Gk(p) induced from an inclusionk ,→ kp, we can get a mapping
of cohomology groups Hi (Gk(p),Z=p)→ Hi (Gkp

(p),Z=p). If the kernel of the product
of the above maps H2(Gk(p),Z=p)→

∏
p|pH2(Gkp

(p),Z=p) is non-trivial, then we call
Gk(p) has an unknown relation.

When the relation rank ofGk(p) is greater than 0, there is no general theory to
describe forms of relations. The results of Fröhlich [1] andKoch [8], [9] (Chapter 11)
are the case where all relations are local relation. Also, Komatsu [10] found a real
quadratic field such thatGk(p) has an unknown relation. Looking at these results, one
will have a question, that is, what happens whenk is an imaginary quadratic field?
In this article, we will studyGk(p) when dimFp H2(Gk(p), Z=p) is at most one. Our
results in this article are as follows:
• (Theorem 4.1) Giving a characterization in terms of the ideal class groups such
that Gk(p) is a free pro-p group.
• (Theorem 5.1) Describing a form of relations ofGk(p) modulo a closed nor-
mal subgroup of infinite index of a free pro-p group of rank 3 in two cases where
dimFp H2(Gk(p), Z=p) = 1. In particular, we will give the explicit structure of the max-
imal pro-p class 2 quotient ofGk(p) in these cases. Besides, we will discuss that
Gk(p) has an unknown relation or not.

For the first result, we must recall here that a characterization of the relation rank
of Gk(p) had already been obtained in terms of arithmetic invariants of k. However, for
small prime numbersp, the author thinks that our characterization is convenienteven
though we have to treat the ideal class groups of other fields.For the second result,
our method is based on the Kummer theory over the cyclotomicZp-extension which
was studied by Iwasawa [7]. Komatsu [10] had studiedGk(p) by using the cyclotomic
Zp-extension to obtain a form of relations ofGk(p) modulo [Gk(p), [Gk(p), Gk(p)]],
and more general result on totally real fields is obtained by Nguyen Quang Do [15].

The contents of this article are as follows. In Section 2 we determine the Galois
module structure of thep-unit group of the cyclotomicZp-extension of certain abelian
fields. This argument is a keystone of Kummer theory over cyclotomic Zp-extensions.
In Section 3 we give a brief guide of Iwasawa’s work [7] on the Kummer pairing over
the cyclotomicZp-extension. In Section 4 we prove Theorem 4.1. In Section 5 we
show Theorem 5.1 by using an idea from pro-p 0-operator groups. Besides, we will
discuss that whenGk(p) has an unkown relation. In Section 6 we will give examples
of Theorem 5.1.
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2. The Galois module structure of thep-unit group

Throughout this article, we shall denote byk∞ andkn the cyclotomicZp-extension
and then-th layer of k∞=k, namely, unique subextension ofk∞=k with [kn : k] = pn,
of a number fieldk.

Let K be an abelian field such thatK contains the group ofp-th roots of unity�p and that the exponent of the Galois group1 = Gal(K=Q) is p− 1, for example,
K = Q(�p) or K = Q(

√
m,�p) for some integerm. Let Dp be the decomposition group

in 1 at p. Let K∞ be the cyclotomicZp-extension ofK . In this caseK∞ is the field
K (�p∞ ) obtained by adjoining allp-power-th roots of unity�p∞ . Put 0̄n = Gal(Kn=K )
for n ≥ 0. From the condition onK , we have the canonical decomposition

Gal(Kn=Q) = 1× 0̄n

of Gal(Kn=Q). Let E′Kn
be the p-unit group of Kn. In this section, we describe the

structure of E′Kn
⊗ Q as aQ[1 × 0̄n]-module in terms of1, Dp and 0̄n. Let 1̄ =1=〈J〉, whereJ is the complex conjugation. For a finite groupH , let NH =

∑
h∈H h ∈

Z[H ] be the norm operator ofH .

Proposition 2.1. There is an isomorphism

E′Kn
⊗ Q ≃ Q[0̄n]=(N0̄n

)⊕ Q[0̄n × 1̄]=(N1̄)⊕ Q[1=Dp]

of Q[1× 0̄n]-modules.

Proof. Let vp be the normalizedp-adic valuation of a finite primep. Also, let

Vp : E′Kn
→
∏

p|p
Z, x 7→ (vp(x))p

be the product of the valuation maps of the primes lying abovep. Note that
∏

p|p Z
is a Z[1 × 0̄n]-module with the1 × 0̄n-action defined byg · (xp)p = (xg−1p)p for
g ∈ G×0̄n and (xp)p ∈

∏
p|p Z, and the above mapping is aZ[1×0̄n]-homomorphism.

Furthermore,
∏

p|p Z is isomorphic toZ[1=Dp] as Z[1 × 0̄n]-modules since the de-

composition group atp is Dp × 0̄n. Let hp be a positive integer such thatphp = (�p)
for each primep dividing p and an integer�p of Kn. By the choice ofhp, we find that

∏

p|p
hpZ ⊆ Image(Vp) ⊆

∏

p|p
Z,

whence #CokerVp is finite. ThereforeVp induces a surjective mapping

Vp ⊗ 1: E′Kn
⊗ Q→ Q[1=Dp]
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of Q[1× 0̄n]-modules. Note that the kernel ofVp is the unit groupEKn of Kn. The
existence of Minkowski units implies that there is an isomorphism

EKn ⊗ Q ≃ Q[1̄× 0̄n]=(N1̄×0̄n
)

of Q[1× 0̄n]-modules.

Lemma 2.1. Let G1 and G2 be finite groups. Then

Q[G1× G2]=(NG1×G2) ≃ Q[G1]=(NG1)⊕ Q[G1× G2]=(NG2)

≃ Q[G2]=(NG2)⊕ Q[G1× G2]=(NG1)

as Q[G1× G2]-modules.

