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Abstract
In this paper we shall deal with hyperbolic systems of first order with constant

coefficient characteristic polynomials and give a necessary and sufficient condition
for the Cauchy problem to beC1 well-posed under the maximal rank condition (see
the condition (R) below).

1. Introduction

The Cauchy problem for hyperbolic operators has been studied by many authors,
and necessary and sufficient conditions forC1 well-posedness have been obtained in
restricted situations (see, e.g., [19], [6], [4], [22], [12], [26], [20], [10], [11], [17] and
[21]). We think that it is meaningfully to obtain necessary and sufficient conditions
for C1 well-posedness in various restricted situations as a step forward in the study
of C1 well-posedness.

In [26] we proved that the Cauchy problem for a single higher order operator
P(x, D) with constant coefficient hyperbolic principal part isC1 well-posed (inRn)
and has the finite propagation property if and only ifP(x,� ) is hyperbolic in the sense
of Gårding for eachx 2 Rn. We should note that the sufficiency was proved by Dunn
[5] and that the condition of the finite propagation propertycan be removed by apply-
ing the arguments in this paper. We shall attempt to extend the result to hyperbolic
systems of first order whose characteristic polynomials have constant coefficients, and
give a necessary and sufficient condition forC1 well-posedness under the maximal
rank condition in this paper.

Concerning the necessity ofC1 well-posedness for hyperbolic systems of first or-
der, Benvenuti, Bernardi and Bove defined invariantly “determinants” of the systems
under the maximal rank condition in [1] and gave necessary conditins of Ivrii-Petkov
type by means of “determinants.” The assumption on the rank was removed by Bove
and Nishitani [3]. The necessary conditions obtained in [1]is not sufficient ones for
the hyperbolic systems treated here. For hyperbolic systems with constant multiplicities
a necessary and sufficient condition is obtained under the maximal rank condition (see
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[22] and [12]). The maximal rank condition considerably simplifies the problems. One
of our aim is to illustrate how to prove the sufficiency ofC1 well-posedness of the
Cauchy problem for general hyperbolic systems satisfying the maximal rank condition
by applying the results in [14]. Another aim is to show how to prove the necessity
by transforming microlocally the systems. A part of the results here was announced in
[30] without proof.

Let A1(x), : : : , An(x), L0(x) 2 C1(Rn; Mm(C)), and put

L1(x, � ) =
nX

j =1

� j A j (x), L(x, � ) = L1(x, � ) + L0(x),

wherem is an integer� 2, Mm,m0(R) denotes the collection of allm�m0 matrices with
their entries inR, Mm(R) = Mm,m(R), x = (x1, : : : , xn) 2 Rn, � = (�1, : : : , �n) 2 Rn and
C1(Rn; V) denotes the collection ofC1 functions defined onRn with their values in
V . For t 2 R we consider the Cauchy problem�

L(x, D)u(x) = f (x) in Rn,
suppu � fx 2 Rn; x1 � tg(CP)t

in the C1 (or D 0) category, whereD = (D1, : : : , Dn) = �i (�=�x1, : : : , �=�xn) and f =
t( f1, : : : , fm) satisfies suppf � fx 2 Rn; x1 � tg. Assume that
(H) A1(x) = Im, detL1(x,� ) does not depend onx and p(� ) � detL1(x,� ) is hyperbolic
with respect to# = (1, 0,: : : , 0) 2 Rn, i.e., p(� � i#) 6= 0 for any � 2 Rn, where Im

denotes the identity matrix of orderm.
We also assume thatL(x, D) satisfies the maximal rank condition, i.e.,

(R) rankL1(x,� ) = m�1 for any (x,� ) 2 Rn�Sn�1 with dp(� ) = 0, whereSn�1 = f� 2
Rn; j� j = 1g.

Under the assumption (R) we shall reduce the Cauchy problem (CP)t to that of
single higher order operators in a microlocal sense. Letx0 2 Rn and�00 = (�0

2 ,: : :,�0
n ) 2

Sn�2. By a linear coordinate transformation ofx0 = (x2, : : : , xn) we may assume that�00 = (0, : : : , 0, 1)2 Rn�1. Write

p(�0 + �#) =
rY

j =1

(� + � j )
m j , �1 < �2 < � � � < �r ,

where �0 = (0, : : : , 0, 1) 2 Rn. Then there are an open neighborhoodV of x0, an
open conic neighborhoodC 0 of �00 in Rn�1 n f0g, S(x, � 0) 2 C1(Rn � C 0; Mm(C)) and
A j (x, � 0) 2 C1(V � C 0; Mm j (C)) (1 � j � r ) such that detS(x, � 0) 6= 0 for (x, � 0) 2
V �C 0, the entries ofS(x, � 0) are (positively) homogeneous of degree 0, (A j (x, �00)�� j Im j )

m j = 0 and

S(x, � 0)�1A(x, � 0)S(x, � 0) = diag(A1(x, � 0), : : : , Ar (x, � 0)) in V � C
0,
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where� 0 = (�2, : : : , �n) 2 Rn�1, A(x, � 0) =
Pn

j =2 � j A j (x) and

diag(A1, : : : , Ar ) =

0
B�

A1 0
...

0 Ar

1
CA

(see Lemma 2.2 below). We can assume without loss of generality that A2(x), : : : ,
An(x), L0(x) 2B(Rn; Mm(C)), i.e., supx2Rn

�Pn
j =2 jD�A j (x)j+ jD�L0(x)j� � C� for ev-

ery � 2 (Z+)n, where jAj denotes the matrix norm ofA and Z+ = N [ f0g
(= f0, 1, 2,: : : g). We say that a symbola(x,� ) belongs toS�1,0 if a(x,� ) 2 C1(T�Rn)

and
��a(�)

(�)(x, � )
�� � C�,�h�i��j�j for any (x, � ) 2 T�Rn (' Rn � Rn) and �, � 2 (Z+)n,

where � 2 R, h�i = (1 + j� j2)1=2 and a(�)
(�)(x, � ) = ��� D�

x a(x, � ). Similarly, we say

that a(x, � 0) 2 S�1,0(R � T�Rn�1) if a(x, � 0) 2 C1(R � T�Rn�1) and
��a(�0)

(�) (x, � 0)�� �
C�0,�h� 0i��j�0j for any (x, � 0) 2 R � T�Rn�1 (' Rn � Rn�1) and �0 = (�2, : : : , �n) 2
(Z+)n�1 and � 2 (Z+)n, where a(�0)

(�) (x, � 0) = ��0� 0 D�
x a(x, � 0). Moreover, we say that a

symbol a(x,� ) belongs toS
k,l
1,0 if a(x,� ) =

P[k]
j =0a j (x,� 0)� j

1 and thea j (x,� 0) are classi-

cal symbols anda j (x,� 0) 2 Sk+l� j
1,0 (R�T�Rn�1), wherek,l 2 R, [k] denotes the largest

integer� k and S
k,l
1,0 = f0g if k < 0. We write S k

1,0 = S
k,0
1,0 , S

k,�1
1,0 =

T
l2R S

k,l
1,0 and

S1
1,0 =

S
k�0 S k

1,0. By L
k,l
1,0 we denote the set of pseudodifferential operators whose

symbols belong toS k,l
1,0. We also writeL k

1,0 = L
k,0
1,0 . We need the following block-

diagonalization (see, e.g.,§3.3 of [18] and, also, Lemma 2.3 below): There are clas-
sical symbolsS�(x,� 0) 2 Mm

�
S 0

1,0

�
, eA�(x,� 0) 2 Mm��S 0,1

1,0

�
and C�(x,� 0) 2 Mm��S 0

1,0

�
(1� � � r ) and Q(x, � 0) 2 Mm

�
S

0,�1
1,0

�
such that

S+(x, � 0) = S(x, � 0), eA�(x, � 0) = A�(x, � 0)
for (x, � 0) 2 V � C 0 with j� 0j � 1 and 1� � � r ,

S�(x, D0)S+(x, D0) � I modL
0,�1
1,0 in V � C

0,
S�(x, D0)L(x, D)S+(x, D0)(I + Q(x, D0))
� (I + Q(x, D0))�D1I + diag

�eA1(x, D0) + C1(x, D0), : : : , eAr (x, D0) + Cr (x, D0)�	
modL

1,�1
1,0 in V � C

0,
with modifications ofV and C 0 if necessary, whereI denotes the identity operator
and D0 = (D2, : : : , Dn). Here A(x, D) � B(x, D) modL

k,�1
1,0 in V � C 0 means that

(A(x,� )�B(x,� )) (x,� 0) 2 Mm
�
S

k,�1
1,0

�
for any (x,� 0) 2S 0

1,0 with supp � V�C 0.
We fix � 2 f1, 2,: : : , r g. Then it follows from the assumption (R) that there isT�,1 2
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Mm�(C) such that detT�,1 6= 0 and

T�1�,1 A�(x0, �00)T�,1 =

0
BBB�
�� 1 0

.. .
. ..

1
0 ��

1
CCCA.

Putting

T�,2 =

0
BBBBBB�

0 0 1
1 0 0

...
.. .

...
0 0

0 1 0

1
CCCCCCA
2 Mm�(C),

we have

(1.1)

L�(x, � ) � T�1�,1

��1Im� + eA�(x, � 0) + C�(x, � 0)�T�,1T�,2

=

0
BBBBBB�

�n 0 0 �1 + ���n�1 + ���n �n 0
...

...
...�n 0

0 �1 + ���n 0

1
CCCCCCA

+eL�(x, � 0),

eL�(x, � 0) = eL�1 (x, � 0) +eL�0 (x, � 0), eL�1 (x0, �00) = 0,

whereeL�1 (x, � 0) 2 S
0,1
1,0 , eL�0 (x, � 0) 2 S 0

1,0 andeL�1 (x, � 0) is (positively) homogeneous of

degree 1 forj� 0j � 1. We may assume that�n + eL�1, j , j (x, � 0) 6= 0 for 1 � j � m�,

x 2 V and � 0 2 C 0 with j� 0j � 1, modifying V and C 0 if necessary, whereeL�1 (x, � 0) =�eL�1, j ,k(x, � 0)�. Now we perform the following elementary transformations on L�(x, D)
in turn from j = 1 to j = m� � 1: (i) We multiply the j -th column on the right by
a pseudodifferential operator inL 0

1,0 and add it to thek-th column to annihilate the

( j , k)-th entry moduloL
0,�1
1,0 in V � C 0 ( j < k � m� � 1). (ii) We multiply the

j -th column on the right by an operator inL j ,� j
1,0 and add it to them�-th column to

annihilate the (j , m�)-th entry moduloL
j ,�1

1,0 in V � C 0. (iii) We multiply the k-th

row on the left by an operator inL 0
1,0 and add it to the (j + 1)-th row to eliminate

terms containingD1 in the (j + 1,k � 1)-th entry (j + 2 � k � m�). As a result we
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have a matrix-valued operatoreL �(x, D) satisfying the following:

(1.2)

eL �(x, D) � � eL �
j ,k(x, D)

�

=

0
BBBB�

Dn + l̃�1 (x, D0) 0
. ..

