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ABSTRACT

This study develops a solution to the distributed SE(d) formation control problem of multi-agent systems using only relative
measurements between agents. In this problem, poses, that is, orientations and positions, of the agents are expected to achieve
desired ones. We assume that each agent can only measure its neighbors’ relative poses, and that communication between agents
is unavailable. To address this problem, a fully distributed and relative controller is proposed to ensure achieving the control
objective. We employ the gradient-flow method with a clique-based objective function to achieve the best performance of the
distributed, gradient-based controller. Subsequently, a network condition for achieving this objective is the connectedness. The
proposed method ensures the stationary center of the agents and the minimum undesired equilibrium set, yielding short travel
distances and a large attraction region, respectively. Furthermore, the proposed method outperforms the existing methods as evi-
denced by simulations in a two-dimensional space. In addition, the effectiveness of the proposed method is verified through a
three-dimensional simulation. The proposed method shows potential for applications in drone swarm coordination, autonomous
underwater vehicle formation, and mobile robot collaborative transportation when only local sensing is available while commu-
nication is limited.

1 | Introduction by the sensing capability [3-6]. In the case of distance-based

formation control, inter-agent distances are prescribed as a

A multi-agent system, comprising multiple decision-making
agents, performs various tasks in a shared environment, such as
collaborative surveillance and automated factories [1, 2]. In many
scenarios, the agents must form a designated formation to manip-
ulate an object collaboratively, to survey an unknown area, or for
other tasks.

Formation control aims at driving agents to achieve prescribed
constraints on their positions under limited information caused

desired formation. Agents are assumed to be able to sense
only relative positions with regard to their neighbors [6]. To
achieve the distance-based formation, the network topology
between the agents must be rigid [7-9]. However, only the
local convergence is ensured over rigid graphs when using the
distance-based method. Moreover, undesired formation patterns
may be obtained such that a part of the formation is flipped from
the desired one. In contrast, [10, 11] proposed a new formation
control scheme, referred to as clique-based formation control,
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wherein cliques (i.e., complete subgraphs) were used to compute
the control input, instead of using edges as conventional meth-
ods. This method overcomes the issue of undesired formation
patterns, that s, flipping, of the distance-based formation control.

Several existing studies on the coordination problems of
multi-agent systems address orientation control problems and
pose formation control problems, involving both orientation and
position control. They have a wide range of applications, such as
multiple satellites for remote earth estimation [12], cooperative
monitoring [13] and so forth. Orientation control problems have
been investigated in [14-18]. References [14, 15] solved a dis-
tributed orientation synchronization problem for fixed/switched
topologies, respectively, in both absolute and relative measure-
ment cases. In the latter case, the initial orientation discrepan-
cies are assumed to be less than 7 /2. Reference [16] proposed
an energy-based orientation controller with alignment over a
strongly connected graph, possibly with delay, which also has
the same limitation of the initial orientation discrepancies. Refer-
ences [17, 18] proposed orientation control ensuring the almost
global attraction. By combining orientation control with conven-
tional formation control, pose formation control can be achieved.
However, this approach does not handle the travel distances of
the agents because orientation is controlled without feedback of
positions, while the formation controller refers to orientations
to determine the direction, which causes the drift of the agents.
Consequently, the agents will travel long distances before con-
vergence. On the other hand, the pose formation control was
studied in [19-29]. References [19-21] proposed methods to esti-
mate orientations to ensure global pose control, and [22] pro-
posed a distributed control method with position estimation.
These methods with estimation rely on network communica-
tion to exchange their estimations, which may suffer from radio
interference and packet loss. As for communication-free pose for-
mation control, [23, 24] considered dynamical multi-agent sys-
tems under an uncertain model/disturbance over a directed tree
graph. Reference [25] also assumed a directed tree graph. Meth-
ods over a (directed) tree graph are not robust to the connection
loss because if a part of the graph is broken, certain agents will be
left behind. As for a more general graph, [26] considered a uni-
formly connected switching graph for agents in two-dimensional
space, while [27] considered three-dimensional space. Reference
[28] proposed a pose formation control method over a connected
graph with the consideration of a vision image. Reference [29]
treated kinetic models of agents over a delay graph. These pose
formation control methods have the same issue to the combi-
nation of the position and orientation control methods; that is,
orientations are controlled without feedback on positions, result-
ing in long travel distances. Furthermore, most approaches have
a limit on initial orientation discrepancies. The bearing-based
approach has been taken for pose formation control [30, 31]. The
prescribed formation is given by the bearing and orientation of
the agents, and the prescription of the formation is less than that
of our target, the pose (position and orientation).

Therefore, it is still significant to design a distributed pose forma-
tion controller only with relative measurements that do not need
network communication to ensure (i) short travel distances of the
agents and (ii) a large attraction region. To obtain both proper-
ties, we employ the gradient-based method with a clique-based

objective function involving orientation and position discrepan-
cies. The important property of clique-based objective functions
is that a gradient-based controller is distributed if and only if
its objective function is clique-based [10]. Hence, a distributed
gradient-based controller can perform the best only if it is based
on clique-based functions, not edge-based functions. The pro-
posed method performs the best in that the volume of the unde-
sired equilibrium set is the smallest among gradient-based meth-
ods. Gradient-based methods generally provide undesired equi-
librium points, where the formation is not achieved while the
objective function is minimized. Because of the minimum unde-
sired equilibrium set, the proposed method is expected to pro-
vide (ii) a large attraction region. Furthermore, the proposed
clique-based controller involves not only orientation but also
position discrepancies among cliques to determine control input.
This structure ensures the efficient movement of the agents by
restraining drift, which keeps the center of the agent positions
stationary and consequently leads to (i) short travel distances.
In contrast, conventional edge-based controllers do not restrain
drift, causing unnecessary movement and resulting in longer
travel distances. Notably, this article first provides a theoretical
evaluation of drift in pose formation control and shows that our
method minimizes drift by incorporating orientation and posi-
tion discrepancies across cliques.