Proof. The second isomorphism follows if we show the first one. Let  : Q[G1×
G2] → Q[G1]=(NG1) be a mapping defined by

∑

g1g2∈G1×G2

a(g1, g2)g1g2 7→
∑

g1g2∈G1×G2

a(g1, g2)g1 mod (NG1).

Then we have a natural mapping

� : Q[G1× G2] → Q[G1]=(NG1)⊕ Q[G1× G2]=(NG2), �(x) = ( (x), x mod (NG2))

of Q[G1×G2]-modules. Suppose thatx =
∑

g1g2∈G1×G2
x(g1, g2)g1g2 is in Ker�. Then

x = NG2 y for some y ∈ Q[G1 × G2]. Put y =
∑

g1g2∈G1×G2
y(g1, g2)g1g2. Thus x =

NG2 y = NG2

∑
g1g2∈G1×G2

y(g1, g2)g1. On the other hand, we have

∑

g1g2∈G1×G2

x(g1, g2)g1 = #G2

∑

g1g2∈G1×G2

y(g1, g2)g1 = NG1z

for somez ∈ Q. Hence

∑

g1g2∈G1×G2

y(g1, g2)g1 =
z

#G2
NG1.

Therefore we obtain

x = NG2

∑

g1g2∈G1×G2

y(g1, g2)g1 =
z

#G2
NG1 NG2 =

z

#G2
NG1×G2,
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so that Ker� ⊆ (NG1×G2). The converse inclusion is clear. Hence we obtain an injective
mapping

�̄ : Q[G1× G2]=(NG1×G2) ,→ Q[G1]=(NG1)⊕ Q[G1× G2]=(NG2).

Since

dimQ Q[G1× G2]=(NG1×G2) = #G1#G2 − 1,

dimQ Q[G1]=(NG1) = #G1− 1,

dimQ Q[G1× G2]=(NG2) = (#G2− 1)#G1,

we have #G1#G2−1 = #G1#G2−#G1 + #G1−1 = #G1(#G2−1) + #G1−1, and hence
the mapping�̄ must be an isomorphism.

By Lemma 2.1, we obtain an isomorphism

EKn ⊗ Q ≃ Q[1̄× 0̄n]=(N1̄×0̄n
) ≃ Q[0̄n]=(N0̄n

)⊕ Q[1̄× 0̄n]=(N1̄)

of Q[1× 0̄n]-modules. SinceEKn ⊗ Q is the kernel ofVp, we have

E′Kn
⊗ Q ≃ Q[0̄n]=(N0̄n

)⊕ Q[1̄× 0̄n]=(N1̄)⊕ Q[1=Dp]

as Q[1× 0̄n]-modules.

3. Iwasawa’s theorem on the Kummer pairing for abelian fields

In this section, we shall give a brief guide to the Kummer pairing over cyclotomic
Zp-extensions, which was obtained by Iwasawa (see Sections 6,7 and 8 of [7]). For
reference, see also Chapter 11 of [14].

Let 0 be the Galois group of the cyclotomicZp-extension of a number field. Fix
an isomorphismZp[[0]] := lim←−Zp[0=0 pn

] ≃ 3 = Zp[[T ]], the ring of formal power se-
ries of one variable with coefficients inZp, by sending a fixed topological generator0

of 0 to 1+T (see Section 7 of [18]). Since a pro-p 0-moduleM is a Zp[[0]]-module,
we regardM a 3-module via0m = (1 + T)m for m ∈ M. For 3-modules M and
N, the 0-action on HomZp(M, N) is given by (0 f )(m) = 0 f (−1

0 m) for m ∈ M.
Let � : 0 → Z×p be the cyclotomic character. LetT(1) = lim←− �pn be the Tate mod-
ule and letT(−1) = HomZp(T(1), Zp). Then T(1) and T(−1) are0-modules with the0-actions0t1 = �(0)t1 and 0t−1 = �(0)−1t−1 for t1 ∈ T(1) and t−1 ∈ T(−1). For
a 3-module M, we then define the Tate twistsM(1) and M(−1) of M by M(±1) =
M ⊗Zp T(±1), so thatM(1) and M(−1) are3-modules by the diagonal actions. One
sees thatM(±1)≃ M as abelian groups, but thatM(±1) are equipped with the0-action
different from M. Also, let M◦ be the3-module with the new0-action0◦m = −1

0 m
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for m ∈ M◦. Then we define the Iwasawa involutionM• of a 3-module M by M• =
M(−1)◦ = M◦(1). Note that the operator∗• works as an involution on3-modules,
nemely, (M•)• = (M◦(1))(−1)◦ = (M◦)◦ = M. Finally, remark that if f : M1→ M2 is a3-homomorphism, then the mappingf • : M•1 → M•2 , which is induced byf , is also
a 3-homomorphism.

