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We are familiar to study rings S with identity if we are interested in homo-
logical method on the ring theory. On the other hand, it seems for us that the
theory of categories is some kind of generalization of the structure of ^-modules.
Especially, Grothendieck categories SI with generating sets of small projective are
exactly generalizations of the category 3Jls of S-modules.

Recentely, the author has pointed out in [13], by making use of [6] and
Freyd's theorem (see [16]) that 31 is equivalent to a full subcategory TO^"1" of SJi^,
where R is the induced ring from SI (see the definition in §1). In general, R
does not contain the identity element, but R contains a set of mutually orthogonal
idempotents {ea} such that i ? = 2 © ^ ^ = 2 © R e a -

It is natural from the reason of birth of R that 3Jii?
+ has very similar pro-

perties to those in $##. However, there are slightly different properties between
them. For instance, let A be a division ring and T the ring of column finite
matrices over A with degree a. Let {e{j} be the set of matrix units. Put Rl

(resp. Rr)= 2 © e g J A (resp. 2 © * i j A). If \a\ is finite, then Rl, Rr have the

same properties. If \a\ is Ko, then Rl and Rr do not have identities and Rl is
semi-artinian and hereditary and Rr is perfect and hereditary., (see Theorem 3
in §5).

In this paper, we shall generalize above properties in a semi-perfect Groth-
endieck category and give types of hereditary and perfect or hereditary and semi-
artinian categories in Theorems 3, 4, 5 and 6. They are generalizations of [3],
Theorem 4.1, [14], Theorem 5 and [8], Theorem 5 in semi-primary hereditary
rings. Finally, we shall show in Theorem 7 that a semi-perect Grothendieck
category with bounded connected sequences (see §4) is a special type of sub-
category of perfect and hereditary (or semi-artinian and hereditary) category and
vice versa.

In this paper we do not assume that a ring R contains the identity element.
We use the categorical terminology in [16]. By sSlR we denote the category of
right i^-modules and by Ab we denote the category of the abelian groups.
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1. Preliminary results

Let SI be a Grothendieck category with a generating set of small projective,
then SI is equivalent, by Freyd's theorem (see [16], Theorem 5.3) to a contrava-
riant functor category ((£°, Ab) of an additive small category (£. On the other
hand, in this case P. Gabriel showed in [6] that (K°, Ab) is equivalent to the
full subcategory of modules over a ring R as follows:

Put R= 2 ©[£**, Cp] as modules and we make R a ring by compositions

of morphisms. We denote the identity morphism of [C, C] by Ic. Then
{/c}ce6 is a set of mutually orthogonal idempotents and R=^2®ICR- By

G

3Jli?
+ we donte the full subcategory in the category SJJî  of right i?-modules,

whose objects consist of all i?-modules A such that AR=A. Then we note that
A=^®AIC and every i?-submodule of A is in 9Jli?

+. Similarly, we can define
j$Sl+. We know from [6], Proposition 2 in p. 347 that (<£, Ab) (resp. (<£°, Ab)) is
equivalent to R

sSl+ (resp. 3Ji^+).
Conversely, let S be a ring, which is not necessarily to have the identity.

We assume that S contains a set of mutually orthogonal idempotents {ea} such
that 5 = 2 © ^ S ^ S © Sea. It is easily to check that {eaS} is a generating set
of small projective in 3Jis

+. Hence, SMS
+ is equivalent to (S /o, Ab), where (£' is

the pre-additive category {e,S} in sJJis
+. Further S^J]©[£<»£> epS]* Therefore,

we call such a ring S an induced ring from a category and {ea} is called a set of
generating idempotents.

We shall use frequently some homological method over S in this paper.
Hence, we shall give here some notes concerning with this method.

Let S be as above. We consider every things in yJls
+.

N.O. Every sub or factor modules of A is in sSls
+.

N.I. P is projective if and only if P is a retract of a free S-module F. So-
metimes we use a fact F=^@uS=2ffi ueaS, where {u} is a base.

N.2. For any elements x, y of A in 5IJls
+, there exist idempotents ely e2 and e

in S such that xe1=x9 ye2=y and ei=eei=eie.
N.3. A®S^A, (use N.2). However, Homs(S, A^UAe*.

