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0. Introduction

We begin with the desingularized multiple zeta function (desingularized MZF for
short) which was introduced by Furusho, Komori, Matsumoto, and Tsumura ([6]):

1 ~ r

des sp—1

o =1l . ot k

(s, 5,) = lim Ao | | Ty e /fjr(tl, ) k|_|1 £2e =ty
ér =

c;él k=1

(0.1)
for complex variables s1, ..., s,, where C, is the Hankel contour (see Definition 1.1), and
for ¢ € R, we put

Pl H<exp S )—1‘exp<cz;:tk>—1> ¢ Gt

The desingularized MZF was introduced to resolve the infinitely many singularities of
the multiple zeta function (MZF for short), under the motivation of finding a suit-
able meaning of the special values of MZF (.(s1,...,s,) at non-positive integer points
($1,...,8r) € Z,. Refer to §1.1 for more information on MZFs and desingularized ones.
Here, we will describe some properties of the desingularized MZFs that are shown in [6].

(i) ¢d¢s(sq,...,s,) is entire on whole space C".
(ii) ¢des(sy,...,s,) is expressed as a finite “linear” combination of MZFs.
(iii) Special values of (4°(sy,...,s,) at non-positive integer points are calculated ex-

plicitly by using Seki-Bernoulli numbers.

Furthermore, the first-named author showed the following:
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Proposition 1.7. (¢f. [10, Theorem 2.7]) For si1,...,8, € Z, l1,...,lq € L>o, we have

CIS (51, 8p) O (=, ey —lg)

q
SR GG
ip+jp=ly, a=1 “

1,75 >0
126<g

des . . . .
) p+q(sla"'asp7135p — 1 — _an_]l,'“,_Jq)'

In this paper, we examine the so-called shuffle product formula for special values of
desingularized MZFs at “integer” points. As a generalization of Proposition 1.7 and the
main theorem of this paper, we show the following;:

Theorem 4.8. Let H be a Hopf algebra which is defined in (2.3). We define the Q-linear
map ¢4 . H — R by ¢I(1) := 1 and

UGty y) = lim L% (ko k) (),

for ki,...,k. € Z. Then, this map Cﬂj’s forms a Q-algebra homomorphism. For
Li%(ky,..., k. )(t), see Definition 2.10.

As a consequence of this theorem, the following holds

¢l (iFry - fFrywo oy gly) = ¢S (GPy - Py IS (Gl - G

Y) (0.2)
for r,s € N, ki,.... k-, 0l1,...,ls € Z. We call this product formula the shuffle-type
formula. For ky,...,kr,l1,...,ls € N, one can see that (0.2) matches the same shuffle
product of MZVs.

The following proposition is key to proving Theorem 4.8.

Theorem 4.6. For k € Z", we have

Li® (k) (1) = G (k) (1)-

Here, Li%®(k)(t) is defined by a certain iterated integral (Definition 2.10) and
Cdes(k)(t) is a special value of a certain function (3¢5(s)(¢) on C” at an integer point
k defined by the Hankel contour integral (Definition 4.1). By definition, we know that
Li%*(k)(t) satisfies the shuffle product formula, and we show that, in the limit as t — 1,

o~

the function (3°5(s)(t) coincides with the desingularized MZF ¢4°(s) (Proposition 4.2).
Therefore, we attain our main theorem.
In order to prove Theorem 4.6, we show that both Li%**(k)(t) and ¢3°(k)(t) share

the same representation. More precisely, we show the following two statements:
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Theorem 3.16. For k € Z", we have

q!
q>0 1=(1;)€Z%,

m=(m;)EZ"
|m|=—q

Lidcs<k)<t) — Z(_DCIM Z aim(q) H(k‘j)lj Lik+m(t>- (03)

Theorem 4.5. For k € Z", we have

r

~ 1 tq
<§%<k><t>=z<—1>q(°§,) S @ [ [T | Thom(®).  (04)
a>0 T 1=(ly)ezy, j=1
m‘:(Tj)éZT
m|=—q

See Proposition 1.3 for definition of the Pochhammer symbol (k;);;, and see (A.1) for
the symbol af ,,,(¢)-

The construction of this paper goes as follows: In §1, we recall the MZF and its desin-
gularization. And then, we observe that the shuffle product formula for MZVs holds for
special values of the desingularized MZFs with depth 1 at positive integer points (Propo-
sition 1.10). In §2, we review a certain Hopf algebra derived from the differential relation

of multiple polylogarithms. We show that special values of (3°(s1, ..., s,) at all-negative
integer points (s1,...,s,) € Z7., have an “iterated differential expression”. After that,

we introduce Li%(k)(t) by an iterated integral expression. In §3, we define a function
Z(k;t) to express Li%(k)(t) as a finite linear combination of multiple polylogarithms.
At the end of §3, we show that Z(k;t) coincides with Li%**(k)(t). In §4, we introduce an
(r +1)-fold analytic function (3%(sy, ..., s,)(t) defined by a Hankel contour integral. By
showing 4% (k)(t) and Z(k;t) are equal, we prove our main theorem (Theorem 4.8). In
Appendix A, we give an explicit expression of Z(k;t) in terms of Liy(¢).

Acknowledgments. We would like to thank Hidekazu Furusho and Kohji Matsumoto
for their helpful comments. N. K. has been supported by grants JSPS KAKENHI
JP23KJ1420. T. S. has been supported by grants JSPS KAKENHI JP24KJ1252.

1. The MZFs and desingularized MZFs

In this section, we review the multiple zeta functions in §1.1. In §1.2, we recall the
definition of the desingularized MZFs which is introduced by Furusho, Komori, Mat-
sumoto, and Tsumura in [6], and explain some properties of them. In §1.3, we observe
that special values of the desingularized MZFs in one variable case at all positive integers
satisfy the shuffle product formula.

1.1. The MZFs

In this subsection, we recall the multiple zeta functions.
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Let r € N. The Euler-Zagier multiple zeta function (MZF for short) is the r-fold
complex analytic function defined by

1
CT(ShSQa"'aST‘): Z 5152 S

0<ni<ne<--<nyp T Mgt
It converges absolutely in the region
'DT = {(51,...,87«) GCT‘%(Sr—j+1+"'+sr) >ijI' 1 SJST}

Here, R(s) means the real part of s € C. In the early 2000s, Zhao ([12]) and Akiyama,
Egami, and Tanigawa ([1]) independently showed that the MZF can be meromorphically
continued to C”. In particular, in [1], the set of singularities of the MZF is determined

as all (s1,...,s,) € C" satisfying either of the following conditions;
sr=1,
Sr—1+ 8 =2,1,0,—-2,—4,—6, ...,
k
> Spiy1 €Ly, (k=3,4,...,7).
i=1

This shows that almost all non-positive integer points are located in the set of singular-
ities. In addition, they are known to be points of indeterminacy. Only the special values
C(—k) (k € Z>o) and Ca(—k1, —ke) (k1,ke € Z>o with ki + k2 odd) are well-defined.
It is one of the fundamental problems to give a nice meaning of “(.(—k1,...,—k,)” for
k1,...,kr € Z>¢. Regarding this, desingularization method (§1.2) and the renormaliza-
tion method (§2.1, 2.2) are known.

1.2. Desingularized MZFs

In this subsection, we recall the definition of the desingularized MZFs and their re-
markable properties.

We start with the generating function' $,.(t1,...,t.;¢) € C[[t1,...,t.]] (cf. [6, Defi-
nition 1.9]); for ¢ € R, we put

T 1 C
Drlty, .. tpic) = T - ;
( ) 11;[1 (exp(Zk_j te) =1 exp(ed p_;te) — 1)

ﬁ Y- oy i

m!
m>1

! It is denoted by J%T((tj)Q (1);¢) in [6].
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Here, B,, (m € Z>p) is the m-th Seki-Bernoulli number which is defined by

By .
x_l:z:Wx

m>0

We note that By =1, B; = —3 and By = ¢

Definition 1.1 (/6, Definition 3.1]). For s1,...,s, € C \ Z, we define

des . . sp—1
G (81, -+, 8r) —ll_}rq l—c /537, tl""’t“c)kl:[tk dity, (1.1)

where C. is the Hankel contour, that is, the path consisting of the positive axis (top
side), a counterclockwise circle around the origin of radius e (sufficiently small), and the
positive real axis (bottom side). We put

€)= Cloneovs0) = [ fl)F(Sk). (1.2)

We call ¢4¢5(sy,...,s,) the desingularized MZF.
The next proposition guarantees the convergence of the right-hand side of (1.1).

Proposition 1.2 (/6, Theorem 3.4]). The function (3%(s1,...,s,) can be analytically

continued to C" as an entire function in (s1,...,8.) € C" by the following integral
exTpression;
¢ (s1,...,80)
/H Zk jtkexpzkj Htsk 1dt
exp Zk _jtk) — (exp(3o)—; :
We review useful notations to show another wonderful property of (3¢(sy, ..., s,.).

For indeterminates u; and v; (1 < j <r), we set

™

Gr = Gr(U1, .., Upj U1,y 0p) 1= H{l — (ujv; + -+ u,«vr)(v;l - v;_ll)} (1.3)
j=1

with the convention vy 1= 0, and we define the set of integers {a] ;,} by

T
li m;
Gr(Uly ey Upy VT, e ey V) = E af,mHuijj 7. (1.4)
1=(1;)€Z, =1
m=(m;)EZ"
|m|=0
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Here, we put |m|:=mj + -+ m,.
One of the remarkable properties of the desingularized MZFs is that it can be repre-
sented as a finite “linear” combination of MZFs.