Let C be a compact3-module, D a discrete3-module and let

( , ) : C × D→ �p∞ ,

be a non-degenerate pairing with the property0(c,d) = (0c,0d) for c ∈ C andd ∈ D.
Then we have an isomorphism

C ≃ HomZp(D, �p∞ )

of 3-modules. Then we also have a non-degenerate pairing

〈 , 〉 : C(−1)× D→ Qp=Zp

with 〈0c, d〉 = 〈c, −1
0 d〉. In particular, the pairing〈 , 〉 induces an isomorphism

C(−1) ≃ HomZp(D, Qp=Zp) of 3-modules. Note that the pairing〈 , 〉 induces the
pairing

〈 , 〉 : C• × D→ Qp=Zp

with the property〈0c, d〉 = 〈c, 0d〉 (see Section 8.1 of [7]).
Here, we shall set the notations. Denote byXk the Galois group of the maximal

pro-p abelian extensionMab
k =k of a number fieldk which is unramified outside all

primes lying abovep. The Galois groupXk is also defined to be the maximal pro-p
abelian quotientXk = Gk(p)ab of Gk(p). Let K be an abelian field of Section 2. Recall
the definitions ofK∞ and Kn (see introduction of Section 2). Put0n = Gal(K∞=Kn)
and recall1 = Gal(K=Q). For aZp[1]-module M and aZp-valued character� of 1,
we have the�-eigen-submoduleM� of M as M� = {x ∈ M | Æm = �(Æ)m for all Æ ∈1}. Further, we get a decomposition ofM such thatM =

⊕� M� . We then know that

Gal(K∞=Q) = 1× 0 acts onXK∞ via � (x) = �̄ x�̄−1 for x ∈ XK∞ since Mab
K∞
=Q is a

Galois extension, where ¯� ∈ Gal(Mab
K∞
=Q) denotes a lift of� . In particular, we get

a decompositionXK∞ =
⊕� X

�
K∞

of XK∞ as a3[1]-module. Let! : Gal(Q(�p)=Q)

(≃ (Z=pZ)×) → �p−1 (⊆ Z×p ) be the Teichmüller character of modulop, namely, it
satisfies the congruence!(a) ≡ a mod p. We will use these notations also in later
sections.

By Kummer’s duality, there is a subgroupS⊆ K×∞⊗Qp=Zp and a non-degenerate
pairing

XK∞ × S→ �p∞ , (x, s⊗ (1=pn)) = x( pn√
s)= pn√

s.
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Note that this pairing satisfies the property� (x, s⊗ (1=pn)) = (� (x), � (s)⊗ (1=pn)) for
any � ∈ Gal(K∞=Q). For a Zp-valued character� of 1, we then also have a non-
degenerate pairing

(2) X
�
K∞
× S!�−1 → �p∞ .

Let E′K∞ =
⋃

n≥0 E′Kn
. Let N = K∞

(
p∞
√

E′K∞

)
be the algebraic extension ofK∞ ob-

tained by adjoining allp-power-th roots ofp-units E′K∞ of K∞ andX = Gal(N=K∞)
its Galois group. PutE = E′K∞ ⊗ Qp=Zp. Then we have a non-degenerate pairing

(3) X � × E!�−1 → �p∞ ,

whenceX � ≃ HomZp(E
!�−1

, �p∞) as3-modules. We shall analyze this pairing. Put
En = E′Kn

⊗Qp=Zp. Let A′Kn
be thep-primary part of thep-ideal class group ofKn and

put A′K∞ = lim−→ A′Kn
, where the inductive limit is taken with respect to the lift maps of

ideals. LetX′K∞ = lim←− A′Kn
, the projective limit is taken with respect to the norm maps.

Let X′f be the maximal finite3-submodule ofX′K∞ ; Remark thatX′f is determined
as the kernel of a pseudo-isomorphism fromX′K∞ to an elementary3-module. By
Theorem 12 and the arguments in p.270 of [7], we know the following properties on
E and En:
• For all pairs of non-negative integersm, n with m≥ n, the natural mappingEn→
Em is injective. In particular, the injectivity is also true onEn→ E for all n ≥ 0.
• There are isomorphisms

(4) E0n=En ≃ H1
(0n, E′K∞

)
≃ Ker

(
A′Kn
→ A′K∞

)
≃ X′f

of 3-modules for all sufficiently largen.
Recall the Kummer pairing (3)

X � × E!�−1 → �p∞ .

Then we have a non-degenerate pairing

〈 , 〉 : X � (−1)× E!�−1 → Qp=Zp,

from which the pairingX �•×E!�−1 → Qp=Zp is induced. Put!n = (1 +T)pn −1 ∈ 3.

Let X �•
n be the annihilator ofE!�−1

n . Note that!nX
�• is the annihilator of (E!�−1

)0n .
Thus

(5) X �•
n =!nX

�• ≃ HomZp

(
X′!�−1

f , Qp=Zp

)◦
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by isomorphism (4) for all sufficiently largen. SinceE!�−1

n is a p-divisible group of
finite Zp-corank, X �•=X �•

n is a finitely generated freeZp-module of the same rank.
We want to know itsZp-rank.

Lemma 3.1. Let d� = 0 or 1 according as� is even or not and

�� =

{
1 if !�−1(Dp) = 1, � 6= !,
0 otherwise.

Then we have

rankZp X
�•=X �•

n = d� pn + ��
for all n ≥ 0.

Proof. It follows from Proposition 2.1 that

dimQp(E
′
Kn
⊗ Qp)!�−1

= dimQp(Qp[0̄n]=(N0̄n
))!�−1

+ dimQp(Qp[1̄× 0̄n]=(N1̄))!�−1

+ dimQp Qp[1=Dp]!�−1
.

Since

dimQp(Qp[0̄n]=(N0̄n
))!�−1

=

{
pn − 1 if � = !,
0 otherwise,

dimQp(Qp[1̄× 0̄n]=(N1̄))!�−1
=

{
pn if � is odd, � 6= !
0 otherwise,

and

dimQp Qp[1=Dp]!�−1
=

{
1 if !�−1(Dp) = 1,
0 otherwise,

the assertion follows.

