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Abstract
In this paper we shall deal with hyperbolic systems of firsteorwith constant
coefficient characteristic polynomials and give a necgssad sufficient condition
for the Cauchy problem to b&* well-posed under the maximal rank condition (see
the condition (R) below).

1. Introduction

The Cauchy problem for hyperbolic operators has been stuojemany authors,
and necessary and sufficient conditions @ well-posedness have been obtained in
restricted situations (see, e.g., [19], [6], [4], [22], [1®26], [20], [10], [11], [17] and
[21]). We think that it is meaningfully to obtain necessamdasufficient conditions
for C*> well-posedness in various restricted situations as a siepafd in the study
of C* well-posedness.

In [26] we proved that the Cauchy problem for a single higheteo operator
P(x, D) with constant coefficient hyperbolic principal part @* well-posed (inR")
and has the finite propagation property if and onlyPifx, &) is hyperbolic in the sense
of Garding for eachx € R". We should note that the sufficiency was proved by Dunn
[5] and that the condition of the finite propagation propezén be removed by apply-
ing the arguments in this paper. We shall attempt to exteredrésult to hyperbolic
systems of first order whose characteristic polynomialsehasnstant coefficients, and
give a necessary and sufficient condition foF° well-posedness under the maximal
rank condition in this paper.

Concerning the necessity & well-posedness for hyperbolic systems of first or-
der, Benvenuti, Bernardi and Bove defined invariantly “deieants” of the systems
under the maximal rank condition in [1] and gave necessanditios of Ivrii-Petkov
type by means of “determinants.” The assumption on the raak emoved by Bove
and Nishitani [3]. The necessary conditions obtained iniglhot sufficient ones for
the hyperbolic systems treated here. For hyperbolic systeitih constant multiplicities
a necessary and sufficient condition is obtained under thdnmad rank condition (see
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364 S. WAKABAYASHI

[22] and [12]). The maximal rank condition considerably gliftles the problems. One
of our aim is to illustrate how to prove the sufficiency 6f° well-posedness of the
Cauchy problem for general hyperbolic systems satisfyireg rhaximal rank condition
by applying the results in [14]. Another aim is to show how t@ye the necessity
by transforming microlocally the systems. A part of the t=shere was announced in
[30] without proof.

Let Ai(x), ..., An(X), Lo(x) € C*(R"; Mn(C)), and put

Li(,§) =) &A(X), L&) =Lix,§)+ Lo(x),

j=1

wherem is an integer> 2, M, (R) denotes the collection of ath x m" matrices with
their entries iINR, Mn(R) = Mnum(R), X = (X1, ...,X%n) € R", € = (&1,...,&) € R" and
C*(R"; V) denotes the collection d&* functions defined oR" with their values in
V. Fort € R we consider the Cauchy problem

(CP) { L(x, D)u(x) = f(x) in R",

suppu C {x € R"; x; > t}

in the C> (or 2') category, whereD = (Dy,. . ., Dn) = —i(9/9x, . . ., d/0%y) and f =
Y(fy,..., fm) satisfies supg C {x € R"; x; > t}. Assume that

(H) Ai(x) = I, detLy(x,&) does not depend ox and p(¢) = detL1(x,&) is hyperbolic
with respect to® = (1,0,...,0) € R", i.e., p(¢ —i9) #0 for any ¢ € R", where I,
denotes the identity matrix of orden.

We also assume thdt(x, D) satisfies the maximal rank condition, i.e.,

(R) rankLi(x,£) =m—1 for any &,&) € R" x S~ with dp(¢) =0, whereS™ 1= (£ ¢
R" &) =1}

Under the assumption (R) we shall reduce the Cauchy probteR) (o that of
single higher order operators in a microlocal sense. x%at R" and£? = (£2,...,&0) €
S'-2. By a linear coordinate transformation &f = (o, ..., X,) we may assume that
£9%=(0,...,0,1)e R"L. Write

r
PEC+A) = [J+A)™, A<z <. - <A,
i=1

where £ = (0,...,0,1) € R". Then there are an open neighborhogdof x°, an
open conic neighborhoo@” of €% in R"1\ {0}, (x, &) € C®(R" x €”; Mm(C)) and
Al(x,&) € C®(V x €'; M, (C)) (1 < j <r) such that de§(x,£") # 0 for (x,&') €
V x €', the entries of3(x, &) are (positively) homogeneous of degree BJ (k, £%) —
Ajlm)™ =0 and

S(x, £ LA, £)S(x, &) = diag(Al(x, £), ..., A(x, &) in V x ¥,
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where&’ = (&, ..., &) € R"1, A(x, &) = Y1, & A (x) and

Al 0
diag(AL, . . ., AN = .

