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Abstract
The International Maritime Organization developed the Second Generation Intact Stability Criteria (SGISC) with the objec-
tive of mitigating maritime incidents attributable to roll motion. Given that surf-riding precedes broaching, the SGISC 
uses vulnerability criteria for broaching based on surf-riding dynamics. The surf-riding threshold is derived by Melnikov’s 
method in the level-2 vulnerability criterion. In this paper, the authors discuss the uniqueness of the approximate analytical 
solutions to be used as the surf-riding threshold in the SGISC, based on the relationship between Melnikov’s analysis and 
its physical interpretation.  

Keywords  Surf-riding · Melnikov’s method · IMO second generation intact stability criteria · Unique solution

1  Introduction

The International Maritime Organization (IMO) developed 
the Second Generation Intact Stability Criteria (SGISC) 
with the objective of mitigating maritime incidents attribut-
able to roll motion. The interim guidelines for the SGISC 
were completed by the IMO’s Subcommittee on Ship Design 
and Construction in 2020 [1] and are currently undergo-
ing a trial period. The SGISC assesses five dynamic stabil-
ity failure modes, including dead ship condition, excessive 
acceleration, pure loss of stability, parametric rolling, and 
surf-riding/broaching. Among these failure modes, broach-
ing has been identified as a potential cause of sudden cap-
sizing, particularly for smaller and faster vessels, as docu-
mented in real-world cases by Saunders [2] and Andrew [3]. 
Broaching occurs when a ship cannot maintain a straight 
course despite maximum steering efforts, with the resulting 
centrifugal force causing a severe heel moment. Given that 
surf-riding precedes broaching, the SGISC uses level-1 and 
level-2 vulnerability criteria for broaching based on surf-
riding dynamics [1, 4]. In particular, the level-2 vulnerability 

criterion employs a surf-riding threshold, beyond which the 
ship falls into surf-riding regardless of the initial conditions. 
Throughout this paper, unless explicitly stated otherwise, 
the term “surf-riding threshold” specifically refers to this 
condition. For further theoretical details on the vulnerability 
criteria, refer to [5, 6].

The study of a threshold of surf-riding could be con-
sidered to start with Grim’s work [7], where he provided 
a physical description of the phenomenon. He argued that 
the surf-riding threshold can be defined as the condition in 
which a ship starts at an unstable equilibrium point with a 
speed equal to the wave speed, travels a full wavelength, and 
has once again reached a speed equal to the wave speed upon 
reaching the next unstable equilibrium point. Later, with the 
introduction of nonlinear dynamical systems theory into ship 
stability analysis, this surf-riding threshold was mathemati-
cally characterized as a heteroclinic bifurcation. Du Cane 
and Goodrich [8] realised surf-riding of a self-propelled ship 
model in a towing tank. Makov [9] substantiated Grim’s 
argument by illustrating surf-riding phase planes and dis-
covered that a self-propelled ship experiences surf-riding 
regardless of the initial condition with experimental valida-
tion once Grim’s threshold is satisfied. Utilizing the surf-
riding threshold is that a periodic attractor of an uncoupled 
surge model with linear thrust and resistance coincides with 
a separatrix loop, Kan [10] provided an analytical formula 
for estimating this threshold with a perturbation theory 
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starting from the Hamiltonian system, which consists of 
only the inertia and wave exiting terms, assuming that the 
damping term as well as the difference between the ship 
nominal speed and waved celerity are small. As reconfirmed 
by Maki et al. [6], this method is known as the Melnikov 
analysis [11, 12]. However, because of the linear thrust and 
resistance the accuracy of the proposed formula is limited. 
Thus, he also provided an empirically modified formula as 
well. Spyrou [13] further pointed out the notion that the 
surf-riding threshold corresponds to a global bifurcation. 
Spyrou [14] provided an exact analytical solution for the 
heteroclinic bifurcation of an uncoupled surge model with 
quadratic calm-water resistance. Umeda et al. [15] used a 
numerical method to directly obtain the heteroclinic bifurca-
tion point as the surf-riding threshold in regular following 
and stern quartering waves. Ananiev [16] analytically esti-
mated the surf-riding threshold as the loss of stable periodic 
surge motion in place of the emergence of the heteroclinic 
connection.