It follows from the isomorphismX � (−1) ≃ HomZp

(
E!�−1

, Qp=Zp
)

that X �• has
no Zp-torsion element. Further, sinceX �•=!nX

�• is a finitely generatedZp-module
by (5) and Lemma 3.1,X �• is a finitely generated3-module by Nakayama’s lemma.
By the structure theorem of3-modules, there are a finite3-module M� and the exact
sequence

0→ X �•→ E→ M� → 0

of 3-modules, whereE = 3⊕e� ⊕⊕s�
i =13=( f �i ) is an elementary3-module and f �i a

power of an irreducible distinguished polynomial.
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Proposition 3.1 (corresponding to Theorem 15 of [7]).We have e� = d� , s� =�� and f�i = T , namely, the following sequence

0→ X �•→ 3d� ⊕ (3=(T))�� → M� → 0

is exact as3-modules. In particular, Tor3X �• is isomorphic to(3=(T))�� as3-modules.

Proof. This follows from isomorphism (5) and Lemma 3.1. Since Tor3 X �• is
imbedded into (3=(T))�� with finite index, the second assertion follows.

Remark that there is an exact sequence

0→ E → S→ A′K∞ → 0.

(See Lemma 10 of [7]) Since Gal
(
Mab

K∞

/
N
)

(≃ HomZp(A′K∞ , �p∞ )) is a 3-torsion3-module (see Theorem 16 of [7]), we see thatXK∞=Tor3 XK∞ ≃ X =Tor3 X .

Proposition 3.2 (corresponding to Lemma 12 of [7]).We have the exact sequence

0→ Tor3 X
�
K∞
→ X

�
K∞
→ 3d� → HomZp

(
X′!�−1

f , �p∞

)
→ 0

of 3-modules. The sequence

0→ HomZp

(
A′!�−1

K∞
, �p∞

)
→ Tor3 X

�
K∞
→ Tor3 X � → 0

is also exact.

Proof. For the proof of first assertion, see Lemma 12 of Iwasawa [7]. The second

assertion is trivial since HomZp

(
A′!�−1

K∞
, �p∞

)
is a torsion3-module.

4. Characterization of imaginary quadratic fields k with Gk(p) being a free
pro-p group

In this section, we shall prove the following.

Theorem 4.1. Let k = Q(
√
−m) be an imaginary quadratic field with a square-

free positive integer m and put K= k(�p). Let� be the Dirichlet character corresponding
to k. Then, Gk(p) is a free pro-p group of rank2 if and only if one of the following
three conditions holds:
(1) p = 3 and m= 3.
(2) p = 3, m 6≡ 3 mod 9and A′

Q(
√

3m)
= 0.

(3) p ≥ 5 and A′!�K = 0.
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Proof. For an abelian groupA, put A[ p] = {a ∈ A | pa = 0} and A=p = A=pA.
As we deomposeXK by the action of1, we then haveXk ≃ (XK )Gal(K=k) = X

�
K ⊕ XQ.

Also, since Gal(Q(�p∞ )=Q) ≃ Z×p , we haveXQ ≃ Zp. Sincek is an imaginary qua-

dratic field, by the Euler-Poincaré characteristic (1), we find that dimFp H1(Gk(p),Z=p) =

dimFp H2(Gk(p), Z=p) + 2. Note that

dimFp H1(Gk(p), Z=p)− 1 = dimFp Hom(X�
K , �p)

sinceXk = X
�
K ⊕ XQ and XQ ≃ Zp. HenceGk(p) is a free pro-p group if and only if

dimFp Hom(X�
K , �p) = 1.

By Kummer’s theory, there is a subgroupT of K×=(K×)p with the non-degenerate
pairing

XK =p× T → �p.

Thus dimFp Hom(X�
K , �p) = dimFp T!� (�−1 = �). Also, since there is an exact se-

quence

0→ E′K =p→ T → A′K [ p] → 0,

we have dimFp Hom(X�
K ,�p) = dimFp(E

′
K =p)!� +dimFp A′K [ p]!� . It follows from Propo-

sition 2.1 that dimFp(E
′
K =p)!� = 1+�� . It is also easy to see that�� = 1 if and only if

p = 3 and 36= m≡ 3 mod 9, and thatA′!�K = A′
Q(
√

3m)
if p = 3. Since dimFp A′K [ p]!� =

dimFp A′!�K =p, combining the above, we have

(6) dimFp Hom(X�
K , �p) =

{
2 + dimF3 A′

Q(
√

3m)
=3 if p = 3, 3 6= m≡ 3 mod 9,

1 + dimFp A′!�K =p otherwise.

This implies Theorem 4.1.

Let Lk=k be the maximal unramified abelianp-extension. Assume thatm 6≡ 3 mod 9
when p = 3. Let k̃ be the composite of allZp-extensions ofk. Then Minardi [13]
(Section A, Proposition 6.B and its Corollary of Chapter 6) showed thatLk ⊆ k̃ if
and only if A′!�K = 0 by the same method. Under the assumption onm, one can easily
check thatLk ⊆ k̃ if and only if Gk(p) is a free pro-p group. Hence we must mention
here that Theorem 4.1 had been essentially obtained by Minardi.

5. The explicit structure of Gk(p)=[Gk1(p), [Gk1(p), Gk1(p)]]

Let k = Q(
√
−m) and K be fields of the previous section and0 the Galois group

of the cyclotomicZp-extensionk∞ of k. Let 1→ R→ F → Gk(p)→ 1 be a minimal
presentation ofGk(p) by a free pro-p group F and H the kernel of the composition
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of the mapsF → Gk(p)→ 0. Then the following diagram

(7)

is exact-commutative. In this section, we will analyze the following exact sequence:

(8) 1→ R→ H → Gk∞(p)→ 1.

