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Abstract
An idealized explicit finite element method is efficient to analyze mechanical behaviors of large-scale welded structures. A 
numerical model combining Norton’s law, ductile exhaustion law, and Manson-Coffin’s law was developed for the prediction 
of creep-fatigue life of a welded pipe system under complex bending-torsion loading. Its validity was verified by comparing 
predicted creep-fatigue life with the experimental one.
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1  Introduction

With the spread of clean energy, thermal power plants will be 
used as a load-following power plant; temperature and strain 
variations will occur during load fluctuations, including 
start and stop, and large-diameter pipes may suffer the risk 
of damage from creep-fatigue. To evaluate the creep-fatigue 
induced risk, Javanroodi et al. [1] analyzed creep-fatigue 

crack propagation behavior from a fracture mechanics per-
spective. Li et al. [2] investigated cyclic damage behavior at 
high temperatures. Tang et al. [3] proposed a new damage 
model for G115 steel. Nandha Kumar et al. [4] evaluated 
microstructural changes and creep rupture properties in dis-
similar welded joints. Song et al. [5] studied the effects of 
loading modes on creep-fatigue behavior and developed a 
dislocation-based viscoplastic model. However, all these 
studies are based on a simple uniaxial loading condition. 
Practically, the external load may include thermal load, 
internal pressure, bending, torsion, and their combinations. 
Especially, predicting the creep-fatigue life of the large-scale 
welded pipe structure subjected to the complex bending-tor-
sional loading is strongly expected by thermal power plants.

2 � Finite element models for creep‑fatigue 
analysis

Figure 1a, b, and c show a practical pipe structure in a ther-
mal power plant, analysis flow, and a welded pipe joint, 
respectively. Solid elements were employed for both the 
pipe structure and welded pipe joint. The total length of the 
pipe structure is about 200 m. The outer and inner diameters 
are 609.6 mm and 529.6 mm, respectively. The thickness 
of the pipe is 40 mm. The constraint and support positions 
are marked in Fig. 1a. Figure 1b shows the analysis flow 
using an idealized explicit finite element method acceler-
ated by GPU parallel processing [6]. To improve computing 
efficiency, three levels of mesh were employed and results 
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were mapped among them [7]. Figure 1c shows the detailed 
mesh in the locally small-scale welded pipe joint.

The width of welded metal (WM) and heat-affected zone 
(HAZ) are 28.8 mm and 3.0 mm, respectively. The minimum 
element size in WM and HAZ is 1.0 mm. The largest ele-
ment size in base metal (BM) away from WM and HAZ is 
about 100 mm. The total elements and nodes are 354,972 
and 429,628, respectively.

Figure 2 shows the experiment setup of creep-fatigue test 
under bending-torsion loading [7, 8]. The length of the welded 
pipe is 870 mm, and its thickness is 5 mm. The center zone 
with a length of 300 mm was heated to 650 ℃. The load-
ing force is applied at two positions where their distance is 
400 mm. Clamping jigs are mounted to the two edges of the 
pipe. The left corner of the bottom jig and the right corner of 
the upper jig are constrained to allow the twisting deformation.
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Fig. 1   a Practical pipe structure in a thermal power plant, b analysis flow, and c welded joint model
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To analyze the creep-fatigue damage, the finite element 
model for simulation was developed as shown in Fig. 3 [7, 
9]. The pipe thickness and length of the finite element analy-
sis model are 5 mm and 900 mm, respectively. The distance 
of 4-point bending loading positions is 500 mm larger than 
the experimental case, which does not influence the bending 
moment on the welded zone. The mesh in the welded metal, 
with a width of 16 mm, and HAZ, with a width of 4 mm, is 
zoomed for easy viewing of the element size.

The temperature dependence of material mechanical 
properties in the weld pipe (2.25Cr-1Mo) used in weld-
ing residual stress analysis is shown in Fig.  4 [7]. The 
yield stress of base metal and HAZ at room temperature 
is 550 MPa. The yield stress of welded metal is 870 MPa 
at room temperature and higher than that of BM and HAZ, 
which is 550 MPa. The yield stress of BM, HAZ, and WM 
at temperatures higher than 700 ℃ decreases to 10% of its 
value at room temperature. The Young’s modulus at room 
temperature is 206 GPa and decreases gradually with the 

Fig. 2   Experimental setup 
for creep-fatigue test under 
bending-torsion loading
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increase in temperature The thermal expansion coefficient 
at room temperature is about 1.8E − 05 and increases slowly 
with the increase in temperature. The density and Pois-
son’s ratio are assumed to be constant and independent of 
temperature.