Later on, Melnikov’s method was implemented for esti-
mating the surf-riding threshold in the SGISC. Following 
Kan’s linear approach [10, 17], Spyrou [18] applied Melnik-
ov’s method to a surge model with cubic calm-water resist-
ance. Furthermore, Maki et al. [19, 20] extended these stud-
ies by applying Melnikov’s method to an uncoupled surge 
model with general polynomial calm-water resistances, 
determining the surf-riding thresholds, and validating these 
results through numerical bifurcation analysis and free-run-
ning model experiments. For further experimental validation 
of surf-riding estimates or the level-2 vulnerability criterion, 
refer to [21, 22]. Wu et al. [23] extended Melnikov’s method 
to handle large damping and forcing effects, improving the 
prediction accuracy of surf-riding thresholds compared to 
the standard method, although losing a closed-form solution.

The IMO adopted the method using quintic calm-water 
resistance for the level-2 vulnerability criterion [1, 4], 
recommending the use of a numerical iteration method to 
determine the surf-riding threshold derived by Melnikov’s 
method. However, this approach involves uncertainties 
regarding whether the numerical iteration yields a unique 
and convergent solution. Sakai et al. [24] remarked that the 
surf-riding threshold can instead be obtained as a solution 
to a quadratic equation when the propeller thrust coefficient 
is represented by a quadratic polynomial. Responding to 
their work, this quadratic equation approach was added to 
the explanatory notes to the SGISC [4], providing a way to 
eliminate the uncertainties associated with the numerical 
iteration method. However, since a quadratic equation could 
have two solutions, the uniqueness of the relevant solution 
should be discussed further. This study aims to prove the 
uniqueness of the approximate analytical solution derived 
using Melnikov’s method, where the propeller thrust coeffi-
cient is expressed as a quadratic polynomial, and to examine 

its physical interpretation within the SGISC framework. 
While a quadratic equation has two distinct real roots if the 
discriminant is positive, one repeated real root if the discri-
minant is zero, and no real roots if the discriminant is nega-
tive, only one physically meaningful surf-riding threshold 
should exist. Therefore, the quadratic equation determining 
the surf-riding threshold must always have a single positive 
real solution to be physically valid. The objective of this 
study is to demonstrate that this condition is invariably met 
under general conditions relevant to ship surf-riding, ensur-
ing consistency with physical reality.

The initial results of the investigation presented in this 
paper were previously described by Sakai et al. [24]. In this 
paper, the results are presented more extensively, with more 
details, and also with new remarks.

2 � Mathematical model of surf‑riding 
and surf‑riding threshold by Melnikov’s 
method

In this section, the authors briefly explain the level-2 vulner-
ability criterion for broaching in the SGISC. The uncoupled 
surge equation used is

Here, m is the mass of the ship, mx is the added mass in 
surge of the ship, �G is the relative position of the ship centre 
of gravity from a wave trough where the wave propagating 
direction is set as positive, R(u) is the calm-water resist-
ance as a function of the ship instantaneous forward speed 
u, Te(u;n) is the effective propeller thrust as a function of u 
and number of revolutions of the propeller(s) n, and Xw is 
the wave-induced surge force. In this equation, the variation 
in thrust due to the wave particle velocity and higher-order 
terms, such as the added resistance in waves, are ignored.

When a ship surf-rides a wave at �G = �G, SR , the ship runs 
at the same speed as the wave celerity cw , and the resistance, 
effective thrust and wave-induced surge force are balanced. 
In other words, the existence of n satisfying Eq. 2 is a neces-
sary condition for surf-riding.

Note that surf-riding could occur regardless of the initial 
conditions if n is in a certain range, and the boundaries of 
this range correspond to global bifurcation points, known as 
the heteroclinic bifurcation points. In the level-2 vulnerabil-
ity criterion, the ship is considered vulnerable to broaching 
if n exceeds ncr . Here, ncr represents the lower value among 
the revolution numbers of the propeller(s) that correspond to 
the two heteroclinic bifurcation points. The schematic view 

(1)
(
m + mx

)
𝜉G +

[
R(u) − Te(u;n)

]
− Xw

(
𝜉G
)
= 0

(2)−R
(
cw
)
+ Te

(
cw;n

)
+ Xw

(
�G, SR

)
= 0
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of bifurcations in Eq. 1 with respect to n and their relevance 
to the level-2 vulnerability criterion are illustrated in Fig. 1.