Proposition 1.3 (/6, Theorem 3.8]). For s1,...,s, € C, we have the following equality
between meromorphic functions of the complex variables (s1,...,5:);

T

Cdo(sy,...,8.) = Z a4 m H(Sj)lj Cr(s1+ma, ..., s +my),

1:([;‘)6220 j=1
m=(m;)EZL"
|m|=0

where (8), is the Pochhammer symbol, that is, (s)o :=1 and (s)g = H§:1(8+j —1) for
keN and s e C.

Let us see some examples of Proposition 1.3.
Examples 1.4. ([6, §4]). In the case r = 1, we have
i (s) = (1 = )¢(s).

We also see that ({(1) = —1.
In the case r = 2, we have

Ses(sl» 52) =(s51 — 1)(s2 — 1)Ca(s1, 82) + s2(s2 + 1 —51)Ca(s1 — 1,82 + 1)

(1.5)
— 52(s52 + 1)C2(s1 — 2,52+ 2).

By [7, Proposition 4.9], we have
des 1
(= (16)

We consider the following generating function Z(ti,...,t.) of the special value
¢des(~kq,...,—ky) (k1,..., k. € Z>0) which will be employed in the later section:

)k (=t )
Z(t,.o )= Y (“Lﬂ“é;” S (k. —hy). (1.7)

This is explicitly calculated as follows.

Proposition 1.5 (/6, Theorem 3.7]). We have

T

(1 —t;— - =t )elitTtr —q
(s ty) = H (etitFtr — 1)2 :
i=1
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In terms of (35 (=kq,...,—k.) for ki,..., k. € Z>q, the above equation is reformulated
to

<;1es(_k17 ey _k'r) = (_1)k1+~~~+k,‘ Z H H V11+"'+Vir+1'
Jj=t U

V1L+ +an/€ =1
<i<r

VUEZ>0

We recall that the first-named author showed the following formula for special values
of the desingularized MZFs.

Proposition 1.6 (/9, Proposition 4.8]). For s1,...,8,—1 € C and k € Z>¢, we have
"k
¢S (s, 801, —k) = Z (z> des (51,000, 81 — k4 1)¢EeS(—i).
i=0

Proposition 1.7 (10, Theorem 2.7]). For s1,...,s, € C, l1,...,l; € Z>p, we have
G (510 8p) G (=1, ., —lg)

des - ; . :
g H () p_t,_q(sla---)sp—lasp_ll_"'_’Lq7_.717"'7_]q)'

iy +jp=lp a=1
ib,J >0
1<b<q

Our motivation of this paper is based on the question of whether we can naturally
extend Proposition 1.7 for all special values at integer points of the desingularized MZFs.

1.3. Observation on the shuffle product of ({*(k)

In this subsection, we present a simple, but important observation.
At first, we remark on some special values of the double zeta function.

Lemma 1.8 (/2, Proposition 4]). For n € N>y we have
lim (s — 1)Ga(n. ) = C(n). (1.8)
Proof. It is a direct consequence of the expansion

<)

Ca(n, s) = P +0(1),
where O is Landau’s symbol. 0O

The followings are known for the cases n < 0.
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Remark 1.9 (/7, Example 4.2]). The following two hold:
G2(0,8) = ¢(s = 1) = ¢(s),
1
G-1,9) = 3 {Cls = 2) ~ ¢ls — 1))

for s € C except for singularities. Hence, we have

1
G(-1,8) = 5(2(078 —1)
for s and s — 1 neither of which is a singularity.
By an elementary calculation, we find the following.

Proposition 1.10. For n, m € N, we have
n+m—1 ] 1 ] 1
des des o - - des R
di=m = 3 {E2D)+ () o m—ia.
where we use the usual convention (lf) =0 fork <i.
Proof. If n =m =1, by (1.6), we have

Gi=(1)% = 1=2¢3(1,1).

We prove (1.10) for m,n > 2. To save space, we set

bjn = <j a 1) (j, n € N).

n—1
Since n and m are symmetric, we compute as follows:
n+m—1 ] 1
- des i
; (n - 1>Cz (n+m—j,j)

n+m—1
= Y ba{m— =16 - DGm+m = j.j)
j=1

(1.9)

(1.10)

+(2j 1= n—m)Gntm—j— 1,5+ 1) = j(i+ DG +m—j—2j+2)}.

Notice that the equality holds by (1.5). By rearranging each term, we have
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n+m—1 _]—1
> (n—l) 9 (n+m— j,j)

j=1
n+m—1
= > b m— DG D) b (- 1)@~ 1-n—m)
j=3

—bj2nli = 20 = D G0 +m = j.5) + By + B2
where

R} = bin(n+m—=2){(n+m—1)—byn(n+m—3)Ca(n+m-—22)
—b1n(3—n—m)(a(n+m—2,2),

Ri,m = byrm_1n(n+m—1)2¢(0,n +m)
—bpym—2n(m+m—2)(n+m—1)(0,n+m)
—bpsm—1n(n+m—1)(n+m)l(-1,n+m+1).

Note that by applying (1.8) to ¢$°¥(n +m — 1, 1), the term ((n +m — 1) appears in the

definition of R}, ,,. By using (";1) = (1)L (e bjo1n = bjni=T), we have

bin(n+m—7 =10 =1 +bj1a(j -2 —1=n-—m)=bj2n(j —2)(G—1)
—{nam—j =D =D+ G- —1=n—m) = (G =n=1)( ) [bin
=(1—-n)(1—m)bjn. (1.11)

We next compute R,ll’m and Ri’m. We can easily see that the following holds for n,m €
NZQ:

Ry, = =bzn(m —1)Ga(n+m —2,2). (1.12)

By using b;_1, = bj,n%a we have

R121,m = bn+m71,n(n +m — 1)2C2(0, n —+ m)
- anrmfl,n(m - 1)(77/ +m — 1)(2(0, n 4+ m)
—bptm-1n(n+m—1)(n+m)C(-1,n+m+1). (1.13)

By using (1.9), we obtain
Rim =bptm-1n(n—m)(n+m—1)(-1,n+m+1). (1.14)

By (1.11), (1.12), and (1.14), we have
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n+m—1 j—l
> (Ih)ae -

7j=1
n+m 1

(]-_n) Z bjn2n+m_].7) b2,n(m_1)<2(n+m_272)
7j=3

+bptm_1n(n—m)(n+m—1)G(-1,n+m+1).

Because by, =0 for n > 2, we get

n+m—1 j—]. n+m 1
> (IT))drmam i = m) 3 bt m g
=1 =1

+bptm—1n(n—m)(n+m—1)C(—1,n+m+1).

Since (p;’q) = (p'gq) for p, ¢ € N, we have byym—1,n = bptm—1,m. Thus, we have

PRIGHE B I

j=1
n+m—1
=(1=n)A=m) > (bjn+bjm)ia(n+m=jj).
j=1

Because m,n > 2, by the shuffle product formula of MZVs, we calculate as

PR (R C  E S

j=1

= (1= n)(1 = m)¢(n)¢(m) = = (n)¢i™ (m).

Hence, the equation (1.10) holds for m,n > 2. In the same way, we can prove (1.10) for
n=landm>2(orn>2andm=1). O

In Theorem 4.8 in §4, we will generalize this proposition to higher depth.
2. Construction of Li9® (k) (t)

In this section, we review the Hopf algebra (H, wg,Aq) and its Hopf subalgebra
(H—, wo,Ag) which are introduced in [4], and we prove some algebraic relations on
‘H_ (Proposition 2.2 and Proposition 2.3). By using these relations, in §2.2, we give
a reinterpretation of special values of the desingularized MZFs at non-positive integer
points (Corollary 2.8). In §2.3, we give a quick review of multiple polylogarithms and
introduce functions Li®**(k)(¢). And then, we mention the relationship between these
functions Li%* (k) (t) for k € Z7 %o and special values ¢des(k).
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2.1. A certain Hopf algebra

We recall the definition of the Hopf algebra (H_, wg,Ag) introduced in [4] and its
properties. Put Q(d, j, y) to be the non-commutative polynomial ring generated by three
letters d, j,y with dj = jd = 1. We define the product wy : Q(d, j,y)®? — Q(d, j,y) by
wigl:=lwyw : = w and

Yuwg v = uwy yv := y(uwg v),
Juwg jv =73

du g dv = d(uwgy dv) — uug d?v, (2.1)

J( )
d( )

du g jv = d(uwg jv) — wwg v,
d( )

Juwg dv =

for any words wu,v,w in Q{(d,j,y). Then the pair (Q(d,j,y), wy) forms a non-
commutative, non-associative QQ-algebra. We define 7 to be the linear subspace over

Q of Q{d, j,y) generated by
Ky k1, sk y
{4"y - gy € Qd j,y) | r € Nyky, ... ke € Z, Ky # 0}

Note that the symbol j~* means d* for & € N. And we define £ to be the two-sided
ideal of (Q(d, 4,y), 1o ) generated by

{5*{d(uwp v) — duwg v — uwg dv} | k € Z,u, viwords of Q(d, j,y) ending in y} . (2.2)

It is proved that the subspace 7 is a two-sided ideal of (Q{(d,j,y), wo) in [4, Lemma
3.4]. We define the quotient algebra

H = Q(d,j,y)/(T + L). (2.3)

Then the pair (H, w ) is a commutative, associative Q-algebra ([4, Proposition 3.5]).
We consider the non-commutative polynomial ring Q(d, y) generated by two letters d
and y. The pair (Q{(d,y), wp ) forms a subalgebra of (Q(d, j,y), wp ). We put

T_:=Q{d,y)NT, L_:=Q{d,yyN L,
and define
Hoi= QUdy) /(T + L),

Then there exists a coproduct Ag such that the triple (H_, wg , Ag) forms a commutative
Hopf algebra over Q (see [4, §3.3.2-3.3.6] for definition of Ay). We define the reduced
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coproduct Eo(w) = Ap(w) —1®@w —w®1 for any words w in H_. In [8, Proposition
2.5], the reduced coproduct Ay is explicitly given by

- k1N )
Ag(dFiy .- dFry) = Z (il)dzy®symd]dk2y"‘dkry

itg=k1
r—1 P kq . - . (24)
+ ( ) Ul U 71dlpy® vy - Up_1d?Pd piiy. .. dkry,
p=2 il+§:kl “l;[l ‘a {uq,vq}:%iq,dqu} ’ o '
t=t=p 1<g<p-1
for r > 2 and kq, ..., k. € Z>o. Here, w1 Qgym w2 := w1 @ wy +ws @wy for wy,wy € H_.