First, we formulate the pose formation control problem by pro-
viding the discrepancy between the current and desired poses
over SE(d), that is, the special Euclidean space. Subsequently,
we construct a clique-based objective function to evaluate the
pose errors, that is, the orientation and position discrepancies
in a unified way. Thereafter, a distributed controller is designed
from the gradient of the function, requiring only relative mea-
surements. Here, the conventional pattern matching technique
is improved to consider the discrepancy of the orientation and
position in a unified manner. We show that the best perfor-
mance is achieved among the distributed, gradient-based con-
trollers because of the clique-based objective function. We guar-
antee that the desired configuration is locally attractive and the
center of the agent positions does not move. Finally, we demon-
strate the effectiveness of the proposed method through numer-
ical experiments via comparison with existing methods. The
advantages mentioned above are demonstrated through simula-
tions in various settings. (i) The travel distances of the agents
of the proposed method are significantly shorter than those of
the other methods. (ii) The success rate of the proposed method
is 100%, which indicates a large attraction region. Note that
the proposed distributed controller requires only relative mea-
surements, not absolute measurements or network communica-
tion. Prominent real-world scenarios include autonomous drone
swarms in GNSS (Global Navigation Satellite Systems)-denied
environments, such as indoor exploration or disaster response,
where onboard vision or LiDAR (Light Detection and Ranging) is
used to estimate neighboring drones’ poses. Another critical case
involves underwater vehicle teams conducting seabed mapping
in that acoustic-based relative sensing is available, but inter-agent
communication remains unreliable.

A part of the results in this article has been presented in the
authors’ conference paper [32]. The differences from the confer-
ence version are as follows. First, the attractiveness of the desired
configuration is theoretically proved. Second, a gradient-flow

International Journal of Robust and Nonlinear Control, 2025

85UB017 SUOLILLIOD) SAIFeR1D) 3|cedlidde auj Aq pausenob ae ssoie O ‘88N JO S3|NJ oy A%1q17 8UIIUO AB]IM UO (SUOTIPUOD-PLE-SWWLS}L0 A8 |IMAe1q 1 [ouUO//StiY) SUORIPUOD pue swie L 83 88S *[5202/80/TE] Uo Akeiqiaulluo Ao |IM '@XesO JO AISRAIUN 8Y L AQ 6TTOL DUI/Z00T OT/I0p/woo A3 | im Areiq 1 putjuo//:sdiy wod papeojumod ‘0 ‘6€ZT660T



method for systems over SE(d) is developed in a general manner.
Third, simulation results are compared with existing methods,
and a simulation in three-dimensional space is conducted. Com-
pared with the authors’ previous study [10, 11, 33, 34], the present
article considers the desired orientations in the control objective
and the system over SE(d). Consequently, the range of applica-
tions of this study becomes wider, including target monitoring,
cooperative transport, and attitude synchronization.

The remainder of this article is organized as follows. In Section 2,
we briefly introduce the notations and preliminaries of the article.
The problem formulation is stated in Section 3. In Section 4, as a
solution to this problem, a gradient-based, distributed controller
is designed. Section 5 presents the simulation results to verify the
effectiveness of the designed controller. The conclusions are pre-
sented in Section 6.

2 | Preliminary

2.1 | Notation

Let R and R, be the set of the real numbers and the set
of the non-negative real numbers, respectively. The orthogonal
group, denoted as O(d), is the set of d x d orthogonal matrices.
Let SO(d) c R¥*¢ denote the set of the d-dimensional orthog-
onal matrices with determinant of 1, and the Euclidean group
of dimension d is represented by SE(d) = SO(d) x R?. The Lie
algebra of SE(d) is denoted as se(d) = skew(d) x R?. R(R,x) =
(RR, Rx) is defined as the multiplication of R € SO(d) and
(R, x) € SE(d). For asquare matrix, the trace and the determinant
are denoted by tr(-) and det(-), respectively. Let skew(d) € R¥*?
denote the set of the d-dimensional skew-symmetric matrices,
and Py, : R>? — R be the orthogonal projection onto the

skew
set of skew-symmetric matrices, that is, for a matrix X € R,

Py (X) = %(X ~X7) o)

The block diagonal matrix of two matrices X; and X, is denoted
as diag(X;, X,). The kernel of a function f : X - R" is repre-
sented as f71(0) = {x € X : f(x) =0}. Let (x;);cx denote the
n-tuple comprising x; fori € N as

(XDien = (X1, X5, ..., X,,)

where N = {1,2, ...,n}. The average of an n-tuple (x,),c is
denoted with avg(-) as follows:

1
avg((Xpien) = " in
ieN

The inner product of matrix-vector pairs (My,v;),(M,,v,) €
R4 x R4 weighted by a pair of positive constants (k,,, k,) is
defined as

<(M1, vy), (M,, Uz))(,(M,KU) = KMtI'(MlTMz) + KUUIU2

The norm of (M,v) € R x R? weighted by (xy,k,) is
defined as

M. 0l ) = (M0 (M 0D}, )

The distance of a tuple (M, v,);c € (R™? x R?)" and aset D C

i ¥

(R¥> x RY)" weighted by (k,,, k,) is defined as

dist, o) (M,.0);cpr- D)

= inf Z \/”(Mi - M:” v; = I @)

P (KaroKy)
(M;.0));e €D ieN M

Let pow(-) denote the power set of a set. For a set C C
{1,2, ...,n}, let P. : pow((SE(d))") = pow((SE(d))’!) be the
projection of a set onto the (R;, x;),cc Space, namely, for a set
D c (SE(d))"

Pc(D) = {(R;, x)iec € (SE@))“! : (R, Xiennc
S.L.(R;, X);en € D} ?3)

2.2 | Interaction Topology

Consider an undirected graph represented by a pair G = (V, ),
where V = {1, ...,n} isavertex set,and £ C V x V is a set com-
prising edges. Adjacent vertices are referred to as neighbors. The
set of the neighbors of vertex i is represented by N; = {j € V :
(i,j) € €}. The graph G is considered complete if every pair of
distinct vertices is adjacent to each other. The induced graph of
G is a graph with a vertex set C C V and the edge set compris-
ing the edges (i, j) € € satisfying i, j € C. An induced subgraph
is considered a clique if the subgraph is complete. The number
of the vertices in a clique C is denoted by |C|. Clique C is max-
imal if it is not contained in any other cliques in G. The set of
all the maximal cliques in G is denoted by clq(G) C pow(V), and
let clq,(G) = {C € clq(G) : i € C} be the subset of the maximal
cliques to which vertex i belongs.

Example 1. Consider the graph G = (N, &) in Figure 1. The
set of maximal cliques in G is given as

clq(G) = {{1,2},{2,3,4},{3,4,5,6}}

The subset of the maximal cliques that each node belongs to is
given as

clg;(G) = {{1,2}}, clq,(G) = {{1,2},{2,3,4}},
C1q3(G) = CICI4(G) = {{27 3’4}7 {334’ 5’ 6}},
clgs(G) = clqqe(G) = {{3.4,5,6}}

The maximal cliques to which a vertex belongs form the set of its
neighbors as follows.