Melnikov’s method is used to obtain the heteroclinic 
bifurcation point, which is the surf-riding threshold. It is 
an approximate analytical method for obtaining homo-
clinic or heteroclinic orbits in nonlinear dynamical sys-
tems. Maki et al. [19] derived the equations of ncr using 
Melnikov’s method. They approximated R(u) and Te(u;n) 
with Nth-degree polynomials of u and J as

Here, wp is the effective wake fraction, tp is the thrust deduc-
tion coefficient, � is the density of the fluid, D is the pro-
peller diameter, J is the advance coefficient and KT(J) is 

(3)R(u) =

N∑
i=0

riu
i

(4)J(u;n) =

(
1 − wp

)
u

nD

(5)KT (J(u;n)) =

N∑
i=0

�iJ(u;n)
i

(6)

Te(u;n) =
(
1 − tp

)
�n2D4KT (J(u;n))

=

N∑
i=0

�i
(
1 − tp

)(
1 − wp

)i
�D4−in2−iui

the propeller thrust coefficient as a function of J. Here, u is 
calculated as

Assuming

Here, f is the amplitude of the wave-induced surge force, k is 
the wave number calculated as 2�

�
 , and � is the wavelength. 

Substituting Eqs. 3 and 6 to 8 into Eq. 1 yields

where

Here, 
(
i

j

)
 indicates the binomial coefficient. Putting

yields

where

The Hamilton part of Eq. 13 is

and the trajectory that connects y = ±� on the lower side of 
the vector field is

Maki et al. [19] obtained the Melnikov function M(n) by 
approximating the heteroclinic orbit by the trajectory given 
by Eq. 16 as

(7)u = cw + ̇𝜉G

(8)Xw ≃ −f sin
(
k�G

)

(9)

(
m + mx

)
𝜉G +

N∑
i=1
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i

j

)
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(
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+ sin y =
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(
cw
)

f

(14)Cij
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) j
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d�
= −2 cos

( y
2
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Fig. 1   Schematic view of bifurcations in Eq. 1 with respect to n and 
their relevance to the level-2 vulnerability criterion
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Substituting Eq. 16 into Eq. 17 and changing variables yield

where

Here, Γ indicates the Gamma function.
R(u) and KT(J) are approximated by quintic and quadratic 

polynomials, respectively, in the level-2 vulnerability crite-
rion. The calm-water resistance coefficient, normalised with 
the square of ship speed, covering the Froude number for the 
“last hump” can be represented by a cubic polynomial. The 
thrust coefficient can be modeled with a quadratic polynomial 
based on a blade element theory. Therefore, N = 5 and �i = 0 
for i = 3, 4, 5.

3 � Derivation of quadratic equation 
for the surf‑riding threshold

As mentioned in Sect. 2, KT(J) is often approximated by a 
quadratic polynomial in the field of naval architecture, namely,

In the context of surf-riding, it is reasonable to assume 
u, n ∈ ℝ≥0 , and in this region, the values of �i are such that

�0 should be positive because KT should be positive when 
J = 0 , that is, u = 0 and n > 0 . �2 should be negative because 
�2 should represent the KT reduction when J is large enough. 
Then, Eq. 6 can be rewritten as

where

(17)

M(n) ≜ �
∞

−∞

�
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(
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f
−
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)j
)
d�

(18)2�
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− R
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� y
2

�
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Γ
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2

�

Γ
�
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2

�

(20)�i = 0 (i ≠ 0, 1, 2)

(21)𝜅0 >0

(22)𝜅2 <0

(23)Te(u;n) = �0n
2 + �1nu + �2u

2

(24)𝜏0 =𝜅0
(
1 − tp

)
𝜌D4 > 0

(25)�1 =�1
(
1 − tp

)(
1 − wp

)
�D3 EMPTY

Assuming N > 2 , Eq. 10 becomes

The right-hand side of Eq. 18 can be rewritten as

As a result of assuming KT(J) is quadratic, the right-hand 
side of Eq. 18 becomes a 1st-degree polynomial of ncr , and 
the left-hand side of Eq. 18 becomes a 2nd-degree poly-
nomial of ncr . Therefore, the surf-riding threshold can be 
estimated using a quadratic equation as

Note that the above discussion in this section is independent 
of the degree of the polynomial of the calm-water resistance 
R(u).