Dn + l̃�m��1(x, D0)
* l̃�(x, D)

1
CCCCA+ eR�(x, D)

in V �C 0, l̃�j (x, � 0) 2 S
0,1
1,0 , l̃�,0

j (x0, �00) = 0 and eL �
j +1,j (x, � ) 2 S 1

1,0 (1� j � m�� 1),eL �
j ,k(x, � ) � eL �

j ,k(x, � 0) 2 S
0,1
1,0 (3 � j � m�, 1 � k � j � 2), l̃�(x, � ) 2 S

m�,�m�+1
1,0 ,eR�

j ,k(x,� ) 2S
0,�1
1,0 if k �m��1, and eR�

j ,m�(x,� ) 2S
m�,�1
1,0 , where l̃�,0

j (x,� 0) denotes

the principal symbol of̃l�j (x, � 0) and eR�(x, � ) =
�eR�

j ,k(x, � )
�
. Here A(x, D) = B(x, D)

in V � C 0 means thatA(x, � ) = B(x, � ) for (x, � 0) 2 V � C 0. Next we multiplyeL �(x, D) on the right by diag
�
k�1 (x, D0), : : : ,k�m��1(x, D0),k�(x, D0)�, wherek�j (x, D0)

is a parametrix ofDn + l̃�j (x, D0) in V � C 0 (1 � j � m� � 1) and k�(x, D0) =

(�1)m��1
�
Dn + l̃�1 (x, D0)� � � � �Dn + l̃�m��1(x, D0)�. Finally we perform elementary trans-

formations for the rows to annihilate the off-diagonal entries in V �C 0, and we have
a matrix-valued operatorL �(x, D) 2 Mm��L m�

1,0

�
satisfying the following:

(1.3)

L
�(x, � ) = diag(1,: : : , 1, l�(x, � )) + R

�(x, � ) in V � C
0,

l�(x, � ) = (�1 + ���n)m� +
m�X
k=1

l�k (x, � 0)(�1 + ���n)m��k 2 S
m�
1,0 ,

l�,0(x0, �1, 0, : : : , 0,�n) = (�1 + ���n)m� ,

R
�
j ,k(x,� ) 2S

j�1,�1
1,0 if k � m��1, andR

�
j ,m�(x,� ) 2S

m�+ j�1,�1
1,0 , whereR�(x,� ) =�

R
�
j ,k(x, � )

�
and l�,0(x, � ) denotes the principal symbol ofl�(x, � ) (see Lemma 2.4 be-

low). We write V = V(x0, �00) and C 0 = C 0(x0, �00) since V and C 0 depend onx0 and�00. Note thatl�,0(x, � ) � l�,0(� ) and p(� ) = l 1,0(� ) � � � l r ,0(� ) in V � C 0. We define

Q(x, � ; x0, �00) = l 1(x, � ) � � � l r (x, � )� p(� )

for (x0, �00) 2 Rn � Sn�2 and (x, � ) 2 V(x0, �00) � R � C 0(x0, �00), and impose the
following condition (L) for sufficiency ofC1 well-posedness:
(L) For each (x0, �00) 2 Rn � Sn�2 there isC > 0 such that

(1.4) jQ(x, � ; x0, �00)j � Cjp(� � i#)j
for x 2 V(x0, �00) with x1 � 0 and� 2 R� C 0(x0, �00).
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The condition (L) is equivalent to the following condition (L)0:
(L)0 For each (x0, �00) 2 Rn � Sn�2 and x 2 V(x0, �00) with x1 � 0 there isC > 0
such that

jQ(x, � ; x0, �00)j � Cjp(� � i#)j for � 2 R� C
0(x0, �00).

Indeed, it is obvious that the condition (L) implies the condition (L)0. By Lem-
ma 4.3 below the condition (L)0 implies the condition (L), with modifications of
V(x0, �00) and C 0(x0, �00) if necessary. Note that (1.4) is always satisfied if
(dp)(�1, �00) 6= 0 for any �1 2 R. We say that the Cauchy problem (CP)t is C1 well-
posed if the following two conditions are satisfied:
(E) For any f 2 C1(Rn;Cm) with supp f � fx 2 Rn; x1 � tg there isu 2 C1(Rn;Cm)
satisfying (CP)t .
(U) If s > t , u 2 C1(Rn; Cm), suppu � fx 2 Rn; x1 � tg and suppL(x, D)u � fx 2
Rn; x1 � sg, then suppu � fx 2 Rn; x1 � sg.

Theorem 1.1. Assume that the conditions(H) and (R) are satisfied.
(i) We assume that the condition(L) is satisfied. Let t > 0, and let f 2 D 0 satisfy
supp f � fx 2 Rn; x1 � tg. Then the Cauchy problem(CP)t has a solution u2 D 0. If
x0 2 Rn, u 2 D 0 satisfies(CP)t and f = 0 near fx0g�0(p,#)�, then x0 =2 suppu, where0(p,#) denotes the connected component of the setf� 2 Rn; p(� ) 6= 0g which contains# , and 0� =

�
x 2 Rn; x � � (� Pn

j =1 x j � j ) � 0 for any � 2 0	. Moreover, if u 2 D 0
satisfies(CP)t and f 2 C1(Rn; Cm), then u2 C1(Rn; Cm), i.e., the Cauchy problem
(CP)t is C1 well-posed.
(ii) If the Cauchy problem(CP)t is C1 well-posed for any t> 0, then the condi-
tion (L) is satisfied.

REMARK . (i) It is possible to reduce the operatorL(x, D) to the operator of the
form (2.6) below in different ways from the proof of Lemma 2.4. Then Theorem 1.1
is still valid.
(ii) Under the conditions (H) and (R) the condition (L) is a necessary and sufficient
condition for (CP)t to be C1 well-posed for anyt > 0. Therefore, the condition (L)
does not depend on the reduction procedure.
(iii) The Cauchy problem for a single higher order operatorP(x, D) with constant co-
efficient hyperbolic principal part isC1 well-posed (inRn) if and only if P(x, � ) is
hyperbolic with respect to# for eachx 2 Rn (see [5] and [26]), which is equivalent to
the condition that for everyx 2 Rn there isC > 0 satisfyingjP(x, � )j=jp(� � i#)j � C
for � 2 Rn, where p(� ) is the principal part ofP(x, � ) (see Svensson [23]).

The remainder of this paper is organized as follows. In§2 we shall reduceL(x, D)
to an operator diag(1,: : : , 1,l 1(x, D), : : : , l r (x, D)) in a microlocal sense, by multiply-
ing L(x, D) on the both sides by invertible matrix-valued operators inMm

�
L

m�1
1,0

�
. In
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the proof of the assertion (ii) of Theorem 1.1 we shall use theTarski-Seidenberg theo-
rem. So we have to prove that the Tarski-Seidenberg theorem can be applicable to the
l�(x, � ). In §3 we shall prove the assertion (i) of Theorem 1.1, applying the results in
[14]. In doing so, some simple modifications are necessary. The assertion (ii) of Theo-
rem 1.1 will be proved in§4, applying the arguments in Ivrii-Petkov [10] and [26]. We
shall modify the arguments in [9] to remove the assumption onthe finite propagation
property (see, also, [16]). Some examples and remarks will be given in§5.

2. Reduction to a simple form

We begin with several definitions.

DEFINITION 2.1. (i) The subsetA of RN is said to be a semi-algebraic set if
A is a finite union of finite intersections of sets defined by a real polynomial equation
or inequality.
(ii) Let V be an open subset ofRn and C 0 be an open conic semi-algebraic subset
of Rn�1 n f0g, and let f (x, � ) be a symbol inC1(V � R � (C 0 [ (�C 0))) such that
f (x,�� ) = �l f (x,� ) for (x,� ) 2 V �R� (C 0[ (�C 0)) and� 2 Rn f0g, wherel 2 Z and�C 0 = f�� 0 2 Rn�1; � 0 2 C 0g. We say thatf (x, � ) is an SA-symbol in V �C 0 if there
are N 2 N, a semi-algebraic setA in RN+n�1 and a polynomialF(x, � , �) of (� , �)
(� (� ,�1, : : : ,�N)) and a polynomialG(x, � 0,�) of (� 0,�), whose coefficients belong to
C1(V), satisfying the following:

(1) The projection� � �N,n�1 : A 3 (� 0, �) 7! � 0 2 Rn�1 is injective, �(A ) =
C 0 [ (�C 0), and the3 j (� 0) are real analytic and homogeneous inC 0 [ (�C 0),
where��1(� 0) = (� 0,31(� 0), : : : ,3N(� 0)).
(2) F(x, �1,��1(� 0)) and G(x,��1(� 0)) are homogeneous in� 2 R� (C 0 [ (�C 0))
and � 0 2 C 0 [ (�C 0), respectively.
(3) G(x,��1(� 0)) 6= 0 and f (x,� ) = G(x,��1(� 0))�1F(x,�1,��1(� 0)) for x 2 V and� 2 R� (C 0 [ (�C 0)).

(iii) Let V be an open subset ofRn and C 0 be an open conic semi-algebraic subset
of Rn�1 n f0g, and let f (x, � ) be a symbol inS k,l

1,0 which has an asymptotic expansion

of the form f (x, � ) � P1
j =0 f j (x, � ), wherek 2 Z+, l 2 Z and f j (x, � ) is positively

homogeneous of degreek + l � j ( j 2 Z+). We say that f (x, � ) is an S-symbol in

V � C 0 if for each �, � 2 (Z+)n and j 2 Z+ f j (�)
(�) (x, � ) is an SA-symbol in V � C 0.

Let x0 2 Rn and �00 = (�0
2 , : : : , �0

n ) 2 Sn�2. By a linear coordinate transformation
of x0 we may assume that�00 = (0, : : : , 0, 1)2 Rn�1. Write

p(�0 + �#) (� p(�, �00))
=

rY
j =1

(� + � j )
m j , �1 < �2 < � � � < �r
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as in §1, and

p(�, � 0) =
mY
j =1

(� + � j (� 0)), �1(� ) � �2(� 0) � � � � � �m(� 0).
We chooseÆ j > 0 (1� j � r ) and an open neighborhoodU 0 of �00 so thatf� 2 C;j� + � j j � Æ j g (1 � j � r ) are mutually disjoint and�k(� 0) 2 f� 2 R; j� + � j j � Æ j =2g
for 1� j � r , m1 + � � � + m j�1 + 1� k � m1 + � � � + m j and � 0 2 U 0. Put

Pj (x, � 0) = (2� i )�1
I
j�+� j j=Æ j

L1(x, �, � 0)�1 d�
for (x, � 0) 2 Rn � U 0 and 1� j � r . Then we have rankPj (� 0) = m j and we can
choose an open neighborhoodV of x0 andm j column vectorsP1

j (x, � 0), : : : , P
m j

j (x, � 0)
of Pj (x, � 0) so that Pk

j (x, � 0) (1 � k � m j ) are linearly independent for each (x, � 0) 2
V �U 0, modifying U 0 if necessary. We put

S(x, � 0) =
�
P1

1 (x, � 0), : : : , Pm1
1 (x, � 0), P1

2 (x, � 0), : : : , Pmr
r (x, � 0)�.

Then S(x, � 0) can be defined for (x, � 0) 2 Rn � (C 0 [ (�C 0)) by homogeneity, i.e.,
S(x,� 0) = S(x,�� 0=j� 0j) if (x,� 0) 2 Rn� (�C 0), whereC 0 = f�� 0 2 Rn�1;� 0 2 U 0, j� 0j = 1
and � > 0g. We may assume thatC 0 is semi-algebraic. Since

Rj ,k,l (� 0) � (2� i )�1
I
j�+� j j=Æ j

�k

p(�, � 0)l
d�

is a rational function of fundamental symmetric functions of f�m1+���+m��1+�(� 0)g�=1,:::,m�
(1� � � r ) for 1� j � r , k 2 Z+ and l 2 N, the entries ofS(�)

(�)(x, � 0) are SA-symbols
in V � C 0 for �, � 2 (Z+)n. Indeed, for� 0 2 C 0 [ (�C 0) the Rj ,k,l (� 0) are analytic
and expressed as rational functions of (�1, : : : ,�m), where (�1, : : : ,�m) is defined by the
following system of real polynomial equations and inequalities for � 0 2 C 0 [ (�C 0):

�1 � �2 � � � � � �m, p(� ) =
mY
j =1

(�1 + � j ),

mY
j =1

(�1 + �m1+���+m��1+ j ) = �m�
1 +

m�X
j =1

�m1+���+m��1+ j �m�� j
1 (1� � � r ).

Therefore, we have the following

Lemma 2.2. There are an open neighborhood V of x0 in Rn, an open conic
semi-algebaraic subsetC 0 of Rn�1 n f0g, S(x, � 0) 2 C1(Rn� (C 0 [ (�C 0)); Mm(C)) and
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A j (x,� 0) 2 C1(V�C 0; Mm j (C)) (1� j � r ) such that S(x,� 0) and Aj (x,� 0) are homo-
geneous of degree0 and 1, respectively, detS(x,� 0) 6= 0 for (x,� 0) 2 V�C 0, the entries
of S(x, � 0) and the Aj (x, � 0) are SA-symbols in V�C 0, (A j (x, �00)� � j Im j )

m j = 0 and

S(x, � 0)�1A(x, � 0)S(x, � 0) = diag(A1(x, � 0), : : : , Ar (x, � 0))
for (x, � 0) 2 V � (C 0 [ (�C 0)).