N.3'. A®All^A/Alfor any left ideal I in S.
s

N.4. Torg( , ) commuts with direct limit, (cf. [2]).
Let A be an object in SI. By SA we denote [A, A] and J( ) meanes the

Jacobson radical.

2. Perfect categories

Recentely, we have defined perfect (resp. semi-perfect) categories in [13].
We shall reproduce perfect categories as a form of induced ring from SI.
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Following to Mares [15], a protective object P is called semi-perfect if every
factor object of P has a protective cover. If any coproduct of copies of P is
semi-perfect, P is called perfect. A Grothendieck category SI is called perfect
(resp semi-perfect) if every (resp. finitely generated) object has a projective cover.
If a ring S has the identity, then the fact that S is semi-perfect is equivalent to a
fact that >Bls is semi-perfect. However, if S does not contain the identity then
the above statement is false (seeTheorem 1 below).

Let e be an idempotent in S. Following to [17] we call e local if eSe is a Jocal
ring or equivalently if Se (or eS) is completely indecomposable.

We have immediately from [11] and [15]

Theorem 1. Let R be an induced ring from a category. Then the following
are equivalent.

1) R is semi-perfect as an R-module in s$flR
+.

2) R=^2®faR> where {fa} is a set of mutually orthogonal local idempotents
and {f^R} is right semi-T-nilpotent with respect to J(U).

3) R/](R) is semi-simple as an R-module in WlR
+ and idempotents can be lifted

modulo ](R) and ](R) is small in R.

Proof. We note that P=# J(P) for every non-zero projective module P by
[13], Proposition 2 or [1], Proposition 2.7. Hence, 1) <-* 3) is obtained from [15],
Theorem 4.3 and 5.1. 1) -» 2). Let i ? = 2 © ^ i ? . Since eJR is also semi-

perfect, eaR=^(Bf06.R by [15], Corollary 4.4, where {/* } is a set of mutually

orthogonal and local idempotents. Furthermore, {f^R}^ is right semi-T1-
nilpotent by [11], Theorem 7. 2) -> 1) is clear from [11], Theorem 7.

On the other hand, for sJJl/?
+ we have immediately from [13], Proposition 5

and its corollary

Theorem 2. Let R be an induced ring from a category. Then the following
are equivalent.

1) yJl+
R is semi-perfect.

V) Ryjl+ is semi-perfect.
2) U=20/^.
2') U = 2 © Rf*> where {/„,} and {//} are sets of mutually orthogonal and

local indempotents (cf. [1], Theorem 2.1).

Let S be the ring of upper tri-angular matrices with infinite degree over a
division ring and {eij)i^j be the complete set of matrix units. Put i ? = 2 © eu^-
Then R is semi-perfect as a right i?-module but not as a left i?-module. On the
other hand, R

SM+ is semi-perfect.
We have already noted in [13], Remark that Theorem P in [1] are valid for an

induced ring R. If we use N.0~N.4 and the idea given in [13], we can show that
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Theorem P is true for R. We state here only its some parts, which we. shall use
later.

Theorem 2' (Theorem P in [1]). Let R be as above. The following are equi-
valent.

1) mR
+is perfect.

2) R=^]®f06R) where {fa} is a set of mutually orthogonal and local idem-
potents and {faR} is a right T-nilpotent system with respect to ](R)y (the last con-
dition is equivalent to ](R) being T-nilpotent).

3) Every right R-module in SJl̂ 4" has the same weak as projective dimension.

3 Categories of commutative diagrams

We recall, in this section, the concept of categories of (generalized) commu-
tative diagrams in [9] and give relations between it and rings of (generalized)
tri-angular matix rings in [8].

Let / be a linearly ordered set (1, 2, •••, n) and {91$-}f-ej be a set of abelian
categories. We assume that there exist functors T(j: SIy^3I,- for i<j such that
1) T{j is cokernel preserving, 2) there exist natural transformations tyiJk: TtjT

x
jk

-^Tik such that ^/y/71^.(i/ry^/)=i/r^/^/y/ for i<j<k<l. We define a category
3I=[/, SI,]7 of commutative diagrams as follows: The objects A in SI consist of
all /z-tuple (A19 A2, •••, An); i4,e2l,. with arrows d't^d^T^ such that d^T^d^
=dikyjrijk for i<j<k. The morphisms [A, B]<^ consist of all n-tuple (/,,/2, • • • ,/„);
/ , .e [Ai9 B4]% such t h a t / , ^ / r , y = < . / r , y ( / y ) for i<j, (see [9], p. 245). SI is an
abelian category from [9], Proposition 1.1. We assume that SI,- has a projective
class £,• (see [16], p. 136). We define adjoint functors S;, T{ betweem 3Xt- and SI
as follows: 5,(i4|.)=(71