0 A
(see Lemma 2.2 below). We can assume without loss of getyethft Ay(X),. ..,
An(X), Lo(X) € B(R"; Mn(C)), i.€., SURgn (Z?=2|D“A,- (x)| +|D*Lo(x)]) < C, for ev-
ery a € (Z+)", where |Al denotes the matrix norm ofA and Z. = N U {0}
(=10,1,2,...}). We say that a symbak(x,&) belongs toS[, if a(x,§) € C*(T*R")
and [a$)(x, £)| < Cu ()<~ for any &) € T'R" (~ R" x R") and &, B € (Z:)",
where k € R, (&) = (1 + |£|%)Y? and a((g;(x,é) = o Dfa(x,£). Similarly, we say
that a(x, £') € S{o(R x T*R™) if a(x,&) € C®(R x T*R™?) and |af)(x, &)| <
Cup(&)¥ for any ,&) e R x T*R™! (= R" x R"™) and o’ = (a2, ..., ) €
(Z+)"* and B € (Z+)", where a((;;‘;)(x,g’) = 8;‘,' Dfa(x,é;’). Moreover, we say that a
symbol a(x,&) belongs to.7% if a(x.&) = Y% a;(x,£)&! and thea;(x &) are classi-
cal symbols andy;(x,£’) € ﬁ};‘j(RxT*R“‘l), wherek,| € R, [Kk] denotes the largest
integer < k and . = {0} if k <0. We write 7, = 77, #1%5 =N 72 and
776 = Ukso ylk,O' By .zfg we denote the set of pseudodifferential operators whose

symbols belong to}%. We also write.Zf,= (5. We need the following block-
diagonalization (see, e.g83.3 of [18] and, also, Lemma 2.3 below): There are clas-
sical symbolsSe (x,&") € Mm(-72o), A“(X,E") € M, (#75) and C#(x,£") € Mm, (720
L<wp<r)and Q(x,£&) e Mm(yfgl) such that

Si(x, &) = S(x,8), AM(x,&) = A(x, &)
for (x,§)eV x% with [£'|>1 and 1<u<r,
S.(x, D)Si(x, D) =1 mod.Z;™® in V x%,
S (x, D')L(x, D)Si(x, D')(I + Q(x, D))
= (I + Q(x, D')){ D1l +diag(A*(x, D') + C}(x, D), ..., A'(x, D') + C' (x, D))}
mod .5 ™ in Vx%,
with modifications ofV and ¢ if necessary, wherd denotes the identity operator

and D’ = (D, ..., Dy). Here A(x, D) = B(x, D) mod.,fl""o_oo in V x ¥’ means that

(A(X,&)— B(X,&)¥(x,&) e Mm(ylk"o’o") for any v (x,£’) € 72, with suppy C V x¢”.
We fix u € {1,2,...,r}. Then it follows from the assumption (R) that thereTig; €
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M, (C) such that deT,; # 0 and

T 1A X E9) T =

Putting
0 01
1 0 0
T,u,,2 = € Mmﬂ((C),
0 0
0 10
we have
LI (x, &) = T 1 (E1lm, + A"(X, &)+ CH(X, &) Tu1 T2
g0 0 &tk
é;-1 + )L;,LSn %-n 0
(1.1) = : +LH(x, &),
én 0
0 1408 O

