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0. Introduction

We begin with the desingularized multiple zeta function (desingularized MZF for 
short) which was introduced by Furusho, Komori, Matsumoto, and Tsumura ([6]):

ζdes
r (s1, . . . , sr) = lim 

c→1
c ̸=1

1 
(1 − c)r

r∏︂
k=1

1 
(e2πisk − 1)Γ(sk)

∫︂
𝒞r
ϵ

ℌ̃r(t1, . . . , tr; c)
r∏︂

k=1

tsk−1
k dtk

(0.1)
for complex variables s1, . . . , sr, where 𝒞ϵ is the Hankel contour (see Definition 1.1), and 
for c ∈ R, we put

ℌ̃r(t1, . . . , tr; c) :=
r∏︂

j=1

(︄
1 

exp(
∑︁r

k=j tk) − 1
− c 

exp(c
∑︁r

k=j tk) − 1

)︄
∈ C[[t1, . . . , tr]].

The desingularized MZF was introduced to resolve the infinitely many singularities of 
the multiple zeta function (MZF for short), under the motivation of finding a suit
able meaning of the special values of MZF ζr(s1, . . . , sr) at non-positive integer points 
(s1, . . . , sr) ∈ Zr

≤0. Refer to §1.1 for more information on MZFs and desingularized ones. 
Here, we will describe some properties of the desingularized MZFs that are shown in [6].

(i) ζdes
r (s1, . . . , sr) is entire on whole space Cr.

(ii) ζdes
r (s1, . . . , sr) is expressed as a finite ``linear'' combination of MZFs.

(iii) Special values of ζdes
r (s1, . . . , sr) at non-positive integer points are calculated ex

plicitly by using Seki-Bernoulli numbers.

Furthermore, the first-named author showed the following:
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Proposition 1.7. (cf. [10, Theorem 2.7]) For s1, . . . , sp ∈ Z, l1, . . . , lq ∈ Z≥0, we have

ζdes
p (s1, . . . , sp)ζdes

q (−l1, . . . ,−lq)

=
∑︂

ib+jb=lb
ib,jb≥0
1≤b≤q

q∏︂
a=1

(−1)ia
(︃
la
ia

)︃
ζdes
p+q(s1, . . . , sp−1, sp − i1 − · · · − iq,−j1, . . . ,−jq).

In this paper, we examine the so-called shuffle product formula for special values of 
desingularized MZFs at ``integer'' points. As a generalization of Proposition 1.7 and the 
main theorem of this paper, we show the following:

Theorem 4.8. Let ℋ be a Hopf algebra which is defined in (2.3). We define the Q-linear 
map ζdes : ℋ → R by ζdes(1) := 1 and

ζdes(jkry · · · jk1y) := lim 
t→1−0

Lides(k1, . . . , kr)(t),

for k1, . . . , kr ∈ Z. Then, this map ζdes forms a Q-algebra homomorphism. For 
Lides(k1, . . . , kr)(t), see Definition 2.10.

As a consequence of this theorem, the following holds

ζdes(jkry · · · jk1y 0 j
lsy · · · jl1y) = ζdes(jkry · · · jk1y)ζdes(jlsy · · · jl1y) (0.2)

for r, s ∈ N, k1, . . . , kr, l1, . . . , ls ∈ Z. We call this product formula the shu�le-type 
formula. For k1, . . . , kr, l1, . . . , ls ∈ N, one can see that (0.2) matches the same shuffle 
product of MZVs.

The following proposition is key to proving Theorem 4.8.

Theorem 4.6. For k ∈ Zr, we have

Lides(k)(t) = ˆ︁ζdes
r (k)(t).

Here, Lides(k)(t) is defined by a certain iterated integral (Definition 2.10) and ˆ︁ζdes
r (k)(t) is a special value of a certain function ˆ︁ζdes

r (s)(t) on Cr at an integer point 
k defined by the Hankel contour integral (Definition 4.1). By definition, we know that 
Lides(k)(t) satisfies the shuffle product formula, and we show that, in the limit as t → 1, 
the function ˆ︁ζdes

r (s)(t) coincides with the desingularized MZF ζdes
r (s) (Proposition 4.2). 

Therefore, we attain our main theorem.
In order to prove Theorem 4.6, we show that both Lides(k)(t) and ˆ︁ζdes

r (k)(t) share 
the same representation. More precisely, we show the following two statements:
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Theorem 3.16. For k ∈ Zr, we have

Lides(k)(t) =
∑︂
q≥0 

(−1)q (log t)q

q! 
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl,m(q)

⎛⎝ r∏︂
j=1

(kj)lj

⎞⎠Lik+m(t). (0.3)

Theorem 4.5. For k ∈ Zr, we have

ˆ︁ζdes
r (k)(t) =

∑︂
q≥0 

(−1)q (log t)q

q! 
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl,m(q)

⎛⎝ r∏︂
j=1

(kj)lj

⎞⎠Lik+m(t). (0.4)

See Proposition 1.3 for definition of the Pochhammer symbol (kj)lj , and see (A.1) for 
the symbol arl,m(q).

The construction of this paper goes as follows: In §1, we recall the MZF and its desin
gularization. And then, we observe that the shuffle product formula for MZVs holds for 
special values of the desingularized MZFs with depth 1 at positive integer points (Propo
sition 1.10). In §2, we review a certain Hopf algebra derived from the differential relation 
of multiple polylogarithms. We show that special values of ζdes

r (s1, . . . , sr) at all-negative 
integer points (s1, . . . , sr) ∈ Zr

<0 have an ``iterated differential expression''. After that, 
we introduce Lides(k)(t) by an iterated integral expression. In §3, we define a function 
Z(k; t) to express Lides(k)(t) as a finite linear combination of multiple polylogarithms. 
At the end of §3, we show that Z(k; t) coincides with Lides(k)(t). In §4, we introduce an 
(r+1)-fold analytic function ˆ︁ζdes

r (s1, . . . , sr)(t) defined by a Hankel contour integral. By 
showing ˆ︁ζdes

r (k)(t) and Z(k; t) are equal, we prove our main theorem (Theorem 4.8). In 
Appendix A, we give an explicit expression of Z(k; t) in terms of Lik(t).

Acknowledgments. We would like to thank Hidekazu Furusho and Kohji Matsumoto 
for their helpful comments. N. K. has been supported by grants JSPS KAKENHI 
JP23KJ1420. T. S. has been supported by grants JSPS KAKENHI JP24KJ1252.

1. The MZFs and desingularized MZFs

In this section, we review the multiple zeta functions in §1.1. In §1.2, we recall the 
definition of the desingularized MZFs which is introduced by Furusho, Komori, Mat
sumoto, and Tsumura in [6], and explain some properties of them. In §1.3, we observe 
that special values of the desingularized MZFs in one variable case at all positive integers 
satisfy the shuffle product formula.

1.1. The MZFs

In this subsection, we recall the multiple zeta functions.
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Let r ∈ N. The Euler-Zagier multiple zeta function (MZF for short) is the r-fold 
complex analytic function defined by

ζr(s1, s2, . . . , sr) =
∑︂

0<n1<n2<···<nr

1 
ns1

1 ns2
2 · · ·nsr

r
.

It converges absolutely in the region

𝒟r := {(s1, . . . , sr) ∈ Cr | ℜ(sr−j+1 + · · · + sr) > j for 1 ≤ j ≤ r}.

Here, ℜ(s) means the real part of s ∈ C. In the early 2000s, Zhao ([12]) and Akiyama, 
Egami, and Tanigawa ([1]) independently showed that the MZF can be meromorphically 
continued to Cr. In particular, in [1], the set of singularities of the MZF is determined 
as all (s1, . . . , sr) ∈ Cr satisfying either of the following conditions;

sr = 1,

sr−1 + sr = 2, 1, 0,−2,−4,−6, . . . ,
k∑︂

i=1 
sr−i+1 ∈ Z≤k, (k = 3, 4, . . . , r).

This shows that almost all non-positive integer points are located in the set of singular
ities. In addition, they are known to be points of indeterminacy. Only the special values 
ζ(−k) (k ∈ Z≥0) and ζ2(−k1,−k2) (k1, k2 ∈ Z≥0 with k1 + k2 odd) are well-defined. 
It is one of the fundamental problems to give a nice meaning of ``ζr(−k1, . . . ,−kr)'' for 
k1, . . . , kr ∈ Z≥0. Regarding this, desingularization method (§1.2) and the renormaliza
tion method (§2.1, 2.2) are known.

1.2. Desingularized MZFs

In this subsection, we recall the definition of the desingularized MZFs and their re
markable properties.

We start with the generating function1 ℌ̃r(t1, . . . , tr; c) ∈ C[[t1, . . . , tr]] (cf. [6, Defi
nition 1.9]); for c ∈ R, we put

ℌ̃r(t1, . . . , tr; c) :=
r∏︂

j=1

(︄
1 

exp(
∑︁r

k=j tk) − 1
− c 

exp(c
∑︁r

k=j tk) − 1

)︄

=
r∏︂

j=1

⎛⎝∑︂
m≥1

(1 − cm)Bm

(
∑︁r

k=j tk)m−1

m! 

⎞⎠ .

1 It is denoted by ℌ̃r((tj); (1); c) in [6].
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Here, Bm (m ∈ Z≥0) is the m-th Seki-Bernoulli number which is defined by

x 
ex − 1 :=

∑︂
m≥0

Bm

m! x
m.

We note that B0 = 1, B1 = −1
2 and B2 = 1

6 .

Definition 1.1 ([6, Definition 3.1]). For s1, . . . , sr ∈ C \ Z, we define

ζdes
r (s1, . . . , sr) := lim 

c→1
c ̸=1

1 
(1 − c)rC(s)

∫︂
𝒞r
ϵ

ℌ̃r(t1, . . . , tr; c)
r∏︂

k=1

tsk−1
k dtk, (1.1)

where 𝒞ϵ is the Hankel contour, that is, the path consisting of the positive axis (top 
side), a counterclockwise circle around the origin of radius ϵ (sufficiently small), and the 
positive real axis (bottom side). We put

C(s) := C(s1, . . . , sk) :=
r∏︂

k=1

1 
(e2πisk − 1)Γ(sk)

. (1.2)

We call ζdes
r (s1, . . . , sr) the desingularized MZF.

The next proposition guarantees the convergence of the right-hand side of (1.1).

Proposition 1.2 ([6, Theorem 3.4]). The function ζdes
r (s1, . . . , sr) can be analytically 

continued to Cr as an entire function in (s1, . . . , sr) ∈ Cr by the following integral 
expression;

ζdes
r (s1, . . . , sr)

= C(s) ·
∫︂
𝒞r
ϵ

r∏︂
j=1

(︄
1 

exp(
∑︁r

k=j tk) − 1
−
∑︁r

k=j tk exp(
∑︁r

k=j tk)
(exp(

∑︁r
k=j tk) − 1)2

)︄
r∏︂

k=1

tsk−1
k dtk.

We review useful notations to show another wonderful property of ζdes
r (s1, . . . , sr). 

For indeterminates uj and vj (1 ≤ j ≤ r), we set

𝒢r := 𝒢r(u1, . . . , ur; v1, . . . , vr) :=
r∏︂

j=1
{1 − (ujvj + · · · + urvr)(v−1

j − v−1
j−1)} (1.3)

with the convention v−1
0 := 0, and we define the set of integers {arl,m} by

𝒢r(u1, . . . , ur; v1, . . . , vr) =
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=0

arl,m

r∏︂
j=1

u
lj
j v

mj

j . (1.4)
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Here, we put |m| := m1 + · · · + mr.
One of the remarkable properties of the desingularized MZFs is that it can be repre

sented as a finite ``linear'' combination of MZFs.

Proposition 1.3 ([6, Theorem 3.8]). For s1, . . . , sr ∈ C, we have the following equality 
between meromorphic functions of the complex variables (s1, . . . , sr);

ζdes
r (s1, . . . , sr) =

∑︂
l=(lj)∈Zr

≥0
m=(mj)∈Zr

|m|=0

arl,m

⎛⎝ r∏︂
j=1

(sj)lj

⎞⎠ ζr(s1 + m1, . . . , sr + mr),

where (s)k is the Pochhammer symbol, that is, (s)0 := 1 and (s)k :=
∏︁k

j=1(s+ j− 1) for 
k ∈ N and s ∈ C.

Let us see some examples of Proposition 1.3.

Examples 1.4. ([6, §4]). In the case r = 1, we have

ζdes
1 (s) = (1 − s)ζ(s).

We also see that ζdes
1 (1) = −1.