Proposition 2.1 ([}, Corollary 3.24 for A =0]). For any word w(# 1) in H_, we have
(29P(®) _ 2)yp = g o Ag(w).
Here, the symbol dep(w) means the number of y appearing in the word w.
We prove the following by using the above proposition.

Proposition 2.2. Let r > 3 and k1, ...,k € Z>o. We have

p
k , ,
Z H (_“)ul ey 1 dPywg vy vy drdRrry - dRry
i

itji=k a=1 N9
1<i<p

= 2 <k.1)diym()djd’“2y---d’“ry7
1

it+j=k1
forpe{2,...,r =1} and (uq,vq) € {(dla, dlay), (dlay,dia)} (1 <qg<p-—1).

Proof. For r > 1, we consider the following generating functions

the ke
Gt ty) = Y Hdkly-.-dkry (€ H_[[t1,...,t]]).
Ky, kp>0 L r

When r = 2, by using the equation (2.4) and Proposition 2.1, we have
dirydty = Y (kl)diymO Py
& { ’
i+j=k1
for ki, k2 € Z>0. So we get

thighe ki ;
Gt ta) = D> 225 > (il)dlymodﬁ]”y: >

kilko! = £ 4
k1,k2>0 it+j=k1 1,5,k220

i+ ko
bty o dit

Y
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o Lok AW
= Zﬁdy L Edy Z (] t1ts°

i>0 E>0 j+ko=k

=G(t1)wo deky =G(t1)wo G(t1 + t2).

k!
k>0

Therefore, we get

G(t1,t2) = G(t1)wo G(t1 + t2). (2.5)

When r > 3, by direct calculation, we know

th gk P . |
Z H Z H (i‘I)ul .. 'up—ldlprJO vy - 'Up—ldjpdkp+1y' . 'dkry
EREYN! .

ki,...,kr2>0 i+ji=k a=1
1<i<p
= g(t1 01t2071 - 0p_1 tp) Wo g(t1 O1la 0 Op_1tp Fipgr1,tpro,. .. ,tr).

Here, the symbols o, and ¢, are defined by

(o o ) — (+’ 9 ) ((U‘Qavq) = (di‘qadjq.y)) )
@ ( 9 7+) ((U‘Q’vq) = (d]qy’dlq))’

for 1 < g <p—1. By using (2.5) and by induction on r > 3, we get

G(tio1ta01 - 0p_1tp)ugG(t1 01202+ Op_1 tp + tpyi1, tpt2, ..., tr)
=G(t)woG(t1 +ta) g -~ g Gty +-- -+ t,)
= Q(tl)mo g(tl +to,13,... ,tr).

Because we have

G(t1)wo G(t1 + to, t3,..., 1)

thr et ki j 7k k
= X i) 2 () Aveeddty vy,

ki,...,kr>0 i+j=k1
hence we obtain the claim. O

Proposition 2.3. For r > 2 and ky,...,k, € Z>o, we have

E\ _
kl kr _ 1 K k2 kr
d*ty---d y—H_JE:k (Z,)dymodjd y---dry.
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Proof. When r = 2, we obtain the claim by the equation (2.4). Set r > 3. By using the
equation (2.4) and Proposition 2.1, we have

1 k . .
dkly“.dk,.yzzr_l — Z (;)dzymodjdkzy.“dkv-y
i+j=k1

—1
r p ko
> > 1I(;
p=2ii+j =k a=1 ¢
1<i<p

> Z up - up_ldif’ymo vy vp_ldjpd’%“y cedFry
{uqu}:{diqadqu}
1<g<p-1
Note that wg (w1 Qgym w2) = 2(w1 wows) for words wi,we in H_. By using Proposi-
tion 2.2, we get

1 k . )
Aoy dhry = ————— ! dlymodjdkzy--d’“y
or-1_1 i
iti=Fk1
B\ ,
+@2-2) Y <,1>d%ym0dfdk2y---dkry
1
it+j=k1
kY G ko k.
=) L) dyuoddy - dty.
i+j=k1

Hence, we obtain the claim. O
2.2. Generalization of the shuffle type renormalization

In this subsection, we first recall the algebraic Birkhoff decomposition which is a fun-
damental tool in the work of Connes and Kreimer ([3]) on their Hopf algebraic approach
to the renormalization of the perturbative quantum field theory.

Let Q[[z,271] be the Q-algebra consisting of all formal Laurent series. Put G =
G(H_,Q[[z,271]) to be the set of all Q-linear map ¢ : H_ — Q][[z,27] with (1) = 1.
For p,v € G, we define the convolution ¢ x 1 € G by

i i=mo(p@)o Ao

Here, m is the natural product of Q[[z, 27!]. Then the pair (G, *) forms a group, whose
unit is given by a map e = uoey_. Here, the map u is the natural unit of Q[[z, 27!] and
the map e is the counit of H_ (see [11] for detail).
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Theorem 2.4 (/3], [4/]: algebraic Birkhoff decomposition). For ¢ € G, there exist unique
Q-linear maps o4 : H_ — Q[[2]] and p_ : H_ — Q[z71] with p_(1) =1 € Q such that
=" Vo,

*(=1)

Here, the symbol ¢ means the inverse element of p_ in (G(H_,Q[[z,271]), *). More-

over, the maps w1 and @_ form algebra homomorphisms if the map ¢ is an algebra
homomorphism.
Remark 2.5. We consider the projection 7 : Q[[z, 27 1] — Q[z7!] defined by
n>—N n=—N
for a, € Q and N € Z>(. By the above theorem, we can inductively calculate ¢ and

o by

p_(w) =7 [ pw)+ > o (w)p") |,
)

pr(w)=(1d—7) | pw)+ > o (w)p(uw")
(@)

Here, we use Sweedler’s notation of the reduced coproduct EO by
Ao(w) = Zw’ ®w”.
(w)
Note that, when ¢(H_) C Q[[z]], we have

p-(w) =0,  pp(w)=p(w) (2.6)
for any word w € H_.

Let f(z) be a Laurent series in Q[[z, 27 !]. We define the Q-linear map ¢s : H_ —
Ql[[z,27"] by ¢4(1) := 1 and

O (dy - dvy) = 8 [1(2)08 [(2)- -0k [ ()], (2.7)

for ki, ...,k € Z>o. Here, the symbol 0, is the derivative by z. By the Leibniz rule of the
derivative 0., we know that the map ¢ forms an algebra homomorphism. By applying
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the above theorem to this map ¢, we get the algebra homomorphism ¢y : H_ — Q[[2]].
We define Fy(k1,..., k) € Q by

Fi(ky .. k) o= 1ir%¢f,+(dkry--.dkly)
z—

for r € N and k1, ...,k € Z>o. We set the generating function of Fy(k1,...,k,) by

Z’fl ...Zkr
Fr(21yns2y) = Z A Fr(kyy e k).

kqle- k!
ki, kr >0
The following explicit formulae of F¢(z1,..., %) holds.
Theorem 2.6. For r € N, we have

Fi(z1,..2r) = fo0(20) foo(zr—1 + 20) - - foo(z1 + - + 2).

Here, f>o(z) is defined by

for f(z) =35 N 532" (N € Zxo) with a, € Q.
Proof. When r = 1, we have Ao(dky) = 0, so by Remark 2.5, we calculate as
Fy(k1) = lim ¢4 (") = lim (Id — ) (¢(d"'y)) = lim (Id — 7) (85 [f(2)]) = as, .