In the level-2 vulnerability criterion, the vulnerability to 
broaching is examined setting N = 5 . Therefore, Eq. 29 can 
be rewritten as

(26)𝜏2 =𝜅2
(
1 − tp

)(
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)2
𝜌D2 < 0
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where

Eq. 30 can be rewritten as

by putting

(30)

2�
Te
(
cw, ncr

)
− R

(
cw
)

f

+ 8a0ncr + 8a1 − 4�a2 +
64

3
a3 − 12�a4 +

1024

15
a5 = 0

(31)
a0 = −

�1√
f k

(
m + mx

)

(32)a1 =
r1 + 2r2cw + 3r3cwEMPTY2 + 4r4cwEMPTY3 + 5r5cwEMPTY4 − 2�2cw√

f k
(
m + mx

)

(33)

a2 =
r2 + 3r3cw + 6r4cwEMPTY2 + 10r5cwEMPTY3 − �2

k
(
m + mx

)

(34)a3 =
r3 + 4r4cw + 10r5cwEMPTY2

�
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�
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�3
√
f

(35)a4 =
r4 + 5r5cw
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(
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)2 f

(36)
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r5�
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�
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�5
√
f 3

(37)m2ncrEMPTY2 + m1ncr + m0 = 0

(38)
m0 =2�

�2cwEMPTY2 − R
(
cw
)

f

+ 8a1 − 4�a2 +
64

3
a3 − 12�a4 +

1024

15
a5

(39)m1 =2�
�1cw

f
+ 8a0

(40)m2 =2�
�0

f

4 � Physical interpretation of Melnikov’s 
method for surf‑riding threshold

Substituting Eq. 7 into Eq. 1 yeilds

and this can be re-written as

(41)
(
m + mx

)
𝜉G +

[
R(u) − Te(u;n)

]
+ f sin

(
k𝜉G

)
= 0

Putting Eqs. 11 and 12 nondimensionalizes Eq. 42 as

Here, u is still used in Eq. 43 in order to make the following 
discussion clear. The Hamilonian part of Eq. 43 is Eq. 15, 
and the trajectory that connects y = ±� on the lower side of 
the vector field is Eq. 16. Figure 2 shows the schematic view 
of the heteroclinic orbit of Eq. 43.

Here, X0,X1 ∈ ℝ
2 are saddle-type equilibria (unstable surf-

riding), and Γ0 , which connects X0 and X1 , is the heteroclinic 
orbit. The Melnikov function that is obtained by Maki et al. 
[19] (Eq. 17) is equivalent to

This is because Eq. 17 is obtained by performing Taylor’s 
expansion around u = cw applied to the integrand of Eq. 44 
after polynomial approximation given in Eqs. 3 and 6. In 
this integral, the integration interval represents that the 

(42)
1√
fk

m+mx

2
k𝜉G +

R(u) − Te(u;n)

f
+ sin

(
k𝜉G

)
= 0

(43)
d2y

d�2
+ sin y =

Te(u;n) − R(u)

f

(44)M(n) = ∫
∞

−∞

�

(
Te(u;n) − R(u)

f

)
d�

Fig. 2   Schematic view of heteroclinic orbit
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heteroclinic orbit takes infinite time, and the integrand is 
proportional to the power generated by Te and R. Under the 
surf-riding, the ship complies with Eq. 2. Substituting Eq. 8 
into Eq. 2 yields

If n is enough large to satisfy Eq. 45, the unstable surf-riding 
Xl (l is an integer) is

Since the potential energy due to f sin
(
k�G

)
 at the unstable 

equilibria is the same, the net work done by the calm-water 
resistance R and the effective propeller thrust Te must be 
balanced along the heteroclinic orbit. This balance is formu-
lated in Melnikov’s method, where the surf-riding threshold 
is obtained as the critical propeller revolution number ncr 
that satisfies this condition. Therefore, ncr is derived as the 
solution of M

(
ncr

)
= 0.