The creep strain increment is defined by Eq.  (1) fol-
lowing Norton’s Law. The related parameters for BM, 
WM, and HAZ at the working temperature 650  °C are 
shown in Table  1. The magnitude of parameter A is 
1.31 × 10−16 MPa−4.39 s−1, 1.02 × 10−14 MPa−4.41 s−1, and 
3.37 × 10−17 MPa−4.39 s−1 for BM, HAZ, and WM, respec-
tively. The creep strain rate in HAZ is about 1000 times 
higher than that in BM and WM. The high creep rate in HAZ 
is related to grain coarsening and altered carbide precipita-
tion in welding thermal cycles.

Figure  5 shows the cyclic loading curve in which 
dynamic loading, static holding, and unloading processes 
are included.

Based on the equation proposed by Rice and Tracy, the 
creep damage value Dc due to one cycle and damage limit 
strain εf are, respectively, defined by Eqs. (2) and (3) [7, 8]. 
The parameter h is stress triaxiality, and the material con-
stant Z is 5.0 for pipe steel 2.25Cr-1Mo.

The fatigue failure cycle is expressed by Df based on 
Manson-Coffi’s law (Eq. 4) at an applied stress range σa. 
Since the bending-tortional stress state is complicated, von 
Mises equivalent stress is here employed. The material 
constant a and b for 2.25Cr-1Mo pipe steel are a = 0.3506, 
b = 12,508.2. Strictly, these parameters in BM may differ 
from the weld metal (WM) and heat-affected zone (HAZ) 

(1)Δ−C
�

= A−n
�
Δt

due to welding thermal cycles and microstructural changes. 
Currently, there is insufficient fatigue test data specific to the 
HAZ and WM. Therefore, the same parameters a and b are 
here used as representative values. Then, the creep-fatigue 
life N can be predicted using Eq. (5).

The stress and deformation due to bending-torsion load-
ing in the experimental welded pipe model are analyzed 
using the developed FE model shown in Fig. 3, and the 
results are shown in Fig. 6 [7, 8].

The creep strain and equivalent stress in WM, HAZ, and 
BM predicted by the developed FE model are shown in 
Fig. 7 [7, 9]. The creep strain is largest in HAZ, indicating 
that special attention needs to be paid. Through large num-
bers of FE analyses, the creep-fatigue life and its distribu-
tion from 103 to 108 cycles under various bending-torsion 
loading conditions are predicted and presented in Fig. 8[7, 
10]. The broken lines in Fig. 8 show the same creep-fatigue 
life. Compared with the pure bending and pure torsion, the 
creep-fatigue life under the mixed bending-torsion loading 
becomes shorter.

The comparison between predicted and experimentally 
measured creep-fatigue life is shown in Fig. 9 [7, 10]. It 
can be seen that the good prediction accuracy was obtained.

(2)Dc = Δ�
c
∕�f

(3)�f = Zexp

[

(1 − h)

2

]

(4)Df =

(

b

�a

)
1

a

(5)N =
1

Df + Dc

Table 1   Parameters of Norton’s law for creep strain rate at 650 °C

Base metal HAZ Weld metal

A n A n A n

1.31 × 10−16 4.39 1.02 × 10−14 4.41 3.37 × 10−17 4.39

Fig. 5   Cyclic loading curve 
with load holding
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Fig. 7   Cyclic loading induced a creep strain and b equivalent stress in WM, HAZ, and BM
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3 � Conclusions

(1)	 With the aid of finite element analysis on a large-scale 
welded pipe structure under bending-torsion loading, 
the creep-fatigue damage index was proposed.

(2)	 The predicted creep-fatigue life under bending-torsion, 
and its good accuracy, was validated by experiment.

(3)	 The welding-induced HAZ has a shorter creep-fatigue 
life than that of weld metal and base metal of 2.25Cr-
1Mo steel welded pipe.

(4)	 Creep-fatigue life map under the combined bending-
torsion loading was obtained. The creep-fatigue under 
bending-torsion loading induced shorter creep-fatigue 
life than pure bending and pure torsion.

(5)	 Predicted strains on the practical welded pipe structure 
were consistent with measured ones by strain gauges.

Although the creep-fatigue life was well predicted, it 
is still necessary to improve its accuracy. For example, 
mechanical properties and microstructures in HAZ need to 
be investigated by experiments. Additionally, the influence 
of residual stress on creep-fatigue life can be important. In 
the future, multi-scale analysis for the creep-fatigue life with 
consideration of residual stress and microstructure can be 
one of the significant approaches.
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