In the case r = 2, we have

ζdes
2 (s1, s2) =(s1 − 1)(s2 − 1)ζ2(s1, s2) + s2(s2 + 1 − s1)ζ2(s1 − 1, s2 + 1)

− s2(s2 + 1)ζ2(s1 − 2, s2 + 2).
(1.5)

By [7, Proposition 4.9], we have

ζdes
2 (1, 1) = 1

2 . (1.6)

We consider the following generating function Z(t1, . . . , tr) of the special value 
ζdes
r (−k1, . . . ,−kr) (k1, . . . , kr ∈ Z≥0) which will be employed in the later section:

Z(t1, . . . , tr) :=
∑︂

k1,...,kr≥0

(−t1)k1 · · · (−tr)kr

k1! · · · kr! ζdes
r (−k1, . . . ,−kr). (1.7)

This is explicitly calculated as follows.

Proposition 1.5 ([6, Theorem 3.7]). We have

Z(t1, . . . , tr) =
r∏︂

i=1

(1 − ti − · · · − tr)eti+···+tr − 1
(eti+···+tr − 1)2 .
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In terms of ζdes
r (−k1, . . . ,−kr) for k1, . . . , kr ∈ Z≥0, the above equation is reformulated 

to

ζdes
r (−k1, . . . ,−kr) = (−1)k1+···+kr

∑︂
ν1i+···+νii=ki

1≤i≤r
νij∈Z≥0

r∏︂
i=1

ki! ∏︁r
j=i νij !

Bνii+···+νir+1.

We recall that the first-named author showed the following formula for special values 
of the desingularized MZFs.

Proposition 1.6 ([9, Proposition 4.8]). For s1, . . . , sr−1 ∈ C and k ∈ Z≥0, we have

ζdes
r (s1, . . . , sr−1,−k) =

k∑︂
i=0 

(︃
k

i 

)︃
ζdes
r−1(s1, . . . , sr−1 − k + i)ζdes

1 (−i).

Proposition 1.7 ([10, Theorem 2.7]). For s1, . . . , sp ∈ C, l1, . . . , lq ∈ Z≥0, we have

ζdes
p (s1, . . . , sp)ζdes

q (−l1, . . . ,−lq)

=
∑︂

ib+jb=lb
ib,jb≥0
1≤b≤q

q∏︂
a=1

(−1)ia
(︃
la
ia

)︃
ζdes
p+q(s1, . . . , sp−1, sp − i1 − · · · − iq,−j1, . . . ,−jq).

Our motivation of this paper is based on the question of whether we can naturally 
extend Proposition 1.7 for all special values at integer points of the desingularized MZFs.

1.3. Observation on the shuffle product of ζdes
1 (k)

In this subsection, we present a simple, but important observation.
At first, we remark on some special values of the double zeta function.

Lemma 1.8 ([2, Proposition 4]). For n ∈ N≥2 we have

lim 
s→1

(s− 1)ζ2(n, s) = ζ(n). (1.8)

Proof. It is a direct consequence of the expansion

ζ2(n, s) = ζ(n) 
s− 1 + O(1),

where O is Landau’s symbol. □
The followings are known for the cases n ≤ 0.
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Remark 1.9 ([7, Example 4.2]). The following two hold:

ζ2(0, s) = ζ(s− 1) − ζ(s),

ζ2(−1, s) = 1
2 {ζ(s− 2) − ζ(s− 1)}

for s ∈ C except for singularities. Hence, we have

ζ2(−1, s) = 1
2ζ2(0, s− 1) (1.9)

for s and s− 1 neither of which is a singularity.

By an elementary calculation, we find the following.

Proposition 1.10. For n, m ∈ N, we have

ζdes
1 (n)ζdes

1 (m) =
n+m−1∑︂

j=1 

{︃(︃
j − 1 
n− 1

)︃
+
(︃
j − 1 
m− 1

)︃}︃
ζdes
2 (n + m− j, j), (1.10)

where we use the usual convention 
(︁
k
i 
)︁

= 0 for k < i.

Proof. If n = m = 1, by (1.6), we have

ζdes
1 (1)2 = 1 = 2ζdes

2 (1, 1).

We prove (1.10) for m,n ≥ 2. To save space, we set

bj,n :=
(︃
j − 1 
n− 1

)︃
(j, n ∈ N).

Since n and m are symmetric, we compute as follows:

n+m−1∑︂
j=1 

(︃
j − 1 
n− 1

)︃
ζdes
2 (n + m− j, j)

=
n+m−1∑︂

j=1 
bj,n

{︂
(n + m− j − 1)(j − 1)ζ2(n + m− j, j)

+ j(2j + 1 − n−m)ζ2(n + m− j − 1, j + 1) − j(j + 1)ζ2(n + m− j − 2, j + 2)
}︂
.

Notice that the equality holds by (1.5). By rearranging each term, we have
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n+m−1∑︂
j=1 

(︃
j − 1 
n− 1

)︃
ζdes
2 (n + m− j, j)

=
n+m−1∑︂

j=3 

{︂
bj,n(n + m− j − 1)(j − 1) + bj−1,n(j − 1)(2j − 1 − n−m)

− bj−2,n(j − 2)(j − 1)
}︂
ζ2(n + m− j, j) + R1

n,m + R2
n,m,

where

R1
n,m := b1,n(n + m− 2)ζ(n + m− 1) − b2,n(n + m− 3)ζ2(n + m− 2, 2)

− b1,n(3 − n−m)ζ2(n + m− 2, 2),

R2
n,m := bn+m−1,n(n + m− 1)2ζ2(0, n + m)

− bn+m−2,n(n + m− 2)(n + m− 1)ζ2(0, n + m)

− bn+m−1,n(n + m− 1)(n + m)ζ2(−1, n + m + 1).

Note that by applying (1.8) to ζdes
2 (n+m− 1, 1), the term ζ(n+m− 1) appears in the 

definition of R1
n,m. By using 

(︁
n−1
r

)︁
=
(︁
n
r

)︁
n−r
n (i.e. bj−1,n = bj,n

j−n
j−1 ), we have

bj,n(n + m− j − 1)(j − 1) + bj−1,n(j − 1)(2j − 1 − n−m) − bj−2,n(j − 2)(j − 1)

=
{︂
(n + m− j − 1)(j − 1) + (j − n)(2j − 1 − n−m) − (j − n− 1)(j − n)

}︂
bj,n

= (1 − n)(1 −m)bj,n. (1.11)

We next compute R1
n,m and R2

n,m. We can easily see that the following holds for n,m ∈
N≥2:

R1
n,m = −b2,n(m− 1)ζ2(n + m− 2, 2). (1.12)

By using bj−1,n = bj,n
j−n
j−1 , we have

R2
n,m = bn+m−1,n(n + m− 1)2ζ2(0, n + m)

− bn+m−1,n(m− 1)(n + m− 1)ζ2(0, n + m)

− bn+m−1,n(n + m− 1)(n + m)ζ2(−1, n + m + 1). (1.13)

By using (1.9), we obtain

R2
n,m = bn+m−1,n(n−m)(n + m− 1)ζ2(−1, n + m + 1). (1.14)

By (1.11), (1.12), and (1.14), we have
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n+m−1∑︂
j=1 

(︃
j − 1 
n− 1

)︃
ζdes
2 (n + m− j, j)

= (1 − n)(1 −m)
n+m−1∑︂

j=3 
bj,nζ2(n + m− j, j) − b2,n(m− 1)ζ2(n + m− 2, 2)

+ bn+m−1,n(n−m)(n + m− 1)ζ2(−1, n + m + 1).

Because b1,n = 0 for n ≥ 2, we get

n+m−1∑︂
j=1 

(︃
j − 1 
n− 1

)︃
ζdes
2 (n + m− j, j) = (1 − n)(1 −m)

n+m−1∑︂
j=1 

bj,nζ2(n + m− j, j)

+ bn+m−1,n(n−m)(n + m− 1)ζ2(−1, n + m + 1).

Since 
(︁
p+q
p 
)︁

=
(︁
p+q
q

)︁
for p, q ∈ N, we have bn+m−1,n = bn+m−1,m. Thus, we have

n+m−1∑︂
j=1 

{︃(︃
j − 1 
n− 1

)︃
+
(︃
j − 1 
m− 1

)︃}︃
ζdes
2 (n + m− j, j)

= (1 − n)(1 −m)
n+m−1∑︂

j=1 
(bj,n + bj,m)ζ2(n + m− j, j).

Because m,n ≥ 2, by the shuffle product formula of MZVs, we calculate as

n+m−1∑︂
j=1 

{︃(︃
j − 1 
n− 1

)︃
+
(︃
j − 1 
m− 1

)︃}︃
ζdes
2 (n + m− j, j)

= (1 − n)(1 −m)ζ(n)ζ(m) = ζdes
1 (n)ζdes

1 (m).

Hence, the equation (1.10) holds for m,n ≥ 2. In the same way, we can prove (1.10) for 
n = 1 and m ≥ 2 (or n ≥ 2 and m = 1). □

In Theorem 4.8 in §4, we will generalize this proposition to higher depth.

2. Construction of Lides(k)(𝒕)

In this section, we review the Hopf algebra (ℋ, 0 ,Δ0) and its Hopf subalgebra 
(ℋ−, 0 ,Δ0) which are introduced in [4], and we prove some algebraic relations on 
ℋ− (Proposition 2.2 and Proposition 2.3). By using these relations, in §2.2, we give 
a reinterpretation of special values of the desingularized MZFs at non-positive integer 
points (Corollary 2.8). In §2.3, we give a quick review of multiple polylogarithms and 
introduce functions Lides(k)(t). And then, we mention the relationship between these 
functions Lides(k)(t) for k ∈ Zr

≤0 and special values ζdes
r (k).
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2.1. A certain Hopf algebra

We recall the definition of the Hopf algebra (ℋ−, 0 ,Δ0) introduced in [4] and its 
properties. Put Q⟨d, j, y⟩ to be the non-commutative polynomial ring generated by three 
letters d, j, y with dj = jd = 1. We define the product 0 : Q⟨d, j, y⟩⊗2 → Q⟨d, j, y⟩ by 
w 0 1 := 1 0 w := w and

yu 0 v := u 0 yv := y(u 0 v),

ju 0 jv := j(u 0 jv) + j(ju 0 v),

du 0 dv := d(u 0 dv) − u 0 d
2v, (2.1)

du 0 jv := d(u 0 jv) − u 0 v,

ju 0 dv := d(ju 0 v) − u 0 v,

for any words u, v, w in Q⟨d, j, y⟩. Then the pair (Q⟨d, j, y⟩, 0 ) forms a non
commutative, non-associative Q-algebra. We define 𝒯 to be the linear subspace over 
Q of Q⟨d, j, y⟩ generated by

{︁
jk1y · · · jkr−1yjkr ∈ Q⟨d, j, y⟩ | r ∈ N, k1, . . . , kr ∈ Z, kr ̸= 0

}︁
.

Note that the symbol j−k means dk for k ∈ N. And we define ℒ to be the two-sided 
ideal of (Q⟨d, j, y⟩, 0 ) generated by

{︁
jk{d(u 0 v) − du 0 v − u 0 dv} | k ∈ Z, u, v:words of Q⟨d, j, y⟩ ending in y

}︁
. (2.2)

It is proved that the subspace 𝒯 is a two-sided ideal of (Q⟨d, j, y⟩, 0 ) in [4, Lemma 
3.4]. We define the quotient algebra

ℋ := Q⟨d, j, y⟩/(𝒯 + ℒ). (2.3)

Then the pair (ℋ, 0 ) is a commutative, associative Q-algebra ([4, Proposition 3.5]).
We consider the non-commutative polynomial ring Q⟨d, y⟩ generated by two letters d

and y. The pair (Q⟨d, y⟩, 0 ) forms a subalgebra of (Q⟨d, j, y⟩, 0 ). We put

𝒯− := Q⟨d, y⟩ ∩ 𝒯 , ℒ− := Q⟨d, y⟩ ∩ ℒ,

and define

ℋ− := Q⟨d, y⟩/(𝒯− + ℒ−).

Then there exists a coproduct Δ0 such that the triple (ℋ−, 0 ,Δ0) forms a commutative 
Hopf algebra over Q (see [4, §3.3.2--3.3.6] for definition of Δ0). We define the reduced 
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coproduct ˜︁Δ0(w) := Δ0(w) − 1 ⊗ w − w ⊗ 1 for any words w in ℋ−. In [8, Proposition 
2.5], the reduced coproduct ˜︁Δ0 is explicitly given by

˜︁Δ0(dk1y · · · dkry) =
∑︂

i+j=k1

(︂k1

i 

)︂
diy ⊗sym djdk2y · · · dkry

+
r−1 ∑︂
p=2

∑︂
il+jl=kl
1≤l≤p

p ∏︂
a=1

(︂ka
ia

)︂ ∑︂
{uq,vq}={diq ,djq y}

1≤q≤p−1

u1 · · ·up−1d
ipy ⊗sym v1 · · · vp−1d

jpdkp+1y · · · dkry,
(2.4)

for r ≥ 2 and k1, . . . , kr ∈ Z≥0. Here, w1 ⊗sym w2 := w1 ⊗w2 +w2 ⊗w1 for w1, w2 ∈ ℋ−.