Li(x,£) = Lh(x, &) + Lh(x, &), LH(x% 6% =0,

where L} (x, &) € 05, Lh(x, &) € 0 and Lf(x, &) is (positively) homogeneous of
degree 1 for|¢’| > 1. We may assume thdt, + Ei"j’j(x,é’) z0forl1<j<myg,
x €V and&’ € €’ with |€'| > 1, modifying V and ¢’ if necessary, Wherdz’l‘(x, &)=
(E’f’jyk(x,é’)). Now we perform the following elementary transformatioms lg*(x, D)
in turn from j =1 to j =m, — 1: (i) We multiply the j-th column on the right by
a pseudodifferential operator i}, and add it to thek-th column to annihilate the
(j, k)-th entry modulo.,iﬂfb’oo inV x% (j <k<m,—1). (i) We multiply the
j-th column on the right by an operator i,Eflj"O_j and add it to them,-th column to
annihilate the |, m,)-th entry modulo.,%ljb_oo in V x ¢'. (i) We multiply the k-th
row on the left by an operator iMfo and add it to the j(+ 1)-th row to eliminate
terms containingD; in the (j + 1,k — 1)-th entry ( +2 <k <m,). As a result we
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have a matrix-valued operatcﬁ?“(x, D) satisfying the following:
Z"(x, D) = (2!} (x, D))
Dn +17(x, D) 0

= ) +57"(x, D)
D, + Irﬁ‘h_l(x, D)

(1.2)

* fu(x, D)

in Vx ¢, 1'(x,&) e T°x0,%) =0 and 2., | (x,6) € Sy (1< j <m, 1),
D8 = Zh(xE) e A B<j=m, 1<k=<j-2), THx8)esy ™,
Ry (x.8) € A5 if k<m,—1, and 2, (&) e g ", wherel!°(x,&’) denotes
the principal symbol oﬂ‘(x,s’) and % (x,§) = (#]'«(x,£)). Here A(x, D) = B(x, D)
irl V x &’ means thatA(x, &) = B(x, &) for (x,&) € V x ¥’. Next we multiply
£"(x,D) on the right by diagk; (x,D’),.. .,k,’;rl(x, D), k“(x, D)), wherekﬁ‘(x, D)
is a parametrix ofD, + Tﬁ‘(x, D)inVx%¥ 1<j<m—1) andk*(x,D’) =
(=)™ YDy +14(x, D)) - - - (Dn+l~r’f1rl(x, D’)). Finally we perform elementary trans-
formations for the rows to annihilate the off-diagonal @d#rin V x ¢”’, and we have
a matrix-valued operatoZ#(x, D) € My, (92”1"’1(/;) satisfying the following:

Z2M(x, &) = diag(L,. . ., 1,IM(x, &) + Z*(x,£) in V x &,

(1.3) 14(X, &) = (€ + 2uén)™ + DT ENEL + Aun)™ K e AT,
k=1

140(x%, £1,0,...,0,&) = (&1 + Aukn)™,

Ry (x,8) € SgP i k= m, — 1, and ), (x,§) € ST where 2 (x, £) =
(7} (x,£)) and1"O(x,£) denotes the principal symbol of (x,£) (see Lemma 2.4 be-
low). We write V =V (x°, &%) and¢” = €' (x° £%) sinceV and ¢’ depend ornx° and
£%. Note thatl“O(x, &) = 1*9() and p(g) = 110) - - - 1"9(€) in V x €. We define

Q(x, & X% EY) =1H(x, &) - - - 1"(x, &) — p(&)
for (x%,£%) e R" x S"2 and &, £) € V(X% £%) x R x €'(x% &%), and impose the

following condition (L) for sufficiency ofC* well-posedness:
(L) For each k9 &%) € R" x "2 there isC > 0 such that

(1.9 1Qx, &; X%, £%)| < C|p(& —iv)|

for x € V(x%, %) with x; > 0 and& € R x €’ (x°, £%).
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The condition (L) is equivalent to the following conditioh)(:
(L) For each X, £%) € R" x S™2 and x € V(x° &%) with x; > O there isC > 0
such that

1Q(x, & x% ") < Clp( —iv)| for &eRx % (x%&).

Indeed, it is obvious that the condition (L) implies the cibiodh (L)’. By Lem-
ma 4.3 below the condition (L)implies the condition (L), with modifications of
V(x% %) and ¢'(x° %) if necessary. Note that (1.4) is always satisfied if
(dp)(€1,£€Y) #0 for any & € R. We say that the Cauchy problem (GR3 C>* well-
posed if the following two conditions are satisfied:

(E) For any f € C*®(R"; C™) with suppf C {x € R"; x; >t} there isu e C®(R"; C™)
satisfying (CP).