Modifying V and C 0, if necessary, we can constructS�(x, � 0) 2 Mm
�
S 0

1,0

�
so that

S+(x,� 0) = S(x,� 0) for (x,� 0) 2 V�(C 0[(�C 0)) with j� 0j � 1 andS�(x,D0)�S+(x,D0)�
I modL

0,�1
1,0 in V � (C 0 [ (�C 0)). It is easy to see that the entries ofS�(x, � 0)

are S-symbols inV � C 0. We can assume without loss of generality thatA2(x), : : : ,
An(x), L0(x) 2B(Rn; Mm(C)). Although the following lemma is well-known, for com-
pleteness we give the proof (see, e.g., [18]).

Lemma 2.3. There are symbols Q(x,� 0) 2 Mm
�
S

0,�1
1,0

�
and eA�(x,� 0) 2 Mm��S 0,1

1,0

�
and C�(x, � 0) 2 Mm��S 0

1,0

�
(1� � � r ) such that the entries of Q(x, � 0), the eA�(x, � 0)

and the C�(x, � 0) are S-symbols in V� C 0 and

eA�(x, � 0) = A�(x, � 0) for (x, � 0) 2 V � C
0 with j� 0j � 1 and 1� � � r ,

S�(x, D0)L(x, D)S+(x, D0)(I + Q(x, D0))
� (I + Q(x, D0))� �D1I + diag

�eA1(x, D0) + C1(x, D0), : : : , eAr (x, D0) + Cr (x, D0)�	
modL

1,�1
1,0 in V � (C 0 [ (�C

0)).

(2.1)

Proof. Write

(2.2) Q(x, � 0) � 1X
j =1

Q j (x, � 0), C�(x, � 0) � 1X
j =0

C�, j (x, � 0)
(asymptotic expansions), whereQ j (x, � 0) (2 C1(R� (T�Rn�1 n 0); Mm(C))) and
C�, j (x, � 0) (2 C1(R � (T�Rn�1 n 0); Mm�(C))) are positively homogeneous of degree� j and T�Rn�1 n 0' Rn�1 � (Rn�1 n f0g). We also write

eA(x, D0) = S�(x, D0)A(x, D0)S+(x, D0) 2 L
0,1
1,0 ,

eA(x, � 0) � 1X
j =�1

eA j (x, � 0) (asymptotic expansion),

whereeA j (x,� 0) (2 C1(R� (T�Rn�1 n0); Mm(C))) is positively homogeneous of degree� j . By Lemma 2.2 we have

eA�1(x, � 0) = diag(A1(x, � 0), : : : , Ar (x, � 0))
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for (x, � 0) 2 V � (C 0 [ (�C 0)). ChooseeA�(x, � 0) 2 Mm��S 0,1
1,0

�
(1� � � r ) so that theeA�(x, � 0) are positively homogeneous forj� 0j � 1 and

diag
�eA1(x, � 0), : : : , eAr (x, � 0)� = eA�1(x, � 0)

for (x, � 0) 2 V � (C 0 [ (�C 0)) with j� 0j � 1. We put

B(x, D0) = S�(x, D0)S+(e1)(x, D0) + eA(x, D0)
� diag

�eA1(x, D0), : : : , eAr (x, D0)� + S�(x, D0)L0(x)S+(x, D0).
and write

B(x, � 0) � 1X
j =�1

B j (x, � 0),
wheree1 = (1, 0,: : : , 0)2 (Z+)n and B j (x, � 0) is positively homogeneous of degree� j
( j 2 Z+). It is easy to see thatB�1(x, � 0) = 0 in V � (C 0 [ (�C 0)) and that the entries
of B(x, � 0) are S-symbols inV � C 0. If (2.1) holds, thenfQ j (x, � 0)g and fC�, j (x, � 0)g
satisfy

(2.3)

Bl (x, � 0) + Ql
(e1)(x, � 0)

+
X

j +j�0j=l+1
j�1

1�0! diag(A1(�0)(x, � 0), : : : , Ar (�0)(x, � 0))Q j
(�0)(x, � 0)

+
X

j +k+j�0j=l
j�1, k�0

1�0! Bk(�0)(x, � 0)Q j
(�0)(x, � 0)

= diag(C1,l (x, � 0), : : : , Cr ,l (x, � 0))
+

X
j +j�0j=l+1

j�1

1�0! Q j (�0)(x, � 0) diag
�
A1

(�0)(x, � 0), : : : , Ar
(�0)(x, � 0)�

+
X

j +k+j�0j=l
j�1, k�0

1�0! Q j (�0)(x, � 0) diag
�
C1,k

(�0)(x, � 0), : : : , Cr ,k
(�0)(x, � 0)�

in V� (C 0[ (�C 0)) (l = 0,1,2,: : : ), whereQ0(x,� 0) � 0. If A�,� is anm��m� matrix
(1 � �, � � r ) and A = (A�,�)�#1,:::,r�!1,:::,r , we defineB�,�(A) = A�,� . We chooseQ(x, � 0)
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so thatB�,�(Q(x, � 0)) = 0 for 1� � � r . Then it follows from (2.3) that

C�,l (x, � 0) = B�,�(Bl (x, � 0))
+

X
j +k+j�0j=l
j�1, k�0

rX

=1

1�0!B�,
 (Bk(�0)(x, � 0))B
 ,��Q j
(�0)(x, � 0)�,(2.4)

B�,�(Ql+1(x, � 0))A�(x, � 0)� A�(x, � 0)B�,�(Ql+1(x, � 0))
= B�,�(Bl (x, � 0)) + B�,��Ql

(e1)(x, � 0)�
+

X
j +j�0j=l+1

1� j�l

1�0! A�(�0)(x, � 0)B�,��Q j
(�0)(x, � 0)�

+
X

j +k+j�0j=l
j�1, k�0

rX

=1

1�0!B�,
 (Bk(�0)(x, � 0))B
 ,��Q j
(�0)(x, � 0)�

� X
j +j�0j=l+1

1� j�l

1�0!B�,�(Q j (�0)(x, � 0))A�(�0)(x, � 0)

� X
j +k+j�0j=l
j�1,k�0

1�0!B�,�(Q j (�0)(x, � 0))C�,k
(�0)(x, � 0)

(2.5)

in V � (C 0 [ (�C 0)) for l = 0, 1, 2,: : : and 1� �, � � r with � 6= �. Let A � (ai ,k) 2
Mn1,n2(C) and B � (b j ,l ) 2 Ml1,l2(C). Then the Kronecker productA 
 B � (c�,�) 2
Mn1l1,n2l2(C) is defined byc�,� = ai ,kb j ,l for � = (i , j ) and� = (k, l ), where� 2 f(i , j ) 2
N2; 1 � i � n1 and 1� j � l1g and � 2 f(k, l ) 2 N2; 1 � k � n2 and 1� l � l2g
are properly arranged. Assume thatn1 = n2, l1 = l2 and the repeated eigenvalues ofA
and B are f� j g1� j�n1 and f�kg1�k�l1, respectively. Then the eigenvalues ofI l1 
 tA�
B 
 In1 � (h�,�) are f� j � �kg1� j�n1, 1�k�l1. For X = (xi , j ), F = ( fi , j ) 2 Ml1,n1(C) the
equationX A� BX = F is equivalent to

P� h�,�x� = f� for � = (i , j ) with 1� i � l1
and 1� j � n1. In particular, the equation is uniquely solvable inX if � j 6= �k for
1 � j � n1 and 1� k � l1. The eigenvalues ofA�(x, � 0) are different from those
of A�(x, � 0) for � 6= � and (x, � 0) 2 V � C 0. Therefore, by (2.4) and (2.5) we can
determinefQ j (x, � 0)g and fC�, j (x, � 0)g in V �C 0, inductively. Modifying the symbols
outside f(x, � 0) 2 V � (C 0 [ (�C 0)); j� 0j � 1g, we can chooseQ(x, � 0) and C�(x, � 0)
(1 � � � r ) so that (2.1) and (2.2) are valid. It is easy to see that the entries of
Q(x, � 0) and theC�(x, xi 0) are S-symbols inV � C 0.

As stated in§1, using elementary transformations we have the following

Lemma 2.4. With modifications of V andC 0 if necessary, there are symbols
N1(x, � ) 2 Mm

�
S

m�1,�m+1
1,0

�
, N2(x, � ) � (N2, j ,k(x, � )) 2 Mm

�
S

m�1
1,0

�
and l j (x, � ) 2 S

m j

1,0
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(1� j � r ) satisfying the following:
(i) N2, j ,k(x,� ) � N2, j ,k(x,� 0) 2S

0,�1
1,0 for 1� k � m� r , N2, j , j (x,� ) � N2, j , j (x,� 0) for

m� r < j � m, N2, j ,m�r +k(x, � ) 2 S
mk�1
1,0 for 1 � k � r , and N1(x, D) and N2(x, D)

have parametrices in Mm
�
L

m�1
1,0

�
.

(ii) l j (x, � ) can be written in the form

l j (x, � ) = (�1 + � j �n)m j +
m jX
k=1

l j
k (x, � 0)(�1 + � j �n)m j�k,

l j
k (x, � 0) 2 S

0,k
1,0 (1 � j � r , 1 � k � m j ), The ljk (x, � 0) are S-symbols in V� C 0,

l j ,0
k (x, � 0) � l j ,0

k (� 0) and l j ,0k (�00) = 0, where lj ,0k (x, � 0) denotes the principal symbol of

l j
k (x, � 0).

(iii)

(2.6) N1(x, D)L(x, D)N2(x, D) = diag(1,: : : , 1, l 1(x, D), : : : , l r (x, D)) + R(x, D)

in V � (C 0 [ (�C 0)), where R(x, � ) 2 Mm
�
S

2m�1,�1
1,0

�
.

Proof. We fix� 2 f1, 2,: : : , r g. As stated in§1, there are symbolseN�(x, � ) ��eN�, j ,k(x, � )
� 2 Mm��S m��1

1,0

�
(� = 1, 2) satisfying the following: (i)eN�, j , j (x, � ) = 1,eN�, j ,k(x, � ) = 0 ( j > k), eN1, j ,k(x, � ) � eN1, j ,k(x, � 0) 2 S 0

1,0 ( j < k � m�), eN2, j ,k(x, � ) �eN2, j ,k(x, � 0) 2 S 0
1,0 for j < k < m� and eN2, j ,m�(x, � ) 2 S

m��1,�m�+1
1,0 . (ii) eN1(x, D)

(= eN1(x, D0)) andeN2(x, D) have the inverses inMm��L 0
1,0

�
and Mm��L m��1

1,0

�
, respec-

tively. (iii)

eN1(x, D)L�(x, D)eN2(x, D) = eL �(x, D) in V � (C 0 [ (�C
0)),

whereL�(x,� ) is as in (1.1) andeL �(x,� ) � � eL �
j ,k(x,� )

�
has the same form as in (1.2)

which is valid in V� (C 0[ (�C 0)). We note thatf (x,� )+g(x,� ) and f (x,� )g(x,� ) are
S-symbols inV�C 0 if f (x,� ) andg(x,� ) are S-symbols inV�C 0. Let h(x,� 0) 2S

0,1
1,0

be anS-symbol in V�C 0 such thath0(x0,�00) = 0, whereh0(x,� 0) denotes the principal
symbol of h(x, � 0). Then there is a symbolk(x, � 0) 2 S

0,�1
1,0 such thatk(x, � 0) is an

S-symbol in V � C 0 and k(x, D0) is a parametrix of (Dn + h(x, D0)) in V � C 0, with
modifications ofV andC 0 if necessary. Therefore,eN�, j ,k(x,� ) and eL �

j ,k(x,� ) (� = 1, 2,
1� j , k � m�) are S-symbols inV �C 0. It follows from the reduction procedure that

l̃�(x, D)� (�1)m��1k�m��1(x, D0) � � � k�2 (x, D0)k�1 (x, D0)Dm�
1 2 L

m��1,1
1,0

in V�(C 0[(�C 0)), i.e.,
�
l̃�(x,D)�(�1)m��1k�m��1(x,D0)� � �k�1 (x,D0)Dm�

1

�� (x,D0) 2
L

m��1,1
1,0 for any  (x, � 0) 2 S 0

1,0 with supp � V � (C 0 [ (�C 0)), wherek�j (x, D0) is
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a parametrix ofDn + l̃�j (x, D0) in V � (C 0 [ (�C 0)) (1� j � m� � 1). Now we multi-

ply eL �(x, D) on the right by diag
�
k�1 (x, D0), : : : ,k�m��1(x, D0),k�(x, D0)� and, then, on

the left by operators corresponding to elementary transformations for the rows to anni-
hilate the off-diagonal entries inV � (C 0 [ (�C 0)), wherek�(x, D0) = (�1)m��1

�
Dn +

l̃�1 (x, D0)� � � � �Dn + l̃�m��1(x, D0)�. Finally we obtainL �(x, D) of the form (1.3) inV�
(C 0[ (�C 0)), i.e., there areN�� (x,� ) � �N��, j ,k(x,� )

� 2 Mm
�
S

m��1
1,0

�
(� = 1,2) satisfying

the following: (i) N�
2, j , j (x, � ) = k�j (x, � 0) (1 � j � m� � 1), N�

2,m�,m�(x, � ) = k�(x, � 0),
N�

2, j ,k(x, � ) = 0 ( j > k), N�
1, j ,k(x, � ) 2 S

j�1,� j +1
1,0 , N�

2, j ,k(x, � ) � N�
2, j ,k(x, � 0) 2 S

0,�1
1,0

(k < m�), N�
2, j ,m�(x, � ) 2 S

m��1
1,0 , and the N��, j ,k(x, � ) are S-symbols in V � C 0.