Proposition 2.1 ([4, Corollary 3.24 for λ = 0]). For any word w(̸= 1) in ℋ−, we have

(2dep(w) − 2)w = 0 ◦ ˜︁Δ0(w).

Here, the symbol dep(w) means the number of y appearing in the word w.

We prove the following by using the above proposition.

Proposition 2.2. Let r ≥ 3 and k1, . . . , kr ∈ Z≥0. We have

∑︂
il+jl=kl
1≤l≤p

p ∏︂
a=1

(︃
ka
ia

)︃
u1 · · ·up−1d

ipy 0 v1 · · · vp−1d
jpdkp+1y · · · dkry

=
∑︂

i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry,

for p ∈ {2, . . . , r − 1} and (uq, vq) ∈ {(diq , djqy), (djqy, diq )} (1 ≤ q ≤ p− 1).

Proof. For r ≥ 1, we consider the following generating functions

𝒢(t1, . . . , tr) :=
∑︂

k1,...,kr≥0

tk1
1 · · · tkr

r

k1! · · · kr!d
k1y · · · dkry (∈ ℋ−[[t1, . . . , tr]]) .

When r = 2, by using the equation (2.4) and Proposition 2.1, we have

dk1ydk2y =
∑︂

i+j=k1

(︃
k1

i 

)︃
diy 0 d

j+k2y,

for k1, k2 ∈ Z≥0. So we get

𝒢(t1, t2) =
∑︂

k1,k2≥0

tk1
1 tk2

2
k1!k2!

∑︂
i+j=k1

(︃
k1

i 

)︃
diy 0 d

j+k2y =
∑︂

i,j,k2≥0

ti+j
1 tk2

2
i!j!k2! 

diy 0 d
j+k2y
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=

⎧⎨⎩∑︂
i≥0 

ti1
i! d

iy

⎫⎬⎭ 0

⎧⎨⎩∑︂
k≥0

1 
k!d

ky
∑︂

j+k2=k

(︃
k

j

)︃
tj1t

k2
2

⎫⎬⎭
= 𝒢(t1) 0

⎧⎨⎩∑︂
k≥0

(t1 + t2)k

k! dky

⎫⎬⎭ = 𝒢(t1) 0 𝒢(t1 + t2).

Therefore, we get

𝒢(t1, t2) = 𝒢(t1) 0 𝒢(t1 + t2). (2.5)

When r ≥ 3, by direct calculation, we know

∑︂
k1,...,kr≥0

tk1
1 · · · tkr

r

k1! · · · kr!

⎧⎪⎪⎨⎪⎪⎩
∑︂

il+jl=kl
1≤l≤p

p ∏︂
a=1

(︃
ka
ia

)︃
u1 · · ·up−1d

ipy 0 v1 · · · vp−1d
jpdkp+1y · · · dkry

⎫⎪⎪⎬⎪⎪⎭
= 𝒢(t1 ◦1 t2 ◦1 · · · ◦p−1 tp) 0 𝒢(t1 ⋄1 t2 ⋄2 · · · ⋄p−1 tp + tp+1, tp+2, . . . , tr).

Here, the symbols ◦q and ⋄q are defined by

(◦q, ⋄q) :=
{︄

(+, , )
(︁
(uq, vq) = (diq , djqy)

)︁
,

( , ,+)
(︁
(uq, vq) = (djqy, diq )

)︁
,

for 1 ≤ q ≤ p− 1. By using (2.5) and by induction on r ≥ 3, we get

𝒢(t1 ◦1 t2 ◦1 · · · ◦p−1 tp) 0 𝒢(t1 ⋄1 t2 ⋄2 · · · ⋄p−1 tp + tp+1, tp+2, . . . , tr)

= 𝒢(t1) 0 𝒢(t1 + t2) 0 · · · 0 𝒢(t1 + · · · + tr)

= 𝒢(t1) 0 𝒢(t1 + t2, t3, . . . , tr).

Because we have

𝒢(t1) 0 𝒢(t1 + t2, t3, . . . , tr)

=
∑︂

k1,...,kr≥0

tk1
1 · · · tkr

r

k1! · · · kr!

⎧⎨⎩ ∑︂
i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry

⎫⎬⎭ ,

hence we obtain the claim. □
Proposition 2.3. For r ≥ 2 and k1, . . . , kr ∈ Z≥0, we have

dk1y · · · dkry =
∑︂

i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry.
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Proof. When r = 2, we obtain the claim by the equation (2.4). Set r ≥ 3. By using the 
equation (2.4) and Proposition 2.1, we have

dk1y · · · dkry = 1 
2r−1 − 1

⎧⎨⎩ ∑︂
i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry

+
r−1 ∑︂
p=2 

∑︂
il+jl=kl
1≤l≤p

p ∏︂
a=1

(︃
ka
ia

)︃

×
∑︂

{uq,vq}={diq ,djqy}
1≤q≤p−1

u1 · · ·up−1d
ipy 0 v1 · · · vp−1d

jpdkp+1y · · · dkry

⎫⎪⎪⎬⎪⎪⎭ .

Note that 0 (w1 ⊗sym w2) = 2(w1 0 w2) for words w1, w2 in ℋ−. By using Proposi
tion 2.2, we get

dk1y · · · dkry = 1 
2r−1 − 1

⎧⎨⎩ ∑︂
i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry

+(2r−1 − 2)
∑︂

i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry

⎫⎬⎭
=
∑︂

i+j=k1

(︃
k1

i 

)︃
diy 0 d

jdk2y · · · dkry.

Hence, we obtain the claim. □
2.2. Generalization of the shuffle type renormalization

In this subsection, we first recall the algebraic Birkhoff decomposition which is a fun
damental tool in the work of Connes and Kreimer ([3]) on their Hopf algebraic approach 
to the renormalization of the perturbative quantum field theory.

Let Q[[z, z−1] be the Q-algebra consisting of all formal Laurent series. Put G =
G(ℋ−,Q[[z, z−1]) to be the set of all Q-linear map φ : ℋ− → Q[[z, z−1] with φ(1) = 1. 
For φ,ψ ∈ G, we define the convolution φ ∗ ψ ∈ G by

φ ∗ ψ := m ◦ (φ⊗ ψ) ◦ Δ0.

Here, m is the natural product of Q[[z, z−1]. Then the pair (G, ∗) forms a group, whose 
unit is given by a map e = u◦ εℋ− . Here, the map u is the natural unit of Q[[z, z−1] and 
the map εℋ− is the counit of ℋ− (see [11] for detail).
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Theorem 2.4 ([3], [4]: algebraic Birkhoff decomposition). For φ ∈ G, there exist unique 
Q-linear maps φ+ : ℋ− → Q[[z]] and φ− : ℋ− → Q[z−1] with φ−(1) = 1 ∈ Q such that

φ = φ
∗(−1)
− ∗ φ+.

Here, the symbol φ∗(−1)
− means the inverse element of φ− in (G(ℋ−,Q[[z, z−1]), ∗). More

over, the maps φ+ and φ− form algebra homomorphisms if the map φ is an algebra 
homomorphism.

Remark 2.5. We consider the projection π : Q[[z, z−1] → Q[z−1] defined by

π

⎛⎝ ∑︂
n≥−N

anz
n

⎞⎠ :=
−1 ∑︂

n=−N

anz
n

for an ∈ Q and N ∈ Z≥0. By the above theorem, we can inductively calculate φ+ and 
φ− by

φ−(w) = −π

⎛⎝φ(w) +
∑︂
(w) 

φ−(w′)φ(w′′)

⎞⎠ ,

φ+(w) = (Id − π)

⎛⎝φ(w) +
∑︂
(w) 

φ−(w′)φ(w′′)

⎞⎠ .

Here, we use Sweedler’s notation of the reduced coproduct ˜︁Δ0 by

˜︁Δ0(w) =
∑︂
(w) 

w′ ⊗ w′′.

Note that, when φ(ℋ−) ⊂ Q[[z]], we have

φ−(w) = 0, φ+(w) = φ(w) (2.6)

for any word w ∈ ℋ−.

Let f(z) be a Laurent series in Q[[z, z−1]. We define the Q-linear map ϕf : ℋ− →
Q[[z, z−1] by ϕf (1) := 1 and

ϕf (dk1y · · · dkry) := ∂k1
z

[︂
f(z)∂k2

z

[︁
f(z) · · · ∂kr

z [f(z)] · · · ]︁]︂, (2.7)

for k1, . . . , kr ∈ Z≥0. Here, the symbol ∂z is the derivative by z. By the Leibniz rule of the 
derivative ∂z, we know that the map ϕf forms an algebra homomorphism. By applying 
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the above theorem to this map ϕf , we get the algebra homomorphism ϕf,+ : ℋ− → Q[[z]]. 
We define Ff (k1, . . . , kr) ∈ Q by

Ff (k1, . . . , kr) := lim 
z→0

ϕf,+(dkry · · · dk1y)

for r ∈ N and k1, . . . , kr ∈ Z≥0. We set the generating function of Ff (k1, . . . , kr) by

ℱf (z1, . . . , zr) :=
∑︂

k1,...,kr≥0

zk1
1 · · · zkr

r

k1! · · · kr! Ff (k1, . . . , kr).

The following explicit formulae of ℱf (z1, . . . , zr) holds.

Theorem 2.6. For r ∈ N, we have

ℱf (z1, . . . , zr) = f≥0(zr)f≥0(zr−1 + zr) · · · f≥0(z1 + · · · + zr).

Here, f≥0(z) is defined by

f≥0(z) :=
∑︂
n≥0

an
n! z

n

for f(z) =
∑︁

n≥−N
an

n! z
n (N ∈ Z≥0) with an ∈ Q.

Proof. When r = 1, we have ˜︁Δ0(dky) = 0, so by Remark 2.5, we calculate as

Ff (k1) = lim 
z→0

ϕ+(dk1y) = lim 
z→0

(Id − π)
(︁
ϕ(dk1y)

)︁
= lim 

z→0
(Id − π)

(︁
∂k1
z [f(z)]

)︁
= ak1 .

Therefore, we get

ℱf (z1) =
∑︂
k1≥0

zk1
1
k1! 

Ff (k1) =
∑︂
k1≥0

zk1
1
k1! 

ak1 = f≥0(z1). (2.8)

Let r ≥ 2. By Proposition 2.3, we have

Ff (k1, . . . , kr)

= lim 
z→0

ϕf,+(dkry · · · dk1y) = lim 
z→0

ϕf,+

⎛⎝ ∑︂
i+j=kr

(︃
kr
i 

)︃
diy 0 d

jdkr−1y · · · dk1y

⎞⎠
= lim 

z→0

∑︂
i+j=kr

(︃
kr
i 

)︃
ϕf,+

(︁
diy
)︁
ϕf,+

(︁
djdkr−1y · · · dk1y

)︁
=
∑︂

i+j=kr

(︃
kr
i 

)︃
Ff (i)Ff (k1, . . . , kr−2, kr−1 + j).
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So we calculate as

ℱf (z1, . . . , zr) =
∑︂

k1,...,kr≥0

zk1
1 · · · zkr

r

k1! · · · kr! Ff (k1, . . . , kr)

=
∑︂

k1,...,kr≥0

zk1
1 · · · zkr

r

k1! · · · kr! 
∑︂

i+j=kr

(︃
kr
i 

)︃
Ff (i)Ff (k1, . . . , kr−2, kr−1 + j)

=

⎧⎨⎩∑︂
i≥0 

zir
i! Ff (i)

⎫⎬⎭
×
⎧⎨⎩ ∑︂

k1,...,kr−2,k≥0

zk1
1 · · · zkr−2

r−2
k1! · · · kr−2!k!Ff (k1, . . . , kr−2, k)

∑︂
kr−1+j=k

(︃
k

j

)︃
z
kr−1
r−1 zjr

⎫⎬⎭
=

⎧⎨⎩∑︂
i≥0 

zir
i! Ff (i)

⎫⎬⎭
⎧⎨⎩ ∑︂

k1,...,kr−2,k≥0

zk1
1 · · · zkr−2

r−2 (zr−1 + zr)k

k1! · · · kr−2!k! Ff (k1, . . . , kr−2, k)

⎫⎬⎭
= ℱf (zr)ℱf (z1, . . . , zr−2, zr−1 + zr).

By the equation (2.8), we get

ℱf (z1, . . . , zr) = f≥0(zr)ℱf (z1, . . . , zr−2, zr−1 + zr).

Hence, by using this equation repeatedly, we obtain the claim. □
By Theorem 2.6, we know that the special values Ff (k1, . . . , kr) are independent of 

the principal part of f(z). When f(z) ∈ Q[[z]], the following theorem holds.