We shall discuss the properties of the groupH here. Let (∈ F) be an inverse image
of a topological generator0 of 0. Then0 acts onH via 0(h) = h−1 for h ∈ H .
Remark that this action is non-canonical. If we let1 (∈ Gk(p)) the image of , then0 also acts onGk∞(p) via 0(g) = 1g−1

1 for g ∈ Gk∞(p). This asserts that the groups
H and Gk∞(p) can be considered as pro-p 0-operator groups, and the sequence (8) is
exact as pro-p 0-operator groups (see Section I of [19]). Since the topological com-
mutator group [G, G] of a pro-p 0-operator groupG is a characteristic subgroup,0
also acts onGab, so thatGab becomes a3-module.

Proposition 5.1. Let d = dimFp H1(Gk(p), Z=p). Then Hab≃ 3⊕d−1.

Proof. SinceF→ Gk(p) is a minimal presentation, we see that dimFp H1(F , Z=p) =
d. By the (dual of the) five term sequence, the sequence

0→ (Hab=p)0 → Fab=p (≃ (Z=p)⊕d)→ 0=p (≃ Z=p)→ 0

is exact since0 is a free pro-p group. By the topological version of Nakayama’s
lemma, Hab is generated byd − 1 elements over3. Let

0→ Z→ 3⊕d−1→ Hab→ 0

be a minimal presentation ofHab. Since H (⊆ F) is a free pro-p group, Hab is
Zp-torsion-free, whence the sequence

0→ Z=p→ (3=p)⊕d−1→ Hab=p→ 0

is also exact. By taking the homology sequence, one obtains the following exact se-
quence;

0→ H1(0, Hab=p)→ (Z=p)0 → (Z=p)⊕d−1 ∼−→ (Hab=p)0 → 0.
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Note that H1(0, Hab=p) is the dual of H1(0, H1(H , Z=p)). From the Hochschild-Serre
spectral sequence, there is an exact sequence H2(F , Z=p) → H1(0, H1(H , Z=p)) →
H2(0, H0(H , Z=p)) (see Section 2.1 and Exercise 5 of Section 2.1 in [14]). Hence
H1(0, H1(H , Z=p)) = 0 since H2(F , Z=p) = H2(0, H0(H , Z=p)) = 0. This shows that
(Z=p)0 = 0, and thereforeZ = 0 by Nakayama’s lemma. Finally, we remark thatH is
a free pro-p 0-operator group, see Proposition 1.7 of [19].

By the exact sequence (8), Theorem 10.3.22 or Theorem 10.3.25 of [14], there is
an exact sequence

(9) 0→ R=[R, H ] → Hab (≃ 3⊕d−1)→ Xk∞ → 0

of3-modules. As the same to the proof ofHab0 =p≃ (Z=p)⊕d−1, we have dimFp(Xk∞ )0=p=
d − 1. Therefore (9) is a minimal presentation ofXk∞ as a3-module by Proposi-
tion 5.1, andR=[R, H ] is generated by the relations ofGk(p) over3 since (R=[R, H ])0 =
R=[R, F ]. By using (9), we show the following.

Theorem 5.1. Let F = 〈 , x1, x2〉 be a free pro-p group of rank3 and H =
(x1, x2)F the closed normal subgroup of F enerated by x1 and x2. In general, de-
note by(a1, : : : , as)F the closed normal subgroup of F generated by a1, : : : , as. For
a pro-p groupG, denote by Ci (G) the i-th lower central series ofG, e.g. C1(G) = G,
C2(G) = [G, G] and C3(G) = [G, C2(G)]. Suppose that one of the following two state-
ments holds:
(I) p = 3, 3 6= m≡ 3 mod 9and A′

Q(
√

3m)1
= 0.

(II) 0 6= X′!�K∞
≃ Z=pc. When p= 3 we further assume m6≡ 3 mod 9.

ThendimFp H1(Gk(p), Z=p) = 3 and

Gk(p)=C3(Gk∞(p)) ≃
{

F=( x1−1x−8
1  x1−1)FC3(H ) (I),

F
/(

xpc

1  x2−1x−2(a+1)
2  x2−1xpc

1

)
F
C3(H ) (∃a ∈ pZ) (II)

as pro-p groups.

It is conjectured thatX!�
K∞

is always finite [3], and no counter examples have been
found yet. There are many examples of real quadratic fields where this conjecture
holds whenp = 3, see Ichimura-Sumida [5], [6] and Kraft-Schoof [11]. Theintegera
is determined by the action of0 on X′!�K∞

.
Proof. By the natural isomorphism Gal(K∞=K ) ≃ Gal(k∞=k) = 0, we identify

these groups. Let0 ∈ 0 be the topological generator such that0(� ) = � 1+p for all� ∈ �p∞ . We shall give two remarks here. Since Gal(Q(�p∞ )=Q) ≃ Z×p , one sees that

XQ∞ = 0. It follows from the fact thatXk∞ is isomorphic toX
�
K∞
⊕XQ∞ by seeing the

action of1 on XK∞ that X
�
K∞

= Xk∞ . Also, recall that if p = 3, then the fixed field
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of Ker!� is Q(
√

3m), which is the totally real subfield ofK = k(�3). First, we show
that dimFp H1(Gk(p), Z=p) = 3 in both cases (I) and (II).

Suppose thatp = 3, 3 6= m≡ 3 mod 9 andA′
Q(
√

3m)1
= 0. SinceQ(

√
3m)1=Q(

√
3m)

is totally ramified at all primes lying above 3, the norm mapA′
Q(
√

3m)1
→ A′

Q(
√

3m)
is

surjective by class field theory. HenceA′
Q(
√

3m)1
= 0 implies thatA′

Q(
√

3m)
= 0. By the

equation (6), we obtain that dimF3 H1(Gk(3), Z=3) = 3.
Suppose that 06= X′!�K∞

≃ Z=pc as abelian groups, and further assume thatm 6≡
3 mod 9 if p = 3. We then have�� = 0. Applying the dual of the five term sequence
to 1→ Gk∞(p)→ Gk(p)→ 0→ 1, we obtain 0→ (Xk∞=p)0 → Xk=p→ 0=p→ 0.
Hence

dimFp H1(Gk(p), Z=p) = dimFp Xk=p = 1 + dimFp(Xk∞=p)0.