(ii) N�
1 (x, D) has the inverse inMm��L m��1

1,0

�
and N�

2 (x, D) has a parametrix in

Mm��L m��1
1,0

�
. (iii)

N�
1 (x, D)L�(x, D)N�

2 (x, D) = L
�(x, D) in V � (C 0 [ (�C

0)).
This proves the lemma.

Let q(x, � ) be anSA-symbol in V � C 0, and assume that

(2.7) sup�2R�C 0, j� 0j�1

���� q(x, � )

p(� � i#)

���� <1 for any x 2 V .

By definition there areN 2 N, a semi-algebraic subsetA of RN+n�1 and a polynomial
F(x, � , �) of (� , �) (� (� , �1, : : : , �N)) and a polynomialG(x, � 0, �) of (� 0, �), whose
coefficients belong toC1(V), satisfying the conditions (1)–(3) of Definition 2.1 (ii)
with f (x, � ) replaced byq(x, � ). Write

F(x, � , �) =
X

j�j+j�̂j�M

a�,�̂ (x)����̂ , a�,�̂ (x) 2 C1(V),

where M 2 Z+, �̂ = (�1, : : : , �N) 2 (Z+)N and ��̂ = ��1
1 � � � ��N

N . We put

B =

8<
:b = (b�,�̂ ; j�j + j�̂j � M) 2 CN 0

;

sup�2R�C 0, j� 0j�1
j� 0j��

������
X

j�j+j�̂j�M

b�,�̂��3(� 0)�̂
p(� � i#)

������ <1
9=
;,

where N 0 =
�M+N�n

M

�
, 3(� 0) = (31(� 0), : : : ,3N(� 0)) is as in the condition (1) of Def-

inition 2.1 (ii) and G(x, � 0,3(� 0)) is homogeneous of degree� in � 0 2 C 0 [ (�C 0).
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Then B is a subspace ofCN 0
. Let fb j g j =1,:::,l be a basis ofB. From (2.7) we have

a(x) � �
a�,�̂ (x); j�j + j�̂j � M

� 2 B. Therefore, there area j (x) 2 C1(V) (1 � j � l )

such thata(x) =
Pl

j =1 a j (x)b j . This gives the following

Lemma 2.5. Under the above assumptions there are l2 N, SA-symbols qj (� )
(1� j � l ) in V � C 0 (or Rn � C 0), a j (x) 2 C1(V) (1� j � l ), � 2 Z and e(x, � 0) 2
C1(V�(C 0[(�C 0))) such that e(x,� 0) is homogeneous of degree� in � 0 2 C 0[(�C 0),
e(x, � 0) 6= 0 for (x, � 0) 2 V � C 0 and

sup�2R�C 0, j� 0j�1

���� q j (� )

p(� � i#)

���� j� 0j�� <1 (1� j � l ),

q(x, � ) =
lX

j =1

a j (x)e(x, � 0)�1q j (� ).

3. Proof of the assertion (i) of Theorem 1.1

In this section we shall prove the assertion (i) of Theorem 1.1, applying Theo-
rem 1.4 of [14]. We use the notations in [14]. The conditions on N 1(x, D; z00),
N 2(x, D; z00) and R(x, D; z00) in (1.3) of [14] are slightly different from the conditions
satisfied byN1(x, D), N2(x, D) and R(x, D) in (2.6). Therefore, we must show that
Theorem 1.4 of [14] is still valid if, instead of the conditions there,N 1(x, D; z00) ��
N 1

j ,k(x, D; z00)�, N 2(x, D; z00) � �
N 2

j ,k(x, D; z00)� and R(x, D; z00) � (Rj ,k(x, D; z00))
satisfy the following:
(N-1) There is m0, m00, m̄ 2 Z+ and M (x, � ; z00) � (M j ,k(x, � ; z00)) such that

N 1
j ,k(x, � ; z00) 2 S

l0, j�mk+m0,�m0
1,0 , M j ,k(x, � ; z00) 2 S

m j�l0,k+m00,�m00
1,0 and M (x, D; z00) is

a microlocal parametrix ofN 1(x, D; z00) (mod L
m̄,�1
1,0 ) in a conic neighborhood

C 0(z00) of z00.
(N-2) N 2

j ,k(x, � ; z00) 2 S
�n j�l�,k+m0,�m0
1,0 and R(x, � ; z00) 2 S

l0, j�l�,k+m0,�1
1,0 .

In particular, (N-1) implies that the parametrixM (x, D; z00) of N 1(x, D; z00) is
a differential operator ofx1. We assume that the above conditions (N-1) and (N-2)
are satisfied, and we shall modify the proof of Lemmas 4.11, 4.13 and 4.14 in [14].
By (N-2) we have

��R(�)
j ,k(�)(x, � ; z00; 
 )

�� � CM,�,�h�il0,k�l�, j +m0
 h� 0i�M

for M 2 Z+. Therefore, Lemma 4.11 of [14] is valid. We putfN �(x, � ; z00; 
 ) =
tN �(x, � ; z00)(1�2
 =8(� 0)) (� = 1, 2) andfM (x, � ; z00; 
 ) = tM (x, � ; z00)(1�2
 =8(� 0)),
wheretN �(x,D;z00) and tN �(x,� ;z00) denote the transposed operator ofN �(x,D;z00)
and the symbol oftN �(x, D; z00), respectively. It follows from (N-1) that for any9(x, � 0) 2 S0

1,0(R � T�Rn�1) with supp9(x, � 0) � �C 0(z00) there is r (x, � ; 
 ) �
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(r9, j ,k(x, � ; 
 )) 2 Mm
�
S

m̄,�1
1,0

�
satisfying

fN 1(x, D; z00; 
 )fM (x, D; z00; 
 )9
 (x, D0) = 9
 (x, D0)Im + r (x, D; 
 ),��r (�)9, j ,k(�)(x, � ; 
 )
�� � C�,�,M h�im̄��1
 h� 0i�M
 (M 2 Z+),

where9
 (x, � 0) = (1�2
 =2(� 0))9(x, � 0). Instead oftfN 1(x, D; z00; b; 
 )�1 we simply
use fM (x, D + i 
# ; z00; 
 ) � �fM j ,k(x, D + i 
# ; z00; 
 )

�
. Note that

��fM (�)
j ,k(�)(x, � + i 
# ; z00; 
 )

�� � C�,�h�imk�l0, j +m00��1
 h� 0i�m00�j�0j
 .

The estimates in Lemma 4.13 of [14] are replaced by

fM (x, D + i 
# ; z00; 
 )v

+,
 ,fl0, j g,(l ,s) � Ckvk+,
 ,fm j g,(l+m00,s�m00),

91(x, D0)fM (x, D + i 
# ; z00; 
 )92(x, D0)v

+,
 ,fl0, j g,(l ,s)

� CMkvk+,
 ,fm j g,(l+m00,�M) (M 2 Z+)

if 9 j (x, � 0) 2 S0
1,0(R � T�Rn�1) ( j = 1, 2) satisfy supp91 \ supp92 = ; and��9(�0)

j (�)(x, � 0)�� � C�0,�h� 0i�j�0j
 . The proof of the above estimates is obvious while the
proof of Lemma 4.13 of [14] is not so simple. Instead of (4.70)and (4.71) of [14],
we have

 
 (x, D0)u = fN 1(x, D + i 
# ; z00; 
 )
�
exp

�b30��(x, D0)v � r (x, D + i 
# ; 
 )u

� fN 1(x, D + i 
# ; z00; 
 )r̃ (x, D0)fM (x, D + i 
# ; z00; 
 ) 
 (x, D0)u.

t
L b30(x, D + i 
# ; z00)v
=
�
exp

��b30��(x, D0)�fN 2(x, D + i 
# ; z00; 
 ) 
 (x, D0)tL(x, D + i 
#)u

+ fN 2(x, D + i 
# ; z00; 
 )[tL(x, D + i 
#), 
 (x, D0)IN ]u

+
�

t
L (x, D + i 
# ; z00)� fN 2(x, D + i 
# ; z00; 
 ) tL(x, D + i 
#)

� fN 1(x, D + i 
# ; z00; 
 )
�
(1 + r̃ (x, D0))

� fM (x, D + i 
# ; z00; 
 ) 
 (x, D0)u
+ fN 2(x, D + i 
# ; z00; 
 ) tL(x, D + i 
#)

� �fN 1(x, D + i 
# ; z00; 
 )r̃ (x, D0)
� fM (x, D + i 
# ; z00; 
 ) 
 (x, D0) + r (x, D + i 
# ; 
 )

�
u
	
,

respectively. Hence (4.72)–(4.74) in [14] are replaced by

�exp
��b30��(x, D0)fN 2(x, D + i 
# ; z00; 
 ) 
 (x, D0) tL(x, D + i 
#)u




+,
 ,fl�, j g,(l ,0)

� Ca0,lktL(x, D + i 
#)uk+,
 ,f�n j g,(l+m0,a0(Æ(z00)+c(z00))�m0),
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�exp
��b30��(x, D0)fN 2(x, D + i 
# ; z00; 
 )[tL(x, D + i 
#), 
 (x, D0)IN ]u




+,
 ,fl�, j g,(l ,0)

� Ca0kuk+,
 ,fm j g,(l+m0,�2a0Æ(z00)�1�m0),

�exp
��b30��(x, D0)�tL (x, D + i 
# ; z00)� fN 2(x, D + i 
# ; z00; 
 )

� tL(x, D + i 
#)fN 1(x, D + i 
# ; z00; 
 )
�
(1 + r̃ (x, D0))

� (1�  ̃
 (x, D0))fM (x, D + i 
# ; z00; 
 ) 
 (x, D0)u

+,
 ,fl�, j g,(l ,0)

� Ca0,l ,Mkuk+,
 ,fm j g,(l+2m0+m00,�M) (M 2 Z+),

respectively. eR(x, � ; z00) � �eRi , j (x, � ; z00)� defined in [14], with obvious modifications,
satisfies �� eR(�)

i , j (�)(x, � ; z00)�� � CM,�,�h�i�l�,i +l0, j +2m0��1
 h� 0i�M
 .