1,.(i4,), - , T^u{At\ Ait 0, -•, 0) with arrow dh~IThfA.y
for h<i and def=^efi for e<f<i, and Ti(A)=Aiy where A=(Aly A2i ••-, An).
Thus, 31 has a projective class fl T,-"1 ,̂-) whose projectives are of the form 2 ®
S^Pi) and their retracts, where Pt is 8rprojective by [9], Proposition 1.2'. We
note that if we take S,• as the class of all epimorphisms in SI,- then fl T,."1 ,̂-) is
also the class of all epimorphisms in SI by [9], Proposition 1.1. Therefore, in
this case £-projective means usual projective.

We shall generalize the above category. Let / be a well orded set and {31̂ } 7

a family of Grothendieck categories. We assume that functois T{j for i<j (resp.
T{j for i>j) are coproduct and cokernel preserving. We shall define 31—[/, 31 ,•]'
as above, namely objects of 31 are of forms (Aly •••, Aa, •••) with arrows d^T^ for

z<y, i,J€El. Similarly, we define 3t=:[/, Sl,]r with T{j. For any ordinal number
a in /, we put Sl^f/*, SI,]', where /*=(1, •••, a). Now we assume that all 31,-
have generating sets of completely indecomposable and small projective {Pio6}.
Then 5,(P,<,)=(r i,(P,J, •-, T^P^P^O, - , 0)=P* is a member of gene-
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rating set of small projective in SI by [16], p. 121, Proposition 1.5. Similarly,
$ ( ^ , ) = ( 0 , - , Pia, Ti+u(Pi*)> - ) = ^ « is one in t . We have natural imbedding
functors ^ : SI"-> » , (# , : S"->3I) such that ^ ( A w ) = (A19 • • •, Aa, 0, • - •, 0), where
Ac**=(Aly •••, -4rt), ^4,eSI,-. Making use of i/rrt, we may sassume that SI is the
colimit of SI". We note that ^ ( P c - ) ) is projective in SI if so is Pca>) in SI", however

<Pa(P
c<*^) is not projective. It is clear that SI and SI are Grothendieck categories

by [9], Proposition 1.1.
Let R and Rci:> be induced rings from 31 and 31% respectively. Put Pai)=

St(Pim). Since [P™, P^] = O if n>m, R™= 2 2 © [PJ», P^] is a ring of
i<j<n <*,&

generalized lower tri-angular matrices over rings R,- =y^1(B [Pin, P^i^y^CB

[P,-rt, P,-p]. The natural immbedding o/r,- induces the natural imbedding: Rco

- ^ ^ = 2 2 © K s ) , ^ " ] . Similarly, the induced ring R from 2t is the ring of
s<t *,£

upper tri-angular matrices over R£.
Conversely, let *S=2 © e<»S be the induced ring with generating idempo-

tents. We assume S is lower tri-angular, namely {ea} is ranged as {e™} such

^ r=0 i f»<w. Put 5^=2 ©C54n ) and M M W = 2 © C ^ r for
Let 3t=[J, ^ M

+ ] / with functor r/y(-)=(-)(g)M^.. Then TOS
+ is

y

equivalent to 31 and S and S{ are induced rings from 31 and sJJis.
+, respectively.

From the above, we have

L e m m a 1. Let 31 and 2tn be as above and R, i?(n) be the induced rings from
SI and Slw, respectively. Then 3I=lim SlM «nrf U=l im i?c"5.

Let 3t be a Grothendieck category. We call 31 semi-simple if every object
is a coproduct of minimal objects. 31 is called hereditary (resp. semi-hereditary)
if every sub-(resp. finitely generated) object of projective is also projective.
Finally, 31 is called semi-artinian if every non-zero object has the non-zero socle.
It is clear that 31 has a generating set and is semi-simple if and only if the
induced ring R from 31 is a directsum of minimal right ideals.
Therefore, we have nothing to study for semi-simple categories.