We shall show that dimFp(Xk∞=p)0 = 2. SinceX′!�K∞
is finite, one sees thatA′!�K∞

= 0
by (4). It follows from Proposition 3.1, Proposition 3.2 and�� = 0 that Tor3 Xk∞ = 0
and that 0→ Xk∞ → 3 → HomZp(X

′!�
f , �p∞ ) → 0 is exact. Since0 is cyclic, we

have the following exact sequence;

(10) 0→ HomZp(X
′!�
f , �p∞)0 → (Xk∞)0 → Zp→ HomZp(X

′!�
f , �p∞)0 → 0.

Hence (Xk∞)0 ≃ Zp ⊕ HomZp(X
′!�
f , �p∞ )0 as Zp-modules. SinceX′!�f = X′!�K∞

≃
Z=pc by our assumption, we then have obtained dimFp(Xk∞=p)0 = 2, so that

dimFp H1(Gk(p), Z=p) = 3.
Next, we will determine the explicit structure ofXk∞ as a3-module. Suppose the

condition of (I). SinceQ(
√

3m)∞=Q(
√

3m) is totally ramified at all primes lying above
3, the conditionA′

Q(
√

3m)1
= 0 implies thatX′

Q(
√

3m)∞
= X′!�K∞

= 0 by [2]. It follows from

Proposition 3.2 that the sequence

0→ Tor3 Xk∞ → Xk∞ → 3→ HomZ3(X
′!�
f , �3∞ ) (= 0),

is exact, so thatXk∞ ≃ Tor3 Xk∞ ⊕ 3 as 3-modules. Also, X′!�K∞
= 0 implies that

A′!�K∞
= 0, whence we have Tor3Xk∞ ≃ Tor3X � by Proposition 3.2. Since Tor3X �• ≃3=(T) by Proposition 3.1, we see that Tor3X � ≃ 3=((1 + 3)(1 +T)−1−1) =3=(T −3)

as3-modules. Therefore, there is an isomorphism

(11) Xk∞ ≃ 3=(T − 3)⊕ 3
of 3-modules.

Suppose the condition of (II). Recall that�� = 0, X′!�f = X′!�K∞
≃ Z=pc and A′!�K∞

=
0. By Proposition 3.2, we have the exact sequence

(12) 0→ Xk∞ → 3→ HomZp(X
′!�
f , �∞)→ 0
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of 3-modules. Note thatZ=pc ≃ X′!�f ≃ HomZp(X
′!�
f , �p∞) as abelian groups.

Lemma 5.1. Let M be a3-module such that M≃ Z=pc as abelian groups. Then
there is an integer a∈ pZ such that M≃ 3=(pc, T − a) as3-modules.

Proof. Let m be a generator ofM, so that M = 3m. Put I = Ker(3 → M).
Then there isa ∈ pZ such that (1 +T)m = (1 +a)m. This shows thatT −a ∈ I . Since3=(T − a) ≃ Zp as abelian groups, it follows thatI = (T − a, pc). This completes the
proof of Lemma 5.1.

By the above lemma, there is an integera ∈ pZ such that HomZp(X
′!�
f , �p∞ ) ≃3=(T − a, pc) as 3-modules. It follows from the exact sequence (12) thatXk∞ ≃

(T − a, pc) as3-modules.
Let 3⊕2→ Xk∞ ≃ (T − a, pc) be a minimal presentation ofXk∞ with the corre-

spondence (1, 0)7→ T −a, (0, 1) 7→ −pc, so that (f (T), g(T)) maps to (T −a) f (T)−
pcg(T). Let L be the kernel of3⊕2→ (T −a, pc). Doing the same as (10), we have
an exact sequence

0→ L=T L→ Z⊕2
p → (T − a, pc)=(T(T − a), pcT)→ 0.

(Remark that 1 +T acts as0.) Since pc mod (T(T − a), pcT) is Zp-free, L=T L
hasZp-rank at most one. HenceL is a cyclic3-module by Nakayama’s lemma, say
L =3(r (T), s(T)). Now we show thatL =3(pc, T−a). It follows from (T−a)r (T)−
pcs(T) = 0 that pc divides r (T) and thatT − a divides s(T) since3 is an UFD.
Let r ′(T) and s′(T) be elements of3 with r (T) = pcr ′(T) and s(T) = (T − a)s′(T).
Since (pc, T − a) ∈ L, there is a power seriesf (T) in 3 such thatpc = f (T)r (T) =
pc f (T)r ′(T) and T − a = f (T)s(T) = (T − a) f (T)s′(T). It follows that f (T) is an
unit power series and thatf (T) = r ′(T)−1 = s′(T)−1. Thus

L = 3(r (T), s(T))

= 3( f (T)−1(pc), f (T)−1(T − a))

= 3(pc, T − a).

Therefore

(13) Xk∞ ≃ 3⊕2=3(pc, T − a)

as3-modules.
Now, we discuss actions of〈J〉 = Gal(k=Q) ≃ Z=2 on Gk(p) and Gk∞(p). Since

the p-cohomological dimensions of Gal(k=Q) and Gal(k∞=Q) are 0 and 1, we can con-
sider (non-canonical) actions ofJ and Gal(k∞=Q) on Gk(p) and Gk∞(p), respectively
(see Section 3.5 of [14]).
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Proposition 5.2. There exist topological generators1,w1,w2 of Gk(p) such that
J(1) = 1 and J(wi ) = w−1

i for i = 1, 2.