Theorem 2.7. Let G(k1, . . . , kr) ∈ Q and put f(z) :=
∑︁

k≥0
zk

k! a(k) with a(k) ∈ Q. Then 
the following two statements are equivalent:

(1) For r ≥ 1, we have

∑︂
k1,...,kr≥0

zk1
1 · · · zkr

r

k1! · · · kr! G(k1, . . . , kr) = f(zr)f(zr−1 + zr) · · · f(z1 + · · · + zr).

(2) For r ≥ 1 and k1, . . . , kr ∈ Z≥0, we have

G(k1, . . . , kr) = lim 
z→0

∂kr
z

[︂
f(z)∂kr−1

z

[︁
f(z) · · · ∂k1

z [f(z)] · · · ]︁]︂.
Proof. At first, we prove (1) from (2). We consider the map ϕf in (2.7) for f(z) =∑︁

k≥0
zk

k! a(k). Then, by the assumption (2) and (2.6), we have
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G(k1, . . . , kr) = lim 
z→0

ϕf (dkry · · · dk1y) = lim 
z→0

ϕf,+(dkry · · · dk1y).

So by Theorem 2.6, we obtain (1).
Next, we prove (2) from (1) by induction on r. When r = 1, it is obvious from the 

equation of (1). Assume that (2) holds for the case (1 ≤)r < r0. When r = r0, by (1), 
we have

∑︂
k1,...,kr≥0

zk1
1 · · · zkr

r

k1! · · · kr! G(k1, . . . , kr)

= f(zr)

⎧⎨⎩ ∑︂
k1,...,kr−1≥0

zk1
1 · · · zkr−2

r−2 (zr−1 + zr)kr−1

k1! · · · kr−2!kr−1! 
G(k1, . . . , kr−1)

⎫⎬⎭ .

By comparing coefficients of the term zk1
1 · · · zkr

r of both sides, we get

G(k1, . . . , kr) =
∑︂

i+j=kr

(︃
kr
i 

)︃
G(i)G(k1, . . . , kr−2, kr−1 + j).

By the induction hypothesis and the Leibniz rule of ∂z, we have

G(k1, . . . , kr) =
∑︂

i+j=kr

(︃
kr
i 

)︃{︂
lim 
z→0

∂i
z [f(z)]

}︂{︂
lim 
z→0

∂j+kr−1
z

[︁
f(z) · · · ∂k1

z [f(z)] · · · ]︁}︂
= lim 

z→0
∂kr
z

[︂
f(z)∂kr−1

z

[︁
f(z) · · · ∂k1

z [f(z)] · · · ]︁]︂.
Hence, we finish the proof. □

We put

g(z) := ez {(1 + z) − ez}
(ez − 1)2

(︃
= zez

ez − 1 · 1 
z

(︃
z

ez − 1 − 1
)︃)︃

∈ Q[[z]]. (2.9)

We note that this formal series g(z) corresponds with Z(t1)|t1=−z in Proposition 1.5 for 
r = 1 in §1.2.

Corollary 2.8. For any r ≥ 1 and k1, . . . , kr ∈ Z≥0, we have

ζdes
r (−k1, . . . ,−kr) = lim 

z→0
∂kr
z

[︂
g(z)∂kr−1

z

[︁
g(z) · · · ∂k1

z [g(z)] · · · ]︁]︂.
Proof. Note that the generating function Z(t1, . . . , tr) of ζdes

r (−k1, . . . ,−kr) (see (1.7)
for detail) coincides with the generating function ℱg(−t1, . . . ,−tr) for g(z) in (2.9) by 
Proposition 1.5. Hence, by Theorem 2.7, we get the claim. □
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2.3. Definition of Lides(k)(t)

In this subsection, we review the multiple polylogarithms. And then, we introduce 
Lides(k)(t) which is defined by a certain iterated integration. At the end of this section, 
we show the equality between the limit value limt→1−0 Lides(k)(t) and the special value 
ζdes
r (k) when (k1, . . . , kr) ∈ Zr

≤0 (Proposition 2.13).
The multiple polylogarithms (MPLs for short) Lik1,...,kr

(t) with (k1, . . . , kr) ∈ Zr, is 
the complex analytic function defined by the following series:

Lik1,...,kr
(t) :=

∑︂
0<n1<···<nr

tnr

nk1
1 · · ·nkr

r

which converges for t ∈ C with |t| < 1. The MPL for the case r = 1, k = 1 is given by 
Li1(t) = − log(1−t). Consult [13] for many topics related to MPLs. We will describe some 
properties of MPLs. The first to mention is the following iterated integral expression:

Lik1,...,kr
(t) =

t ∫︂
0 

dt

t 
◦ · · · ◦ dt

t ⏞ ⏟⏟ ⏞
kr−1 

◦ dt 
1 − t

◦ · · · ◦ dt

t 
◦ · · · ◦ dt

t ⏞ ⏟⏟ ⏞
k1−1 

◦ dt 
1 − t

, (2.10)

where (k1, . . . , kr) ∈ Nr. This yields analytic continuation to a bigger region. More 
precisely, MPLs can be analytically continued to the universal unramified covering of 
P 1(C) \ {0, 1,∞}.

It is known that Li−k1,...,−kr
(t) is a rational function of t for (k1, . . . , kr) ∈ Zr

≥0, for 
instance,

Li0(t) = t 
1 − t

, Li−1(t) = t 
(1 − t)2 , Li−2(t) = t(t + 1) 

(1 − t)3 . (2.11)

The following differential equation holds for MPLs. By definition, one can easily see 
that

d 
dt

Lik1,...,kr
(t) =

{︄
1
t Lik1,...,kr−1(t), (kr ̸= 1)
1 

1−tLik1,...,kr−1(t), (kr = 1).

We note that 1 
1−tLik1,...,kr−1(t) = 1

t Lik1,...,kr−1,0(t) for kr = 1. By the above differential 
equation, we see that possible singularities of MPLs for any indices (k1, . . . , kr) ∈ Zr are 
t = 0, 1.

Put R[[t]] to be the algebra of formal power series. We consider the subalgebra 𝒫(0,1)
of tR[[t]] defined by

𝒫(0,1) := {f(t) ∈ tR[[t]] | f(t) converges for t ∈ (0, 1)}. (2.12)
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We also set

𝒜 := 𝒫(0,1)[log t] =

⎧⎪⎪⎨⎪⎪⎩
∑︂
1≤i

0≤j≤N

aijt
i(log t)j

⃓⃓⃓⃓
⃓⃓⃓⃓N ∈ Z≥0, ∀j ∈ Z≥0, 

∑︂
1≤i 

aijt
i ∈ 𝒫(0,1)

⎫⎪⎪⎬⎪⎪⎭ .

Here, log t means just a formal function denoting 
∫︁ t

0
dz
z .

Lemma 2.9. For f ∈ 𝒜, we define2 formal integration and derivation:

J [f ] :=
t ∫︂

0 

f(z)dz
z
, D[f ] := t

df

dt 
.

Then J and D form operators on 𝒜, and J ◦D = D ◦ J = Id.

Proof. It is easy to show J ◦D = D ◦ J = Id, so we prove J [f ], D[f ] ∈ 𝒜 for any f ∈ 𝒜. 
It is enough to prove D

[︁
g(t)(log t)l

]︁
, J
[︁
g(t)(log t)l

]︁ ∈ 𝒜 for g(t) ∈ 𝒫(0,1) and l ≥ 1. We 
have

D
[︁
g(t)(log t)l

]︁
= D [g(t)] (log t)l + g(t)D

[︁
(log t)l

]︁
= D [g(t)] (log t)l + g(t)l(log t)l−1.

Because we have D [g(t)] ∈ 𝒫(0,1) by g(t) ∈ 𝒫(0,1), we get D
[︁
g(t)(log t)l

]︁ ∈ 𝒜.
On the other hand, by using integration by parts, we have

J [f1f2] = J [f1] f2 − J [J [f1]D[f2]] ,

for f1, f2 ∈ 𝒜. By using this for f1 = g(t) and f2 = (log t)l, we calculate as

J
[︁
g(t)(log t)l

]︁
=
[︁
J [g(t)] (log t)l

]︁t
0 − J

[︁
J [g(t)]D[(log t)l]

]︁
= J [g(t)] (log t)l − lim 

t→+0
J [g(t)] (log t)l − J

[︁
J [g(t)]l(log t)l−1]︁ .

We have J [g(t)] ∈ 𝒫(0,1) by g(t) ∈ 𝒫(0,1) and have lim 
t→+0

tk(log t)l = 0 for k, l ≥ 1, so we 

get

lim 
t→+0

J [g(t)] (log t)l = 0.

Therefore, we get

J
[︁
g(t)(log t)l

]︁
= J [g(t)] (log t)l − J

[︁
J [g(t)]l(log t)l−1]︁ .

2 These maps J,D are also considered in [4, §3.1] as operators on a certain C-algebra of power series.
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Because we have J
[︁
h(t)(log t)0

]︁ ∈ 𝒜 for h(t) ∈ 𝒫(0,1), we inductively obtain 
J
[︁
g(t)(log t)l

]︁ ∈ 𝒜 for l ≥ 1. Hence, we finish the proof. □
By the above lemma, we denote J−1 = D. By using these operators J,D on 𝒜, we 

introduce the following elements in 𝒜.

Definition 2.10. Put k := (k1, . . . , kr) ∈ Zr for r ∈ N. We define

Lides(0)(t) := Li0(t) + log t · Li−1(t) = t 
1 − t

+ t log t 
(1 − t)2 ,

and

Lides(k)(t) := Jkr

[︂
Lides(0)(t)Jkr−1

[︂
Lides(0)(t) · · ·Jk1 [Lides(0)(t)] · · ·

]︂]︂
.

Because Li0(t) and Li−1(t) are in 𝒫(0,1), the element Lides(0)(t) is in 𝒜, and by 
Lemma 2.9, we get Lides(k)(t) ∈ 𝒜.

For k = (k1, . . . , kr) ∈ Zr, we set{︄
k′ := (k1, . . . , kr−1, kr − 1) ∈ Zr,

k(j) := (k1, . . . , kr−1, kr − j) ∈ Zr,
(2.13)

for j ∈ Z. Note that k(1) = k′.

Remark 2.11. By the above definition, we have

D[Lides(k)(t)] = Lides(k′)(t), Lides(k, 0)(t) = Lides(0)(t)Lides(k)(t),

for k ∈ Zr.

Recall the quotient algebra ℋ defined in (2.3).

Lemma 2.12. We define the Q-linear map ψ : ℋ → 𝒜 by ψ(1) := 1 and

ψ(jk1y · · · jkry) := Lides(kr, . . . , k1)(t),

for k1, . . . , kr ∈ Z. Then this map ψ forms an algebra homomorphism.3

Proof. By Definition 2.10, we have

ψ(jk1y · · · jkry) = Jk1
[︂
Lides(0)(t)Jk2

[︂
Lides(0)(t) · · ·Jkr [Lides(0)(t)] · · ·

]︂]︂
.

3 This lemma is an analogue of [4, Lemma 3.6] for ordinary MPLs.
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By the Leibniz rule, the integration by parts and the definition (2.1), it is clear that the 
map ψ is an algebra homomorphism. □

The element Lides(−k1, . . . ,−kr)(t) ∈ 𝒜 defined in Definition 2.10 converges to 
ζdes
r (−k1, . . . ,−kr) when (k1, . . . , kr) ∈ Zr

≥0 under the limit t → 1 − 0.

Proposition 2.13. For r ∈ N and (k1, . . . , kr) ∈ Zr
≥0, we have

lim 
t→1−0

Lides(−k1, . . . ,−kr)(t) = ζdes
r (−k1, . . . ,−kr).

Proof. Because we have J−1 = D, we get J−k = Dk for k ≥ 0. Therefore, for k1, . . . , kr ∈
Z≥0, we have

Lides(−k1, . . . ,−kr)(t) = Dkr

[︂
Lides(0)(t)Dkr−1

[︂
Lides(0)(t) · · ·Dk1 [Lides(0)(t)] · · ·

]︂]︂
.

Consider changing variables t = ez. Then we have

D = t
d 
dt

= ez
dz

dt 
· d 
dz

= d 
dz

= ∂z,

and, by (2.11), we get

Lides(0)(t) = t 
1 − t

+ log t t 
(1 − t)2 = ez

1 − ez
+ zez

(1 − ez)2 = g(z).

Here, g(z) is given in (2.9). So we get

Lides(−k1, . . . ,−kr)(t) = ∂kr
z

[︂
g(z)∂kr−1

z

[︁
g(z) · · · ∂k1

z [g(z)] · · · ]︁]︂.
When t → 1, we have z → 0, so by Corollary 2.8, we obtain

lim 
t→1

Lides(−k1, . . . ,−kr)(t) = ζdes
r (−k1, . . . ,−kr).

Hence, we finish the proof. □
In Theorem 4.6 in §4, we will generalize this proposition.