Substituting Eq. 16 into Eq. 47, changing variables, and 
dividing the both-sides with −2� yield

The ship instantaneous forward speed u used for the integral 
in Eq. 48 is defined by Eq. 7 and is transformed in the frame-
work of Melnikov’s method as

Based on the linear deep-water dispersion relation, cw is

Here, g is the gravitational acceleration.

5 � Uniqueness of the surf‑riding threshold

This section demonstrates the uniqueness of the surf-riding 
threshold in the framework of Melnikov’s method. First, 
the authors start with the quadratic KT(J) , which is adopted 

(45)−R
(
cw
)
+ Te

(
cw;n

)
− f sin

(
�G, SR

)
= 0

(46)Xl =

(
𝜉G, SR
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(
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f
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− 2𝜋l
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1
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−�

R(u)dy
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√
f
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(
m + mx

) dy
d𝜏

= cw − 2

√
f

k
(
m + mx

) cos
( y
2

)

(50)cw =

√
g

k

in the level-2 vulnerability criterion for broaching in the 
SGISC. Substituting Eq. 23 into Eq. 48 yields

The left-hand side is the quadratic function with ncr . Since 
the following definite integrals with respect to y are calcu-
lated as

Equation (51) is rewritten as

Since �0 is positive as shown in Eq. 24, and since �2 is nega-
tive as shown in Eq. 26, the left-hand side is a convex down-
ward quadratic function that is negative when ncr is zero. The 
schematic view of the solution of Eq. 55 is shown in Fig. 3 
as the crossing points of the quadratic function (the left-hand 
side of Eq. 55) and the straight line (the right-hand side of 
Eq. 55). Obviously, Eq. 55 has two distinct real roots, one 
positive and the other negative if

However, when ncr is negative and u is positive, that is, 
adverse rotation of the propeller with the ship moving for-
ward, the effective thrust of the propellers becomes nega-
tive and the KT for n ∈ ℝ≥0 is ineffective. Therefore, Eq. 55 
always has a unique real ncr regardless of the value of �1.

In the level-2 vulnerability criterion, the surf-riding 
threshold ncr can be derived from Eq. 37 and is given by

(51)

1
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In the above discussion, it was demonstrated that the surf-
riding threshold can be uniquely determined if the KT is 
approximated under the condition of n > 0 and Eq. 56.

Further discussion of the equivalent wave condition 
under which the unique surf-riding threshold is given is 
provided in the appendix, and it is confirmed that Eq. 56 
is satisfied in most waves.

6 � Physical interpretation of the uniquness 
of the surf‑riding threshold

The relationship between Te and R(u) , as stated in Eq. 48, 
is used to discuss the physical interpretation of the unique 
surf-riding threshold. In the context of surf-riding, it is 
reasonable to assume u, n ∈ ℝ≥0 . Under these conditions, 
Te can be assumed to have the following properties. 

1.	 Te increases monotonically with n.
2.	 When n = 0 , Te has a negative finite value.

From the Sect. 5, the definite integral for the resistance 
on the right-hand side of Eq. 48 is constant with n. From 
the first point, the definite integral on the left-hand side of 
Eq. 48 increases monotonically with respect to n. The sec-
ond point corresponds to the fact that the propeller generates 
a negative finite thrust when u > 0 and n = 0 . Therefore, 
Eq. 48 always has a unique positive solution. The schematic 

(57)ncr =
−m1 +

√
m1EMPTY2 − 4m0m2

2m2

view is shown in Fig. 4. Although 1
2�

∫ �

−�
Te(u;n)dy does not 

always increase monotonically with small n in Fig. 3, this 
is simply due to the quadratic fitting of KT with respect to J.

7 � Conclusions

The authors discussed the uniqueness of the approximate 
analytical solution of the surf-riding threshold in the SGISC. 
The authors interpreted Melnikov’s method in physical 
terms, viewing it as a balance between the work done by the 
effective thrust and resistance, and found that 

1.	 the surf-riding threshold ncr is obtained as the solution 
of a quadratic equation when KT is expressed as a quad-
ratic function of J as adopted in SGISC, which has two 
distinct real roots, one positive and the other negative;

2.	 the positive root is the unique surf-riding threshold if the 
right-hand side of Eq. 55 is positive;

3.	 in most of waves, the right-hand side of Eq. 55 is posi-
tive; and

4.	 the above does not depend on the approximation of the 
calm-water resistance R.  