Therefore, we get
2zt 2zt
Fr(z) =Y k%!Ff(kl) =) ,%1!% = f>o0(z1). (2.8)

Let r > 2. By Proposition 2.3, we have

Fr(ka,..., k)

. . . kr\ ko X
= lim ¢ (d"y---d"y) = lim drp [ D (Z.)dym()djd’“‘ y---dhy

z—0
. H kr i j jkr— k
—;gr(l)_Jr_ k <i>¢f,+ (d'y) dp+ (dd¥ 1y d™y)
i+j=k,

I
RS
~. §‘

)Ff(i)Ff(k‘l, vy ko, ke —I—j)
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So we calculate as

Zfl...zkr
Ff(Zl,...,ZT): Z WFf(k1,,k7)
Fipekpz0 CH T
k1 ko
B 27 R kT . .
= > WZ (i)Ff(l)Ff(klan-ykrmkr1"‘3)
Ki,...y k>0 i+j=k,
2
= ZﬁFf(Z)
>0
k?l kr—2
A1 Ao E\ ki j
X Z me(kl,...,kT,Q,k) Z (j)Z,r.l Zp
ki,..., kyr—2,k>0 kr—1+j=k
1 k1 kr_2 k
2L ] 27t 2 5 (et + 2r)
S 3k TATI R HD SR e TR LA
>0 Rtk —2,k>0 p e

= ff(Z,)ff(Zh ceey Rr—2,2r—1 + Z'r')-

By the equation (2.8), we get

Fr(z1, .. 20) = f>0(zr) Fr(21s -0y 2rmg, Zrm1 + 2r).
Hence, by using this equation repeatedly, we obtain the claim. O

By Theorem 2.6, we know that the special values Fy(kq,...,k,) are independent of
the principal part of f(z). When f(z) € Q[[2]], the following theorem holds.

Theorem 2.7. Let G(ki, ..., k) € Q and put f(2) =3 ;5 %Ta(k) with a(k) € Q. Then
the following two statements are equivalent:

(1) Forr > 1, we have

kv oLk

S A Gl k) = fa) G+ ) S )

(2) Forr>1andky,..., k € Z>o, we have

Glhr, . ) = lim O [ ()05 [£(2)-- O [£(2)] -]

z—0

Proof. At first, we prove (1) from (2). We consider the map ¢; in (2.7) for f(z) =
> k>0 %a(k). Then, by the assumption (2) and (2.6), we have
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Gki,... k) = l%¢f(dk7‘y---dkly) = lim b (diry- - d¥y).
So by Theorem 2.6, we obtain (1).

Next, we prove (2) from (1) by induction on . When r = 1, it is obvious from the
equation of (1). Assume that (2) holds for the case (1 <)r < ro. When r = rg, by (1),
we have

kl-. k7
DD e ACIRRLY
ko yeky >0 1T
k1 kr_2 Fp
Zpt 2, Y (2o )t
= f(zn Gk, ke
fer) ) ; o Rl Rl ! (s )
1yeeey r—1

By comparing coefficients of the term zfl - zFr of both sides, we get

Gllr,.o k)= 3 (if)G(i)G(kl,...,kT_g,kT_l+j).

itj=kn

By the induction hypothesis and the Leibniz rule of 9,, we have

Glhr, k) = > <k7">{limai[f(Z)]}{;ig%ai”"1 [£(2)--- 08 1F ()] }

ity NV 20
= lim o [ £(2)0 [£(2) -7 ] .
Hence, we finish the proof. O
We put

o) = I (2 (o)) el @)

We note that this formal series g(z) corresponds with Z(¢1)|t,=—. in Proposition 1.5 for
r=1in §1.2.

Corollary 2.8. For any r > 1 and k1, ...,k € Z>q, we have

G~k =) = lim O [g(2)08 [g(2) - 02 [g(2)] -] .
Proof. Note that the generating function Z(ty,...,t,) of (4(—ky,...,—k,) (see (1.7)
for detail) coincides with the generating function F,(—t1,...,—t,) for g(z) in (2.9) by

Proposition 1.5. Hence, by Theorem 2.7, we get the claim. O
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2.3. Definition of 1i%* (k)(t)

In this subsection, we review the multiple polylogarithms. And then, we introduce
Li%*(k)(¢) which is defined by a certain iterated integration. At the end of this section,
we show the equality between the limit value limg_,1_ Li%*(k)(¢) and the special value
¢des(k) when (ky,...,k,) € Z", (Proposition 2.13).

The multiple polylogarithms (MPLs for short) Lig, . x, (t) with (ky,..., k) € Z7, is
the complex analytic function defined by the following series:

t

Lig, k()= Y,  — or

0<ny < <nyp e

which converges for ¢ € C with [¢| < 1. The MPL for the case r = 1, k = 1 is given by
Li; (t) = —log(1—t). Consult [13] for many topics related to MPLs. We will describe some
properties of MPLs. The first to mention is the following iterated integral expression:

t
dt dt dt dt dt dt
Li = | Zo0...0= 0= 00— 2.10
ik, K (2) ;01O O 40000 o, ( )
R —
k-1 k-1
where (ki,...,k.) € N7. This yields analytic continuation to a bigger region. More

precisely, MPLs can be analytically continued to the universal unramified covering of
PY(C)\ {0,1,00}.

It is known that Li_g, . _g, (t) is a rational function of ¢ for (k1,...,k.) € Z%, for
instance,
_ t . t . tit+1)
Lig(t) = —— Li_i(t) = Li_s(t) = . 2.11
10() 1_t7 1 1() (1_t)27 1 2() (]_—t)?’ ( )

The following differential equation holds for MPLs. By definition, one can easily see
that

17
%Likl,...,m (t) = {?F}E."”’k"l(t)’ (e #_1)
T ks, kr—l(t)7 (kr = ]-)

We note that %%Liklv----rkr—l(t) = %Likl kn_1,0(t) for k. = 1. By the above differential
equation, we see that possible singularities of MPLs for any indices (k1,...,k,.) € Z" are
t=0, 1.

Put R[[t]] to be the algebra of formal power series. We consider the subalgebra P 1)
of tR[[t]] defined by

.....

Pio,1y := {f(t) € tR[[t] | f(t) converges for t € (0,1)}. (2.12)
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We also set

A= P(O’l)[log t] = E aijti(log t)j N € Zzo, VJ S 2207 E aijti S ’P(()’l)
1<i 1<i
0<j<N

Here, logt means just a formal function denoting fo Z.

Lemma 2.9. For f € A, we define’ formal integration and derivation:

dz df

= [ 1%, Dl =t

Then J and D form operators on A, and Jo D = Do J =1d.

Proof. Tt is easy to show Jo D = Do J =1d, so we prove J[f], D[f] € A for any f € A.
It is enough to prove D [g(t)(logt)'],J [g(t)(logt)!] € A for g(t) € Po,1) and I > 1. We
have

D [g(t)(logt)'] = D[g(t)] (logt)' + g(t)D [(log t)'] = D [g(t)] (logt)" + g(t)l(logt)"*

Because we have D [g(t)] € P,1) by g(t) € P(o,1), we get D [g(t)(logt)'] € A.
On the other hand, by using integration by parts, we have

Jfifel = J Al fo = T [J[A]D[f2]]

for f1, fo € A. By using this for f; = g(t) and f» = (logt)!, we calculate as

J [g(t)(0g1)'] = [ [g(t)) (log )], ~ T [J1g()|D[(log 1)"]
= Jlg(t )] (log)! — Tim, 7 [g(t)] (logt)! — J [Tlg(t)}ilog )]

We have J [g(t)] € P(o,1) by g(t) € P(o,1) and have thI-rs-lo th(logt)! = 0 for k,1 > 1, so we
—
get

lim J [g(t)] (logt)! = 0.

t—+0

Therefore, we get

T [9(t)(logt)'] = J [g(t)] (logt)' — T [J]g(t))i(logt)' ]

2 These maps J, D are also considered in [4, §3.1] as operators on a certain C-algebra of power series.
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Because we have J[h(t)(logt)’] € A for h(t) € P, we inductively obtain
J [g(t)(logt)'] € A for I > 1. Hence, we finish the proof. O

By the above lemma, we denote J~! = D. By using these operators .J, D on A, we
introduce the following elements in A.

Definition 2.10. Put k := (ki1,...,k,) € Z" for r € N. We define

N | . ' t tlogt
Li*(0)(t) = Lio(t) + logt - Li-s(t) = = + 7— "

and

LI () (1) = I [Li%(0) ()75~ [Li™=(0) () - T2 [Li™* (0)(1)] - | .

Because Lig(t) and Li_y(t) are in P(g), the element Li%(0)(t) is in A, and by
Lemma 2.9, we get Li%(k)(t) € A.

For k = (ky1,...,k.) € Z", we set

. 2.13
k) = (ky,... kp_1,kp —§) EZ", (2.13)

{k’ = (k1,... ke, kr — 1) € 2,

for j € Z. Note that k() = k’.

Remark 2.11. By the above definition, we have

DILi*(k)(t)] = Li**(K)(t),  Li"*(k,0)(t) = Li***(0)(£)Li"" (k)(1),
forkeZ".
Recall the quotient algebra H defined in (2.3).

Lemma 2.12. We define the Q-linear map v : H — A by (1) :=1 and
Wy gty) = L k) (8),

for ki,..., k. € Z. Then this map v forms an algebra homomorphism.*

Proof. By Definition 2.10, we have

G(§Fy- ) = T L)) I (L)1) -+ S L 0)0)] - ]|

3 This lemma is an analogue of [4, Lemma 3.6] for ordinary MPLs.
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By the Leibniz rule, the integration by parts and the definition (2.1), it is clear that the
map ¢ is an algebra homomorphism. 0O

The element Li%*(—ky,...,—k,)(t) € A defined in Definition 2.10 converges to
¢des(—ky,...,—k.) when (ki,..., k) € L% under the limit ¢ — 1 —0.