Proposition 1. Let I be a well ordered set and {3lJ / e / a set of semi-simple
categories with generating sets. Then 3I=[/, SIJ7 is semi-artinian and semi-perfect
and t = [ / , a j r is perfect.

Proof. Let {Pia} be a generating set of minimal projective in SI,.. Since
[S,(Pf-J, ^ P , J k ~ [ P ^ , P ^ k , . , P^^S^P^) is small projective by [13], Co-
rollary 1 to Lemma 2. Furthermore, [P«>, P ^ ] = 0 for i>j and [P'J\ P ^ ] =
[P?\ ](Pp3))] for i<j. Hence, {P«>} is a left T-nilpotent system with respect
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to J(SI). Therefore, SI is semi-artinian and semi-prefect by [13], Proposition 3
and Corollary to Theorem 4. Similarly, we know by [13], Corollary to Theorem
4 that SI is perfect.

Lemma 2 ([19]). Let S be an induced ring from a category and e an idem-
potent. If SeS is projective in 2Jis

+, then Se is projective in 3JteSe.

Proof. Homs(eSy S)=Se by N.3 and the trace ideal rs(eS)=SeS. We

quote here Silver's proof in [19], Theorem 2.5. Let 0->K->Se®eS-+SeS-+O
T

be exact, where T=Woms{eSy eS)=eSe. A diagram;

SeS ® Se
S

is commutative, where //, is the multiplication. Since Se is S-projective by iV. 1,
fi is isomorphic by N.3. On the other hand, Se=SeSe. Hence, r® 1 is iso-
morphic. Therefore, K®Se=Oy which implies K® SeS=0 by T. Since

(eS)SeS=eS9 eS®SeS^eS. Hence, Se® eS^Se® eS® SeS^SeS®SeSis
S T T S S

£-projective by the assumption, (which is obtained from the first exact sequence
by taking ® SeS). Noting Se® Se^eSe, we can prove from the proof of [19],

& s

Lemma 2.8 that Se is projective in sSleSe.

Corollary ([18], [8]). Let S and e as above. If S is hereditary in 3Jis
+, then

eSe is hereditary in 9JieSe-

Proof. Let x be a right ideal in eSe. Since xS is S-projective, x=xeSe is
a coretract of copies of Se. Hence, r is eStf-projective by the lemma.

4. J-nilpotent and connected sequence

In the structure theorems of semi-primary and hereditary rings the nilpo-
tency of the radical is very important, (cf. [4], [8] and [14]). We define the nilpo-
tency of projective object in a catrgory.

Let SI be a semi-perfect Grothendieck category with a generating set of
(completely indecomposable and) small projective {Pa}. For an object A in SI
we put ]n(A)=]{]n-\A)). If p%4)=0 for some m, we call A J-niplotenL If
Jn"1(̂ 4)=t=0, ]n(A)=0, n is called the index of A. Next, we generalize the notion
of a connected sequence of idempotents in [14]. A sequence (P ly P2~, Pn) is
called a left connected sequence if [Pi+1, ](Pi)]^0 for z # = l , •••,/*— 1 a n d n is
called the length of the sequence. Similarly, a sequence (Ply P2, •••, Pn) is called
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a right connected sequence, if [P,-, J(PI+1)]4= 0 for *=1, •••, n— 1. By lC(Pa) (resp.
rC(Pa)) we denote all left (resp. right) connected sequences such thar P1=Pct.
A sequence in IC{P^ with maximal lenght is called a maximal sequence. By
lL(Prt) (resp. rL^P^)) we denote the lenght of maximal sequences of Pa, (if lC(Pa)
has non maximal sequences, lL(Pa)=oo).

We note that if P^'s are completey indecomposable and projective, [Prt, Pp] =
[Prt, J ^ ) ] if P^Pp by [13]., Corollary to Lemma 2. From now on when we
consider connected sequences, we take completely indecomposable projective
objects, unless otherwise stated.

Proposition 2. Let A be a ]-nilpotent object of index n. Take {Ai}n
tt\

{AX=A) and /,<E [Ait J(i4,_J]. Then /i—/«=0. Especially, if A is projective,
then J(SA)n=0.