Appendix (Limiting Wave Steepness)

The unique surf-riding threshold is given when Eq. 56 is sat-
isfied under Eq. 49 in the framework of Melnikov’s method. 
Since the right-hand side of Eq. 56 is negative,

Fig. 3   Schematic view of the unique real solution of Eq. 55 Fig. 4   Schematic view of the unique real solution of Eq. 48
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can be considered as the sufficient condition of Eq. 56. It is 
obvious that Eq. 58 is satisfied when u > 0 along the het-
eroclinic orbit because R(u) > 0 for all u > 0 . From Eq. 49, 
The minimum value for u along the heteroclinic orbit occurs 
when

This provides the condition

Rearranging this inequality for f using Eq. 50 results in

In steep waves where the inequality in Eq. 61 no longer 
holds, u < 0 occurs at some point on the heteroclinic orbit. 
Since R(u) < 0 for all u < 0 , Eq. 58 is roughly equivalent 
to the mean ship speed on the heteroclinic orbit �[u] being 
positive. Rearranging �[u] for f using Eq. 50 results in

Let fR0 be defined as the amplitude of the wave-induced 
surge force that satisfies the following equation:

In reality, the calm-water resistance would be larger for 
u < 0 than for u > 0 , so fR0 is considered to satisfy the fol-
lowing inequality:

In the following discussion, the authors investigate the 
limiting wave steepness at which Eq. 58 is satisfied, which 
means that the sufficient condition for the uniqueness of the 
approximate analytical solution derived using Melnikov’s 
method is met. This examination is based on Eq. 64, which 
provides the basis for determining the constraints on the 
wave-induced surge force. In the SGISC, the wave-induced 
surge force is calculated as the Froude–Krylov force. There-
fore, its amplitude is calculated as

(58)∫
𝜋

−𝜋

R(u)dy > 0

(59)cos
( y
2

)
= 1

(60)u > cw − 2

√
f

k
(
m + mx

)

(61)f <
1

4

(
m + mx

)
g

(62)f <
𝜋2

16

(
m + mx

)
g

(63)∫
�

−�

R(u)dy = 0

(64)1

4

(
m + mx

)
g < fR0 <

𝜋2

16

(
m + mx

)
g

where

Here, � is the correction factor due to the diffraction effect, 
H is the wave height, x is the body-fixed coordinate sys-
tem along the longitudinal direction ( x = 0 indicates the 
midship), S is the area of the submerged portion at x and 
d is the draught at x. In the vulnerability criterion of the 
SGISC, the diffraction effect on the wave-induced surge 
force is neglected and is simply considered as � = 1 . For 
operational guidance, the explanatory notes to the SGISC 
suggest numerical estimation of � or the use of experimental 
correction factor [4, 22] as

In simple terms, the value is almost � = 0.7 for the opera-
tional guidance.

An upper bound on f is considered with maximised wave 
slope acting on each submerged section as

Since mx ≃ 0.1m , Eq. 70 can be rewritten as

As a result, Eqs. 61 and 62 is almost equivalent to the fol-
lowing wave condition

(65)
f = � ⋅ �gk

H

2

√
FcEMPTY2 + FsEMPTY2

= � ⋅ ��g
H

�

√
FcEMPTY2 + FsEMPTY2

(66)Fc = ∫ S(x) sin (kx)e−k
d(x)

2 dx

(67)Fs = ∫ S(x) cos (kx)e−k
d(x)

2 dx

(68)m = �∫ S(x)dx

(69)

𝜇 =

⎧⎪⎨⎪⎩

1.46Cb − 0.05
�
Cm < 0.86

�
�
5.76 − 5.00Cm

�
Cb − 0.05

�
0.86 ≥ Cm ≥ 0.94

�
1.06Cb − 0.05

�
Cm > 0.94

�

(70)
f < 𝜇 ⋅ 𝜋𝜌g

H

𝜆 ∫ S(x) ⋅ 1 ⋅ 1dx

= 𝜇 ⋅ 𝜋
H

𝜆
mg

(71)f < 𝜇 ⋅

4𝜋

1.1

H

𝜆
⋅

1

4

(
m + mx

)
g

(72)f < 𝜇 ⋅

16

1.1𝜋

H

𝜆
⋅

𝜋2

16

(
m + mx

)
g



Journal of Marine Science and Technology	

Therefore, the wave condition for 
(

H

�

)
R0

 where Eq. 63 is 
satisfied is

In the vulnerability criterion, the maximum wave steepness 
is 0.15 ≃ 1∕6.67 . Therefore, there is the possibility that 
u < 0 . However, Eq. 56 is usually satisfied.