Lemma 1 ([34]). Fora graph G, the following holds:

C=N, ©)

Ceclq,(G)

FIGURE1 | Example ofa graph.
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2.3 | Pattern Matching

The pattern matching technique has been studied in [35]. Here,
we introduce a conventional result, which is crucial to the forma-
tion control [11]. For vectors x;, x; € RY,ieV=1{1,2,...,n},
consider the optimization problem

n
min Y|lx; - (Rx} + D)1 5
(R.#)€SE(d) 1=}

The singular value decomposition is considered as

Yxixl =usvT (6)
i=1
with matrices § =diag(oy,...,0,), 0, >20,>--->0, >0,

U, V € SO(d). The solution of the problem (5) is derived as
follows:

R=VdiagQ, ...,1,detVUT)UT
——
he ™

# = avg((x)ker) — Ravg(x)iey)

3 | Problem Statement

3.1 | System Model

Consider n mobile agents in d-dimensional space R¢, whose
indexes are represented by a set V = {1,2, ...,n}. The global
coordinate frame is denoted by X, and the local coordinate frame
of agent i €V at time 7 is denoted by (). Let x,(t) € R? and
R;(t) € SO(d) be the position and orientation of agent i with
respect to X, respectively. Let xE.”(z) € R? and RE”(t) € S0(d) rep-
resent the relative position and relative orientation of agent j €
N; with respect to the local coordinate frame (1), respectively.
The variables defined in X,() are denoted with the superscript [i].
We refer to (R (1), x,(1)) € SE(d) and (R(1), x!''(1)) € SE(d) as the
absolute and relative poses, respectively. These variables satisfy

. . -1
[Rﬁr](t) XE_IJ(I)} _ [R,.(t) x,-(t)} [Rj(z) xj(z)} ®
0o 1 0o 1 0o 1

Let (S;(7). u;(1)) € se(d) be the control input of agent i. The control
inputs u,(¢) and .S, (¢) correspond to the velocity and angular veloc-
ity commands, respectively. Agent i is governed by the kinematic

model
Ri(n) x|
o o |

which is a differential equation of (R;(?), x;(r)) € SE(d) [36].

©)

Ri(t) xi(l) Sl‘(t) ui(t)
0 1 0 0

For the two-dimensional space, Figure 2 illustrates the trans-
formation between the frames X and X,(¢). Let 6,(¢) € [0, 2x) be
the orientation angle of agent i with regard to X, and let w(r) €
R¢ denote the angular velocity of agent i. Then, the orientation
matrix R;(#) and angular control input S;(#) can be expressed as
follow:

R = [c.os 0,() —sin 01.(1)]’ 50 = [ 0 —w,.(t)]
sin@,(r) cos6,(1) w;(t) 0

FIGURE2 | Transformation between the global frame X and local
frame X, (d = 2).

Consequently, (9) is reduced to

éi(t) = (1)
x,(t) = R,(t)u,(1)
3.2 | Control Objective
In this study, agents are expected to achieve a desired formation

shape with desired directions. This control objective is formu-
lated as follows:

R x R xxll
}im( ;O OF RIS Zovijev (o)

0 1 0 1
where (* Rﬁi 1% xﬁi 1) € SE(d) is the desired relative pose between

agentsiand j. Assume that (* RE.”, * xf.i])i, jep is realizable accord-
ing to (8), that is, there exists (R, x}),c) € (SE(d))" such that

. . -1
*RUD R x| |R* xt
U I JTI vijev (A1)
0 1 01 01

Using Equations (8) and (11), the control objective (10) can be
formulated based on the attractiveness of 7 ((R}, x}),cy), where

T (R, xDep) = {(R;, X))y € (SE())" : 3(R, #) € SE(d)

[R, x,] {R f] [R?‘ x?‘] .
s.t. = N Vie v
01 01||o 1

(12)

Here, T((R},x});cy) is considered as locally attractive if there
exists an open set M D T ((R}, x}),cy) such that

Bmdist((R, (0. X,y T (R}, X])iey)) = 0
V(R,(0), x,(0)),cy € M (13)

On the other hand, it is expected that the agents will remain as
still as possible. For this purpose, we require that the center of the
agent positions is stationary, that is, the following holds:

13w =13 %0 (14)
n n

ey ey

See Figure 3 for an example of the control objective (10), where
(a) gives the desired poses, (b) shows the motions of the agents
with the stationary center in Equation (14), and (c) shows those
without the stationary center.
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~ Initial Position

Final Center
(Initial Center)

~ Initial Position
X

X X

Initial Center

(b)

©

FIGURE3 | Examples of the control objective: (a) The desired poses, (b) the motions of the agents with the stationary center, and (c) those without

the stationary center.

3.3 | Admissible Controllers

Consider the undirected and time-invariant graph G describing
the sensing network of the agents. Agent i € V can measure the
relative poses (Rﬁ." o), xg.” (1) only to its neighbors j € ;. In terms
of information on the desired configuration, agent i knows the
desired relative pose (* RE.”, * xﬁ.i]) only to its neighbors j € N..
Consequently, the control input (S;(?), u,(¢)) for agent i must be
generated as

{ S0 = BRI 0.0 KL e (o

w(0) = fURY @), X @), R )

where F, : (SE(d) x SE(d))il - skew(d) and fi:
(SE(d) x SE(d))Mil = R“. The functions F, and f, in Equation
(15) are referred to as distributed and relative controllers as they
only depend on local information on neighbors. We assume that
only this type of controller is admissible.

When implementing the controller (15), agent i requires the rel-
ative pose (RE.”(I), xg.”(t)) in the local frame X,, which can be
obtained by using onboard sensors, for example, camera, LiDAR,
and acoustic-based sensor, equipped with agent i.

3.4 | Gradient-Flow Method for SE(d)
Multi-Agent System

We employ the gradient-flow method for the system (9). Let v :
(SE(d))" — R, be an objective function of (R;, x;);cy, which takes
the global minimum zero when (R;, x;);cy is desired. The con-

trollers are designed according to the gradient as follows:

8i(1) = =Py (RT (0 3 (Ry(0). x,(D)yey) a6
u(t) = —R,-T(t);’—;((R,»(t), X,(D)iey)

Consequently, the zero set v~!(0) is attractive under certain
conditions.

Lemma 2. Consider the system (9) with the gradient-based con-
troller (16) for a differentiable functionv : (SE(d))" — R, .Assume
that (R,(t), x;(t)) € SE(d) is bounded for alli € V and there exists
an open set © D v~1(0) such that

«pskew(RTr ﬂ) Jv

-1 — -1
3k ae) @no=00 A7)

Then, the zero set v~1(0) is locally attractive.
Proof. See Appendix A. m]
Assume that v~1(0) is locally attractive. Then, to achieve the con-

trol objective, the local attractiveness (13) of 7((R}, X});cy), We
must design an objective function v((R;, x;);cy) such that

07N (0) = TR, x)ep) (18)

On the other hand, the gradient-based controllers (16) are
expected to be distributed and relative, that is, the function v must
satisfy the following condition from Equation (15).