3. Linear combinations of MPLs

In this section, we consider certain finite linear combinations Z(k; t) of MPLs to 
express Lides(k)(t) as a finite linear combination of MPLs (Definition 3.11). In §3.1, we 
introduce the function ζdes

r (s1, . . . , sr)(t) and explain its properties. By using these, we 
show some properties of Z(k; t). In §3.2, we show that Z(k; t) coincides with Lides(k)(t)
(Theorem 3.16).
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3.1. Definition of Z(k) and its properties

In this subsection, we consider a certain finite linear combination of MPLs. To this 
end, we first consider certain multiple zeta functions and their properties which will be 
employed in later sections.

Definition 3.1 (cf. [5]). For 0 < t < 1 and any s = (s1, . . . , sr) ∈ Cr, we set

ζr (s; t) = ζr (s1, . . . , sr; t) :=
∑︂

0<n1<···<nr

tnr

ns1
1 · · ·nsr

r
.

In [5, Corollary 2.2], it is shown that the function ζr (s; t) can be analytically contin
ued to Cr as an entire function. We also denote ζr (s; t) as ζr ((sj); t).

Remark 3.2. By definition, we have

ζr (k1, . . . , kr; t) = Lik1,...,kr
(t),

for k1, . . . , kr ∈ Z. It is clear that for (s1, . . . , sr) ∈ 𝒟r,

lim 
t→1−0

ζr (s1, . . . , sr; t) = ζr(s1, . . . , sr).

Here, the region 𝒟r is defined as follows:

𝒟r := {(s1, . . . , sr) ∈ Cr | ℜ(sr−j+1 + · · · + sr) > j for 1 ≤ j ≤ r}.

However, we note that limt→1−0 ζr (s1, . . . , sr; t) diverges for (s1, . . . , sr) ∈ Cr \ 𝒟r.

We consider the following generating function. For c ∈ R and 0 < t < 1, we put

ℌ̃r(t1, . . . , tr; c; t) :=
r∏︂

j=1

(︄
1 

1
t exp(

∑︁r
k=j tk) − 1

− c 
1
t exp(c

∑︁r
k=j tk) − 1

)︄
.

Definition 3.3 (cf. [6, Definition 3.1]). For 0 < t < 1, s1, . . . , sr ∈ C \ Z, we define

ζdes
r (s1, . . . , sr)(t) := lim 

c→1
c ̸=1

1 
(1 − c)rC(s)

∫︂
𝒞r
ϵt

ℌ̃r(t1, . . . , tr; c; t)
r∏︂

k=1

tsk−1
k dtk, (3.1)

where 𝒞ϵt is the Hankel contour, that is, the path consisting of the positive axis (top 
side), a circle around the origin of radius ϵt (with 0 < ϵt < | log t|), and the positive real 
axis (bottom side). The symbol C(s) is defined in (1.2).
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Remark 3.4. We note that the limit limt→1−0 ζ
des
r (s1, . . . , sr)(t) does not always exist. 

For instance, consider the case r = 1: we have

ζdes
1 (s)(t) = (1 − s)ζ (s; t).

Thus, limt→1−0 ζ
des
r (s)(t) diverges for s ∈ C \ 𝒟1.

The following two propositions are analogues of Proposition 1.3 and 1.6, and can be 
proved exactly in the same way.

Proposition 3.5. For s1, . . . , sr ∈ C, and 0 < t < 1, we have the following equality 
between meromorphic functions of the complex variables (s1, . . . , sr);

ζdes
r (s1, . . . , sr)(t) =

∑︂
l=(lj)∈Zr

≥0
m(mj)∈Zr

|m|=0

arl,m

⎛⎝ r∏︂
j=1

(sj)lj

⎞⎠ ζr (s1 + m1, . . . , sr + mr; t),

where the coefficient arl,m is defined in (1.4), and the symbol (s)k is the Pochhammer 
symbol (see Proposition 1.3 for the definition).

Proposition 3.6. For s1, . . . , sr−1 ∈ C, k ∈ Z≥0 and 0 < t < 1, we have

ζdes
r (s1, . . . , sr−1,−k)(t) =

k∑︂
i=0 

(︃
k

i 

)︃
ζdes
r−1(s1, . . . , sr−1 − k + i)(t)ζdes

1 (−i)(t).

Definition 3.7. We define a family {Zq(k)}q≥0,r≥1,k∈Zr in 𝒫(0,1) (defined in (2.12)) by

Z0(k) := Z0(k; t) := ζdes
r (k)(t),

and for q ≥ 1,

Zq(k) := Zq(k; t) :=
∑︂

i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃
Di
[︂
Z0(k(j))

]︂
. (3.2)

By Remark 3.2 and Proposition 3.5, we have

Z0(k) = Z0(k; t) =
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=0

arl,m

⎛⎝ r∏︂
j=1

(kj)lj

⎞⎠Lik+m(t), (3.3)

so the above definition is well-defined. In Appendix A, we give explicit formulae of Zq(k)
in terms of Lik+m(t) for m ∈ Zr.
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The following recurrence formula holds for the above element Zq(k).

Proposition 3.8. For q ≥ 1, r ≥ 1 and k ∈ Zr, we have

Zq(k) = D [Zq−1(k)] − Zq−1(k′).

Proof. By using the following Lemma 3.9 for f(i, j) = (−1)jDi
[︁
Z0(k(j))

]︁
, we have

Zq(k)

=
∑︂

i+j=q−1
(−1)j

(︃
q − 1
i 

)︃
Di+1

[︂
Z0(k(j))

]︂
−

∑︂
i+j=q−1

(−1)j
(︃
q − 1
i 

)︃
Di
[︂
Z0(k(j+1))

]︂

= D

⎡⎣ ∑︂
i+j=q−1

(−1)j
(︃
q − 1
i 

)︃
Di
[︂
Z0(k(j))

]︂⎤⎦−
∑︂

i+j=q−1
(−1)j

(︃
q − 1
i 

)︃
Di
[︂
Z0

(︂
(k′)(j)

)︂]︂
= D [Zq−1(k)] − Zq−1(k′).

Hence, we obtain the claim. □
Lemma 3.9. Let f be a map on Z2

≥0. For q ≥ 1, we have

∑︂
i+j=q

(︃
q

i 

)︃
f(i, j) =

∑︂
i+j=q−1

(︃
q − 1
i 

)︃
f(i + 1, j) +

∑︂
i+j=q−1

(︃
q − 1
i 

)︃
f(i, j + 1).

Proof. Because we have the recurrence relation of binomial coefficients(︃
q

i 

)︃
=
(︃
q − 1
i− 1 

)︃
+
(︃
q − 1
i 

)︃
for 1 ≤ i ≤ q − 1 and we have (︃

q

0

)︃
=
(︃
q

q

)︃
= 1,

we obtain the claim. □
For simplicity, we sometimes denote (3.3) as

Z0(k) =
∑︂

m∈Zr

pm(k)Lik+m(t). (3.4)

Here, pm(k) means pm(x1, . . . , xr)|xi=ki
where a family {pm(x1, . . . , xr)}m∈Zr in 

Q[x1, . . . , xr] with pm(x1, . . . , xr) = 0 except for a finite number of m ∈ Zr. We denote 
degxr

(pm(x1, . . . , xr)) by the degree of the polynomial pm(x1, . . . , xr) in xr, and for 
r ≥ 1, we put
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dr := max{degxr
(pm(x1, . . . , xr)) | m ∈ Zr}.

Proposition 3.10. For q ≥ dr + 1 and for k ∈ Zr, we have

Zq(k) = 0.

Proof. If we have Zq(k) = 0 for q = dr + 1, we inductively get Zq(k) = 0 for q > dr + 1
by Proposition 3.8. So it is sufficient to prove Zq(k) = 0 for q = dr +1. By the expression 
(3.4) and the definition (3.2), we have the following representation:

Zq(k) =
∑︂

m∈Zr

cq(k;m)Lik(q)+m(t),

where the symbol cq(k;m) means cq(x1, . . . xr;m)|xi=ki
with

cq(x1, . . . xr;m) :=
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
pm(x1, . . . , xr−1, xr − j) (∈ Q[x1, . . . , xr]) .

We note that

max{degxr
(c0(x1, . . . xr;m)) | m ∈ Zr} = dr. (3.5)

By Proposition 3.8, we get

cq(k;m) = cq−1(k;m) − cq−1(k′;m)

for q ≥ 1 and for any k ∈ Zr. Therefore, we have

degxr
(cq(x1, . . . xr;m)) (3.6)

=
{︄

degxr
(cq−1(x1, . . . xr;m)) − 1 (degxr

(cq−1(x1, . . . xr;m)) ≥ 1),
0 (degxr

(cq−1(x1, . . . xr;m)) = 0).

By using (3.5) and (3.6), we get

degxr
(cdr

(x1, . . . xr;m)) = 0

for any m ∈ Zr, that is, we have cdr
(x1, . . . xr;m) ∈ Q[x1, . . . , xr−1]. Hence, we obtain

cdr+1(x1, . . . xr;m) = 0

for any m ∈ Zr, that is, cdr+1(k;m) = 0 for k,m ∈ Zr, so we get Zdr+1(k) = 0. □
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Definition 3.11. For k ∈ Zr, we define an element Z(k) ∈ 𝒜(= 𝒫(0,1)[log t]) by

Z(k) := Z(k; t) :=
∑︂
q≥0 

(− log t)q

q! Zq(k). (3.7)

Remark 3.12. By Proposition 3.10, the right-hand side of the equation (3.7) is a finite 
sum, so the above definition is well-defined.

Examples 3.13. We consider the case r = 1. By the definition (3.3), Z0(k) is presented 
as follows:

Z0(k) = (1 − k)Lik(t).

Then Z1(k) is calculated to be

Z1(k) = −(log t) Lik−1(t).

By Proposition 3.10, we know Zq(k) = 0 for q ≥ 2. Thus, we obtain

Z(k) = Z0(k) − Z1(k) = (1 − k)Lik(t) + (log t)Lik−1(t) (3.8)

for k ∈ Z.

We next show that Z(k) satisfies the differential equation which holds for MPLs and 
Lides(k)(t)’s in Definition 2.10.

Theorem 3.14. For k ∈ Zr, we have

D [Z(k)] = Z(k′).

Proof. We have

D [Z(k)] − Z(k′) = D

⎡⎣∑︂
q≥0 

(− log t)q

q! Zq(k)

⎤⎦−
∑︂
q≥0 

(− log t)q

q! Zq(k′)

= D [Z0(k)] − Z0(k′) + D

⎡⎣∑︂
q≥1 

(− log t)q

q! Zq(k)

⎤⎦−
∑︂
q≥1 

(− log t)q

q! Zq(k′).

By Definition 3.7, we get

D [Z(k)] − Z(k′)

= D [Z0(k)] − Z0(k′) + D

⎡⎣∑︂
q≥1 

(− log t)q

q! 
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di
[︂
Z0(k(j))

]︂⎤⎦
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−
∑︂
q≥1 

(− log t)q

q! 
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di
[︂
Z0(k(j+1))

]︂
.

By applying the Leibniz rule to the third term, we calculate as

D [Z(k)] − Z(k′)

= D [Z0(k)] − Z0(k′) −
∑︂
q≥1 

(− log t)q−1

(q − 1)! 
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di
[︂
Z0(k(j))

]︂
+
∑︂
q≥1 

(− log t)q

q! 
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di+1

[︂
Z0(k(j))

]︂
+
∑︂
q≥1 

(− log t)q

q! 
∑︂

i+j=q

(−1)j+1
(︃
q

i 

)︃
Di
[︂
Z0(k(j+1))

]︂
.

By applying Lemma 3.9 for f(i, j) = (−1)jDi
[︁
Z0(k(j))

]︁
to the fourth and the fifth 

terms, we get

D [Z(k)] − Z(k′)

= D [Z0(k)] − Z0(k′) −
∑︂
q≥1 

(−1)q−1

(q − 1)! (log t)q−1
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di
[︂
Z0(k(j))

]︂
+
∑︂
q≥1 

(−1)q

q! (log t)q
∑︂

i+j=q+1
(−1)j

(︃
q + 1
i 

)︃
Di
[︂
Z0(k(j))

]︂
.

By rearranging the first, second, and fourth terms, and by changing variables of summa
tion of the third term from q ≥ 1 to q ≥ 0, we obtain

D [Z(k)] − Z(k′) = −
∑︂
q≥0 

(−1)q

q! (log t)q
∑︂

i+j=q+1
(−1)j

(︃
q + 1
i 

)︃
Di
[︂
Z0(k(j))

]︂
+
∑︂
q≥0 

(−1)q

q! (log t)q
∑︂

i+j=q+1
(−1)j

(︃
q + 1
i 

)︃
Di
[︂
Z0(k(j))

]︂
= 0.

Hence, we finish the proof. □
3.2. Coincidence of Z(k; t) with Lides(k)(t)

In this subsection, we show that Lides(k)(t) can be expressed as a certain ``linear'' 
combination of MPLs (Theorem 3.16).