(73)

𝜇⋅
4𝜋

1.1

H

𝜆
< 1

⇒

{
H

𝜆
<

1

11.4
(𝜇 = 1, vulnerability criterion)

H

𝜆
<

1

8.00
(𝜇 = 0.7, operational guidance)

(74)

𝜇⋅
16

1.1𝜋

H

𝜆
< 1

⇒

{
H

𝜆
<

1

4.63
(𝜇 = 1, vulnerability criterion)

H

𝜆
<

1

3.24
(𝜇 = 0.7, operational guidance)

(75)

⎧⎪⎨⎪⎩

1

11.4
<

�
H

𝜆

�
R0

<
1

4.63
(𝜇 = 1, vulnerability criterion)

1

8.00
<

�
H

𝜆

�
R0

<
1

3.24
(𝜇 = 0.7, operational guidance)

Appendix (Sample Calculations)

Sample calculations were conducted using a 34.5m-long 
fishing vessel. The necessary data for the calculation were 
provided in Sect. 6, “Example of assessment of ship vul-
nerability to surf-riding/broaching,” in Appendix 2 of the 
explanatory notes to the SGISC [4] (Tables 1 and 2). Here, 
LCB is the longitudinal position of the centre of buoyancy. 
In the level-2 vulnerability criterion for broaching in the 
SGISC, Eq. 65 is calculated by using the discretized form 
of Eqs.  (66) and (67) with coefficients shown in Table 2.

Table 1   Principal particulars and coefficients for calm-water resist-
ance and effective propeller thrust of the 34.5m-long fishing vessel

Item Value Unit

Length between perpendiculars 34.5 m
Breadth 7.6 m
Draught 2.65 m
Trim 0.30 m
LCB (aft from the midship) 1.31 m
Block coefficient 0.597
Service speed in Fn 0.40
D 2.60 m
tp 0.142
wp 0.156
m

x
∕m 0.0667

r0 0 -
r1

−4273.53 N s∕m

r2 7491.11 N s2∕m2

r3
−2668.12 N s3∕m3

r4 408.20 N s4∕m4

r5
−17.005 N s5∕m5

�0 0.2244
�1 −0.2283
�2 −0.1373

Table 2   S(x) and d(x) of the 
34.5m-long fishing vessel

x [m] S(x) [ m2] d(x) [m]

−21.65 0.00E + 00 0
−20.55 1.85E + 00 0.448703
−19.45 2.61E + 00 0.539137
−18.35 3.28E + 00 0.629572
−17.25 3.88E + 00 0.715006
−15.53 5.40E + 00 1.275049
−13.8 7.82E + 00 3.255005
−12.075 1.04E + 01 3.175004
−10.35 1.28E + 01 3.105004
−6.9 1.61E + 01 2.955002
−3.45 1.76E + 01 2.800001
0 1.71E + 01 2.65
3.45 1.58E + 01 2.499999
6.9 1.38E + 01 2.354998
10.35 1.04E + 01 2.199996
12.075 8.00E + 00 2.134996
13.8 5.24E + 00 2.044995
15.525 2.86E + 00 1.959995
17.25 1.17E + 00 1.794994

Fig. 5   Numerical examples indicating the unique real solution of 
Eq. 48 where s represents the wave steepness
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The calculation results corresponding to Fig.  3 are 
presented in Fig. 5 for the cases of the wavelength to a 
ship length ratio of 1.0 and the wave steepnesses of 0.03 
and 0.15. It is clearly observed that the left-hand side of 
Eq. 55 does not change significantly with respect to the 
wave steepness, while the decrease on the right-hand side 
of Eq. 55 mainly causes the surf-riding threshold to shift 
to the lower side of the propeller revolution number.
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