Request 1: There exist functions F; : (SE(d) x SE(d))Vil —
skew(d) and f, : (SE(d) x SE(d))™il - R? such that

F(RIL L RY ) je ) = =P (R] 55 (Rpo X))

[l ] s plil o« il _ _9v
fi((R/- X5 Rj > X )jej\fi)—_d_x‘((R[’xi)iev)

(19)

where (RE.”, xE.i]) is obtained from (R;, x;) and (R, x;) as

N -1
RE] xy] _ R; x; R; x;
0 1 01 01

according to (8).
3.5 | Problem Setting

Note that (18) and (19) may be incompatible. In other words,
there may not exist a distributed and relative controller (15)
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such that the control objective (13) is attained. The compati-
bility depends on the topology of the graph G. Thus, we con-
sider relaxing the control objective (13), the attractiveness of
T((R:,x});cy), to that of the zero set v=!(0) for an admissible
function v € A((R}, X});cy, G) approximating to 7 ((R}, x);cy)-
Here, A((R},x});cy, G) is the set of the differentiable functions
v (SE(d))" — R, satisfying Request 1 and

O((R;, X)iey) = 0 for (R;, x,);cp € T((RY,xM),ep)  (20)
Among these functions, we expect to obtain the best approximate
function v, € A((R},x});cy, G) to T (R}, x}),ey), defined as

v;10) c v7H(0) Yo € AR, x))iey. G) (21)

Problem 1. Determine the best approximate function v, €
A((RS, x7)iey» G) to T((R},x]),cp) in Equation (21) whose
gradient-based controller (16) generates distributed and relative

controllers (15) satisfying (14).

Notably, the controller designed with v, offers the
best performance in that its undesired equilibrium set
T (R, x!)iey) \ v31(0) is smaller than those of any other con-
trollers 7 ((R}, X)) \ v~1(0) from Equation (21).

Next, we specify a condition of G to attain (13).

Problem 2. Specify the topology of the graph G such that
T (R}, x}),ey) is locally attractive with a distributed and relative
controller.

4 | Main Result

4.1 |

Solution to Problem 1

First, we present a candidate for the best approximate function
inspired from the authors’ previous study [34].

Lemma 3 ([34]). The following function satisfies (21):
V(R X)) = D, 0c((R;X))ec) (22)
Ceclq(G)

with

SCiStie (R X)) s Pe(T (RS ) eV
23)

Ue((Rj, X)) ec) =
for positive constants k., k,,

Notably, the partial derivative of v, with respect to the variable of
each agent is always distributed, that is,

<_((R1’ 1)1617) ((Rz’ 1)1617))
ove ove
= (R}, x))jec) — (R, x})jec)
(@%(G)aR ! /e CE%(G) ox; Y ¢ >

depends only on the agent own and its neighbors states
(R;,x));cy, from Equation (4) in Lemma 1. Hence, the

gradient-based controller (16) of (22) is distributed. Furthermore,
Lemma 3 guarantees that v, in Equation (22) is the best approxi-
mate function to 7 ((R}, x}),cy) if v, € AR}, X))y, G); that is,
it satisfies (19) and (20). Because (20) can be easily verified, we
confirm just (19). For this, we calculate its right-hand side with
v, in Equation (22), where the gradient of v, in Equation (23)
has to be derived. Using Equations (3) and (12), the projection in
Equation (22) is calculated as

Po(T (R}, x});e))
= {(R;,X});ec € SE@)'! : IR, 2¢) € SE(d)

R x| [Re 2.][rR x
st | = [T TN Ylvieey @
01 o 1|0 1

Using Equations (2) and (24), (23) is reduced to
Uc((Rj’xj)jec) = ﬁc((Rj,Xj, Rj, xj)jeC) (25)
where

ﬁc((Rj’ Xjs R*-‘, x*-‘)jec)

= = min (R; - R X;
Z(RC £0)ESE(d) 1S Z” (KprK,)
D = p 2 P
for Rj X; _ Re ¢ Rj X; 26)
0 1 0 0 1

The optimization problem in Equation (26) is similar to the
problem (5) in Section 2.3. The difference is that (5) evaluates only
the position discrepancy while (26) does the pose discrepancy. We
can solve (26) using the technique for (5) as follows.

Lemmad4. For positive constants i, &, the solution (R, )

to the optimization problem in the right-side hand of (26) is
expressed as

= Vdiag(l, ...,1,det(V U )U'

——

~ 27)

2o = avg((X)kec) — Reavg((X))iec)

where orthogonal matrices U, V € O(d) satisfy the singular value
decomposition

3 (e, = VB e — ave(xeec) + Ky RI(R)T)

jec

= sy’ (28)
with a diagonal matrix S= diag(o-{, ,0 ) and 0' > 0' > >
0'; > 0.

Proof.  See Appendix A. u]

Consequently, the gradient of 9. in Equation (26) is calculated as
follows.

Lemma 5. For positive constants k ,,, k,,, the following holds for
Oc in Equation (26):

aUC * ok D s
3r (R R X))o = k(R = ReR)) - (29)
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a[}C * *
6_x,-((Rj’ Xjs Rj’xj)jec)
= 10, (x; — avg((xhec) = Re(x) — ave(xphec))  (30)
where R is expressed as (27).
Proof.  See Appendix A. O

A significant property of the gradient of - in Equation (26) is the
relativity, that is, the equivalence in terms of the pose transforma-
tion, as follows.

Lemma 6. For positive constants k., k,, the function 0. in
Equation (26) satisfies the following for any (R,7),(R*,t%) €
SE(d):

aﬁc Pk Lk *
3 (RO, + 0. R (RS 35 7))

aaC E
= RE((Rj’xstjsxj)jec) (3D
1

00
o (RQR;, x; +7), R (R}, x5 + 7)) ec)
1

6UC *
= Ra_x’_((Rj’xj’Rj’xj)jec) G2

Proof.  See Appendix A. m]

Furthermore, the stationary center of the agents is guaranteed as
follows.

Lemma 7. Considerthesystem (9) with the gradient-based con-
troller (16) for v = v, in Equation (22). Then, (14) holds.

Proof.  See Appendix A. m]

Accordingly, we can confirm that (19) holds and that the pro-
posed controller (33) below is of the form (15) and is admissible.
Furthermore, (14) is ensured by using this controller. Then, the
solution to Problem 1 is obtained.