By definition of Z0(k) and Proposition 3.6, we have the following equation:

Z0(k,−kr+1) =
∑︂

i+j=kr+1

(︃
kr+1

i 

)︃
Z0(−i)Z0(k(j)). (3.9)
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Here, r ∈ N, k ∈ Zr and kr+1 ∈ Z≥0.

Proposition 3.15. For r ∈ N and k ∈ Zr, we have

Z(k, 0) = Z(0)Z(k).

Proof. Let q ≥ 0. By the definition (3.2) of Zq(k) and the equality (3.9), we have

Zq(k, 0) =
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di [Z0(k,−j)]

=
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃
Di

⎡⎣ ∑︂
b+d=j

(︃
j

b 

)︃
Z0(−b)Z0(k(d))

⎤⎦ .
By the Leibniz rule, we calculate as

Zq(k, 0) =
∑︂

i+j=q

(−1)j
(︃
q

i 

)︃ ∑︂
b+d=j

(︃
j

b 

)︃{︄ ∑︂
a+c=i

(︃
i 
a

)︃
Da [Z0(−b)]Dc

[︂
Z0(k(d))

]︂}︄

=
∑︂

a+c+b+d=q

(−1)b+d q! 
b!d!a!c!D

a [Z0(−b)]Dc
[︂
Z0(k(d))

]︂

=
∑︂

i+j=q

(︃
q

i 

)︃{︄ ∑︂
a+b=i

(−1)b
(︃
i 
a

)︃
Da [Z0(−b)]

}︄⎧⎨⎩ ∑︂
c+d=j

(−1)d
(︃
j

c 

)︃
Dc
[︂
Z0(k(d))

]︂⎫⎬⎭ .

By using the definition (3.2) of Zq(k) again, we get

Zq(k, 0) =
∑︂

i+j=q

(︃
q

i 

)︃
Zi(0)Zj(k).

Therefore, we obtain

Z(k, 0) =
∑︂
q≥0 

(− log t)q

q! Zq(k, 0) =
∑︂
q≥0 

(− log t)q

q! 
∑︂

i+j=q

(︃
q

i 

)︃
Zi(0)Zj(k)

=

⎧⎨⎩∑︂
i≥0 

(− log t)i

i! Zi(0)

⎫⎬⎭
⎧⎨⎩∑︂

j≥0 

(− log t)j

j! Zj(k)

⎫⎬⎭ = Z(0)Z(k).

Hence, we finish the proof. □
By using the above proposition, we obtain the following.
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Theorem 3.16. For r ∈ N and k ∈ Zr, we have

Lides(k)(t) = Z(k).

Proof. We prove this claim by induction on r. When r = 1, by Definition 2.10 and (3.8), 
we have

Lides(0)(t) = Li0(t) + log t · Li−1(t) = Z(0). (3.10)

So by Remark 2.11 and Theorem 3.14, we have

Lides(k1)(t) = Jk1
[︂
Lides(0)(t)

]︂
= Jk1 [Z(0)] = Z(k1).

Hence the claim holds for r = 1. Assume that the claim holds for r0 ∈ N. Put k =
(k1, . . . , kr0+1) with k1, . . . , kr0+1 ∈ Z. Similarly to the case of r = 1, we have

Lides(k)(t) = Jkr0+1
[︂
Lides(k1, . . . , kr0 , 0)(t)

]︂
= Jkr0+1

[︂
Lides(0)(t)Lides(k1, . . . , kr0)(t)

]︂
.

On the other hand, by using Theorem 3.14 and Proposition 3.15, we get

Z(k) = Jkr0+1 [Z(k1, . . . , kr0 , 0)] = Jkr0+1 [Z(0)Z(k1, . . . , kr0)] .

Hence, by (3.10) and the induction hypothesis, we obtain the claim. □
4. Main results

In this section, we introduce one-parameterized desingularized MZFs (Definition 4.1). 
After that, we prove the shu�le-type formula for special values of desingularized MZFs 
at integer points (Theorem 4.8). We also give some examples.

4.1. Definition of ˆ︁ζdes
r (s)(t)

We introduce a new function ˆ︁ζdes
r (s)(t), and we investigate several properties of this 

function. More precisely, we show that ˆ︁ζdes
r (s)(t) converges to ζdes

r (s) under the limit 
t → 1 − 0.

Definition 4.1. For s1, . . . , sr ∈ C \ Z, and 0 < t < 1, we define

ˆ︁ζdes
r (s1, . . . , sr)(t) :=

r∏︂
k=1

1 
(e2πisk − 1)Γ(sk)

(4.1)
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·
∫︂
𝒞r
ϵ

r∏︂
j=1

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

+
(log t−∑︁r

k=j xk)1
t exp(

∑︁r
k=j xk)

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄
r∏︂

k=1

xsk−1
k dxk.

We note that the convergence of the right-hand side of (4.1) can be justified by the 
following proposition.

Proposition 4.2. For any t ∈ (0, 1), the function ˆ︁ζdes
r (s1, . . . , sr)(t) can be analyti

cally continued to Cr as an entire function in (s1, . . . , sr) ∈ Cr. Moreover, for any 
(s1, . . . , sr) ∈ Cr, we have

lim 
t→1−0

ˆ︁ζdes
r (s1, . . . , sr)(t) = ζdes

r (s1, . . . , sr).

For the proof of Proposition 4.2, we prepare two lemmas. Let 𝒩 (ϵ) := {z ∈ C | |z| < ϵ}
and 𝒮(θ) := {z ∈ C | | arg z| ≤ θ}. Then one can easily obtain:

Lemma 4.3 ([6, Lemma 3.5]). There exist ϵ > 0 and 0 < θ < π/2 such that

r∑︂
k=j 

xk ∈ 𝒩 (1) ∪ 𝒮(θ)

for any xj , . . . , xr ∈ 𝒞ϵ (1 ≤ j ≤ r), where 𝒞ϵ is the Hankel contour involving a circle 
around the origin of radius ϵ.

Lemma 4.4 (cf. [6, Lemma 3.6]). For any t ∈ (0, 1) and y ∈ 𝒩 (1) ∪ 𝒮(θ), there exists a 
constant A > 0 independent of t such that⃓⃓⃓⃓

1 
1
t e

y − 1
+

(log t− y)1
t e

y

(1
t e

y − 1)2

⃓⃓⃓⃓
< Ae−ℜy/2.

Proof. We set

F (t; y) := 1 
1
t e

y − 1
+

(log t− y)1
t e

y

(1
t e

y − 1)2
.

We first note that

1
t 
ey − 1 = y − log t + 1

2(y − log t)2 + O
(︁
(y − log t)3

)︁
, (y → log t).

Thus, we get

F (t; y) =
1
t e

y − 1 + (log t− y)1
t e

y

(1
t e

y − 1)2
=

−1
2(y − log t)2 + O

(︁
(y − log t)3

)︁
(y − log t)2 + O

(︁
(y − log t)3

)︁ .
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If log t < −1, that is, log t ̸∈ 𝒩 (1) ∪ 𝒮(θ), then F (t; y) is holomorphic for all y ∈
𝒩 (1) ∪ 𝒮(θ). One can also see that F (t; y) has the limit value when y → log t for 
−1 ≤ log t < 0. Hence, there exists C > 0 such that for any y ∈ 𝒩 (1),

|F (t; y)| < C.

We next consider the case y ∈ 𝒮(θ) \𝒩 (1). Note that there does not exist t ∈ (0, 1) such 
that log t = y in this case. Thus, there exists A1, A2 > 0 such that

⃓⃓⃓⃓
1 

1
t e

y − 1

⃓⃓⃓⃓
< A1e

−ℜy/2, 

⃓⃓⃓⃓
(log t− y)1

t e
y

(1
t e

y − 1)2

⃓⃓⃓⃓
< A2e

−ℜy/2.

Therefore, we obtain the claim by putting A := A1 + A2. □
Proof of Proposition 4.2. We use the notation used in Lemmas 4.3 and 4.4. We put

G(x1, . . . , xr) := Ar
r∏︂

j=1
exp

⎛⎝−ℜ
⎛⎝ r∑︂

k=j 
tk/2

⎞⎠⎞⎠ = Ar
r∏︂

j=1
exp
(︃
−ℜ
(︃
tk
k(k + 1)

4 

)︃)︃
.

Then, one can easily show that⃓⃓⃓⃓
⃓⃓ r∏︂
j=1

F

⎛⎝t;
r∑︂

k=j 
xk

⎞⎠⃓⃓⃓⃓⃓⃓ < G(x1, . . . , xr), (x1, . . . , xr ∈ 𝒞), (4.2)

∫︂
𝒞r
ϵ

G(x1, . . . , xr)
r∏︂

k=1

|tsk−1
k dtk| < ∞. (4.3)

Since the integral on the right-hand side of (4.1) is holomorphic for all s1, . . . , sr ∈ C, 
we see that ˆ︁ζdes

r (s1, . . . , sr)(t) can be meromorphically continued to Cr. We also see that 
its possible singularities are located on hyperplanes sk = lk ∈ N (k = 1, 2, . . . , r). For 
sk = lk ∈ N, one can show that the integration of (4.1) is zero by using the residue 
theorem. Thus, ˆ︁ζdes

r (s1, . . . , sr)(t) has no singularity on all the hyperplanes sk = lk
(k = 1, 2, . . . , r). In other words, ˆ︁ζdes

r (s1, . . . , sr)(t) is entire on Cr. The latter part of 
the claim is proved by (4.2), (4.3) and Lebesgue’s convergence theorem. □
4.2. Shuffle product of desingularized MZFs at integer points

In this subsection, we show that the shuffle product formula holds for products of 
special values at integer points of desingularized MZFs. At the end of this section, explicit 
formulas for the product of depth 1 and depth 1, and that of depth 1 and depth 2, are 
given.
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Theorem 4.5. For any r ≥ 1, k = (k1, . . . , kr) ∈ Zr and for t ∈ (0, 1), we have

ˆ︁ζdes
r (k1, . . . , kr)(t) = Z(k).

Proof. We set [r] := {1, 2, . . . , r} for r ∈ N. We first calculate the integrand of the 
right-hand side in the equation (4.1):

r∏︂
j=1

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

+
(log t−∑︁r

k=j xk)1
t exp(

∑︁r
k=j xk)

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄

=
r∏︂

j=1

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

−
1
t 
∑︁r

k=j xk exp(
∑︁r

k=j xk)
{1
t exp(

∑︁r
k=j xk) − 1}2

+
1
t exp(

∑︁r
k=j xk) 

{1
t exp(

∑︁r
k=j xk) − 1}2 log t

)︄

=
∑︂
J⊂[r]

∏︂
j∈[r]\J

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

−
1
t 
∑︁r

k=j xk exp(
∑︁r

k=j xk)
{1
t exp(

∑︁r
k=j xk) − 1}2

)︄

·
∏︂
j∈J

(︄
1
t exp(

∑︁r
k=j xk) 

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄
(log t)#J

=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∏︂
j∈[r]\J

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

−
1
t 
∑︁r

k=j xk exp(
∑︁r

k=j xk)
{1
t exp(

∑︁r
k=j xk) − 1}2

)︄

·
∏︂
j∈J

(︄
1
t exp(

∑︁r
k=j xk) 

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄⎫⎬⎭ .

We note that the empty summation is interpreted as 0.

r∏︂
j=1

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

+
(log t−∑︁r

k=j xk)1
t exp(

∑︁r
k=j xk)

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄

=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∏︂

j∈[r]\(J∪K)

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

)︄

·
∏︂
j∈K

(︄
1
t 
∑︁r

k=j xk exp(
∑︁r

k=j xk)
{1
t exp(

∑︁r
k=j xk) − 1}2

)︄∏︂
j∈J

(︄
1
t exp(

∑︁r
k=j xk) 

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄⎫⎬⎭
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=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∏︂

j∈[r]\(J∪K)

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

)︄

·
∏︂
j∈K

⎛⎝ r∑︂
k=j 

xk

⎞⎠ ∏︂
j∈J∪K

(︄
1
t exp(

∑︁r
k=j xk) 

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄⎫⎬⎭ .