Proof. Let Xk=p = (Xk=p)+ ⊕ (Xk=p)− be the decomposition with respect to the
action of J. Let M be the fixed field of (Xk=p)−. Then M=Q is an abelian exten-
sion. Further,M 〈J〉=Q is an abelianp-extension ofQ unramified outsidep, and hence
M 〈J〉 = Q1. This shows that (Xk=p)+ ≃ Z=p. Therefore, (Xk=p)− ≃ (Z=p)⊕2. It fol-
lows from Theorem 2.3 of [4] and dimFp H1(Gk(p),Z=p) = 3 that there exist topological

generators1, w1, w2 of Gk(p) such thatJ(1) = 1 and J(wi ) = w−1
i for i = 1, 2.

Let {1, w1, w2} be a system of topological generators ofGk(p) with the prop-
erty of Proposition 5.2. LetG = (w1,w2)Gk(p) be the normal closed subgroup ofGk(p)
generated byw1 and w2. Here we prove thatG = Gk∞ (p). Let K be the fixed field
of G. Since J acts on〈1G〉 trivially, we see thatK = k∞ or kn for somen ≥ 0. If
K = kn, then G = Gal(Mkn=kn). But since J acts onGab as the inverse, this contra-
dicts the fact thatkn has the cyclotomicZp-extensionk∞. HenceK = k∞ and G =
Gk∞(p). From this reason, we adopt a lift1 ∈ Gk(p) of 0 with 0(� ) = � 1+p for
all � ∈ �p∞ . Let y1 and y2 be elements ofGk∞(p) such thatXk∞ is generated by

y1C2(Gk∞ (p)), y2C2(Gk∞ (p)) over3, namely,Xk∞ =
∑2

i =13yi C2(Gk∞(p)). By the ex-
act sequence 0→ (Xk∞=p)0 → Xk=p→ 0=p→ 0 (the dual of the five term sequence
with coefficients inZ=p), we see thatGk(p) = 〈1, y1, y2〉 by Burnside’s basis theo-
rem. If it is necessary we may assume thatJ(yi ) = y−1

i for i = 1, 2 by replacingyi

with y1=2
i J(yi )−1=2 since yi ≡ y1=2

i J(yi )−1=2 mod C2(Gk∞(p)) and J
(
y1=2

i J(yi )−1=2) =

J(yi )1=2y−1=2
i =

(
y1=2

i J(yi )−1=2)−1
. Hence these topological generators1, y1, y2 satisfy

the condition of Proposition 5.2, so thatwi ’s are also obtained from this way.
We choose special elements ofGk∞(p). Fix an isomorphism

(14) Xk∞ ≃
{3=(T − 3)⊕ 3 in the case (I),

(T − a, pc) in the case (II)

of 3-modules. Letz1, z2 ∈ Gk∞(p) be elements such that

(15)

{3z1C2(Gk∞ (3))≃ 3=(T − 3), 3z2C2(Gk∞(3))≃ 3 in the case (I),
z1C2(Gk∞(p)) 7→ T − a, z2C2(Gk∞(p)) 7→ pc in the case (II).

If it is necessary, we may supposeJ(zi ) = z−1
i for i = 1 and 2. Recall thatF =

〈 , x1, x2〉 is a free pro-p group of rank 3 andH = (x1, x2)F . Then we can define
the action ofJ on F via J( ) =  and J(xi ) = x−1

i for i = 1 and 2. Let 1→ R→
F → Gk(p)→ 1 be a minimal presentation ofGk(p) by sending → 1 and xi → zi

for i = 1 and 2, so thatF→ Gk(p) is compatible to the action ofJ. Further, we adopt
a lift  of 0. Then the morphismH → Gk∞(p) is also compatible to the actions of
J and0.
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From the exact sequence (9), the isomorphism (14) and the choice of the genera-
tors z1, z2 (15), there existsr ∈ H such that

r ≡
{

[ , x1]x−3
1 mod C2(H ) in the case (I),

xpc

1 [ , x2]x−a
2 mod C2(H ) in the case (II),

and thatGk∞(p) ≃ H=(r )F as pro-p 0-operator groups. Here we let [x, y] = xyx−1y−1

for x, y ∈ F . Remark that (Hab)− = Hab.

Lemma 5.2. Let N be a pro-p group with the action of J. If (Nab)− = Nab,
then J acts on C2(N)=C3(N) trivially.

Proof. Consider the pairing

[ , ] : Nab× Nab→ C2(N)=C3(N).

Let x, y∈N. SinceJ([x, y]) = [ J(x), J(y)] = [x−1, y−1] = [x, y], J acts onC2(N)=C3(N)
trivially.

Sincer 1−J = r J (r )−1 is also a generator ofR as a closed subgroup ofF , we may
assume that the following congruence holds true;

r ≡
{

([ , x1]x−3
1 )1−J mod C2(H ) in the case (I),

(
xpc

1 [ , x2]x−a
2

)1−J
mod C2(H ) in the case (II).

Let r ′ ∈ H be the element of right-hand-side in the above congruence. By Lemma 5.2,
one sees that

rr ′−1 ≡ J
(
rr ′−1)

= J(r )J(r ′)−1

= r−1r ′ mod C3(H ),

Thus r ≡ r ′ modC3(H ). Then the above congruence may be replaced by

r ≡
{

([ , x1]x−3
1 )1−J mod C3(H ) in the case (I),

(
xpc

1 [ , x2]x−a
2

)1−J
mod C3(H ) in the case (II).

(16)

The form of relationr of (16) shows that

Gk(p)=C3(Gk∞(p)) ≃
{

F=( x1−1x−8
1  x1−1)FC3(H ) in the case (I),

F
/(

xpc

1  x2−1x−2(a+1)
2  x2−1xpc

1

)
FC3(H ) in the case (II)

as pro-p groups. This completes the proof of Theorem 5.1.
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At the end of this section, we shall discuss whether the relation r is an unknown
relation or not.