U) If s>t, ue C®R"CM), suppu C {x € R"; x; >t} and supp(x, D)u C {x €
R"; x; > s}, then supp C {x € R"; x; > s}.

Theorem 1.1. Assume that the conditior($l) and (R) are satisfied
(i) We assume that the conditidh) is satisfied Let t > 0, and let f e 2’ satisfy
suppf C {x € R"; x; > t}. Then the Cauchy problefCP) has a solution = Z'. If
x? e R", ue 7 satisfies(CP) and f=0 near {x°} —T'(p,?®)*, then ¥ ¢ suppu, where
I'(p, ®) denotes the connected component of the{set R"; p(§) # 0} which contains
9, andI'™* = {x e R";x - & (= Z?zlxjéj) > 0 for any § € I'}. Moreover if u € &'
satisfies(CP) and f € C*(R"; C™), then ue C*(R"; C™), i.e,, the Cauchy problem
(CP) is C* well-posed
(iiy If the Cauchy problem(CP) is C* well-posed for any t> 0, then the condi-
tion (L) is satisfied

REMARK. (i) Itis possible to reduce the operatb(x, D) to the operator of the
form (2.6) below in different ways from the proof of Lemma 2.%Fhen Theorem 1.1
is still valid.

(i) Under the conditions (H) and (R) the condition (L) is acessary and sufficient
condition for (CP) to be C* well-posed for anyt > 0. Therefore, the condition (L)
does not depend on the reduction procedure.

(iif) The Cauchy problem for a single higher order opera®{x, D) with constant co-
efficient hyperbolic principal part i€>* well-posed (inR") if and only if P(x, &) is
hyperbolic with respect t& for eachx € R" (see [5] and [26]), which is equivalent to
the condition that for everx € R" there isC > 0 satisfying|P(x,£)|/|p(é —i?)] < C
for & e R", where p(¢) is the principal part ofP(x, &) (see Svensson [23]).

The remainder of this paper is organized as follows§2rwe shall reducé.(x, D)
to an operator diag(1, ., 1,1%(x, D),...,I"(x, D)) in a microlocal sense, by multiply-
ing L(x, D) on the both sides by invertible matrix-valued operatorMm(.,%er‘O*l). In
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the proof of the assertion (ii) of Theorem 1.1 we shall useTarski-Seidenberg theo-
rem. So we have to prove that the Tarski-Seidenberg theoesmnbe applicable to the
[*(x,&). In §3 we shall prove the assertion (i) of Theorem 1.1, applyirg résults in
[14]. In doing so, some simple modifications are necessag assertion (ii) of Theo-
rem 1.1 will be proved ir§4, applying the arguments in Ivrii-Petkov [10] and [26]. We
shall modify the arguments in [9] to remove the assumptiorthenfinite propagation
property (see, also, [16]). Some examples and remarks wilfjiben in 5.

2. Reduction to a simple form

We begin with several definitions.

DEFINITION 2.1. (i) The subsety of RN is said to be a semi-algebraic set if
<7 is a finite union of finite intersections of sets defined by d psdynomial equation
or inequality.

(i) Let V be an open subset @" and ¥’ be an open conic semi-algebraic subset
of R"1\ {0}, and let f(x, &) be a symbol inC®(V x R x (¢’ U (=%"))) such that
f(x,2&) = A f(x,€) for (x,€) e VxR x (¢” U(=%")) andx € R\ {0}, wherel € Z and
—¢' ={-& e R & e ¢'}). We say thatf (x, &) is an SAsymbol inV x ¢ if there
are N e N, a semi-algebraic set/ in RN*""! and a polynomialF(x, £, 1) of (£, 1)

(= (&,21,...,AN)) and a polynomialG(x, &', 1) of (¢',1), whose coefficients belong to
C>(V), satisfying the following:

(1) The projectionr = nnn 1: &/ 3 (E',1) — & € R"1 is injective, n(<7) =

¢ U (=%¢"), and theA;(¢') are real analytic and homogeneous 4l U (=%"),

where 1(§') = (', A1(&), ..., An(E))-

(2) F(x,&,7 &) and G(x, 7—1(¢")) are homogeneous ifi € R x (¢ U(=%"))

and&’ € €' U (—%"), respectively.