Proof. We assume / r . . / r t (^ + 1 ) c r - + 1 (^ , ) . Then / , _ , / , . » / . ( i j c
r-'+U-i(^*))c:Jl-'+1(J(i4,.1))=J<>-'+1(i4,-i). Hence,/..../^O. If ^ is pro-
jective, [^, ](A)] -Z)](SA) by [20], Lemma. Therefore, ](SA)n=0.

Corollary. Let SI be a semi-perfect Grothendieck category with a generating
set of small projective Pa. If all Pa are ]-nilpotent, % is semi-artinian. Moreover,
if the indeces are bounded, SI is perfect.

Proof. We may assume that P^'s are completely indecomposable by [13],
Corollary 1 to Theorem 4. Hence, SI is semi-artinian by Proposition 2 and [13],
Proposition 3. If the indeces are bounded, SI is perfect by [13], Lemma 6.

Proposition 3. Let SI be a Grothendieck category with a generating set of
samll objects. We assume that SI is semi-hereditary. Then for any completely
indecomposable projective, Pp

1) Any non-zero element in [Pv P2] is monomorphic.
2) If P{ is ]-nilpotent of index niy then [Ply P2]=0 if nx>n2 or n1=n2) P^

P2 and moreover [Ply J(P,)]=0.
3) / / Px is J-nilpotent, IL{P,) < the index of Pv If SI is hereditaty and

perfect, then [Pa, Pp]4=0 implies [P3, Pa]=0 for any non-isomorphic completely
indecomposable projecitves Pm, P$ and [Pa> J(Pa)]=0.

Proof. 1). P,- is finitely generated by [13], Corollary to Lemma 2. Hence
Im / is projective by the assumption for / e [ P x , PJ . Therefore, f=0 o r / i s
monomorphic, since Px is indecomposable. 2). Since J(P)Z)J(£)) for P^*Q9

[Ply J(P1)]=0. Similarly. [Ply P2]=0 if nx>n2 or P^P2, since J(P2) is unique
maximal in P2. 3). It is clear from 1) and Proposition 2. The last statement
is clear from Proposition 2 and [13], Lemma 6.
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For the connected sequences we obtain similarly from the definition

Proposition 4. Let SI and P{ be as above. We assume lL(Pt)=ni (resp.
rL(Pi)=mi). If n1>n2 (resp. m1<m2) or n1=n2 (resp. m1=m2) P^P2y then

5. Perfect and hereditary categories
Let R be a ring with identity. We showed in [3], [8] and [14] that every

hereditary semi-primary ring is a ring of lower triangular matrices over semi-
simple artinian rings. We also studied hereditary categories of commutative
diagrams in [9] (cf. Lemma 2). On the other hand, we defined perfect categories
in the pervious section. Using them, we shall study, in this section, perfect
categories with some assumptions, which is a generalization of [8].

First, we give an example. Let A be a division ring and S the ring of column
finite matrices with countably infinite degree over A. Let {e{j) be the completely
set of matrix units. Put R=Y\ © * , V S=2 © e{.R, (resp. J S = 2 © e{jS). Then

i?= u Rn (resp. R= U Rn\ where Rtt=Yl © etjR (resp. Rn=J] © e^R). Rn and

Rn are hereditary by [5] or [8], Theorem 1. Moreover, e^R is J-nilpotent of
index /. We shall show from Theorem 3 below that R and R are hereditary in
yjlR

+ and TO^, respectively. We note that lL(e,f.H)=/, but rL(eiiR)=ooy (resp.

Lemma 3 ([18], Proposition 1). Let {At}T be a set of division rings and R
the induced ring from [/, 9JiA.y. If the radical N of R is protective in ^SIR+, then
R is hereditary.

Proof. Let i?=Sff i^ i? . Then N=J}®ettRefi and V = 2 © ^ / k p is

projective by the assumption and [13], Lemma 7. It is clear that every minimal
object in sUlR

+ is isomorphic to some caRlxc6=Ac6. From the assumption hd.
e*Rlx<»^ 1- We shall show by the standard argument that R is hereditary. Let
M be an object in ^JlR

+ and 0-^M->Q0->Q1^0 exact with QO injective. Then
0=Ext2 (A,-, M)=Ext1 (A,-, Q,). We shall show that O, is injective in TOi?