Proposition 2.13. For r € N and (k1,...,k,) € Z%, we have

lim Lif(—ky,..., —k.)(t) = ¢35 (—=ky,..., —ky).

t=1-0
Proof. Because we have J~! = D, we get J~* = D* for k > 0. Therefore, for ki, ..., k, €
Z >0, we have

Li%*(“ky,..., —k,)(t) = DFr [Li%®(0) () DF—1 [Lidcsm)(t) - DML (0)(1)] - - H .
Consider changing variables ¢ = e*. Then we have

Dot _d2 d_d g
“tu TStz dz

and, by (2.11), we get

L)) = 7 +logt 7 = — i ieez)z = 9(2).
Here, g(z) is given in (2.9). So we get
Li%*(—ky, ..., —k,)(t) = OF [g(z)@f"*l [9(2) -~ 0% [g(2)] - ]} :

When ¢t — 1, we have z — 0, so by Corollary 2.8, we obtain
lim Li(—ky, ..., —k.)(t) = C3 (=ky,. .., —k,).
t—1
Hence, we finish the proof. O
In Theorem 4.6 in §4, we will generalize this proposition.
3. Linear combinations of MPLs

In this section, we consider certain finite linear combinations Z(k;t) of MPLs to
express Li%(k)(t) as a finite linear combination of MPLs (Definition 3.11). In §3.1, we
introduce the function (4°(sy, ..., s,)(t) and explain its properties. By using these, we
show some properties of Z(k;t). In §3.2, we show that Z(k;t) coincides with Li% (k)(t)
(Theorem 3.16).



N. Komiyama, T. Shinohara / Journal of Algebra 684 (2025) 394—440 417

3.1. Definition of Z(k) and its properties

In this subsection, we consider a certain finite linear combination of MPLs. To this
end, we first consider certain multiple zeta functions and their properties which will be
employed in later sections.

Definition 3.1 (¢f. [5]). For 0 <t < 1 and any s = (s1,...,8,) € C", we set

e
¢ (sit) =G (81, ey Sppt) =
0<ny < <n,

n‘lql e ni"'

In [5, Corollary 2.2], it is shown that the function ¢ (s;t) can be analytically contin-
ued to C” as an entire function. We also denote ¢ (s;t) as ¢ ((s;);1).

Remark 3.2. By definition, we have
Crw (kla'“akr;t) :Likl ----- kr(t)’

for k1,...,k. € Z. It is clear that for (sq,...,s,) € D,,

tl}i{riogm (153 8r;t) = Cr(S1, -0y Sp)-

Here, the region D, is defined as follows:
Dy :=A{(s1,...,8) € C"|R(sp—jy1+---+s,) >jfor 1 <j<r}
However, we note that lims—,;_o (™ (s1,..., $p;t) diverges for (s1,...,s,) € C"\ D,.

We consider the following generating function. For ¢ € R and 0 < ¢ < 1, we put

- r 1 c
'ﬁr(tlw"at’r;c;t) = T - T :
H %GXP(Zk:j tr) — 1 %GXP(C Zk:j tr) — 1

j=1
Definition 3.3 (cf. [0, Definition 3.1]). For 0 <t <1, s1,...,8, € C\ Z, we define

C3%(sy, ..., 8.)(t) := lim #C(s) /S%T(tl,...,tr;c; t) [Tt dt, (3.1)
cr k=1

c—)ll (1 — C)r

where C., is the Hankel contour, that is, the path consisting of the positive axis (top
side), a circle around the origin of radius ¢; (with 0 < €; < |logt|), and the positive real
axis (bottom side). The symbol C(s) is defined in (1.2).



418 N. Komiyama, T. Shinohara / Journal of Algebra 684 (2025) 394—440

Remark 3.4. We note that the limit lim;_,;_o (3% (sy,...,5,)(t) does not always exist.
For instance, consider the case r = 1: we have

1 (s)(8) = (1= 5)¢™ (s51).
Thus, lim;_,1_¢ (3°5(s)(t) diverges for s € C \ D;.

The following two propositions are analogues of Proposition 1.3 and 1.6, and can be
proved exactly in the same way.

Proposition 3.5. For s1,...,s, € C, and 0 < t < 1, we have the following equality
between meromorphic functions of the complex variables (s1,...,$);

T

Ses(sla"'vsr)(t): Z a;,m H(Sj)lj Crm(sl +m17"'757“+m7“;t)a
l:(lj)EZTZO j=1
m(m;)eZ"”
|m|=0

where the coefficient aj ,, is defined in (1.4), and the symbol (s)y, is the Pochhammer
symbol (see Proposition 1.3 for the definition).

Proposition 3.6. For s1,...,s,-1 € C, k€ Z>p and 0 <t < 1, we have

k

Ses(gh ey Sp—1, *k)(t) = Z (]:> Sisl(sl’ ey Sp—1 — k + ’L)(t) ?es(*z)(t)

=0

Definition 3.7. We define a family {Z,(k)}>0,r>1kez in Po,1) (defined in (2.12)) by
Zo(k) = Zo(k; ) == ¢35 (k)(t),

and for ¢ > 1,

Zy(k) = Zy(k;t) = 3 (—1) <3> D {Zo(k(j))} . (3.2)

Zo() = ZoGkit) = > b | [T, | Licim(®) (33)

1=(1;)€Z%, Jj=1
m=(m;)EZ"
|m|=0

so the above definition is well-defined. In Appendix A, we give explicit formulae of Z,(k)
in terms of Lixym(t) for m € Z".
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The following recurrence formula holds for the above element Z,(k).
Proposition 3.8. Forq>1,r>1 and k € Z", we have
Zq(k) = D [Zg-1(k)] — qul(kl)-

Proof. By using the following Lemma 3.9 for f(i,7) = (—1)7D" [Z5(k"))], we have

Z4(k)

- i+;71(_1)j (q; 1) pitl [Zo(k(j))} _ i+j§71(_1)j (q ; 1) Di {Zo(k(jﬂ))]

=D Z (—1)7 (q Z 1) Di {Zo(k(j))} _ Z (—1)i (q ; 1) D {Zo ((k')(j))]
it+j=q-1 it+j=q-1

=D [qul(k)} - qul(kl)-
Hence, we obtain the claim. O
Lemma 3.9. Let f be a map on 2220- For g > 1, we have

> <f>f(i7j)= > <q;1>f(i+1,j)+ 3 <q;1>f(i,j+1).

i+j=q t+j=q—1 i+j=q—1

Proof. Because we have the recurrence relation of binomial coefficients

(=007

for 1 <i < ¢—1 and we have

we obtain the claim. O

For simplicity, we sometimes denote (3.3) as

Zo(k) = Y Pem(K)Likim(t). (3.4)

mezZ"
Here, pm(k) means pm(z1,...,%.)|s,=k, where a family {pm(z1,...,2)}mezr in
Qlx1, ..., xy] With pm(z1,...,2,.) = 0 except for a finite number of m € Z”. We denote

deg, (pm(z1,...,2,)) by the degree of the polynomial pm(x1,...,2,) in z,, and for
r > 1, we put
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d, := max{deg, (pm(z1,...,2,)) | meZ"}.
Proposition 3.10. For ¢ > d, + 1 and fork € Z", we have
Zy(k) =0.
Proof. If we have Z,(k) = 0 for ¢ = d, + 1, we inductively get Z,(k) =0 for ¢ > d, +1

by Proposition 3.8. So it is sufficient to prove Z,(k) = 0 for ¢ = d, + 1. By the expression
(3.4) and the definition (3.2), we have the following representation:

Zy(k) = Z cq(k; m)Lik(4>+m(t)7

mezZr

where the symbol ¢,(k; m) means ¢4(z1, ... 2,;m)|y,—x, with

Cq(z1, . zpim) = Y (=1 <§>pm(x1,...,xrl,$r_j) (€ Q[z1,...,2.]).

i+j=q

We note that
max{deg, (co(z1,...2,;m)) | meZ"} =d,. (3.5)
By Proposition 3.8, we get
cq(kym) = cq_1(k;m) — ¢4—1(k';m)

for ¢ > 1 and for any k € Z". Therefore, we have

deg, (cq(z1,...7r;m)) (3.6)
_ deg, (cq—1(x1,...2,;m)) —1 (deg, (cq—1(1,...2;m)) > 1),
0 (deg, (cq—1(w1,...2p;m)) = 0).

By using (3.5) and (3.6), we get
deg, (ca.(z1,...2;m)) =0
for any m € Z", that is, we have ¢q (21,...2,;m) € Q[z1,...,2,_1]. Hence, we obtain
Cd+1(21,...xp;m) =0

for any m € Z", that is, ¢, +1(k;m) =0 for k,m € Z", so we get Z4. +1(k) =0. O
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Definition 3.11. For k € Z", we define an element Z(k) € A(= Po,1)[logt]) by

(—logt)*
q!

Z(k) = Z(k;t) = >

q=>0

Z, (k). (3.7)

Remark 3.12. By Proposition 3.10, the right-hand side of the equation (3.7) is a finite
sum, so the above definition is well-defined.

Examples 3.13. We consider the case r = 1. By the definition (3.3), Zy(k) is presented
as follows:

Zo(k) = (1 — k)Li(t).
Then Z; (k) is calculated to be
Z1(k) = —(logt) Lig_1 ().
By Proposition 3.10, we know Z,(k) = 0 for ¢ > 2. Thus, we obtain
Z(k) = Zo(k) — Z1(k) = (1 — k)Lix(¢) + (log t)Lig_1(t) (3.8)
for k € Z.