Theorem 1. For positive constants k,,, k,, the function v, in
Equation (22) belongs to A(R}, x);cy» G) and is the best approxi-
mate function to T (R}, X}),cy), that is, the designed controller per-
forms the best in terms of the minimum undesired equilibrium set
from Equation (21). The gradient-based controller (16) of v = v,
is relative and distributed in the form (15) for

. . T L]
Fi((REr]’xy]’*Ry]’*xyl)jeNi)=KM Z Pskew(RC)
Ceclq;(G)

SR RIS ey =, Y (ave( e (33)
Ceclq;(G)

Alil s [0
—Reavg(x)ee))

with constants k ,;, k,,, and(f{[c'], f[c’]) € SE(d) expressed as (27) and
(23), w.hereﬁc,.fc, Rj7 Xjs X RY, X7, a.ndx; are replaced with IélC’J,
%[C’], Rﬁ’], xﬁ.’], xE:], * Rﬁl], * xﬁ.’], and* xL’], respectively. By using this
controller, (14) holds.

Proof. Lemma 3 guarantees that the function v, in Equation
(22) is the best approximate function to T ((R;, x7),cy), that is,
satisfies (21). The designed controller (33) is relative and dis-
tributed, that is, satisfies (15) because (ﬁ[cll,f[ci]) is composed
of RL’], xﬁ."], * RE”, and * xﬁ.” for j € N; from Equation (4) in
Lemma 1.

We show that (19) holds for v = v, . Using Equations (8), (11),
(29), and (31),

b,
RTSE(R %, RS X))

aﬁc T #*\ T * * *
= SC(RT(Ryox; =), (RYT(RS X = X))
i
9 il 11l x plil +_Ii]
= ﬁ((Rj > X5 Rj > X )jeC)

= kop (R = RIFRIY = o (1 = R (34)
is obtained, where [ is the identity matrix and RE” =* RE” =1is
used. Using Equations (1), (25), and (34), the right-hand side of
the first equation of (19) is reduced to that of (33).

The second equation of (33) is obtained similarly.

(14) follows Lemma 7. O

4.2 | Solution to Problem 2

We specify the topology of the graph G such that 7 ((R}, x});cy)
is locally attractive. According to Lemma 2, the attractiveness of
the zero set v™1(0) is guaranteed under two conditions by using
the gradient-based controller (16). Then, (18) is necessarily sat-
isfied by the target function v, in Equation (22). To satisfy this
condition, the required topology of the graph G is proven to be
connected.

Lemma 8. Forgraph G and theset T (R}, x}),cy) in Equation
(12), v, in Equation (22) satisfies (18) for v =v, ifand only if G
is connected.

Proof.  See Appendix A. m]
We confirm the two assumptions in Lemma 2.

Lemma9. Consider the system (9) with the gradient-based
controller (16) for v = v, in Equation (22). Then, (R,(t), x;(t)) is
bounded foralli € V.

Proof.  See Appendix A. u]

Lemma 10. For v, in Equation (22), there exists an open set
O > v;}(0) such that (17) holds for v = v,.

Proof.  See Appendix A. a
Finally, the solution to Problem 2 is obtained.

Theorem 2. Consider the system (9) with the control input (15)
under a graph G. The desired configuration set T (R}, X});cy) is
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locally attractive with the relative, distributed controllers (33) hav-
ing positive constantsk ,, and k,if and only if G is connected.

Proof. Theorem 1 guarantees that the controllers (15) with (33)
for v = v, in Equation (22) are reduced to the gradient-based
controllers (16). Lemmas 9 and 10 guarantee the assumptions
of Lemma 2for v = v,. Thus, v ;1(0) is locally attractive, which
is equivalent to 7((R}, x}),cy) from Lemma 8 if and only if G is
connected. o

4.3 | Properties of the Proposed Method
and Comparison to Existing Ones

The proposed controller (33) uses both the orientation dis-
crepancy * RE."](RE.’I])T and the position discrepancy (* xE.i] -
avg((* x%f])kec))(xﬁ.” - avg((x%{”)kec))T to determine the orienta-
tion control in Equation (28). This structure is unique to this
method, ensuring the efficient movement of the agents by
restraining drift, which keeps the center of the agent positions
stationary and consequently leads to short travel distances. This
isjustified in Theorem 1. Furthermore, the necessary graph topol-
ogy is connected, as shown in Theorem 2, which is the same as
many existing methods.

Existing controllers do not have such a structure or do not ensure
restraining drift, for example, [28] of the form

L 1 [ ] — i LT
FURY SR i) = ag T 1og(RYC RN
(i1 1] s plil L] . [i] _ o« 1] (35
SRR 5 e =a T o=
JEN;

The controller (35) encounters the problems of local minima due
to the orientation input. Actually, it is assumed that the initial
orientation discrepancy is less than /2 for every pair in the lit-
erature. Furthermore, (35) determines control input for orienta-
tions only from orientation discrepancies R}"J(* RE,”)T between
two agents without consideration of positions. This structure
does not restrain the drift, causing unnecessary movement and
resulting in longer travel distances while the agents move under
unaligned axes. The orientation part of (35) can be replaced to any
orientation controllers such as [15, 17]. Reference [15] employs
the same structure except for a time-varying graph topology. Ref-
erence [17] employs

Fi((REi]’XE'i]’*RE'i]’* 51‘])]6!\/’)

. - log(R'("RIHT)

=ag Y log(R'* RIHYDI) —————
= [l log(R;"*R;HDII

with the reshaping function f : [0,z] = R

7 f(0)
2fy(m)

70) = where f,(6) = % - (% —0)exp(=b0)  (37)
which guarantees the almost-global attractiveness of orienta-
tions, while the proposed method cannot. However, these meth-
ods still involve the issue of the long travel distances.

The primary differences from the authors’ previous study [11, 33,
34] are the following two. First, to control the multi-agent system

over SE(d) in Equation (9), the control input (.S;(?), »;(t)) must be
defined over se(d). Thus, we modified the gradient-based con-
troller from the previous study as (16), where the first equation
is newly introduced. Second, as an objective function for the
gradient-based controller, we used (22) with (23). Although the
form is similar to that in the previous papers, the target set 7 was
newly designed as (12), which enabled us to treat the orientation
and position configurations in a unified way. Then, difficulties
arise in the proposed controller (16) with v = v, in Equation (22):
(i) the convergence to the target set and (ii) whether the con-
troller uses only relative measurements are not guaranteed. The
ideas to solve these issues are as follows. (i) First, we showed
in Lemma 2 that the convergence to v~!(0) is guaranteed under
the additional condition (17). Therefore, we determined the pro-
posed function v, in Equation (22) to satisfy (17) in Lemma 10,
where the characteristics of SE(d) are crucial to prove the lemma
in Appendix A. Finally, the convergence to a desired configu-
ration was ensured in Theorem 2. (ii) The key property of the
gradient of v, in Equation (23) is the linearity in R; and the
invariance in x;, RY, and x}, as shown in Lemma 6, that is,
(31) and (32). The proof of this lemma relies on the proper-
ties of SE(d) as shown in Appendix A. By using Equations (31)
and (32), the controller is ensured to use only relative mea-
surements and relative desired poses, as shown in Theorem 1.
Furthermore, the stationary center (14) of the agents is
guaranteed.