Instead of (4.75) and (4.76) in [14], we have

�exp
��b30��(x, D0)�eR(x, D; z00)fM (x, D + i 
# ; z00; 
 ) 
 (x, D0)

+ fN 2(x, D + i 
# ; z00; 
 ) tL(x, D + i 
#)

� �fN 1(x, D + i 
# ; z00; 
 )r̃ (x, D0)
� fM (x, D + i 
# ; z00; 
 ) 
 (x, D0) + r (x, D + i 
# ; 
 )

�	
u




+,
 ,fl�, j g,(l ,0)

� Ca0,l ,Mkuk+,
 ,fm j g,(l+m̄0,�M)

kvk+,
 ,fl0, j g,(l ,0)

� C
�ktL(x, D + i 
#)uk+,
 ,f�n j g,(l+l 0+m0,a0Æ0(z00)�m0) + kuk+,
 ,fm j g,(l+l̃ 0,�s)

	
,

respectively, wherēm0 = maxf2m0 +m00,m0 + m̄+ maxj m j �min j m j g, l̃ 0 = maxfl 0 + 2m0 +
m00, l 0 + m̄0, l 00 + m00g and s � 2a0Æ(z00) + 1 + m0. Modifying l 0 if necessary, instead of
(4.76)–(4.78) in [14] we have

kvk+,
 ,fl0, j g,(l ,0)

� CfktL(x, D + i 
#)uk+,
 ,f�n j g,(l+l 0,a0Æ0(z00)�m0) + kuk+,
 ,fm j g,(l+l 0,�s)g,
k�
 (x, D0)uk+,
 ,fm j g,(l�m0�(3a0Æ(z00)=2�m0)+,0)

� k�
 (x, D0)uk+,
 ,fm j g,(l�m0,�3a0Æ(z00)=2+m0)
� Ca0,lkvk+,
 ,fl0, j g,(l ,0) + Ca0,l ,Mkuk+,
 ,fm j g,(l+m̄0�2m0,�M),

k�
 (x, D0)uk+,
 ,fm j g,(l ,0)

� CfktL(x, D + i 
#)uk+,
 ,f�n j g,(l+l1,0) + kuk+,
 ,fm j g,(l+l2,�l2�1)g,
respectively, wheres � 2a0Æ(z00) + 1 + m0, l1 = l 0 + (3a0Æ(z00)=2� m0)+ + a0Æ0(z00), l2 =
max

�
l̃ 0 + m0, m̄0 � m0	 + (3a0Æ(z00)=2 � m0)+, a0 = max

�
a0Æ(z00), m0, 2

�
l̃ 0 � m0�, 2(m̄ �
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3m0)	ÆÆ(z00) and a+ = maxfa, 0g. With these modifications, Lemma 4.14 and the ar-
guments after Lemma 4.14 in§4 of [14] are valid and Theorem 1.4 of [14] is valid
under the conditions (N-1) and (N-2) onN 1(x, D; z00), N 2(x, D; z00) and R(x, D; z00).

Now we return to the proof of the assertions (i) of Theorem 1.1. We fix t > 0. We
shall show that for everyz00 = (x0,�00) 2 Rn�Sn�2 with x0

1 = t the condition (E-2)z00,1 of
[14] is satisfied. We should remark that�(z00) = 1 in our case. Let2(s) be a function
in C1

0 (R) such that 0� 2(s) � 1, 2(s) = 1 if jsj � 1, and supp2 � (�2, 2). Let'1(� 0) and '2(x, � 0) be symbols inS 0
1,0 such that 0� '1(� 0), '2(x, � 0) � 1, '1(� 0) and'2(x, � 0) are positively homogeneous of degree 0 forj� 0j � 1, '1(� 0) = 1 in a conic

neighborhood of supp'2 if j� 0j � 1, supp'1 � f� 0 2 C 0; j� 0j � 1=4g, '2(x, � 0) = 1 in
a conic neighborhood of (x0, �00) if j� 0j � 1, and supp'2 � f(x, � 0) 2 V � C 0; j� 0j �
1=2g, where V and C 0 are a neighborhood ofx0 and a conic neighborhood of�00,
respectively, as in Lemma 2.4. We put

Pj (x, � )

= p j (� ) +2�2jx � x0j
t

�'2(x, � 0) m jX
k=1

�
l j ,k(x, � 0)� l 0

j ,k(� 0)�(�1 + � j �n)m j�k,

p j (� ) = (�1 + � j'1(� 0)�n)m j +
m jX
k=1

l 0
j ,k(� 0)'1(� 0)k(�1 + � j'1(� 0)�n)m j�k

(1� j � r ) and p̃(� ) =
Qr

j =1 p j (� ), where the� j and thel j ,k(x,� 0) are as in Lemma 2.4.
We note thatp(� ) = p̃(� ) if '2(x, � 0) 6= 0 and thatp j (� ) is hyperbolic with respect to# . Put

eQ(x, � ) =
rY

j =1

Pj (x, � )� p̃(� ).

Then the condition (L) implies that there isC > 0 satisfying

(3.1)
��eQ(x, � )

�� � Cj p̃(� � i#)j for (x, � ) 2 Rn � Rn,

and, therefore,

jPj (x, � )� p j (� )j � Cjp j (� � i#)j for (x, � ) 2 Rn � Rn.

So, in order to verify (E-2)z00,1, it suffices to prove (E-2)z00,1 with L 1(x, � ; z00) re-
placed by Pj (x, � ) for 1 � j � r . Fix j so that 1� j � r . It is obvious that the
conditions (i)–(v) of (E-2)z00,1 are satisfied with a conic neighborhoodC 0(z00) of z00 in
R� (T�Rn�1 n0), �(z00) = fx 2 Rn; jx� x0j < tg and� = m j =(m j �1). Let z1 = (x1,�1)

be a point in�(z00)� Sn�1 such that (dpj )(�1) = 0. Since we can easily obtain micro-
local a priori estimates forPj (x, D) = D

m j

1 , we can assume that�10 2 C 0 (see, e.g.,
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Lemma 2.10 of [14]). Define the localization polynomialp j ,� (�) of p j at � by

p j (� + s�) = s�(p j ,� (�) + o(1)) as s # 0, p j ,� (�) 6� 0 in �.

Then p j ,� (�) is hyperbolic with respect to# . (see, e.g., [7]). Lett�(x, � ) and t(x, � )
are positively homogeneous of degree 0, (rxt)(z1) 2 0(p j ,�1, #) and

t�(x, � ) = x1 � x1
1 � jx � x1j2 � ���� �j� j � �1

����
2

near z1.

Now we can prove thatPj (x, D� i 
#) satisfies the condition
�
E; z1,C1,C2,fat+(x,� )+

a0t(x, � ) logh� 0i=logh�iga�a0, a0�a00, m=(m� 1),1�, whereC1 andC2 are conic neighbor-

hoods ofz1 satisfying C1 \ Rn � Sn�1
⋐ C2, i.e., there are k(x, � ) 2 C1(T�Rn n 0)

(k = 1, 2), lk 2 R (1� k � 4) such that the k(x, � ) are positively homogeneous of de-
gree 0, supp 2\Rn�Sn�1

⋐ C2,  k(x,� ) = 1 in a conic neighborhood ofC1 (k = 1,2)
and for anya � 1, a0 � 1 andb 2 R there are
0 � 1, K � 1 andC > 0 satisfying

hDil1
 u



 � C
�

hDil2
 Pj ,3(x, D; 
 )u




+


hDil3
 (1�  1,h(x, D))u



 +


hDil4
2h(D)u



	
if u 2 H1(Rn), 
 � 
0, h = K
m=(m�1) and

3(x, � ) (� 3a,a0 ,b,h(x, � ))

= f(at+(x, � )� b) logh�i + a0t(x, � ) logh� 0ig(1�2h=4(� )) 2(x, � ),

where2h(� ) =2(j� j=h),  1,h(x,� ) = (1�2h=2(� )) 1(x,� ) and Pj ,3(x, D; 
 ) = (e�3)(x,
D)Pj (x, D � i 
#)(e3)(x, D). Here A ⋐ B means that the closureA of A is com-

pact and included in the interior̊B of B, and k f k =
�R

Rn j f (x)j2 dx
�1=2

. Indeed, it
follows from (3.1), Lemma 2.5 and Lemma 2.7 of [28] thatPj (x, D) satisfies the con-
dition (A-2)z1 of [15] (see, also, Lemma 2.1 of [15]). Similarly, we can prove that
tPj (x, D + i 
#) satisfies the condition

�
E; (x1,��1), Č1, Č2, f�at�(x, � )� a0t(x,�� 0)�

logh� 0i=logh�iga�a0, a0�a00,m=(m�1),1�, whereČk = f(x,�� );(x,� ) 2 Ckg and tPj (x,� ) =� (tPj (x,D)). Here� (a(x,D)) (= � (a(x,D))(x,� )) denotes the symbol ofa(x,D). There-
fore, the condition (E-2)z00,1 of [14] is satisfied for everyz00 = (x0, �00) 2 Rn � Sn�2

with x0 = t . By the same argument we can prove that the condition (E-1)z0 of [14]
is satisfied for everyz0 = (x0, �0) 2 Rn � Sn�1 with x0

1 > 0 and (dp)(�0) = 0. For the
condition (U) of [14] we need the following

Lemma 3.1. Let N2 N and C be an open conic subset of T�Rnn0. Assume that

L(x, D) = M1(x, D)l (x, D)M2(x, D) + R(x, D) in C ,
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where Mk(x,� ) 2 Mm
�
Sm�1

1,0

�
(k = 1,2), l (x,� ) 2 Mm

�
Sm

1,0

�
, R(x,� ) 2 Mm

�
Sm�N

1,0

�
and the

entries of Mk(x,� ) (k = 1, 2), l (x,� ) and R(x,� ) are classical symbols. Here A(x, D) =
B(x, D) in C means that A(x, � ) = B(x, � ) in C . Let � (x) 2 C1(Rn) satisfy�k� (x) 2
B(Rn) (1 � k � n). Then there are rN,k(x, � ) 2 Mm

�
S3m�2�N

1,0

�
(0 � k � 3(N � 1))

such that

e�
 � (x)L(x, D)e
 � (x) (= L(x, D) + 
 L1(�ir� (x)))

= M1,N�1(x, D; 
 )l N�1(x, D; 
 )M2,N�1(x, D; 
 ) +
3(N�1)X

k=0


 kr N,k(x, D)
(3.2)

in C , where

M�,N�1(x, � ; 
 ) =
X

j�j�N�1

M (�)� (x, � )!�(
 � (x))

�!
(� = 1, 2),

l N�1(x, � ; 
 )
X

j�j�N�1

l (�)(x, � )!�(
 � (x))�!

and !�(
 � (x)) = e�
 � (x) D�e
 � (x).

Proof. We can write

� (e�
 � (x)M�(x, D)e
 � (x))(x, � ) = M�,N�1(x, � ; 
 ) + eM�,N(x, � ; 
 ) (� = 1, 2),

� (e�
 � (x)l (x, D)e
 � (x))(x, � ) = l N�1(x, � ; 
 ) + l̃ N(x, � ; 
 ),

whereeM�,N(x,� ;
 ) 2 Mm
�
Sm�1�N

1,0

�
(� = 1,2) andl̃ N(x,� ;
 ) 2 Mm

�
Sm�N

1,0

�
. So we have

L(x, D) + 
 L1(�ir� (x))

= M1,N�1(x, D; 
 )l N�1(x, D; 
 )M2,N�1(x, D; 
 ) + eRN(x, D; 
 )

=
3(N�1)X

k=0


 k(Ak(x, D) + Bk(x, D)) + eRN(x, D; 
 ) in C ,

Ak(x, � ) � 1X
�=0

A�k (x, � ) if k � N � 1,

whereeRN(x, � ; 
 ) 2 Mm
�
S3m�2�N

1,0

�
, the A�k (x, � ) are positively homogeneous of degree

3m� 2� k � �, Ak(x, � ) � 0 for N � k � 3(N � 1) and Bk(x, � ) 2 Mm
�
S3m�2�N

1,0

�
.

So, modifying theAk(x, � ) for j� j � 1, we may assume thatA0(x, � ) = L(x, � ) in C ,
A1(x, � ) = L1(�ir� (x)) in C , and Ak(x, � ) = 0 in C if 2 � k � 3(N � 1). This gives

eR(x, � ; 
 ) = � 3(N�1)X
k=0


 k Bk(x, � ) in C .
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Taking r N,k(x, � ) = �Bk(x, � ) we have (3.2).

Applying the same arguments as in§3 of [15], we can prove that the condition (U)
of [14] is satisfied. Then the assertion (i) of Theorem 1.1 easily follows from Theo-
rem 1.4 of [14].

4. Proof of the assertion (ii) of Theorem 1.1

In this section we assume that the Cauchy problem (CP)t is C1 well-posed for
any t > 0. We can assume without loss of generality thatL(x, � ) 2 Mm

�
S 1

1,0

�
. For� 2 R, p 2 Z+, q 2 R and u 2 C1(Rn) we define

kuk� ,�,(p,q) =
X
j�j�p

khD0iq D�uk� ,�,

kuk� ,� =

�Z
x1<� ju(x)j2 dx

�1=2
.

From Banach’s closed graph theorem or the Baire category theorem we have the fol-
lowing lemma (see, e.g., [10] and [27]).

Lemma 4.1. Let t > 0. Then for every compact subset K offx 2 Rn; x1 > tg
and p2 Z+ there are C� Cp,K > 0 and q2 Z+ such that

kuk� ,�,(p,0) � CkL(x, D)uk� ,�,(q,0)

for any � > t and u2 C1
0 (Rn; Cm) with suppu � K .