We next show that Z(k) satisfies the differential equation which holds for MPLs and
Li%*(k)(t)’s in Definition 2.10.

Theorem 3.14. For k € Z", we have

Proof. We have

By Definition 3.7, we get

D[Z(k)] - Z(K)

=D[Zy(k)] - Zo(K')+ D | > (Slogt)t 3 (1) <3> D [Zo(k(j))}

q>1
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_ 1y Dt [Z (3+1) ] .
5o Sy (1) 0 [zaii )
g>1 i+j=q

By applying the Leibniz rule to the third term, we calculate as
D[Z(k)] - Z(k')

= D[2)] - o1y - 30 B~ s (1) (2]

_ |
G

+ Z (zlogt)? Z (—1) <‘Zl> Di+l [Zo(k(j))}

q>1 ’ i+j=q

n Z (—logt)? Z (_1)j+1 (‘Z) D {Zo(k(jﬂ))} .

q>1 ' i+j=q

By applying Lemma 3.9 for f(i,j) = (—1)'D® [Zo(k(j))} to the fourth and the fifth
terms, we get

D[Z(k)] - Z(k')

—1)!
q=>1 (-1 i+j=q
. 1 . .
+Z (log 1)" 3 (-1 (‘“, >Dl [zo(kw)]
q>1 ! i+j=q+1 !

By rearranging the first, second, and fourth terms, and by changing variables of summa-
tion of the third term from ¢ > 1 to ¢ > 0, we obtain

D[Z(k)]—Z(k/):—Z(—qll)q(logt)q S (1) (q:ﬂ)y {Zo(k(j))]

q>0 ’ i+j=q+1
+ 1\ :
+Z ? (log 1)1 Y -1y (q l )D {Zo(k(]))} —0.
q>0 ! i+j=q+1

Hence, we finish the proof. O
3.2. Coincidence of Z(k;t) with Li% (k)(t)

In this subsection, we show that Li%*(k)(t) can be expressed as a certain “linear”
combination of MPLs (Theorem 3.16).
By definition of Zy(k) and Proposition 3.6, we have the following equation:

Zo(k, —kr1) = Y (k’“j 1)20(—i)20(k(j))- (3.9)

itj=krt1



N. Komiyama, T. Shinohara / Journal of Algebra 684 (2025) 394—440

Here, r € N, k € Z" and k,1 € Z>g.
Proposition 3.15. Forr € N and k € Z", we have
Z(k,0) = Z(0)Z(k).

Proof. Let ¢ > 0. By the definition (3.2) of Z,(k) and the equality (3.9), we have

Zy(k,0) = > (=1 () D" [Zo(k, —j)]

i+j=q < )

_ KA J _ (d)
=S e (e | 2 (]) a0z
b+d=j

By the Leibniz rule, we calculate as

Z,(k,0)= Y <—1>j(§) > (?,) { > (;)D [Zo(~)] D° [%(k“”)}}

i+j=q b+d=j a+tc=1

= Cyprd_ @ — . W
_a+c§+d:q( D i P 2o (=01 D |Z0(k®)]

— Z (‘j) { Z (—1)b<2>Da [ZO(—b)]} Z (—1)® (Z)Dc [Zo(kw))]

i+j=q a+b=i c+d=j

By using the definition (3.2) of Z,(k) again, we get

Zy(k,0) = Y (f) Z;(0)Z; (k).

i+j=q

Therefore, we obtain

2k,0) = - S 7,000 = Y S S (D) 202,000
q>0 ' a>0 ' i+j=q
{3 20 4 S 209 § - 200200
>0 ’ i>0

Hence, we finish the proof. O

By using the above proposition, we obtain the following.

423
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Theorem 3.16. For r ¢ N and k € Z", we have
Li%*s(k)(t) = Z(k).

Proof. We prove this claim by induction on r. When r = 1, by Definition 2.10 and (3.8),
we have

Li®*5(0)(t) = Lig(t) + logt - Li_1(t) = Z(0). (3.10)
So by Remark 2.11 and Theorem 3.14, we have
Lides(]ﬁ)(t) _ Jkl {Lides(())(t)] — Jk'l [Z(O)} = Z(k‘l)

Hence the claim holds for » = 1. Assume that the claim holds for ro € N. Put k =
(k1y ..., kpot1) With k1, ..., k41 € Z. Similarly to the case of r = 1, we have

Lides (k) (t) = Jhno+t [Lides(kl, e s O)(t)}
= Jhrow [Lidcs(o)(t)LidCS(kl, . k:ro)(t)] .
On the other hand, by using Theorem 3.14 and Proposition 3.15, we get
Z(k) = J*rot1 [Z(ky, ... kpy, 0)] = JF0+1 [Z(0)Z (K1, ... ko )] -
Hence, by (3.10) and the induction hypothesis, we obtain the claim. O
4. Main results

In this section, we introduce one-parameterized desingularized MZFs (Definition 4.1).
After that, we prove the shuffle-type formula for special values of desingularized MZFs
at integer points (Theorem 4.8). We also give some examples.

4.1. Definition of Zfes(s)(t)

We introduce a new function Cdes( )(t), and we investigate several properties of this
function. More precisely, we show that (3°(s)(t) converges to (3°(s) under the limit
t—1-0.

Definition 4.1. For s1,...,s. € C\ Z, and 0 < ¢t < 1, we define

~
des

r (517 H e27rzsk_1 (Sk) (41)
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(logt — Z;:j xk)% eXP(ZZ:j zE) \ 1+ se—1
[H ( exp Zk J ) + {%exp(zzzj xk) _ 1}2 > ]];[lxk dSCk:.

We note that the convergence of the right-hand side of (4.1) can be justified by the
following proposition.

Proposition 4.2. For any t € (0,1), the function Ades(sl,...,sr)(t) can be analyti-

T
cally continued to C" as an entire function in (s1,...,8.) € C". Moreover, for any

(s$1,...,87) € C", we have

lim C%(s1, 50 )(t) = G5, 50).

t—1—

For the proof of Proposition 4.2, we prepare two lemmas. Let N(€) := {z € C||z| < ¢}
and S(0) := {2z € C||argz| < 0}. Then one can easily obtain:

Lemma 4.3 ([6, Lemma 3.5]). There exist € > 0 and 0 < 0 < w/2 such that

i ze € N(1) US(6)
e

for any x;,...,x. € Cc (1 < j < 1), where C. is the Hankel contour involving a circle
around the origin of radius €.

Lemma 4.4 (c¢f. [6, Lemma 3.6]). For any t € (0,1) and y € N'(1) US(0), there exists a
constant A > 0 independent of t such that

1 logt —y)+
T (og )t < Ae /2,
Proof. We set
1 (logt —y)te¥
F(t;y) == &
(ty) 1ev —1 (tev —1)2

We first note that

1 1 9 3

;ey —1=y—logt+ i(y —logt)* + O((y —logt)®), (y— logt).
Thus, we get

1e¥ — 1+ (logt — y)tev _ —3(y —logt)? + O((y — logt)®)
(tev —1)2 T (y—logt)? + O((y — logt)?)

F(t;y) =
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If logt < —1, that is, logt & N(1) U S(0), then F(t;y) is holomorphic for all y €
N(1) U §(). One can also see that F(¢;y) has the limit value when y — logt for
—1 <logt < 0. Hence, there exists C' > 0 such that for any y € N (1),

[F(t; )] < C.

We next consider the case y € S(6) \ NV (1). Note that there does not exist ¢ € (0,1) such
that logt = y in this case. Thus, there exists A;, As > 0 such that

1

1
loy
te 1

(logt —y) %ey

(Tev — 1)

< Age_%y/Q.

—Ry/2
’<A16 y/7 ’

Therefore, we obtain the claim by putting A := A; + 4. O

Proof of Proposition 4.2. We use the notation used in Lemmas 4.3 and 4.4. We put

T - s k(k +1)
G(z1,...,2,) = A jl_[leXp —R ;tk/Z =A jl_[lexp (—ﬂ? <tkT)>
= -y .

Then, one can easily show that
[HF(6D w || <Gr,....2), (21,...,2, €C), (4.2)
=1 k=j

/G(wl, e Ty) H L2kt < oo (4.3)
k=1

€

Since the integral on the right-hand side of (4.1) is holomorphic for all sy,...,s,. € C,
we see that E;ies(sl, ..., 8)(t) can be meromorphically continued to C”. We also see that
its possible singularities are located on hyperplanes s = I, € N (k = 1,2,...,r). For
sp = lp € N, one can show that the integration of (4.1) is zero by using the residue
theorem. Thus, Af,les(sl, ..., 8.)(t) has no singularity on all the hyperplanes s = i
(k =1,2,...,r). In other words, Efcs(sl, ...,8.)(t) is entire on C". The latter part of

the claim is proved by (4.2), (4.3) and Lebesgue’s convergence theorem. 0O
4.2. Shuffle product of desingularized MZF's at integer points

In this subsection, we show that the shuffle product formula holds for products of
special values at integer points of desingularized MZFs. At the end of this section, explicit
formulas for the product of depth 1 and depth 1, and that of depth 1 and depth 2, are
given.
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Theorem 4.5. For anyr > 1, k = (k1,...,k,) € Z" and for t € (0,1), we have
CI%(ky,. .. ko) (t) = Z(Kk).