5 | Numerical Experiments

5.1 | Case of2-D Space for 7 Agents

In this section, simulations in 2-D space are provided to verify the
effectiveness of the proposed method by comparison with other
methods. A system composed of 7 agents is considered with the
sensing graph G, of which the edges are presented in Figure 4,
which has a cycle. The desired poses are shown in Figure 4. Each
agent is modeled using Equation (9).

0.8 ]

0.6

04

-1 -0.5 0 0.5 1

FIGURE4 | Desired poses in 2-D space.
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FIGURE 5 | Velocities with (a) the proposed method, those of (b) Reference [28], (c) Reference [15], and (d) Reference [17].

We employ (a) the proposed controller (33) with gains k', = 0.158
and k, = 1.84, (b) the controller (35) of [28] with a; = 0.0735
and a, = 0.679, (c) the controller (35) of [15] with a; = 0.0741
and a, = 0.672, and (d) the controller (36) and (37) of [17] with
ag = 0.0603, b = 1.0, and a, = 0.662. Because [15, 17] offer only
orientation controllers, the position controller of [28] is used. The
gains of these controllers are set to have similar local convergence
characteristics of velocities and angular velocities, as shown in
Figures 5-7, which depict the velocities ||x;(r)||, angular veloc-
ities || R,(1)||, and trajectories x;(f), respectively, from the same
initial poses. The desired poses in Figure 4 are achieved by all
controllers.

We conduct simulations from 100 random initial poses for each
controller with the sampling time of 0.01. Table 1 shows the
success rates in simulations with the averages and maximums
of the travel distances of the center of the agent positions,
||Z,.7=1(x,(200) — x;(0))/n||, when the formation is successfully
achieved. The success rates with (a) the proposed method and
(d) the method of [17] are 100% while those of (b) and (c) are
76%. Note that the success rates of (b) and (c) are low, basi-
cally due to the cycle in the graph, while (a) the proposed

method is not deteriorated by the cycle. On the other hand, the
travel distances of the center of the agent positions of (a) the
proposed method are always zero, while those of (b)-(d) the
other methods are more than 1.64 on average and 7.06 on max-
imum, which leads to the drift of the agents. The typical tra-
jectories from the same initial poses are depicted in Figure 8.
These figures show that the agents travel significantly shorter
distances with (a) the proposed method than (b)-(d) the other
methods. These results indicate the advantages of the proposed
method.

5.2 | Case of 2-D Space for 22 Agents

In this section, simulation results in 2-D space for 22 agents are
provided. The sensing graph G and desired poses are shown in
Figure 9. The simulation setting is the same as the case of 7
agents, except for the agent number, the sensing network, and
the desired formation. The simulation results from 100 random
initial poses are shown in Table 2. The success rates of (a) the
proposed method and (d) the existing method are 100%, while
those of (b) and (c) are only 13%, which shows that methods (b)
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FIGURE 6 | Angular velocities with (a) the proposed method, those of (b) Reference [28], (c) Reference [15], and (d) Reference [17].

and (c) significantly decrease the success rate as the number of
agents increases, while the proposed method and (d) do not. Fur-
thermore, the travel distances of the center of the agent positions
in (a) the proposed method are always zero, while those of the
other methods are not. The typical trajectories from the same ini-
tial poses are depicted in Figure 10, which show the shorter travel
distances with (a) the proposed method than (b)-(d) the other
methods. These results indicate the advantages of the proposed
method regardless of the agent number.

5.3 | Case of 2-D Space for 100 Agents

In this section, a simulation result in 2-D space for 100 agents
is provided. The sensing graph G and desired poses are shown
in Figure 11a. The simulation result with the proposed method
is depicted in Figure 11b, which shows that the desired poses
are achieved. This result indicates the scalability of the proposed
method.

5.4 | Case of 3-D Space

We conduct a simulation in 3-D space to verify the effectiveness
of the proposed method regardless of the dimension of space.
The sensing graph and the desired configuration are shown in
Figure 12a. Figure 12b-d provide a snapshot of the simulation
process, which shows that the agents achieve the desired config-
uration with some rotation and translation. Thus, the proposed
method is applicable to any dimensional space.

6 | Conclusion

This study proposed a method for the distributed SE(d) forma-
tion control of multiple agents using only relative measurements.
The clique-based distributed pattern matching technique was
improved to address both formation and orientation control, and
a distributed and a relative controller was developed to evaluate
the discrepancy between the agents’ current and desired poses.

10
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FIGURE 7 | Trajectories with (a) the proposed method, those with (b) Reference [28], (c) Reference [15], and (d) Reference [17].

TABLE1 | Success rate, average, and maximum of the travel distances of the center of agent positions.
Controller Success rate Dist. average Dist. maximum
(a) Proposed 100% 0.0 0.0
(b) [28] 76% 13.9 176
(o) [15] 76% 13.7 174
(d)[17] 100% 1.64 7.06

Moreover, the desired configuration of the system was proven
to be attractive. Simulation results demonstrated the effective-
ness of the proposed controller in both 2-D and 3-D space cases.
The results of this study raise a number of open issues, such as
considering non-holonomic constraints on the kinematic model
of agents. Although we proved only a local attraction, the sim-
ulation result shows the large attraction region provided by the
proposed method. Our future work includes the evaluation of
the attraction region and the design of a distributed pose con-
troller over a time-varying digraph, which may lead to a more
relaxed condition as a joint graph containing a spanning tree.
We assume that the agents can measure their neighbors’ rela-
tive poses. However, the relative pose is sometimes difficult to
measure accurately by camera or LiDAR. Even in such a case,

the distance or bearing of neighbors is possibly available. On the
other hand, the absolute position or pose may be available by
using GNSS or SLAM, and other information can be exchanged
if network communication is available. This article does not deal
with such cases of less/more information. To adapt the proposed
method to less/more information, we may modify the control
objective from Equation (10) to a suitable one according to the
available information, which is crucial future work. The further
challenge is to bridge the theory-practice gap, such as robust
sensing (fusing multiple sensing modalities and applying out-
lier rejection algorithms to refine relative pose estimation) and
hardware-aware control (implementing low-pass filtering or pre-
dictive control to offset actuator delays and adapt to dynamic
constraints).