+. Let

0 -> A -t B
if
Q

be an exact sequence. We take a maximal extension/0: A0Z)A^>Q1. If
there exists b in B such that (bR-{-A0)jAQ is minimal, since R is semi-artinian by
Proposition 1. Hence, x= {r\^R, br^A0} is a maximal right ideal. We define
g: r - ^ by g(r)=fo(br). Since Ext1 (R/x, 00=0 , 0 - [x, 0 J - [R, 0 J is exact
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and we have g'^[Ry Qt] such that g'\x=g. Since B G 3 R / , there exists an
idempotent e in R such that be=b. Put q1=g/(e) and f1(ao+br)=fo(ao)+q1r. If
br^Aoy f1(br)=f0(ber)=g(er)=g/(er)=q1r. Hence, we have an extension of Ao.
Therefore, A0=B and 0x is injective. Thus, R is hereditary.

The above proof suggests us

Corollary. Let R be an induced ring from a category and M an object in SSRR
+.

Then M is injective if and only if any element in [x, M] is extended to [Ry M] for any
right ideal r of R.

In the first step, we shall generalize the conditions in [9], Theorem 3.12.
For [/, SI,] with functors T^

/ y 1) tyafsy'- TnpTfsy-^Tay is monomorphic for all a>/3>ry,
2) For any given numbers a=a1<a2< • • • <an=/3

where Pa is any object in St* and K^^P^) are defined inductively from the above
equality and this equality is given through i/^y.

(resp. (*y replacinga>ft>y andax<a2<-~<an in (*)r by a<fi<y and
a1>a2>-~>an).

T h e o r e m 3 . ( [ 9 ] ) . Let I be a well ordered set and / K O = ( 1 , 2 , •••, n , •••) the

set of natural numbers. Let {SI,-}/ be a set of semi-simple Grothendieck categories

with generating sets. If $L=[I, 3X]r (resp. [I, SI,-]') is hereditary, then functors

T^ satisfy (*)' (resp. (*)')• Conversely, &=[/, 9t,-f (resp. 3t=[JKo; SIJ')15 w/w^J

^ condition (*), Âew S ^wrf SI are hereditary.

Proof. Let {Pia} be a generating set of minimal objects in SI,- and R=
2 © [ P i " , i V ] be the induced ring from SX with functors Tip where P c o =

Si(Piot)' We assume that St and hence, R are hereditary. Since SI,- is semi-
simple with generating set, St,- is a coproduct of simple categories Sl/Q>. We may
assume that Pia. is a generator in 31,-̂ .. Furthermore, Sl=[/, St /]

r^[/ / , SI,-0J.]
r

with functors T7,^.,^. such that T'^.^.^O, Tmzmnob=pm$mTmninobn for n<m
and T,-y=2 © Tf

iobiJpp where i is the inclusion SlMa>M to SIW and/) is the projection
of Stw to StmPwj. Let /z1<n2<"-<ww be given numbers of / and $lm=[(nly •••«„,),

Sl,-]r. Put g(nf., a f - )=2 IPI,,.!.,.
 i n ^ f o r anY finite number of Pn.a.. Let ^ (w) be

the induced subring of R from Stw. Then R(ni9ai)=e(ni,ai)Re(niyai)
:=

e(niy ai)R
me(ni, a,). Furthermore, $ w = U e(niy a{)Re(niy «,•), where (TZ,-, a,)

runs over all (w,-, at) and w,- may be overlaped, and M= \jMe(niy a,) for M e
sJJi2?

+ and Me(niy a,)esJJtj??
+(w,-, a,). On the other hand, R(niy at) is hereditary

1) If | J | >Ko or | / | =Ko and I contains the last element, [/, SI,-]7 is, in general, not
hereditary by Lemma 8 in the forth comming paper of the same title III.
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by Corollary to Lemma 2. Hence, w.gl.dim R(n{, oc,-)<l. Therefore, w.gl.dim
Rm < 1 by [7], Proposition 1. It is clear that Stw is perfect. Thus, Rm is hereditary
by Theorem 2'. Therefore, the condition (*)r is obtained from [9], Theorem 3.12.
Similarly, we obtain (*)' for hereditary categories [/, SI,]7. Conversely, we assume
3l=[J,3t1]r satisfies (*)'. Then from the above R=uR(n{), where R(nt)=
[(«„ •••, nt), SI,]' for any finite subset (nly •••, nt) of / . R(n{) is hereditary by [9],
Theorem 3.12. Therefore, SI is hereditary from the above arguments and a fact