Proof. We set [r] := {1,2,...,r} for r € N. We first calculate the integrand of the
right-hand side in the equation (4.1):

1 ( 1 (logt — S k) exp(Y), m)

T + I
j=1 % eXp(Zk::j ﬂjk) -1 {% eXp(Zk:j ‘rk) - 1}2

H ( | I meen(Sh )
TSy, o) — 1 {dexp(y, o) — 12

7 exp(3o)_; vk)
* {t eXP(Zk:j k) — 11 o gt)

1 B 1 D e Thexp(Yy i k)
Z H < (Zk =57 rp) — 1 {% eXp(Z;;:j xp) — 112 )

JClr]§
. %eXp(ZZZj Tk) s
1'1;[1 <{% eXP(Zz:j Tr) — 1}2) (logt)

_ ’ 1 Y wep(Ch )
=> (ogt)?3 37 ] ( AT {%exp<z;_jxk>—1}2>

q=>0 JC[r] jelr]\J k=j ¥
#J=q

H %exp(zzzj Ty)

ey \{Fep(Ci; o) — 11

We note that the empty summation is interpreted as 0.

r | (logt = Y5, ) exp(Sy_, @)
H(—exp@kj -1 (el @) - 1) )

j=1

=3 (logt)? Z > - H ( (Z:J k)= )

q>0 [r] KC[r]\J je[r]\(JUK)
J—q

P ey T XD ) Lexp(Yh_, o)
. H ( {% eXP(Z;:j ry) —1}2 ) H ({% eXp(ZZ:j x)) — 1}2>

jeEK JjeJ
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=Y ogt)1 e Y > (- 11 ( (Z:] k) — )

>0 éc r] KC[r]\J JE[FN\(JUK)

( 7 exp(h—; 7h) )

{ exp(Thej 7e) — 13

HZ% 11

jeK = JjEJUK

Using two relations as formal power series

le —ZT\N
_Z W:Zn(te )"

n>1 t n>1
we have
ﬁ 1 N (logt — > "p—; wk) 1 exp(Xy_; =)
S\ exp(zzzj x) — 1 {% exp(zzzj xy) — 1}2

= Z(Ing)q Z Z (—1)#K H Z t"iexp | —n; Zwk
q=>0 ig[r] KcClr]\J jerN\(JUK) \n;>1
=q

H Zxk H Znt’exp —njzxk

JjeEK \k=j JEJUK \n;>1

=Z(bgt)q Z Z Z H t"™ exp —anxk
k=j

q>0 [r] KC[r]\J nj>1  je[r]\(JUK)
#1 q JE[PN\(JUK)

H Zxk Z H n;t" exp —nJZxk

JEK \k=j n;>1 jeJUK
jeEJUK

:Z(logt)q Z Z Z Ht”?exp —n]Zxk

q>0 [r] KC[r]\J ni,...,np>15=1
J q
TS ) | T
JjeEK \k=j jeEJUK
= Z(log t)*? Z Z Z gt f[ exp <—xj zj:nk>
q>0 [r] KC[r]\J N1,y >1 j=1 k=1

J—q
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Tz I
jEK \k=j jEJUK
Similarly to [6, (3.18)], by putting
r
l’.
I (Xn) - ¥ ol m
JEK \k=j 1€2%, J=1

we get

(logt — Z;:j xk)% eXp(ZZ:j k)
T:[ ( T 1T Cena, e - 12 ) (45

s S ¥ ey e [

q>0 JCr] KC[r]\J N1y >1 jEJUK
#J=q

S b [T T e <_sznk>

16Z>0 j=1 j=1

Assume that Rs; is sufficiently large for 1 < j < r. By using (4.5), we have

Clos(sy, ..., s,)(t)

sz’rlda:kZ(logt)q Z Z

k
k=1 » k=1 q>0 JC[r] KC[r]\J
[0,00) #JE’JI 7\

T T J
oot T | Y bk [] xé'j [Tew <_xj an>

nyyeeyne>1 JEJUK 12, j=1  j=1 k=1

I
:Hp(sk)Z(logt)q oy (- S g 0,

q>0 JC[r] KClr|\J Ny yeeeyp>1 jeEJUK
#J=q
T
li—
b ]] / exp —x]E e | 23T
IGZEO jzl[O,oo)

Because we have f[o 00) e "5 1dz = n=°T'(s), we calculate as
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ISP DR DR DIC D DI I | I

k=1 g>0 JC[r] KC[r]\J TS | JEJUK
J=q
. I‘(s» +15)
. b J J
Z ol H (n1+- 4mn;)stl

Here, we have

1w T1 (Sm 5]

jEJUK jeEJUK
J j—1
-y T (NI (-xe)
C(JUK)\{1} je(JUK)\I jeI k=1
J J
- o Tl (z) I (z)
IC(JUK)\{1} FJE(JUK)\I \k=1 j+1el \k=1

so by using this, we get

(51, 8,)(1)

= pék)Z(logt)q > S LD DR G Vi

k=1 q>0 JClr] KC[r]\J IC(JUK)\{1}
#J=q
r it tngy
> b [[TGs+0) Y
’ J J " . NS+l —05e(urNT—Oi+1€rl
€22, j=1 N1y >1 Hj:l(nl +e ) ’

for I C J U K. Therefore, we have

G (s1,. st =D (logt)? ¢ > D S (myrEH

q=0 J%[r] KC[r]\J IC(JUK)\{1}
q

Y

(4.6)
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(s —i—l
Y bKlH J 7 ((s5 41 = djeourng — jtier)it)
16Z>0

DIUID D VRS SN S

q>0 JC[r] KC[r]\J IC(JUK)\{1}
#J=q

T

> b | TL i | 62 (55 + 1 = Secoumns — djaren)it)

lezz, =1

We next put
H((uy); (v5))
Z Z Z ( 1)#K+#I Z bKlHU ’U. Sje(rurNI— 5J+1€1

JC[r] KC[r]\J IC(JUK)\{1} lezs,,
#J=q

Then, by using (4.4), we have
H((u;); (v5))
Z Z S (=) <Zukvk> H ~je(URNT—Oj+1e1

Clr] KC[r\J IC(JUK)\{1} JjEK j=1
J—q
X vy e (S [T (1)
#J [r] KC[r]\J IC(JUK)\{1} JEK \k JE(JUK)\T JeI

q

Because (—1)#((JUEND — (_)#IH#E—#1 — (_1)#J (1) #E+#] we calculate as

H((u); (v3))

= Z Z H <Zukvk> { Z ( H ’Ujl) (H'I}j11>}
JC[r KC[r]\JjeK IC(JUK)\{1} JE(JUK)\I Jjel

#J=q
— Z Z H <Zukvk> H ;1+U;_11)
#IES[;(]; KcC[r]\Jje JEJUK
- S Ity 3T () (e .
;45[7“] jed KC[r]\J jEK k=j
=q

Here, for any set Iy C I and for indeterminates a; (j € I), we have
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Z Ha’j: H(aj+1)7

I1ClIz jelh jEl2

where we set the summation of the left-hand side as 1 for I; = (). This relation with

IlzKa I2

() ) = > [ (05" -

=[r]\ J, and a; = (Z;Zj ukvk) (—v;l + v;_ll

) yields

Zukvk (—vfl + v;_ll) +1

T

JC[r] jeJ JE[r\J k=j

#J=q

= > [Tt o) T 0= Guo b w7 = o)}
JC[r] jeJ JE[TNJ

#J=q

Uy (v;l — v;_ll)}

H{l (ujvj +
Z H (v;' - ;11 H{l—(ujijru.Jrurvr) (v;l—v;_ll)}_l

JC[r] j€J jeJ

#J=q

K

= H {1 — (u]/v] + .. +UT"UT) (’Uj_l - U;jl)}

j=1

NI bl |
JC[r] JGJ = (ujuj + - +upvy) (”j_l Uj )
#J=q

By the definition (1.3) of G,., the definition (A.2) of G, and Lemma A.1.(2), we have

H((u; =G HGMf _q(rlai) [G.],

JC[r] j€J
#J=q

that is, we obtain

(si)y; | ¢ (s +m;t)
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Because ¢ (k;t) = Lik(t) for k € Z", by Proposition A.2, we obtain

>0 1=(1;)€2%, j=1
—(m,)ez”
[m|=—g¢
(—logt)d
— 3 s w0 =z
q>0 ¢

Hence, we finish the proof. O

Theorem 4.6. For any k1, ...,k € Z and for any t € (0,1), we have
CaoS(ky, ... ko) (t) = Li%S(ky, ... ko) (2).

Especially, we have

lim Li%(ky, ... k) (t) = (K1, ... k). (4.7)
t—1-0

Proof. By Theorem 3.16 and Theorem 4.5, we have

chs(k;l, k) () =2Z(k) = Li%*s (K, .. k().
By using this equation, we get (4.7):

Jim Lt ()(6) = lim G*(k) (1) = ¢ (k).
Here, the second equality holds by Proposition 4.2. O
Remark 4.7. Proposition 4.6 is a generalization of Proposition 2.13.

We are now ready to present our main theorem.
Theorem 4.8. We define the Q-linear map (3% : H — R by ¢1(1) := 1 and
Sy gMy) =G k),

for ki,..., k. € Z. Then, this map (I forms a Q-algebra homomorphism, i.e., the

“shuffle-type” formula holds for special values at any integer points of desingularized
MZFs.
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Proof. By Lemma 2.12 and (4.7), this map (% forms a Q-algebra homomorphism.
Hence, we obtain the claim. O

Remark 4.9. This theorem is a generalization of Proposition 1.7 and Proposition 1.10.
We show some examples of the product of two special values of desingularized MZFs.