11

85UB017 SUOLILLIOD) SAIFeR1D) 3|cedlidde auj Aq pausenob ae ssoie O ‘88N JO S3|NJ oy A%1q17 8UIIUO AB]IM UO (SUOTIPUOD-PLE-SWWLS}L0 A8 |IMAe1q 1 [ouUO//StiY) SUORIPUOD pue swie L 83 88S *[5202/80/TE] Uo Akeiqiaulluo Ao |IM '@XesO JO AISRAIUN 8Y L AQ 6TTOL DUI/Z00T OT/I0p/woo A3 | im Areiq 1 putjuo//:sdiy wod papeojumod ‘0 ‘6€ZT660T



N W b~ OO N 0 ©
T
I

N W kA OO N 0 ©
T

9 9 T
8 1 8 1
7r . 7r 1
6 1 6 1
5r 1 5r 1
4+ 1 4+ 1
3r 1 3r 1
2 1 2 1
1r 1 1r 1
0r 1 0r 1
ER 1 -1r 1
-2 ‘ : : . : : : -2 ‘ : . : : :

-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

(© (d)

FIGURE 8 | Trajectories from different initial poses with (a) the proposed method, those with (b) Vision-Based Distributed Formation Control
Without an External Positioning System, (c) Distributed attitude synchronization control of multi-agent systems with switching topologies, and (d)
Intrinsic Consensus on SO(3) with Almost-Global Convergence.

15
(1 ‘, |
-1.5 -1 -05 0 0.5 1 1.5
X
FIGURE9 | Desired poses in 2-D space for 22 agents.
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TABLE 2 | Success rate, average, and maximum of the travel distances of the center of agent positions for 22 agents.
Controller Success rate Dist. average Dist. maximum
(a) Proposed 100% 0.0 0.0
(b) [28] 13% 63.7 173
(o) [15] 13% 63.2 171
() [17] 100% 1.84 12.4
4 T 4 T
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FIGURE 10 | Trajectories from different initial poses with (a) the proposed method, those with (b) Reference [28], (c) Reference [15], and (d)
Reference [17] for 22 agents.

FIGURE11 | (a)Desired posesin 2-D space for 100 agents, (b) trajectories with the proposed method.
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Appendix A

Proofs of Lemmas

Proof of Lemma 2

From the property of the projection (1) such that (X, Py, (X)) =
| Py (XOII?, the time-derivative of the function v in Equation (16) for
the differential equation (9) is calculated as

- Z ’ ‘1 a R >
6x 8R
o (|0 o )
1% T OU T OU
=== R p (RTEL
i=1 < a < ! aR skew < ! aRi ) >)

= _z< 7)skew R,T ;; H > (Al)
i=1

For a constant ¢ >0, let £, =J, .. v7'(c) denote the sub-level
set of v, and let £, denote the interior of £, From Equation
(A1), for (R,(0), x;(0)),cy € L., (R(1), x,(t));cy € L, holds for any 1 > 0.
From the assumption of the boundedness of (R; (), x;(1));cy, for each
(R;(0), x;(0)),c, there is an open bounded set R((R;(0), x; (O)),EV) such
that (R, (1), x;(1);cy € R((R;(0), x,(0));y) for any 1. For each (R,, ¥,),cyy €
d(v™1(0)), where d(v~1(0)) denotes the boundary of v~1(0), set a function
e((R;, :)zev) >0 and an open bounded set S((R;,%,);cy) C Ee((R Fiew)
to satisfy Ce((R,.iJ,evJ N Uk ),00eS(R 500 R((R;, %);cy) C O, which is
possible because O is an open set containing v~!(0) satisfying (17). Then,
for any initial state (R;(0), x;(0));cy € 5((Ri,i,)iev), (R; (1), x;(1);ey € O
holds. From Equation (A1), LaSalles’ invariance principle [37] guaran-
tees that

2
+

limdist((R, (1), x,(1);ep» Q) = 0 (A2)

where Q C (SE(d))" is the largest invariant set contained in

(Paen(R] ;R” ), ;; )iey)~1(0). Therefore, the solution converges to a point
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in the set Q@ n O. This set is contained in ((Py,, (R} a"; ), ﬂ)lev)—l(o) no,

and from Equation (17), the solution converges to U‘l(O). This holds
for any initial state (R;(0), x;(0)),c) in U(R,j,),éved(wl(o)) S(R;, %);ep) U
&71(0), which is an open set containing v~1(0). Thus, v71(0) is locally
attractive.

Proof of Lemma 4

The solution of 7 in Equation (26) has the same structure of 7 given
in Equation (7), that is, (27), with which the optimization problem in
Equation (26) is reduced to

* U *
min Z(KM(”R I+ IR | )—2tr<RC2(KMR/.RJT

ReesO() 1S e

() = VB e, — V(X)) )

+ (1% = ave((xDe) 1)) + llx; — avg((xiec)l?)  (A3)

Equation (5) is reduced to

min Z(llx 112 + I1x7 1) — 2tr(R Zx ) (A4)

ReSO

Compare (A3) and (A4), and from Equations (6) and (7), the solution to
the optimization problem (26) is given by (Rc.f-c) in Equaitons (27) and
(28).

Proof of Lemma 5

With (RC, %) given in Equation (27), (26) is reduced to
vC((RI,xJ,R X7 )jGC)

= 2 KplIR; = Re Ry 1P + 5, [1x; = avg((xy)yec)
/EC

- RC(x*: — avg((xDree)I®)

= 2 S (IR P + IR RYIP) = 2t(Re (i RER]
jEC
+1,(x = aveg((x e N(x; = aVg((xXec) )
+ 10, (1%, = avg((xeec) I + 1R (x] = avg((xp)ec ) IP)
Since R € SE(d) for any R;, the partial derivative of 5 with respect to
R, is achieved as

00 KM a||R 112
R " - Z—tr(RC(KMR R}

+ xv(x;f — avg(XDrec))(x; — avg8(x e (AS)

The (/, m) entry of the term in the sum in Equation (A5) is reduced to

. O(R'RT) Re e
K““<Rcm> ' Ztr(@ﬂ% by

+Ku(x; - an((X,t)kec))(xj - an((xk)kgc))T)) (A6)

where the (I, m) entry of a matrix R is denoted as [R],,,. The first term in
Equation (A6) is reduced to

p ORIR D AR ORT AR .
€ AR, T\ fe o[R1,,, Carfe S €anym (A7)

where e, € R denotes the d-dimensional unit vector whose /-th com-
ponent is 1. The second term in Equation (A6) can be shown to be zero
from the same calculation as [11]. From this, (A5), (A6), and (A7), (29) is
obtained. (30) can be derived in the same way.