Using two relations as formal power series

1 
1
t e

x − 1
=
∑︂
n≥1

(te−x)n, 
1
t e

x

(1
t e

x − 1)2
=
∑︂
n≥1

n(te−x)n,

we have
r∏︂

j=1

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

+
(log t−∑︁r

k=j xk)1
t exp(

∑︁r
k=j xk)

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄

=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∏︂

j∈[r]\(J∪K)

⎛⎝∑︂
nj≥1

tnj exp

⎛⎝−nj

r∑︂
k=j 

xk

⎞⎠⎞⎠

·
∏︂
j∈K

⎛⎝ r∑︂
k=j 

xk

⎞⎠ ∏︂
j∈J∪K

⎛⎝∑︂
nj≥1

njt
nj exp

⎛⎝−nj

r∑︂
k=j 

xk

⎞⎠⎞⎠⎫⎬⎭
=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂
nj≥1

j∈[r]\(J∪K)

∏︂
j∈[r]\(J∪K)

tnj exp

⎛⎝−nj

r∑︂
k=j 

xk

⎞⎠

·
∏︂
j∈K

⎛⎝ r∑︂
k=j 

xk

⎞⎠ ∑︂
nj≥1

j∈J∪K

∏︂
j∈J∪K

njt
nj exp

⎛⎝−nj

r∑︂
k=j 

xk

⎞⎠
⎫⎪⎪⎬⎪⎪⎭

=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂

n1,...,nr≥1

r∏︂
j=1

tnj exp

⎛⎝−nj

r∑︂
k=j 

xk

⎞⎠

·
∏︂
j∈K

⎛⎝ r∑︂
k=j 

xk

⎞⎠⎛⎝ ∏︂
j∈J∪K

nj

⎞⎠⎫⎬⎭
=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂

n1,...,nr≥1
tn1+···+nr

r∏︂
j=1

exp
(︄
−xj

j∑︂
k=1

nk

)︄
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·
∏︂
j∈K

⎛⎝ r∑︂
k=j 

xk

⎞⎠⎛⎝ ∏︂
j∈J∪K

nj

⎞⎠⎫⎬⎭ .

Similarly to [6, (3.18)], by putting

∏︂
j∈K

⎛⎝ r∑︂
k=j 

xk

⎞⎠ =
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

x
lj
j , (4.4)

we get

r∏︂
j=1

(︄
1 

1
t exp(

∑︁r
k=j xk) − 1

+
(log t−∑︁r

k=j xk)1
t exp(

∑︁r
k=j xk)

{1
t exp(

∑︁r
k=j xk) − 1}2

)︄
(4.5)

=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂

n1,...,nr≥1
tn1+···+nr

⎛⎝ ∏︂
j∈J∪K

nj

⎞⎠

·
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

x
lj
j

r∏︂
j=1

exp
(︄
−xj

j∑︂
k=1

nk

)︄⎫⎬⎭ .

Assume that ℜsj is sufficiently large for 1 ≤ j ≤ r. By using (4.5), we have

ˆ︁ζdes
r (s1, . . . , sr)(t)

=
r∏︂

k=1

1 
Γ(sk)

∫︂
[0,∞)r

r∏︂
k=1

xsk−1
k dxk

∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K

·
∑︂

n1,...,nr≥1
tn1+···+nr

⎛⎝ ∏︂
j∈J∪K

nj

⎞⎠ ∑︂
l∈Zr

≥0

bK,l

r∏︂
j=1

x
lj
j

r∏︂
j=1

exp
(︄
−xj

j∑︂
k=1

nk

)︄⎫⎬⎭
=

r∏︂
k=1

1 
Γ(sk)

∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂

n1,...,nr≥1
tn1+···+nr

⎛⎝ ∏︂
j∈J∪K

nj

⎞⎠

·
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

∫︂
[0,∞)

exp
(︄
−xj

j∑︂
k=1

nk

)︄
x
sj+lj−1
j dxj

⎫⎪⎬⎪⎭ .

Because we have 
∫︁
[0,∞) e

−nxxs−1dx = n−sΓ(s), we calculate as
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ˆ︁ζdes
r (s1, . . . , sr)(t)

=
r∏︂

k=1

1 
Γ(sk)

∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂

n1,...,nr≥1
tn1+···+nr

⎛⎝ ∏︂
j∈J∪K

nj

⎞⎠

·
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

Γ(sj + lj) 
(n1 + · · · + nj)sj+lj

⎫⎬⎭ .

Here, we have

∏︂
j∈J∪K

nj =
∏︂

j∈J∪K

(︄
j∑︂

k=1

nk −
j−1 ∑︂
k=1

nk

)︄

=
∑︂

I⊂(J∪K)\{1}

∏︂
j∈(J∪K)\I

(︄
j∑︂

k=1

nk

)︄∏︂
j∈I

(︄
−

j−1 ∑︂
k=1

nk

)︄

=
∑︂

I⊂(J∪K)\{1}
(−1)#I

∏︂
j∈(J∪K)\I

(︄
j∑︂

k=1

nk

)︄ ∏︂
j+1∈I

(︄
j∑︂

k=1

nk

)︄
,

so by using this, we get

ˆ︁ζdes
r (s1, . . . , sr)(t)

=
r∏︂

k=1

1 
Γ(sk)

∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

(−1)#K
∑︂

I⊂(J∪K)\{1}
(−1)#I

·
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

Γ(sj + lj)
∑︂

n1,...,nr≥1

tn1+···+nr∏︁r
j=1(n1 + · · · + nj)sj+lj−δj∈(J∪K)\I−δj+1∈I

⎫⎬⎭ ,

where we use the symbol

δi∈I :=
{︄

1 (i ∈ I),
0 (i ̸∈ I),

for I ⊂ J ∪K. Therefore, we have

ˆ︁ζdes
r (s1, . . . , sr)(t) =

∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

∑︂
I⊂(J∪K)\{1}

(−1)#K+#I (4.6)
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·
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

Γ(sj + lj)
Γ(sj) 

ζr ((sj + lj − δj∈(J∪K)\I − δj+1∈I); t)

⎫⎬⎭
=
∑︂
q≥0 

(log t)q

⎧⎪⎪⎨⎪⎪⎩
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

∑︂
I⊂(J∪K)\{1}

(−1)#K+#I

·
∑︂

l∈Zr
≥0

bK,l

⎛⎝ r∏︂
j=1

(sj)lj

⎞⎠ ζr ((sj + lj − δj∈(J∪K)\I − δj+1∈I); t)

⎫⎬⎭ .

We next put

ℋ((uj); (vj))

:=
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

∑︂
I⊂(J∪K)\{1}

(−1)#K+#I
∑︂

l∈Zr
≥0

bK,l

r∏︂
j=1

u
lj
j v

lj−δj∈(J∪K)\I−δj+1∈I

j .

Then, by using (4.4), we have

ℋ((uj); (vj))

=
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

∑︂
I⊂(J∪K)\{1}

(−1)#K+#I
∏︂
j∈K

(︄
r∑︂

k=j

ukvk

)︄
r∏︂

j=1

v
−δj∈(J∪K)\I−δj+1∈I

j

=
∑︂
J⊂[r]
#J=q

∑︂
K⊂[r]\J

∑︂
I⊂(J∪K)\{1}

(−1)#K+#I
∏︂
j∈K

(︄
r∑︂

k=j

ukvk

)︄⎛⎝ ∏︂
j∈(J∪K)\I

v−1
j

⎞⎠(︄∏︂
j∈I

v−1
j−1

)︄
.

Because (−1)#((J∪K)\I) = (−1)#J+#K−#I = (−1)#J(−1)#K+#I , we calculate as

ℋ((uj); (vj))

=
∑︂
J⊂[r]
#J=q

(−1)#J
∑︂

K⊂[r]\J

∏︂
j∈K

(︄
r∑︂

k=j

ukvk

)︄⎧⎨⎩ ∑︂
I⊂(J∪K)\{1}

⎛⎝−
∏︂

j∈(J∪K)\I
v−1
j

⎞⎠(︄∏︂
j∈I

v−1
j−1

)︄⎫⎬⎭
=
∑︂
J⊂[r]
#J=q

(−1)#J
∑︂

K⊂[r]\J

∏︂
j∈K

(︄
r∑︂

k=j

ukvk

)︄ ∏︂
j∈J∪K

(︁−v−1
j + v−1

j−1
)︁

=
∑︂
J⊂[r]
#J=q

(−1)#J
∏︂
j∈J

(︁−v−1
j + v−1

j−1
)︁ ∑︂
K⊂[r]\J

∏︂
j∈K

{︄(︄
r∑︂

k=j

ukvk

)︄(︁−v−1
j + v−1

j−1
)︁}︄

.

Here, for any set I1 ⊂ I2 and for indeterminates aj (j ∈ I2), we have
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∑︂
I1⊂I2

∏︂
j∈I1

aj =
∏︂
j∈I2

(aj + 1),

where we set the summation of the left-hand side as 1 for I1 = ∅. This relation with 
I1 = K, I2 = [r] \ J , and aj =

(︂∑︁r
k=j ukvk

)︂ (︁−v−1
j + v−1

j−1
)︁

yields

ℋ((uj); (vj)) =
∑︂
J⊂[r]
#J=q

∏︂
j∈J

(︁
v−1
j − v−1

j−1
)︁ ∏︂
j∈[r]\J

⎧⎨⎩
⎛⎝ r∑︂

k=j 
ukvk

⎞⎠(︁−v−1
j + v−1

j−1
)︁

+ 1

⎫⎬⎭
=
∑︂
J⊂[r]
#J=q

∏︂
j∈J

(︁
v−1
j − v−1

j−1
)︁ ∏︂
j∈[r]\J

{︁
1 − (ujvj + · · · + urvr)

(︁
v−1
j − v−1

j−1
)︁}︁

=
r∏︂

j=1

{︁
1 − (ujvj + · · · + urvr)

(︁
v−1
j − v−1

j−1
)︁}︁

·
∑︂
J⊂[r]
#J=q

∏︂
j∈J

(︁
v−1
j − v−1

j−1
)︁∏︂
j∈J

{︁
1 − (ujvj + · · · + urvr)

(︁
v−1
j − v−1

j−1
)︁}︁−1

=
r∏︂

j=1

{︁
1 − (ujvj + · · · + urvr)

(︁
v−1
j − v−1

j−1
)︁}︁

·
∑︂
J⊂[r]
#J=q

∏︂
j∈J

v−1
j − v−1

j−1

1 − (ujvj + · · · + urvr)
(︁
v−1
j − v−1

j−1
)︁ .

By the definition (1.3) of 𝒢r, the definition (A.2) of Gr,k and Lemma A.1.(2), we have

ℋ((uj); (vj)) = 𝒢r

∑︂
J⊂[r]
#J=q

∏︂
j∈J

Gr,j = (−1)q

q! 

(︃
v−1
r

∂

∂ur

)︃q [︁𝒢r

]︁
,

that is, we obtain

ℋ((uj); (vj)) = (−1)q

q! 

(︃
v−1
r

∂

∂ur

)︃q [︁𝒢r

]︁
.

Therefore, by using (A.1) and (4.6), we get

ˆ︁ζdes
r (s1, . . . , sr)(t) =

∑︂
q≥0 

(− log t)q

q! 

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl,m(q)

⎛⎝ r∏︂
j=1

(sj)lj

⎞⎠ ζr (s + m; t)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.
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Because ζr (k; t) = Lik(t) for k ∈ Zr, by Proposition A.2, we obtain

ˆ︁ζdes
r (k1, . . . , kr)(t) =

∑︂
q≥0 

(− log t)q

q! 

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl,m(q)

⎛⎝ r∏︂
j=1

(kj)lj

⎞⎠Lik+m(t)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=
∑︂
q≥0 

(− log t)q

q! Zq(k) = Z(k).

Hence, we finish the proof. □
Theorem 4.6. For any k1, . . . , kr ∈ Z and for any t ∈ (0, 1), we have

ˆ︁ζdes
r (k1, . . . , kr)(t) = Lides(k1, . . . , kr)(t).

Especially, we have

lim 
t→1−0

Lides(k1, . . . , kr)(t) = ζdes
r (k1, . . . , kr). (4.7)

Proof. By Theorem 3.16 and Theorem 4.5, we have

ˆ︁ζdes
r (k1, . . . , kr)(t) = Z(k) = Lides(k1, . . . , kr)(t).

By using this equation, we get (4.7):

lim 
t→1−0

Lides(k)(t) = lim 
t→1−0

ˆ︁ζdes
r (k)(t) = ζdes

r (k).

Here, the second equality holds by Proposition 4.2. □
Remark 4.7. Proposition 4.6 is a generalization of Proposition 2.13.

We are now ready to present our main theorem.

Theorem 4.8. We define the Q-linear map ζdes : ℋ → R by ζdes(1) := 1 and

ζdes(jkry · · · jk1y) := ζdes
r (k1, . . . , kr),

for k1, . . . , kr ∈ Z. Then, this map ζdes forms a Q-algebra homomorphism, i.e., the 
“shu�le-type'' formula holds for special values at any integer points of desingularized 
MZFs.
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Proof. By Lemma 2.12 and (4.7), this map ζdes forms a Q-algebra homomorphism. 
Hence, we obtain the claim. □
Remark 4.9. This theorem is a generalization of Proposition 1.7 and Proposition 1.10.

We show some examples of the product of two special values of desingularized MZFs.