Examples 4.10. We calculate as the product ({(—k)({(l) for k,I € N. By definition
of uy (2.1), one can calculate the following: For &, I € N, we have

min{k,l—1} i k—1 b1
dk} L -1 % dk}—i -l —1 -1 l - dk) 1—i dz
Yo'y ; ( )<Z> yi' 'y + ( ); -1 Y.
We note that the empty summation is interpreted as 0. Thus we have
min{k,l—1} k
fes(_k) iies(l) — Z (_1)z<i) ges(l—i,—k+i)
i=0
k-l .
k—1—1
l des( .
+(-1) ;( I ) des(—i, —k + 1 +1).

Examples 4.11. We calculate as the product ($5(1, —k)({®(m) for k,I,m € N. The
following holds for k, I, m € N:

dFyjtyo iy

min{k,l—1} |+m—i—1 71 pfl
PSRV (){<l—1)+<m—i—1)}dk W

k—m
m -1+ i —m—i,,
( )d ydF iyl

1=

Thus we have

G5 (1, — k)i (m)

min{k,l—-1} I4+m—i—1 Ak pfl b 1
= 2 > (1)l<i>{<1_1>+(m_i_1>}€“§°s(l+mip,p,kH)
1=0 p=1

k—m

m < —1+Z><§1e5(1 —k+m+z,—z)

=0

Based on some numerical experiments with depth 1, we believe that we will be able to
prove Proposition 1.7 for s1,...,s, € Z from (2.1) and (2.2).
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Appendix A. Explicit formulae of Z, (k)

In this appendix, we give explicit formulae of Z,(k) in Definition 3.7 in terms of
Ligx+m(t) for m € Z". As a consequence, we find an explicit expression of Z(k) which is
required to prove Theorem 4.5.

Recall the definitions of G, and {af,,} (see (1.3) and (1.4) for detail). For r > ¢ > 0,
we define the set of integers {aj ,,(¢)} by

0 \? ——
<vr_187> 1G] = Z ai m(q) H ué-] v; 7 (A.1)
" 1=(1;)€Z%, j=1

m=(m;)€eZ"
|m|=—q

It is clear that af ,,,(0) = aj ,,- For r > k > 1, we put

vt — ot
G =G, )5 (v5)) = b bl . A2
k xk((ug); (v5)) 1— (upon + -+ urv,«)(vgl _ 01:1) (A.2)
We note that we have
o 2 1G,0] = 62, (A.3)
T aur s T,

Recall the notations (x), and m(? (z € C, m € Z" and ¢ € Z) for the following lemma
(see Proposition 1.3 and (2.13) for detail).

Lemma A.1. The following two statements hold.
(1) Forq e [r],1=(l;) € Z%, and m = (m;) € Z" with |m| = —q, we have

alr,m(q) = (ZT’ + 1)‘1 ’ aﬁ*q)’m(ﬂﬂ'

(2) For g € [r], we have

(Ugla%) 6] = (1% -G 3 ([ Gws |- (A)

Jc[r] \jeJ
#J=q

Proof. We first prove the claim (1). By definition of G,., we calculate as

_ 7] e r i lj mj —q. Me—
(UT 1(97) G:1= > alm | [Tw/f” | =g+ Dguy oy,
" 1=(1;)€Z%, Jj=1

m:(mj)GZT
|m[=0
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By replacing [ — q to I, and m,. — ¢ to m,., we have

™My

., 0\ i l
<'U7~ 1 ou > [gr] - Z a’{(*q)’m(ﬂﬂ H ujJ U;nj (lr + 1)qu[v
" 1=(1,)€25, =1

m=(m;)EZ"
|m|=—¢q

r
o r lj mj
- E (lr + 1)q * O (—a) m(-0) H ujjvj T
1=(l;)€Z%, Jj=1
m—(m;)€L"
|m|=—¢q

Therefore, by comparing this and (A.1), we obtain the claim (1).
We next prove the claim (2) by induction on g. We note that, for any rational functions

fi,---, fr in u,, we have

jl;[lfj = Hfg Z 7, auT (A.5)

When ¢ = 1, by using (A.5) and the definition of G,., we directly have
~1

0 (o) it 3 .
<UT ou,. [gr]—vr grz1_(ukvk+"'+urvr)(vk1_Ukll) (40

k=1

:7ngGr,k = (71)11'gr Z HGr,j
k=1 Jclr] \jeJ
#J=1
So the equation (A.4) holds for ¢ = 1. Assume the equation (A.4) holds for ¢ (> 1)
less. Then, by the induction hypothesis, we have

(Ul 0 )q“ 6] = (ai) (1% G > [ T[ G

T
Ouy Jclr] \jeJ
#J=q

= (—1)%¢! ( ) 1> TI6G

JC|[r] jedJ
J=q

-6, X (o) [T 6

JC|[r] jeJ
#J=q
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By applying (A.6) to the first term and by applying (A.5) to the second term, we calculate

a ) q+1
(vr ! aur> [gr]

= (_1)q+1q! : gr < Gr,k) Z H Gr,j
k=1 JC[r] \JeJ

#J=q

as

—1 9

5> (Hcm)zg yon

J%[r] = ke kS
=q

By using (A.3) in the second term, we get

0\
(w'5) o]

(1)l G Gr,k> > (H Gm) - > (H Gm) > G
k=1 JClr] \J€J JC[r] \Jj€J keJ
#J=q #J=q

= (—1)Q+1q! - Gy Z G,ﬁ) { Gr,k - Z Gr,k}
JjeJ k=1 ked

= (-1l g, Y Grj G
g[r] jeJ kel[r]\J

(g, 3OS {(H Gm) Gnk}'
igg ke[r\J

By putting I = JU {k}, we have #1 = #J + 1 =g+ 1. So we calculate as

3 9 q+1
(') [

=(-1)"g -G, > Z{( 1T Gm-) Gr,k}

IC[r] keI jeI\{k}
#l=q+1
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= (-1)"ql- G, Z Z HGTJ

IC[r] keI \jeI
#I=q+1

= (=1)1tql - G, Z (g+1) HGW = (-1 g+ 1) G, Z HGTJ

IC[r] JeI IC[r] JeI
#I=g+1 #I=q+1

Therefore, the equation (A.4) holds for ¢ + 1. Hence, we obtain the claim (2). O
By the above lemma, we get an explicit expression of Z, (k).
Proposition A.2. For any q € [r], we have
Zyk) = > aim(@ | []K), | Likim(®)- (A.7)
1=(1,)€23, j=1

m=(m;)€Z"
|m|=—¢q

Proof. By Definition 3.7, we have
2,00 = 3 (17 () ' [zal)].
i+j=q
4,70

By Proposition 3.5 and by ¢ (k;t) = Lik(t), we calculate as

200= ¥ (o Y dim (f[(km) (ki L (1)

Ji=q 1=(l;)€Z%, a=1
2J 20 m=(m;)€Z"
|m|=0

r—1
- () Y da (H(kana) (kr — )1 Lo (1),

i+j=q 1=(1;)€2%, a=1
4,j>0 m=(m;)EZ"
|m|=0

By replacing [, — q to l,- and m,- — ¢ to m,., we get

r—1
ifq r . .
200= 3 (1) X dew e <H<ka>la> (s — 7)1+ oLkl
I=(1))ezz, a=1
m=(m;)€Z"

[m|=—q
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S . (Huea)za) Z(l)ﬂ‘(‘j)(krjmq Liscsm (%)

1=(l;)€Z%, a=1 itj=q
m=(m;)€L" 6320
[m|=—q

By using the following Lemma A.3 for [ =, and s = k,., we have

r—1
Zq<k) Z a{(,q)’m(,q) (H(ka)la> (lr + 1)q ’ (k‘r)lrLikﬁLm(t)
1=(l;)€Z%,
m=(m;)EZL"

Im|=—¢
= Z {(Zr + 1)q ' a’f(—a),m(—Q)} <H(ka)la> Lik+m<t)'
1=(l;)eZ%, a=1
mz(mj)EZ’”
Im|=—¢

By Lemma A.1.(1), we obtain (A.7), hence we finish the proof. O
The following lemma is used in the above proof.

Lemma A.3. Forl,q >0, and s € C, we have

5 0/ (1) s = Doy = 041 o1 (a8
ity=q
4,7>0
Proof. We prove this by induction on ¢ > 0. It is clear that the claim holds for ¢ = 0.
When ¢ = 1, we calculate as the left hand side of (A.8) as

(= (s =D =()-(s+0) = () - (s =)= (U +1)- (s)- (A.9)

Assume the equation (A.8) holds for ¢ — 1 (> 0) or less. Then, by using Lemma 3.9 for
fi,5) = (s —j)l+q, we have

> 071 s s

T G IR R S S il i (R

itj=a=1 itj=a-1
1,520 1,7>0

(1 +2)g—1(8)it1 = ([ +2)g-1- (s — L1
(1 +2)g—1(l+1)-(s)
(L +1)g - (s)-
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We used the induction hypothesis in the second equality and the equation (A.9) in the
third equality. Hence, we finish the proof. O

Data availability
No data was used for the research described in the article.
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