Let t > 0, x0 2 Rn and �00 2 Sn�2 such thatx0
1 = t , and let V � V(x0, �00) and

C 0 � C 0(x0, �00) be as in the condition (L) and Lemmas 2.2 and 2.4. Moreover, let r ,
m j (1� j � r ), Nk(x,� ) (k = 1,2), l j (x,� ) (1� j � r ) and R(x,� ) be as in Lemma 2.4.
Choose an open subsetV0 of V , an open conic subsetC 0

0 of C 0 and � 2 C1
0 (V) and9(� 0) 2 C1(Rn�1) so thatV0 ⋐ V , C 0

0\ Sn�2
⋐ C 0, �(x) = 1 in V0, 9(� 0) is positively

homogeneous of degree 0 forj� 0j � 1, 9(� ) = 1 for � 0 2 C 0
0 with j� 0j � 1 and supp9 �f� 0 2 C 0; j� 0j � 1=2g. We put9�(� 0) = 9(�� 0). Then from Lemma 2.4 we have

N1(x, D)L(x, D)N2(x, D)9�(D0)(�(x)u(x))

= l (x, D)9�(D0)(�(x)u(x)) + R�(x, D)u,
(4.1)

where l (x, � ) = diag(1,: : : , 1, l 1(x, � ), : : : , l r (x, � )) and R�(x, � ) 2 Mm
�
S

2m�1,�1
1,0

�
.
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Lemma 4.2. Let t > 0. Then for every compact subset K offx 2 V0; x1 > tg
there are CK ,M > 0 (M 2 Z+) and pj 2 Z+ (1� j � 3) such that

max
x1�� ju(x)j � CK ,M (kl (x, D)uk� ,�,(p1,0)

+ kuk� ,�,(p2,�M) + k(1�9�(D0))uk� ,�,(p3,0))

for any � > t , u 2 C1
0 (Rn; Cm) with suppu � K and M 2 Z+.

Proof. Let � > t , and let K and K j ( j = 1, 2) be compact subsets offx 2 V0;
x1 > tg satisfying K ⋐ K1 ⋐ K2. We choose� j 2 C1(Rn) ( j = 1, 2) so that�1(x) = 1
near K , supp�1 � K1, �2(x) = 1 near K1 and supp�2 � K2. Let u 2 C1

0 (Rn; Cm)
satisfy suppu � K . Then by (4.1) we have

(4.2)
N1(x, D)L(x, D)�2(x)N2(x, D)9�(D0)u = l (x, D)9�(D0)u + R1,�(x, D)u,

R1,�(x, D) = N1(x, D)L(x, D)(�2(x)� 1)N2(x, D)9�(D0)�1(x)

+ R�(x, D) 2 L
2m�1,�1
1,0 .

Let p 2 Z+ satisfy p � m� 1. From Lemma 4.1 it follows that there areC > 0 and
q 2 Z+ satisfying

k�2(x)N2(x, D)9�(D0)uk� ,�,(p,0)

� CkL(x, D)�2(x)N2(x, D)9�(D0)uk� ,�,(q,0).
(4.3)

Let M j (x, D) 2 L
m�1
1,0 be a parametrix ofN j (x, D) ( j = 1, 2). Then we have

L(x, D)�2(x)N2(x, D)9�(D0)u
= M1(x, D)N1(x, D)L(x, D)�2(x)N2(x, D)9�(D0)u + R2,�(x, D)u,

R2,�(x, � ) 2 L
3m�2,�1
1,0 .

This, together with (4.2) and (4.3), yields

k�2(x)N2(x, D)9�(D0)uk� ,�,(p,0)

� CM (kl (x, D)9�(D0)uk� ,�,(q+m�1,0) + kuk� ,�,(q+3m�2,�M))

� C0
M (kl (x, D)uk� ,�,(q+m�1,0) + kuk� ,�,(q+3m�2,�M)

+ k(1�9�(D0))uk� ,�,(q+2m�1,0))

(4.4)

(M 2 Z+). On the other hand, we have

u = 9�(D0)u + (1�9�(D0))u
= M2(x, D)�2(x)N2(x, D)9�(D0)u + (1�9�(D0))u + R3,�(x, D)u,

(4.5)
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where R3,�(x, � ) 2 S
2m�2,�1
1,0 . From (4.4) and (4.5) we have

kuk� ,�,(p�m+1,0)� CM (kl (x, D)uk� ,�,(q+m�1,0) + kuk� ,�,(p2,�M)

+ k(1�9�(D0))uk� ,�,(p3,0)),

where M 2 Z+, p2 = maxfq + 3m� 2, p + m� 1g and p3 = maxfq + 2m� 1, p�m+ 1g.
This proves the lemma.

Let x0 2 Rn and �00 2 Sn�2, and let V and C 0 be an open neighborhood ofx0

and an open conic neighborhood of�00, respectively, such thatC 0 is semi-algebraic.
Moreover, letq(x, � ) be anSA-symbol in V � C 0 such that

q(x, �� ) = ��q(x, � ) for (x, � ) 2 V � R� (C 0 [ (�C
0)) and � 2 R n f0g,

where� 2 N. For a conic subset0 of R� C 0 and a fixedx 2 V we define

n(p, q(x, � ); 0) = inf

�� 2 R; sup�20, j� 0j�1
h�i������ q(x, � )

p(� � i#)

���� <1�.

Let �0 2 R� C 0 \ Sn�1, and put

N�0 =

(
�̂(s) = s�1

 
�0 +

1X
j =1

s j =l� j

!
, � j 2 Rn,

l 2 N and �̂(s) is convergent for 0< s� 1

)
.

For x 2 V and �̂ 2 N�0 we definen(x; �̂) � n(p, q(x, � ); �̂) 2 R by���� q(x, �̂(s))

p(�̂(s)� i#)

���� = s�n(x;�̂)(c(x, �̂) + o(1)) as s # 0,

wherec(x; �̂) 6= 0. Here we have definedn(x; �̂) =�1 if q(x,�̂(s))� 0 in s. Moreover,
we define

n(p, q(x, � ); �0) = supfn(p, q(x, � ); �̂); �̂ 2 N�0g.
Lemma 4.3. (i) For a fixed x2 V there is c0 > 0 such that0(c) � R�C 0 and

n(p, q(x, � ); �0) = n(p, q(x, � ); 0(c)) for any c> 0 with c � c0, where0(c) = f� 2
Rn n f0g; j�=j� j � �0j � cg.
(ii) Let c > 0 satisfy 0(c) � R � C 0, where 0(c) is as in the assertion(i). Then
n(p, q(x, � ); 0(c)) 2 Q for x 2 V , and for a fixed x2 V there is C> 0 satisfying���� q(x, � )

p(� � i#)

���� � Ch�in(p,q(x,�);0(c)) for � 2 0(c).
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(iii) The setfn(p,q(x, �);� );(x,� ) 2 V�R�C 0 and j� j = 1g is finite, with a modification
of C 0 if necessary.
(iv) Let �̂ 2 N�0. Then for any open subset U of V there is an open subset U0 of U
such that

max
x2U

n(p, q(x, � ); �̂) = n(p, q(y, � ); �̂) for y 2 U0.

(v) Assume that n(p,q(x, � );� ) � 0 for every x2 K and � 2 !, where K is a compact
subset of V and! is a compact subset ofR�C 0\Sn�1. Then there is C> 0 such that

(4.6)

���� q(x, � )

p(� � i#)

���� � C if x 2 K ,
�j� j 2 ! and j� 0j � 1.

Proof. The assertion (i) can be proved by the same arguments as in the proof of
Lemma 1.2.3 of [26] (see, also, the proof of Lemma 1.2 of [23]). Let us prove the
assertion (ii). Put

E = f(�, � , r ) 2 Rn+2; �jp(� � i#)j2 = jq(x, � )j2,

j� j2 = r 2, r � 1 and j� � r �0j2 � c2r 2g,
wherex 2 V is fixed. By assumptionE is a semi-algebraic set. It follows from Corol-
lary A.2.6 of [8] that there area 2 Q and A 2 C n f0g such that

supf� : there is� 2 Rn satisfying (�, � , r ) 2 E g = r a(A + o(1)) as r !1.

This givesn(p, q(x, � ); 0(c)) = a=2 and proves the assertion (ii). We omit the proof
of the assertion (iii) since we will not use it in this paper and it can be proved by the
same arguments as in the beginning of§2.1 of [26] and in the proof of Lemma 1.1.3
of [26]. Next let us prove the assertion (iv). By definition there areN 2 N, a semi-
algebraic setA in RN+n�1 and a polynomialF(x, � , �) of (� , �) (� (� , �1, : : : , �N))
and a polynomialG(x, � 0,�) of (� 0,�), whose coefficients belong toC1(V), satisfying
the conditions (1)–(3) of Definition 2.1 (ii) withf (x, � ) replaced byq(x, � ). Put

q̃(x, � ) = F(x, �1, ��1(� 0))j� 0j�� ,
where� is as in the condition (1) of Definition 2.1 (ii) andG(x, ��1(� 0)) is homo-
geneous of degree�. Let �̂ 2 N�0, and letU be an open subset ofV . It is obvious
that there arec0 2 C n f0g and�0 2 Q such thatp(�̂(s)� i#) = s��0(c0 +o(1)) ass # 0.
We may assume that̃q(x,�̂(s)) 6� 0 in (x,s) 2 U�(0,s0], where 0< s0 � 1. Then there
arec(x) 2 C1(U ) and�1 2 Q such thatc(x) 6� 0 in U and q̃(x,�̂(s)) = s��1(c(x)+o(1))
ass # 0. Therefore, we haven(p, q̃(x, � ); �̂) � �1��0 for x 2 U , andn(p, q̃(x, � ); �̂) =�1� �0 for x 2 U with c(x) 6= 0. Sincen(p, q(x, � ); �̂) = n(p, q̃(x, � ); �̂), this proves
the assertion (iv). The assertion (v) easily follows from the assertions (i) and (ii) and
Lemma 2.5.
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Now suppose that the condition (L) is not satisfied. Then it follows from Lem-
ma 4.3 that there are (x0, �00) 2 Rn � Sn�2, (y0, �0) 2 V � (R � C 0 \ Sn�1) and�̂(s) � s�1 P1

j =0 s j =l� j 2 N�0 such that y0
1 � 0 and

max
1� j�m�1

n(p, Q j (y0, � ); �̂) > 0,

where V � V(x0, �00), C 0 � C 0(x0, �00) and Q(x, � ) � Q(x, � ; x0, �00) are as in the
condition (L) and Lemmas 2.2 and 2.4,Q j (x, � ) is positively homogeneous of degree
m � j and Q(x, � ) � P1

j =1 Q j (x, � ). By the assertion (iv) of Lemma 4.3 we may

assume thaty0
1 > 0 and

� (= � (�̂))

� max
1� j�m�1
x2V , x1�0

n+(p, Q j (x, � ); �̂)

j + n+(p, Q j (x, � ); �̂)

= max
1� j�m�1

n+(p, Q j (y0, � ); �̂)

j + n+(p, Q j (x0, � ); �̂)
,

where n+(p, q; �̂) = maxfn(p, q; �̂), 0g. We note that 0< � < 1. By translation we
may assume thaty0 = 0. Then there ist0 > 0 such that the Cauchy problem (CP)t is
C1 well-posed for anyt > �t0. Let l�(x, � ) (1 � � � r ) be as in Lemma 2.4, and
write l�(x,� ) �P1

j =0 l�, j (x,� ) (1� � � r ), wherel�, j (x,� ) is positively homogeneous

of degreem� � j ( j 2 Z+). We may also assume thatl 1,0(�0) = 0. Then we have
l�,0(�0) 6= 0 for 2� � � r . Recall that

(4.7) Q j (x, �̂(s)� i#) =
X

jk�0, j1+���+ jr = j

l 1, j1(x, �̂(s)� i#) � � � l r , jr (x, �̂(s)� i#)

( j 2 N).