that SI is perfect. Next, we consider SI. Let i ? = 2 © en*nR be the induced ring
a n d i ? n = 2 e ^ i ? . Then ](R)=^®enaRemoim and xnL 2 ®enaRem<Amis

projective, in SSJlRn
+ by [9], Theorem 2.13 and hence, projective in SEflR

+ by the
structure of SI. Therefore, JCR)=2©x, i s projective. Thus, SI is hereditary
by Lemma 3.

Theorem 4. Let SI be a semi-perfect Grothendieck category with a generating
set of small projectives. If SI is perfect and hereditary, then SI is equivalent to
[/, Slt]

r with functors Tip which satisfy the condition (*)r. If 31 is semi-artinian
and hereditary, then SI is equivalent to [/, SI,]7 with functors Tip which satisfy the
condition (*)/, where I is a well ordered set and 3l/s are semi-simple categories with
generating sets.

Proof. We assume that SI is perfect and hereditary. Let {Pa} be a generating
set of indecomposable projective objects in SI. Since SI is perfect, there exists
Pa such that [Pa, Pp]=0 for all P^P? and [Pyy J(PY)]=O for all Py by Proposition
3. We denote all of such a type Pa by P%\ If we take out all of {P^} from
{PY}, we can find projectives P/3 such that [PPy Py]=0 if P^Py and Pr<E {P^} —
{P?>}. We denote such Pp by P f . We can define Pw inductively. Then the
induced ring R from SI is a ring of tri-angular matrices: i?=

*
Hence, SI is equivalent to A=[/ , a« s

+] r with functors 71,/—)=(—)
P^j)], where S , = 2 © [PY°I PYJ)] is semi-simple. On the other hand TtJ is
coproduct and cokernel preserving. Hence, T^.'s satisfy (*)r by Theorem 3.
The remaining part is proved similarly to the above.

The above proof suggests us

Proposition 5. Let SI be a Grothendieck category with a generating set of
completely indecomposable and samll projective {P*}/. Then 1L(PJ (resp. rL(Pa)))
is bounded for any «G / if and only z/SI is equivalent to [I*°, SI,]' (resp. [I\ SI(]

r),
where SI/s are semi-simple categories with generating sets. Therefore, if ^(P^)
(resp. rL(P^) is bounded for any a, then SI is semi-artinian (resp. perfect) and Pa is
J-nilpotent for all a.

Theorem 5. Let %be a semi-perfect Grothendieck category with a generating
set of projective and samll objects P0 . Then % is semi-hereditary and all P^ are J-
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nilpoient if and only if SI is equivalent to [I\ SI,]7 with functors Tip which satisfy
the condition (*)/ in Theorem 3, where St/s are semi-simple categories with generating
sets.

Proof. It is clear from the defintion of [/*<>, SIJ', Proposition 3,3, The-
orem 4 and Proposition 5.

Theorem 6. Let SI and {Pa} be as in Theorem 5. If%is semi-hereditary,
then the following are equivalent.

1) All Pa are ]-nilpotent.
2) lL(Pa)< oo for any a, (P* may not be indecomposable).

Furthermore the following are equivalent.
1) All Pa are ]-nilpotent and SC is perfect.
2) lL(Pa) and rL(Pa) are bounded for any a, (Pa may not be indecomposable).

Proof. It is clear from Theorems 4 annd 5, and Konig Graph theorem
and Krull-Remak-Schmidt's theorem, since P^s are small.

Theorem 7. Let %be a semi-perfect Grothendieck category with a generating
set of completely indecomposable projective and small objects Pa. Then the following
are equivalent.

1) §1 is equivalent to a category of commutative diagrams [/*°, 31,-]/ (resp.
[/*°, SI,]r) over semi-simple categories SI,, with generating sets.