Proposition 5.3. Let k = Q(
√
−m) be an imaginary quadratic field with a square-

free positive integer m and p an odd prime number. Then Gk(p) does not have an
unknown relation, namely, the product of restriction maps

'p : H2(Gk(p), Z=p)→
∏

p|p
H2(Gkp

(p), Z=p)

is injective, if and only if Gk(p) is free, or p = 3, 3 6= m≡ 3 mod 9and A′
Q(
√

3m)
= 0.

Proof. We need the following.

Lemma 5.3 (Proposition 7.3.10 and Theorem 7.5.8 of [14]).Let F=Qp be a fi-
nite extension.
(1) If F does not contain�p, then GF (p) is a free pro-p group of rank[F : Qp] + 1.
Otherwise, GF (p) is a Demuskin group of rank[F : Qp] + 2.
(2) H2(GF (p), Qp=Zp) = 0.

Let Up be the principal unit group ofkp with p | p. Note that #Ek is finite since
k is an imaginary quadratic field. By class field theory, we havethe following exact
sequence

0→ Ek ⊗ Zp→
∏

p|p
Up → Xk.

(See Section 13.1 of [18].) Hence
∏

p|p Up[ p] → Xk[ p] is injective unlessp = 3 and

m = 3. It follows thatUp[ p] ≃ (k×p ⊗ Zp)[ p] ≃ Gkp
(p)ab[ p] by class field theory and

that Gkp
(p)ab[ p] is the dual of H1(Gkp

(p), Qp=Zp)=p. This implies that the restric-
tion map

H1(Gk(p), Qp=Zp)=p→
∏

p|p
H1(Gkp

(p), Qp=Zp)=p

is surjective unlessp = 3 andm = 3. Applying the long exact sequence of cohomology

groups to the exact sequence 0→ Z=p→ Qp=Zp
p→ Qp=Zp→ 0, it follows that

H1(Gk(p), Qp=Zp)=p ≃ H2(Gk(p), Z=p), H1(Gkp
(p), Qp=Zp)=p ≃ H2(Gkp

(p), Z=p)

since H2(Gk(p), Qp=Zp) = H2(Gkp
(p), Qp=Zp) = 0 by Lemma 5.3. Therefore, we ob-
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tain the following commutative diagram;

where the vertical maps are the restriction maps. Thus'p is surjective unlessp = 3
and m = 3.

Suppose thatp≥ 5. Thenkp does not contain�p, whenceGkp
(p) is a free pro-p

group by Lemma 5.3. This implies that H2(Gkp
(p), Z=p) = 0, so that'p is injective

if and only if H2(Gk(p), Z=p) = 0, which is equivalent to the freeness ofGk(p).
Suppose thatp = 3. One can easily see that the completionkp of k = Q(

√
−m)

at a primep of k above 3 contains�3 if and only if m ≡ 3 mod 9. If m 6≡ 3 mod 9,
then kp does not contain�3 and henceGkp

(3) is a free pro-3 group. This implies that'3 is injective if and only if H2(Gk(3), Z=3) = 0 whenm 6≡ 3 mod 9.
Suppose thatp = 3 and m ≡ 3 mod 9. If k = Q(�3), then Gk(3) is a free pro-3

group by Theorem 4.1. Ifm 6= 3, then we see thatk has only one primep above 3,kp

contains�3 and that'3 is surjective. By Lemma 5.3,Gkp
(3) is a Demuskin group, so

that H2(Gkp
(3),Z=3)≃ Z=3. Hence'3 is injective if and only if H2(Gk(3),Z=3)≃ Z=3,

which is equivalent toA′
Q(
√

3m)
= 0 by (6).

By Proposition 5.3, the relation of the case (I) of Theorem 5.1 comes from the
relation of Demuskin groups. Actually, the form of relation(16) seems like the relation
of a Demuskin group. On the other hand, the relation of the case (II) does not come
from the relations of the Galois groups of local fields, whence it is a global object.

6. Examples

Here we give examples of Theorem 5.1 forp = 3. Let m = 21 or 129. Then
3 6= m ≡ 3 mod 9 andA′

Q(
√

3m)1
= 0. Thus the fieldsk = Q(

√
−m) with m = 21 or

129 satisfy the assumption of Theorem 5.1 (1). A difference of these fields is whether
the prime 3 divides the class numberhk of k or not. If m = 21, then 3∤ hk, and if
m = 129, then 3| hk.

Next, we give examples of Theorem 5.1 (2). Letm = 107, thenm≡ 8 6≡ 3 mod 9.
One can show thatAQ(

√
3m), AQ(

√
3m)1
≃ Z=3, and this implies thatX′!�K∞

≃ Z=3 by [2].
Hencec = 1 anda = 0. Here we give an example witha 6= 0, which is obtained by
Kraft and Schoof [11]. Letm = 1583. Then we have HomZ3(X

′!�
K∞

, Q3=Z3) ≃ 3=(T −
3, 27)≃ Z=27. Thus HomZ3(X

′!�
K∞

,�3∞ )≃ HomZ3(X
′!�
K∞

,Q3=Z3)(1)≃ (3=(T−3, 27))(1).
Since0((1 mod (T−3, 27))⊗ t1) = (1+T mod (T−3, 27))⊗0t1) = (4 mod (T−3, 27))⊗
4t1 = 16(1 mod (T − 3, 27))⊗ t1, we have HomZ3(X

′!�
K∞

, �3∞ ) ≃ (3=(T − 3, 27))(1)≃3=(T − 15, 27). Therefore,c = 3 anda = 15.
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