Lemma 4.4. Modifying �̂ 2 N�0 if necessary, we have

� = max
x2V , x1��t0�2Rn, j�1

n+(l 1,0, l 1, j (x, � ); �̂ + � )

j + n+(l 1,0, l 1, j (x, � ); �̂ + � )

= max
1� j�m�1

n+(l 1,0, l 1, j (0, � ); �̂)

j + n+(l 1,0, l 1, j (0, � ); �̂)
,

(4.8)

and

(4.9) n(l 1,0, l 1, j (0, � ); �̂) � n(l 1,0, l 1, j (0, � ); �̂�a)

if � = n+(l 1,0,l 1, j (0, �); �̂)=( j +n+(l 1,0,l 1, j (0, �); �̂)), 0� � < 1, a 2 R and 1� j �m1�1,
where �̂�a(s) = s�=(1��)�̂(s1=(1��)) + a# .



HYPERBOLIC SYSTEMS OF FIRST ORDER 387

Proof. From (4.7) we have

n(p, Q j (x, � ); �̂) � max
1�k� j

(n(l 1,0, l 1,k(x, � ); �̂) + k� j )

(1� j � m� 1). This yields

� � max
1� j�m�1

max
1�k� j

n+(l 1,0, l 1,k(0, � ); �̂)

k + n+(l 1,0, l 1,k(0, � ); �̂)

� max
1�k�m1�1

n+(l 1,0, l 1,k(0, � ); �̂)

k + n+(l 1,0, l 1,k(0, � ); �̂)
� �̂ ,

sincen(l 1,0, l 1,k(x, � ); �̂) � 0 for k � m1. Put

k0 = max

�
k 2 N; k � m1 � 1 and

n+(l 1,0, l 1,k(0, � ); �̂)

k + n+(l 1,0, l 1,k(0, � ); �̂)
= �̂�.

Then there isc > 0 such that����Qk0(0, �̂(s)� i#)

p(�̂(s)� i#)

���� �
���� l 1,k0(0, �̂(s)� i#)

l 1,0(�̂(s)� i#)

����
� X

0��1<k0�1+���+�r =k0

rY
�=1

���� l �,�� (0, �̂(s)� i#)

l �,0(�̂(s)� i#)

����
� cs�k0�̂ =(1��̂ ) for 0< s� 1,

sincen(l 1,0, l 1,k0(0, � ); �̂) = k0�̂ =(1� �̂ ) > k�̂ =(1� �̂ )� (k0� k) � n(l 1,0, l 1,k(0, � ); �̂)�
(k0 � k) for 0 � k < k0. This gives (4.8). (4.9) can be proved by the same argument
as in the proof of Lemma 1.2.4 of [26].

Let � j > 0 ( j = 1, 2) satisfy 0< � j < � , and define

l (y, �; s) = l (s�1 y1, s�2 y0, s��1�1, s��2�0).
We shall determine�1 and �2 later. It is obvious that

(l (x, Dx)u)(s�1 y1, s�2 y0) = l (y, Dy; s)us(y),

whereus(y) = u(s�1 y1, s�2 y0). The following lemma easily follows from Lemma 4.2.

Lemma 4.5. For any open bounded neighborhood W of the origin inRn there
are s(W) > 0, CM � CM (W) > 0 (M 2 Z+) and pj 2 Z+ ( j = 1, 2, 3) such that W⋐
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fx 2 Rn; (s(W)�1x1, s(W)�2x0) 2 V and s(W)�1x1 > �t0g and

ju(0)j � sa(�1,�2)CM max
y1�0

( X
j�j�p1

s��1�1��2j�0j��D�
y l 1(y, Dy; s)u(y)

��

+
X
j�j�p2

s��1�1��2j�0jkhs��2 Dy0i�M D�
y u(y1, y0)k(y1)

+
X
j�j�p3

s��1�1��2j�0jk(1�9�(Dy0 ; s))D�
y u(y1, y0)k(y1)

)

(4.10)

for u 2 C1
0 (Rn) with suppu � W, 0< s� s(W) and M 2 Z+, where a(�1, �2) = (�1 +

(n� 1)�2)=2, 9�(�0; s) = 9�(s��2�0) and k f (y)k(y1) =
�R j f (y1, y0)j2 dy0�1=2.

Let N 2 N and 
 2 R n f0g, and put

PN(x, � ; s; 
 ) =
N�1X
j =0

X
j�j�n(N� j ;� )

s�m1+ j +(1�� )j�j
�m1+ j +j�jl 1, j (�)(x, s�(s))���!
,

RN(x, � ; s; 
 ) = l 1(x, 
�1�(s) + s�� � )� PN(x, � ; s; 
 ),

where �(s) = s�� �̂(s1�� ) and n(N; � ) = [N=(1 � � )]. Then RN(x, � ; s; 
 ) �Pm1
j =0 RN, j (x, � 0; s; 
 )� j

1 satisfies

��RN, j (�0)
(�) (x, � 0; s; 
 )

��
� CN,�0,�(
 )fs�� j�� j�0j(s�1 + s�� j� 0j)m1� j

+ s�m1h� 0i� j�j�0j(1 + sNh� 0iN=(1�� ))g.
(4.11)

Choosec0 > 0 and s0 > 0 so that�00 + � 0 2 C 0 for � 0 2 Rn�1 with j� 0j � c0 and��P1
j =1 s(1�� ) j =l� j

�� � c0=4 for 0 < s � s0. For < s � s0 and � 0 2 Rn�1 with j� 0j �
c0j
�1s��1j=4 we write

RN(x, � ; s; 
 ) = RN
1 (x, � ; s; 
 ) + RN

2 (x, � ; s; 
 ),

where

RN
1 (x, � ; s; 
 ) = l 1(x, 
�1�(s) + s�� � )� N�1X

j =0

l 1, j (x, 
�1�(s) + s�� � ),

RN
2 (x, � ; s; 
 ) =

N�1X
j =0

l 1, j (x, 
�1�(s) + s�� � )� PN(x, � ; s; 
 ).
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Then it is easy to see that��RN, j (�0)
1(�) (x, � 0; s; 
 )

�� � CN,�0,�(
 )sN�m1+(1�� )( j +j�0j),(4.12) ��RN, j (�0)
2(�) (x, � 0; s; 
 )

�� � CN,�0,�(
 )sN�m1h� 0iN=(1�� )+1(4.13)

if j� 0j � c0j
�1s��1j=4, 0 < s � s0 and 0 � j � m1, where RN
k (x, � ; s; 
 ) =Pm1

j =0 RN, j
k (x, � 0; s; 
 )� j

1 (k = 1, 2). Write

l 1, j (�)(x, s�(s)) = s� j ,� (C j ,�(x) + o(1)) as s # 0, C j ,�(x) 6� 0

for x 2 V with x1 � �t0, if l 1, j (�)(x,s�(s)) 6� 0 in (x,s) for x 2 V with x1 � �t0. Note
that C0,�(x) � C0,�. We put C j ,�(x) � 0 and� j ,� = 1 if l 1, j (�)(x, s�(s)) � 0 in (x, s)
for x 2 V with x1 � �t0. Moreover, we put� j = max�(m1 � j � � j ,� � (1� � )j�j).
Then we can write

l 1,0(�̂(s) + � ) = s�(�0��m1)=(1�� )(c0(� ) + o(1)),

l 1, j (x, �̂(s) + � ) = s�(� j�� (m1� j ))=(1�� )(c j (x, � ) + o(1)),

if j � 1, � j > �1, (x, � ) 2 V � Rn and x1 � �t0

as s # 0, wherec0(� ) 6� 0 and c j (x, � ) 6� 0 in (x, � ) 2 V � Rn with x1 � �t0. Then
we have

c0(� ) =
X

m1��0,��(1�� )j�j=�0

C0,����!
,

c j (x, � ) =
X

m1� j�� j ,��(1�� )j�j=� j

C j ,�(x)���!

for j � 1 with � j > �1 and (x,� ) 2 V �Rn with x1 � �t0. From (4.8) it follow that

0 = max
x2V , x1��t0�2Rn, j�1

�
n(l 1,0, l 1, j (x, � ); �̂ + � )� � j

1� �
�

= max
1� j<m1,� j>�1 � j � �0

1� � .

This yields

�0 = max
1� j�m1�1

� j

�
= max

j�1
� j

�
.

Put

T
 (x, � ) = 
�m1c0(
 � ) +
X

1� j�m1�1� j =�0


�m1+ j c j (x, 
 � )
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for (x, � ) 2 V �Rn with x1 � �t0. By assumption we haveT
 (0,� ) 6� 0 in � . Choose
N 2 N so that N > (1� � )m1, which yields N > m1 � �0. Then there are a positive
constantÆ0 2 Q and a polynomialr N(x, � ; s; 
 ) of (� , 
 ) such that

PN(x, � ; s; 
 ) = s��0(T
 (x, � ) + sÆ0r N(x, � ; s; 
 )),(4.14)

jr N,�(�)(x; s; 
 )j � CN,�,�(
 )s((1�� )j�j+�0�m1�Æ0)+(4.15)

for (x,� ) 2 V �Rn with x1 � �t0, 0< s� s0 and�,� 2 (Z+)n with j�j � [N=(1�� )],
wherer N(x,� ; s; 
 ) =

Pj�j�[N=(1�� )], �1�m1
r N,�(x; s; 
 )��. From the arguments as in the

proof of Theorem 1.2.5 of [26] there are� 00 2 Rn�1, a neighborhoodU of � 00, 
 2
R n f0g and q 2 N such that the equationT
 (0,� , �0) = 0 in � has a root with negative
imaginary part for�0 2 U and its multiplicity is equal toq for �0 2 U (see, also,§§2.2
and 2.3 of [26]). We fix
 as above. Then there are real analytic functions� (�0) andeT(� , �0) defined for�0 2 U such thateT(� , �0) is a polynomial of� , eT(� (�0), �0) 6= 0,
Im� (�0) < 0 andT
 (0,� ,�0) = (� �� (�0))qeT(� ,�0) for �0 2 U . Let '(x) be a solution of

�'�x1
= � (rx0'(x)), '(0, x0) = x0 � � 00 + i jx0j2

in a neighborhoodV1 of 0 in V . We choose�0, �1 and �2 so that 0< �0 < �=3,�1 = � � �0 and �2 = � � 2�0. We shall impose further conditions on�0. It follows
from §3 of Chapter VI of [24] that

T
 (0, s3�0 D)(exp[is�3�0'(x)]u(x))

= exp[is�3�0'(x)]
X
j�j�q

T (�)
 (0,r'(x))N�(x, D; s)u(x),

where8(x, y) = '(y)� '(x)� (y� x) � r'(x) and

N�(x, D; s)u(x) =
1�!

s3�0j�j�D�
y (exp[is�3�08(x, y)]u(y))

�
y=x

(see, also, Lemma 3.1 of [2]). It is easy to see that

N�(x, � ; s) =
s3�0j�j���!

+
X
�<� s3�0j�jb�,�(x; s)�� ,

jb�,�(�1)(x; s)j � C�,�,�1s3�0(j�j�j�j�[(j�j�j�j)=2]),

b�,�(x; s) � 0 if j�j � j�j = 1 and � < �



HYPERBOLIC SYSTEMS OF FIRST ORDER 391

for x 2 V1. Put '(y; s) = '(s2�0 y1, s�0 y0). Then a simple calculation yields

T
 (0, s�0 Dy1, s2�0 Dy0 )(exp[is�3�0'(y; s)]u(y))

=
�
T
 (0,s3�0 Dx)(exp[is�3�0'(x)]u(s�2�0x1, s��0x0))�

x1=s2�0 y1, x0=s�0 y0
= exp[is�3�0'(y; s)]

X
j�j�q

T (�)
 (0, (r')(s2�0 y1, s�0 y0))
�
(

s�0(3j�j�2�1�j�0j) D�
y u(y)

�!

+
X
�<� s�0(3j�j�2�1�j� 0j)b�,�(s2�0 y1, s�0 y0; s)D�

y u(y)

)

= s�0q exp[is�3�0'(y; s)]

(
T (qe1)
 (0, � (� 00), � 00) Dq

y1u(y)

q!