2) lL(Pm)< oo (resp. rL(Pa)< oo) for all a .
3) There exists a fully imbedding functor <pof%toa hereditary category of

commutative diagrams 33= [ / \ SI/]7 with functors T{/ over semi-simple categories

si/ such that [PJKP«)> PJKPM~[<p(P«)l<p(KP»), <p(P«)l<p(KP«m=[(PJ
J(PJ, PJJ(P*)]%, {resp. changing [ ]l by [ ] r), where Pa is a projective cover of
<p(Pa) in S3 and {P^} is a generatinga set.

Proof. 1) -» 2) is clear from the observation in §3. 2) —> 1). It is proved
by Proposition 5. 1) -> 3). Let 3t«[/*o, » , ] ' with functor Tt^i<j). Let « ,
be a minimal object in SI,-. Then p.=5,.(^ /)=(T l l(^4 | .) , T2i(At), ••-, T^Af)
Aifi--) is a member of a generating set in SI. Let 33=[/^o> § 1 ^ w i th functor

2 ®T4iTiui2-Tiu@TtJ, changing arrows for d{j(^<i>iv..itTiir'Titj

>2..<<(</
where ^>,1...,-/ are natural transformations Tiil---TilJ.^Tij. We have a

faithful functor cp: St^S3 from [9], p 197. Put P,=S/(^,) in 33. Since J(P.)
=(r i t . (^, .) , - , r ,_v( i4,)>O,-)=9>(J(^)) except arrows and J(P I . )=(T 1 / (^ , . ) , - >

take the natural morphism / : P,—xp(Pt), which is induced from lAjJ / i s epi-
morphic amd P,- is a projective cover of ^(P,) , since J ^ P ^ ) is unique
maximal in ^>(P,). Fruthermore, S3 is hereditary from Theorem 4 and [10],
Corollary to Theorem 10. 3) -> 2). We assume that there exists <p as in 3). If
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for PcfaPfr then [Pp, Pp]=i=0 and P * * ^ , since P^'s are projective
covers of <p(PJ's. Further, [Pa, J(PJ]$ is isomorphic to a submodule of
[cp(Pa), ̂ >(J(PJ)]^C[^(PJ, J(?>(PJ)k, since ? > ( J ( P J ) ^ ( P J , P . is a projetive
cover of ?>(PJ and Pa is indecomposable. On the other hand, [^(P*), J(£>(P*))]
is induced from [Pa, J(P«)]=0 since 1 L ( P J < O O . Hence, 1L(PJ< 1 L ( P J < O O .

We have similar results for [/**<>, 3I,]r.
Finally, if we restruct ourselves to a ring with identity, we have immediately

from Proposition 5.

Proposition 6. Let R be semi-perfect ring with identity, and { ,̂}?=i be a
complete set of mutually orthogonal and local idempotents. Then the following are
equivalent.

1) rL(e{R) (or rL(Rei))< °o for any i.
2) lL(e{R) (or lL(Re{))< oo for any i.
3) R is generalized tri-angular matrix ring over semi-smiple artinan rings.

In such a case, R is semi-primary. Especially, if R is right (left) perfect and hereditary
R is a semi-primary ring.

REMARK. It is clear that Theorems 3,6 and 7 are generalizations of [3],
Theorem 4.1, [14], Theorem 5 and [8], Theorem 5. However, we drop the
assertion gl.dim R/N2<C oo 9 because it seems to us that it does not contain a special
categorical meaning. If we want this result, we may consider the ring induced
from a category.

Let A be a divsion ring and Tn the ring of lower tri-angular matrices over
A with degree n. Then %=7t 2ftrM

 ls a hereditary and perfect category and
generators are J-nilpotent, whose indeces are not bounded. Let S be the ring
of lower tri-angular matrices over A with countable infinite degree and {eih} the
set of matrix units. We condider a subset e/y as follows: if i'=lj'=l, if i'=2>
7V=2 and if i ' = 3 , y = l , 2, 3. We assume zv<3. If *'#:**(»+1)/2 for any n,
j'=i'. If zv=«(ft+l)/2 for some n, j ' are {(/z—l)(w—2)/2}+3 nearest numbers
from/, except n(n—l)/2, (n— l)(n—2)/2, •••, (for instance, if ^=15, y7=15,14,
v , 11,109, •••,7,65). P u t P — 2 © V / A. Then we can easily check that W:R

+

is heredetary, perfect and all Pa are J-nilpotent without boundary and further,
9Jl/?

+ can not be expressed as a coproduct of two full subcategories.
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