Examples 4.10. We calculate as the product ζdes
1 (−k)ζdes

1 (l) for k, l ∈ N. By definition 
of 0 (2.1), one can calculate the following: For k, l ∈ N, we have

dky 0 j
ly =

min{k,l−1}∑︂
i=0 

(−1)i
(︃
k

i 

)︃
dk−iyjl−iy + (−1)l

k−l ∑︂
i=0 

(︃
k − 1 − i

l − 1 

)︃
dk−l−iydiy.

We note that the empty summation is interpreted as 0. Thus we have

ζdes
1 (−k)ζdes

1 (l) =
min{k,l−1}∑︂

i=0 
(−1)i

(︃
k

i 

)︃
ζdes
2 (l − i,−k + i)

+ (−1)l
k−l ∑︂
i=0 

(︃
k − 1 − i

l − 1 

)︃
ζdes
2 (−i,−k + l + i).

Examples 4.11. We calculate as the product ζdes
2 (l,−k)ζdes

1 (m) for k, l,m ∈ N. The 
following holds for k, l, m ∈ N:

dkyjly 0 j
my

=
min{k,l−1}∑︂

i=0 

l+m−i−1∑︂
p=1 

(−1)i
(︃
k

i 

)︃{︃(︃
p− 1
l − 1 

)︃
+
(︃

p− 1 
m− i− 1

)︃}︃
dk−iyjpyjl+m−i−py

+ (−1)m
k−m∑︂
i=0 

(︃
m− 1 + i

m− 1 

)︃
diydk−m−iyjly.

Thus we have

ζdes
2 (l,−k)ζdes

1 (m)

=
min{k,l−1}∑︂

i=0 

l+m−i−1∑︂
p=1 

(−1)i
(︄
k

i 

)︄{︄(︄
p− 1
l − 1 

)︄
+
(︄

p− 1 
m− i− 1

)︄}︄
ζdes
3 (l + m− i− p, p,−k + i)

+ (−1)m
k−m∑︂
i=0 

(︄
m− 1 + i

m− 1 

)︄
ζdes
3 (l,−k + m + i,−i).

Based on some numerical experiments with depth 1, we believe that we will be able to 
prove Proposition 1.7 for s1, . . . , sp ∈ Z from (2.1) and (2.2).
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Appendix A. Explicit formulae of 𝒁𝒒(k)

In this appendix, we give explicit formulae of Zq(k) in Definition 3.7 in terms of 
Lik+m(t) for m ∈ Zr. As a consequence, we find an explicit expression of Z(k) which is 
required to prove Theorem 4.5.

Recall the definitions of 𝒢r and {arl,m} (see (1.3) and (1.4) for detail). For r ≥ q ≥ 0, 
we define the set of integers {arl,m(q)} by

(︃
v−1
r

∂

∂ur

)︃q [︁𝒢r

]︁
=

∑︂
l=(lj)∈Zr

≥0
m=(mj)∈Zr

|m|=−q

arl,m(q)
r∏︂

j=1
u
lj
j v

mj

j . (A.1)

It is clear that arl,m(0) = arl,m. For r ≥ k ≥ 1, we put

Gr,k := Gr,k((uj); (vj)) :=
v−1
k − v−1

k−1

1 − (ukvk + · · · + urvr)(v−1
k − v−1

k−1)
. (A.2)

We note that we have

v−1
r

∂

∂ur

[︁
Gr,k

]︁
= G2

r,k. (A.3)

Recall the notations (x)q and m(q) (x ∈ C, m ∈ Zr and q ∈ Z) for the following lemma 
(see Proposition 1.3 and (2.13) for detail).

Lemma A.1. The following two statements hold.

(1) For q ∈ [r], l = (lj) ∈ Zr
≥0 and m = (mj) ∈ Zr with |m| = −q, we have

arl,m(q) = (lr + 1)q · arl(−q),m(−q) .

(2) For q ∈ [r], we have

(︃
v−1
r

∂

∂ur

)︃q [︁𝒢r

]︁
= (−1)qq! · 𝒢r

∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠ . (A.4)

Proof. We first prove the claim (1). By definition of 𝒢r, we calculate as

(︃
v−1
r

∂

∂ur

)︃q [︁𝒢r

]︁
=

∑︂
l=(lj)∈Zr

≥0
m=(mj)∈Zr

|m|=0

arl,m

⎛⎝r−1∏︂
j=1 

u
lj
j v

mj

j

⎞⎠ (lr − q + 1)qulr−q
r vmr−q

r .
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By replacing lr − q to lr and mr − q to mr, we have

(︃
v−1
r

∂

∂ur

)︃q [︁𝒢r

]︁
=

∑︂
l=(lj)∈Zr

≥0
m=(mj)∈Zr

|m|=−q

arl(−q),m(−q)

⎛⎝r−1∏︂
j=1 

u
lj
j v

mj

j

⎞⎠ (lr + 1)qulr
r v

mr
r

=
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

(lr + 1)q · arl(−q),m(−q)

r∏︂
j=1

u
lj
j v

mj

j .

Therefore, by comparing this and (A.1), we obtain the claim (1).
We next prove the claim (2) by induction on q. We note that, for any rational functions 

f1, . . . , fr in ur, we have

∂

∂ur

⎡⎣ r∏︂
j=1

fj

⎤⎦ =

⎛⎝ r∏︂
j=1

fj

⎞⎠ r∑︂
k=1

1 
fk

∂

∂ur
[fk] . (A.5)

When q = 1, by using (A.5) and the definition of 𝒢r, we directly have

(︃
v−1
r

∂

∂ur

)︃[︁𝒢r

]︁
= v−1

r 𝒢r

r∑︂
k=1

−vr(v−1
k − v−1

k−1) 
1 − (ukvk + · · · + urvr)(v−1

k − v−1
k−1)

(A.6)

= −𝒢r

r∑︂
k=1

Gr,k = (−1)11! · 𝒢r

∑︂
J⊂[r]
#J=1

⎛⎝∏︂
j∈J

Gr,j

⎞⎠ .

So the equation (A.4) holds for q = 1. Assume the equation (A.4) holds for q (≥ 1) or 
less. Then, by the induction hypothesis, we have

(︃
v−1
r

∂

∂ur

)︃q+1 [︁𝒢r

]︁
=
(︃
v−1
r

∂

∂ur

)︃⎡⎢⎢⎣(−1)qq! · 𝒢r

∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠
⎤⎥⎥⎦

= (−1)qq!
(︃
v−1
r

∂

∂ur

)︃
[𝒢r]

∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠

+ (−1)qq! · 𝒢r

∑︂
J⊂[r]
#J=q

(︃
v−1
r

∂

∂ur

)︃⎡⎣∏︂
j∈J

Gr,j

⎤⎦ .
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By applying (A.6) to the first term and by applying (A.5) to the second term, we calculate 
as

(︃
v−1
r

∂

∂ur

)︃q+1 [︁𝒢r

]︁

= (−1)q+1q! · 𝒢r

⎧⎪⎪⎨⎪⎪⎩
(︄

r∑︂
k=1

Gr,k

)︄ ∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠

−
∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠∑︂
k∈J

v−1
r

Gr,k

∂

∂ur
[Gr,k]

⎫⎪⎪⎬⎪⎪⎭ .

By using (A.3) in the second term, we get

(︃
v−1
r

∂

∂ur

)︃q+1 [︁𝒢r

]︁

= (−1)q+1q! · 𝒢r

⎧⎪⎪⎨⎪⎪⎩
(︄

r∑︂
k=1

Gr,k

)︄ ∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠−
∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠∑︂
k∈J

Gr,k

⎫⎪⎪⎬⎪⎪⎭
= (−1)q+1q! · 𝒢r

∑︂
J⊂[r]
#J=q

⎛⎝∏︂
j∈J

Gr,j

⎞⎠{︄ r∑︂
k=1

Gr,k −
∑︂
k∈J

Gr,k

}︄

= (−1)q+1q! · 𝒢r

∑︂
J⊂[r]
#J=q

⎧⎨⎩
⎛⎝∏︂

j∈J

Gr,j

⎞⎠ ∑︂
k∈[r]\J

Gr,k

⎫⎬⎭
= (−1)q+1q! · 𝒢r

∑︂
J⊂[r]
#J=q

∑︂
k∈[r]\J

⎧⎨⎩
⎛⎝∏︂

j∈J

Gr,j

⎞⎠Gr,k

⎫⎬⎭ .

By putting I = J ∪ {k}, we have #I = #J + 1 = q + 1. So we calculate as

(︃
v−1
r

∂

∂ur

)︃q+1 [︁𝒢r

]︁
= (−1)q+1q! · 𝒢r

∑︂
I⊂[r]

#I=q+1

∑︂
k∈I 

⎧⎨⎩
⎛⎝ ∏︂

j∈I\{k}
Gr,j

⎞⎠Gr,k

⎫⎬⎭
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= (−1)q+1q! · 𝒢r

∑︂
I⊂[r]

#I=q+1

∑︂
k∈I 

⎛⎝∏︂
j∈I

Gr,j

⎞⎠

= (−1)q+1q! · 𝒢r

∑︂
I⊂[r]

#I=q+1

(q + 1)

⎛⎝∏︂
j∈I

Gr,j

⎞⎠ = (−1)q+1(q + 1)! · 𝒢r

∑︂
I⊂[r]

#I=q+1

⎛⎝∏︂
j∈I

Gr,j

⎞⎠ .

Therefore, the equation (A.4) holds for q + 1. Hence, we obtain the claim (2). □
By the above lemma, we get an explicit expression of Zq(k).

Proposition A.2. For any q ∈ [r], we have

Zq(k) =
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl,m(q)

⎛⎝ r∏︂
j=1

(kj)lj

⎞⎠Lik+m(t). (A.7)

Proof. By Definition 3.7, we have

Zq(k) =
∑︂

i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃
Di
[︂
Z0(k(j))

]︂
.

By Proposition 3.5 and by ζr (k; t) = Lik(t), we calculate as

Zq(k) =
∑︂

i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃
Di

⎡⎢⎢⎢⎢⎢⎣
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=0

arl,m

(︄
r−1 ∏︂
a=1

(ka)la

)︄
(kr − j)lrLik+m(j)(t)

⎤⎥⎥⎥⎥⎥⎦
=
∑︂

i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃ ∑︂
l=(lj)∈Zr

≥0
m=(mj)∈Zr

|m|=0

arl,m

(︄
r−1 ∏︂
a=1

(ka)la

)︄
(kr − j)lrLik+m(q)(t).

By replacing lr − q to lr and mr − q to mr, we get

Zq(k) =
∑︂

i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃ ∑︂
l=(lj)∈Zr

≥0
m=(mj)∈Zr

|m|=−q

arl(−q),m(−q)

(︄
r−1 ∏︂
a=1

(ka)la

)︄
(kr − j)lr+qLik+m(t)
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=
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl(−q),m(−q)

(︄
r−1 ∏︂
a=1

(ka)la

)︄⎧⎪⎪⎨⎪⎪⎩
∑︂

i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃
(kr − j)lr+q

⎫⎪⎪⎬⎪⎪⎭Lik+m(t).

By using the following Lemma A.3 for l = lr and s = kr, we have

Zq(k) =
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

arl(−q),m(−q)

(︄
r−1 ∏︂
a=1

(ka)la

)︄
(lr + 1)q · (kr)lrLik+m(t)

=
∑︂

l=(lj)∈Zr
≥0

m=(mj)∈Zr

|m|=−q

{︂
(lr + 1)q · arl(−q),m(−q)

}︂(︄ r∏︂
a=1

(ka)la

)︄
Lik+m(t).

By Lemma A.1.(1), we obtain (A.7), hence we finish the proof. □
The following lemma is used in the above proof.

Lemma A.3. For l, q ≥ 0, and s ∈ C, we have

∑︂
i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃
(s− j)l+q = (l + 1)q · (s)l. (A.8)

Proof. We prove this by induction on q ≥ 0. It is clear that the claim holds for q = 0. 
When q = 1, we calculate as the left hand side of (A.8) as

(s)l+1 − (s− 1)l+1 = (s)l · (s + l) − (s)l · (s− 1) = (l + 1) · (s)l. (A.9)

Assume the equation (A.8) holds for q − 1 (≥ 0) or less. Then, by using Lemma 3.9 for 
f(i, j) = (s− j)l+q, we have

∑︂
i+j=q
i,j≥0

(−1)j
(︃
q

i 

)︃
(s− j)l+q

=
∑︂

i+j=q−1
i,j≥0

(−1)j
(︃
q − 1
i 

)︃
(s− j)l+q +

∑︂
i+j=q−1
i,j≥0

(−1)j+1
(︃
q − 1
i 

)︃
(s− j − 1)l+q

= (l + 2)q−1 · (s)l+1 − (l + 2)q−1 · (s− 1)l+1

= (l + 2)q−1(l + 1) · (s)l
= (l + 1)q · (s)l.
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We used the induction hypothesis in the second equality and the equation (A.9) in the 
third equality. Hence, we finish the proof. □
Data availability

No data was used for the research described in the article.
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