+ s�0
X
j�j�q0

c�(y; s)D�
y u(y)

)
,

jc�(�)(y; s)j � C�,�

(4.16)

for y 2 Rn with (s2�0 y1, s�0 y0) 2 V1, whereq0 = deg� T
 (0, � ). Put

E(y; s) = exp[i 
�1(s�1 y1�1(s) + s�2 y0 � �0(s))],

where�(s) = (�1(s),�0(s)). Let W be an open bounded neighborhood of 0 inRn. Then
we have

E(y; s)�1l 1(y, Dy; s)(E(y; s) exp[is�3�0'(y; s)]u(y))

= l 1(y, 
�1s�1�1(s) + Dy1, 
�1s�2�0(s) + Dy0 ; s)(exp[is�3�0'(y; s)]u(y))

= fPN(s�1 y1, s�2 y0, s�0 Dy1, s2�0 Dy0 ; s; 
 )

+ RN(s�1 y1, s�2 y0, s�0 Dy1, s2�0 Dy0 ; s; 
 )g(exp[is�3�0'(y; s)]u(y))

(4.17)

for u 2 C1
0 (W) and 0< s � s(W), where s(W) is a positive constant satisfyingf(s2�0 y1, s�0 y0); y 2 W, 0 < s � s(W)g � V1 \ fx 2 Rn; x1 � �t0g. Now we take�0 = minfÆ0=(1 + q), �=(3 + q)g. From (4.14)–(4.16) we have

PN(s�1 y1, s�2 y0, s�0 Dy1, s2�0 Dy0 ; s; 
 )(exp[is�3�0'(y; s)]u(y))

= s��0+�0q exp[is�3�0'(y; s)]
�
a0Dq

y1
u(y)� s�0 HN(y, Dy; s)u(y)

	
,

where a0 = T (qe1)
 (0, � (� 00), � 00)=q! (= eT(� (� 00), � 00) 6= 0) and HN(y, �; s) �Pj�j�[N=(1�� )], �1�m1
HN,�(y; s)�� satisfies

jHN,�,(�)(y; s)j � CN,�,� for y 2 W and 0< s� s(W).
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We definefuN, j (y; s)g0� j�[N=�0] by

8>>>>>>><
>>>>>>>:

uN,0(y; s) = 1,

Dq
y1

uN, j (y; s) = a�1
0 HN(y, Dy; s)uN, j�1(y; s),

Dk
1uN, j (0, y0; s) = 0 (0� k � q � 1),�
1� j � � N�0

��
,

for y 2 W and 0< s� s(W). Note that

(4.18)
��D�

y uN, j (y; s)
�� � CN,�

for y 2 W, 0< s� s(W), 0� j � [N=�0] and � 2 (Z+)n. It is easy to see that

'(y; s) = s�0 y0 � � 00 + is2�0jy0j2 + s2�0� (� 00)y1 + O(s3�0) as s # 0,(4.19)

Im s�3�0'(y; s) � s��0(Im � (� 00)y1 + jy0j2)

2
(4.20)

for y 2 W with y1 � 0 and 0< s � s(W), modifying s(W) if necessary. Let�(x) be
a function inC1

0 (W) such that�(x) = 1 near 0, and put

uN(y; s) =
[N=�0]X

j =0

s�0 j uN, j (y; s)�(y).

Then, by standard arguments we have

max
y1�0, j�j�p1

s��1�1��2j�0j��D�
y fE(y; s)PN(s�1 y1, s�2 y0, s�0 Dy1, s2�0 Dy0 ; s; 
 )

� (exp[is�3�0'(y; s)]uN(y; s))g�� � CNsN��0+�0q�p1.
(4.21)

From (4.18)–(4.20) it follows that fork, l 2 Z+ and y1 � 0

(4.22)
��Dk

1Fy0 [exp[is�3�0'(y; s)]uN(y; s)](�0)�� � CN,k,l s
��0khs2�0�0i�l ,

whereFy0 [u](�0) =
R

Rn�1 e�iy0��0u(y) dy0. Indeed, we have

��Dk
1(�0)�0Fy0 [exp[is�3�0'(y; s)]w(y)](�0)��

� Z ��Dk
1 D�0

y0 exp[is�3�0'(y; s)]w(y) dy0��
� Ck,�0 (w)s��0k�2�0j�0j for w 2 C1

0 (Rn).
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Choose (� 0) 2 C1
0 (Rn�1) so that (� 0) = 1 for j� 0j � c0=(8j
 j) and  (� 0) = 0 forj� 0j � c0=(4j
 j). From (4.11)–(4.13) we have��D�

y RN, j (s�1 y1, s�2 y0, s2�0�0; s; 
 ) (s1��2�0)��
� CN,�sN�m1hs2�0�0iN=(1�� )+1,��D�

y RN, j (s�1 y1, s�2 y0, s2�0�0; s; 
 )(1�  (s1��2�0))��
� CN,�sN�m1hs2�0�0im1� j +N=(1�� ),

sinceCs1�� hs2�0�0i � 1 if 1�  (s1��2�0) 6= 0. This, together with (4.22), yields

max
y1�0, j�j�p1

s��1�1��2j�0j��D�
y fE(y; s)RN(s�1 y1, s�2 y0, s�0 Dy1, s2�0 Dy0 ; s; 
 )

� (exp[is�3�0'(y; s)]uN(y; s))g�� � CN,p1s
N�m1�2�0n�p1,

(4.23)

since hs2�0�0i�n � s�2�0nh�0i�n if 0 < s� 1. It is obvious that

hs��2 Dy0i�M D�
y (E(y; s) exp[is�3�0'(y; s)]uN(y; s))

= E(y; s)(
�1s�1�1(s) + Dy1)
�1h
�1�0(s) + s��2 Dy0i�M

� (
�1s�2�0(s) + Dy0 )�0(exp[is�3�0'(y; s)]uN(y; s)),

jh
�1�0(s) + s��2�0i�M (
�1s�2�0(s) + �0)�0 (s1��2�0)j
� CM,�0s�2j�0j+M�j�0j,
jh
�1�0(s) + s��2�0i�M (
�1s�2�0(s) + �0)�0 (1�  (s1��2�0))j
� Cl s

�2j�0j+(1�� )l hs2�0�0il (l 2 Z+)

if M � j�0j. So, (4.22) gives

max
y1�0, j�j�p2

s��1�1��2j�0j

hs��2 Dy0i�M D�
y

� (E(y; s) exp[is�3�0'(y; s)]uN(y; s))


(y1) � CN,M,p2s

(4.24)

if M � p2 + �0n + 1. Put "(
 ) = + if 
 > 0 and "(
 ) = � if 
 < 0. We modify C 0
0

so that�00 2 C 0
0. Then9(� 0) = 1 if � 0 belongs to a conic neighborhood of�00 andj� 0j � 1. Since� = �2 + 2�0, and 1� Cs1��2h�0i and hs2�0�0i�1 � Cs�2�0h�0i�1 if

1�9"(
 )(
�1�0(s) + s��2�0) 6= 0, by (4.22) we have��Dk
1(1�9"(
 )(
�1�0(s) + s��2�0))(
�1s�2�0(s) + �0)�0

�Fy0 [exp[is�3�0'(y; s)]uN(y; s)](�0)��
� CN,k,l s

��0k+(1�� )l�2�0(j�0j+n=2)h�0i�n=2
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for y1 � 0 and l 2 Z+. Therefore, we have

max
y1�0, j�j�p3

s��1�1��2j�0jk(1�9"(
 )(Dy0 ; s))

� (E(y; s) exp[is�3�0'(y; s)]uN(y; s))k(y1) � CN,p3s.
(4.25)

By (4.17) the estimates (4.21) and (4.23)–(4.25) withN � maxf�0 + p1 + 1� �0q, m1 +
2�0n + p1 + 1g and M � p2 +�0n + 1 contradict (4.10), sinceE(0;s) exp[is�3�0'(0;s)]�
uN(0; s) = 1. This proves the assertion (ii) of Theorem 1.1.

5. Some remarks and examples

First we remark that we can obtain the same results on propagation of singulari-
ties for operators satisfying the conditions (H), (R) and (L) as given in the colloray of
Theorem 3.1 of [25], combining the arguments in this paper with results in [13].

In the case where the characterisic polynomial depends onx, we can also prove
C1 well-posedness of the Cauchy problem under the maximal rankcondition if for
each (x0, �00) 2 Rn � Sn�2 the reduced operatorsl�(x, D) satisfy microlocala priori
estimates in [14], where thel�(x, D) are defined as in the form of (2.6).

EXAMPLE 5.1. Let n = 3, and let

L(x, � ) =

0
� �1 + b(x) �3 ��2

a(x) �1 + �2 �3

0 �a(x) �1

1
A.

It is easy to see thatL(x,D) satisfies the conditions (H) and (R). For each�00 2 S1 with�0
3 6= 0 there are a conic neighborhoodC 0(�00) of �00, Nk(x, � ) 2 M3

�
S 2

1,0

�
(k = 1, 2)

and l (x, � ) 2 S 3
1,0 such that theNk(x, D) have parametrices inM3

�
L 2

1,0

�
and

N1(x, D)L(x, D)N2(x, D) � diag(1, 1,l (x, D)) modL
5,�1
1,0 in V � C

0(�00),
l (x, � )

� �2
1 (�1 + �2) + b(x)�1(�1 + �2) + (a(x)b(x)� D1a(x))�3 + (D1b(x))(2�1 + �2)

+ a(x)2�2 + (D2b(x))�1 + (D1a(x))�1�2��1
3 + (D2a(x))�2

1��1
3

� �a(x)b(x)�1(�1 + �2)�2
2��1

3 + 2
�
(D2b(x))�2 + (D3b(x))�3

��1(�1 + �2)

� �(D1a(x))(2�1 + �2)� (D2a(x))�1
��1�2

2��1
3 � 2(D2a(x))�1�2�3

+ (D3a(x))�1
��2

2 � �2
3

�	��2
2 + �2

3

��1
mod S0

1,0 in V � C
0(�00),
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where V is a bounded open subset ofR3. Let �00 2 S1 satisfy �0
2 6= 0. First we can

reduceL(x, � ) to

0
� �1 + b(x)� a(x)��1

2 �3 ���1
2

��2
2 + �2

3

�� a(x)��3
2 �3

3 0
0 �1 + a(x)��1

2 �3 0
0 0 �1 + �2

1
A

mod S�1
1,0 in V � C 0(�00) (block-diagonalization). Then, by elementary transformations

we can transformL(x, D) to

diag
�
1, D2

1 + b(x)D1, D1 + D2
�

mod S0
1,0 in V � C

0(�00).
Therefore, it follows from Theorem 1.1 that the Cauchy problem (CP)t for L(x, D) is
C1 well-posed for anyt > 0 if and only if D1a(x) = a(x)b(x) for any x 2 R3 with
x1 � 0. On the other hand, for a fixedx 2 R3 detL(x, � ) is hyperbolic with respect to# , i.e., detL(x, � � i#) 6= 0 for any � 2 R3, if and only if a(x)b(x) = 0.

EXAMPLE 5.2. Let n = 3, and let

L(x, � ) =

� �1 + a(x) �(x)�2 + �3 + b(x)
c(x) �1 + �2 + d(x)

�
.

Then p(� ) � detL1(x, � ) = �1(�1 + �2) and L(x, D) satisfies the conditions (H) and (R).
Note that (dp)(�1, �00) 6= 0 for any �1 2 R if �0

2 6= 0, where�00 =
��0

2 , �0
3

� 2 S1. Let
x0 2 R3 and �00 = (0,�1) 2 S1. Then there are a neighborhoodV(x0) of x0, a conic
neighborhoodC 0(�00) of �00, Nk(x,� ) 2 M2

�
S 1

1,0

�
(k = 1, 2) andl (x,� ) 2S 2

1,0 such that

the Nk(x, D) have parametrices inM2
�
L 1

1,0

�
and

N1(x, D)L(x, D)N2(x, D) � diag(1,l (x, D)) modL
3,�1
1,0 in V(x0)� C

0(�00),
l (x, � ) � �1(�1 + �2) + (a(x) + d(x))�1 + a(x)�2

+ (D1�(x))�2(�1 + �2)(�3 + �(x)�2)�1 � c(x)�3 � �(x)c(x)�2

mod S0
1,0 in V(x0)� C 0(�00). Therefore, it follows from Theorem 1.1 that the Cauchy

problem (CP)t for L(x, D) is C1 well-posed for anyt > 0 if and only if c(x) = 0 for
x 2 R3 with x1 � 0. For x0 2 R3 and �00 = (0,�1) 2 S1 we have

�
1 0
0 1 +�(x)�2��1

3

�
L1(x, � )

�
1 0
0 (1 +�(x)�2��1

3 )�1

�
=

� �1 �3

0 �1 + �2

�

in a conic neighborhood of (x0, �00). This implies thatL(x, D) can be reduced micro-
locally to a system with constant coefficient principal part. However, we can not
directly apply the results of [29] toL(x, D) since the lower order terms become pseudo-
differential operators.
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