Proof of Lemma 6

Let(Z;,y;) = R(R;,x; + r)and (Zj*,y;f) = R*(R;,x;f +7%),and letﬁc be
the matrix satisfying (27) for (Z;, y;) and (Zj*, y;f) instead of (R}, x;) and
(R;f, xj)‘ From Equations (27) and (28), the following equations hold:

Re = Vdiag(1, ....1,det(V 0T )07 (A8)

Dk, = VB e, — VB kec)” + Ky ZE Z])
jec

—gsv' (A9)

where S = diag(o,, ...,0,). From Equations (27) and (A9),

Jp—
USV =Y (xyR*RI(RR)"

JjeC
+ &, (R*X] — avg((R* X)) )(Rx; — avg(RX)ec) ')

= Y R (r,(x! = avg((x)iec))(x; — aVE((xi i)
Jjec
+ Ky R*.‘RT JRT
= R*USV R™ = (R*D)S(RV)T (A10)

is derived, which leads to S = §, V = RV, and U = R*U. Then, from
Equations (27) and (A8),

R, = (RV)diag(1, ....1,det(RV)YR*D)H)(R* )T

= RR(RMT (A11)
is derived. From Equations (29) and (A11), we obtain

aUC s OpE *
3R (R, + 1) R (RS ) + ) ec)

=Ky ((RR) = Ro(R'R)))
= KMR(R - RcRY)

—R ((Rj,x],R x))jec)

which leads to (31). (32) can be derived in the same way.

Proof of Lemma 7

From Equations (25) and (30),

YIky Y -

iey 9t i€V keclq;(G)

an((Xj )/‘ ec, )
- Re(x} = avg((x})jec,))
D, — ave((x))jec,)
keclq(G) ieCy,

- Re(x] — avg((x));ec,)) = 0

is obtained. From this, (9), (16), and (22),

d<Z,ev x;(1)) N SN
T = L0=25,=0

ey i€y

is obtained. Hence, (14) holds.
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Proof of Lemma 8

Consider (ﬁ,., %)iey € v71(0). Then, from Equations (22), (23), and (24),
the following holds for any C € clq(G):

A(Re.tc) € SEW) st (R, %) = (ReR!, Rex' +20)Vj €C (A1)

Assume that G is connected. From Lemma 3, v=2(0) > 7 ((RF, x7)iep) 1s
obtained. We show the converse inclusion to prove (18). Because G is con-
nected, there is a sequence of cliques (Cy, C,, ..., C,) for a positive integer
q > |clq(G)] such that C, n C,, is non-empty for k = 1,2, ...,g — 1 and
U{_,Ck = V. Let ji, € C, N Cy,y, and from Equation (A12), lijk(R;?'k)T =
R¢, = Re,, holds. Then, from Equation (A12), X; — Re,x} = #¢, =
%, holds. Hence, all (f(ck, %) are equal to some (R, %) € SE(d). Then,
from Equation (A12), (Rj, %) = (ﬁR;f, ﬁx;f + %) holds for any j € V,
which indicates (R}, X;);ey € T (R}, x]);ep) from Equation (12). Hence,
v71(0) € T((R?, x}),cp) holds, and (18) is achieved.

If G is not connected, there is no such sequence of cliques (C;, C,, ..., C,).
Then, not all (ﬁck ) fck) are equal, and from Equation (A12), (ﬁj, X)jey &
T (R}, X});ep) holds, which indicates that (18) does not hold.

Proof of Lemma 9

We just have to show the boundedness of x;(7) for every i € V. Consider a
connected graph G without loss of generality. Otherwise, we just have to
consider each connected component of G. From Lemma 7, || 3., x; ()|l
is bounded. From Equation (A1), the following holds:

0, (R;(1), x;(0);ep) < 0, (R;(0), x;(0));cp) (A13)

Without loss of generality, assume that agents 1,2 € C for a maximal
clique C. From Equations (22), (25), and (26),

2 2
— U, (R, X)iey) K_UC((R:" X;)iec)

v v

_ Km B P2
—Z(K—MR,-—RCR,H + I,

Jjec v
—avg((xkec) — Re(x} — avg(x))ec)I?)
> |Ix; — avg((xee) — Re(xf — avg(x)iec) I

+ 1%, — avg((x)pee) — Re(x; — avg((x eI

1 D * *
> E”xl — Xy = Rc(xl - x2)||2
1 * *
2 S (lxy = xoll =l = x5 (A14)

is derived. From Equations (A13) and (A14),

4+ (R;(0), x;(0)),e . s
e, () — 10l < Zﬂw kol (ALS)

is obtained for 7> 0. Equation (A1l5) implies that |[x,(r) — x,(?)|| is
bounded. The boundedness of ||x;(r) — x; (0| for any i,j € N is guar-
anteed because G is connected. With this fact, the following inequality
shows the boundedness of x;(1):

[, @Il

IN

+

XA

JEV

X0 = 7 3,0

JEV

IA

%j;;”x"(t) - xj(’)H + %H;xj(t)

Proof of Lemma 10

As for (17), (Pyew(R] (00/dR))), (00/0x,)),e)"H(0) D v7(0) is obvious.
‘We show the converse inclusion for v = v, in Equation (22). Since SE(d)
is an analytic manifold, T((R’f,x;?) jep) is an analytic manifold from
Equation (12), and so is PC(T((R;T,x;f)jev)) from Equation (3). Hence,
the distance function vc((R;, x;);ec) In Equation (23) is analytic on an
open set around ugl(O) [38, 39]. Therefore, v, in Equation (22) is analytic
on an open set @ c (SE(d))" around Ucedq@) vz (0) = v;(0). Hence,
Lojasiewicz’s inequality [40, 41] (the Riemannian manifold version [42])
is available: For every (R 0 X)jev € v;l(O), there exist a bounded open
setQ = Q((R;, %));ep) C Ocontaining (R, X)) ey, f = AR, X))er) > O,
and 6 = 6((R;, X;);cy) > 0 such that

2

U (R} x))jep) < ﬂ(Z(

i€y

dv
<Pskew <R,-Ta_1€((ijxj)jev)>

NN
>> V(R;.x));ep EQ (A16)

Jdu,
+‘|K((Rj, x,‘)jev)

Let  O=Ug ) cor0R;.%)jcy), and O is an  open
set  satisfying O > u;l(O). Then, (Al6) indicates that
(Pygew(R] (00, /OR))), (00, /0x));cp)H(0) N O C v71(0), and (17) s
achieved forv =v,.
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