(3) G(x, 7 X&) #0 and f(x,&) = G(x,7 (") LF(x,&1, 7 1(&")) for x e V and

£ eRx (¥'U(=%")).

(iii) Let V be an open subset @&" and 4’ be an open conic semi-algebraic subset
of R"~1\ {0}, and let f(x,&) be a symbol in?l'f’(') which has an asymptotic expansion
of the form f(x, &) ~ 372, f1(x,£), wherek € Z., | € Z and fl(x,£) is positively
homogeneous of degrde+| — j (j € Z+). We say thatf(x, &) is an S-symbol in

V x ¢ if for eacha, f € (Z:)" and j € Z. f(x, £) is an SAsymbol inV x ©".

Let x° e R" and % = (£2,...,£0) € S"2. By a linear coordinate transformation
of X’ we may assume thd@® = (0,...,0,1)e R™1. Write

PE°+29) (= p(r, §%))

r
=[J+2)™, r<no<- <k
j=1



370 S. WAKABAYASHI

as ing§l1, and

P, &) = [ [+ 7€), ) < wE) < < ().

j=1

We chooses; > 0 (1< j <r) and an open neighborhodd’ of £% so that{x € C;
A+ Aj] <85} (1 <] <r) are mutually disjoint andy(¢") € {A € R; [ + Aj| < 8j/2}
forl<j<r,m+..-+mj_1+1l<k<mg+---+mj; and& e U’. Put

Pi(x, &) = (2ri)™* ﬂg Li(x, 2, &) tda
[+ |=8;
for (x,&) e R" x U’ and 1< j <r. Then we have ranR;(§) = m; and we can
choose an open neighborhovdof x° andm; column vectorstl(x, ). .., ij’ (x, &)
of Pj(x,£’) so that Pj"(x, &) (1 <k < m;j) are linearly independent for eack, §') €
V x U’, modifying U’ if necessary. We put

S(x, &) = (PH(X, &), ..., P™(X, &), Py(X, &), ..., P™(x,&).

Then S(x, &’) can be defined forx ¢’) € R" x (¢ U (—%")) by homogeneity, i.e.,
S(x,&") = S(x, ££'/1']) if (x,§') € R" x (£¢"), where?” = (A&’ e R" 1" e U’ €| =1
and 1 > 0}. We may assume th&t” is semi-algebraic. Since

A -1 )"k
R (€) = (2ri) fmizaj ey
is a rational function of fundamental symmetric functiorfs{@n,+...sm, ;+v(§')}1=1,..m,
A=<swpu=<r)forl<j<r,keZ: andl € N, the entries ofS((/‘;))(x,s’) are SAsymbols
inV x ¢ for «, € (Z+)". Indeed, for§’ € 4" U (=%") the Rj(§') are analytic
and expressed as rational functions of, (. ., ¢m), where €1,...,¢m) is defined by the
following system of real polynomial equations and inedigsifor&’ € ¢ U (—%"):

n<n< <t pE)=[][E+T)

j=1

m my
_ ey m.—j
H(Sl + Tm1+...+m“,1+j) =&+ Z Cmytetmy, g +] &' I=sp<=r).

j=1 j=1
Therefore, we have the following

Lemma 2.2. There are an open neighborhood V of in R", an open conic
semi-algebaraic subse&” of R"1\ {0}, S(x,£) € C®(R" x (¢’ U(—=%¢")); Mm(C)) and
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Al(x,£") € C®(V x €"; Mm,(C)) (1 < j <r) such that $,&’) and A (x,&) are homo-
geneous of degre@ and 1, respectivelydetS(x,&") # 0 for (x,&) € V x €”, the entries
of Sx,&') and the A(x,&’) are SA-symbols in \k %", (Al(x,£%) — Ajlm,)™ =0 and

S(x, &) AKX, £)S(x, £') = diag(AY(x, &), . .., A (X, £"))
for (x,&) € V x (€' U (=%")).

Modifying V and %", if necessary, we can construst (x, §') € Mn(.#7) so that
Si(x,&) = S(x,&") for (x,£") e V x (€'U(—%")) with |¢'] > 1 andS_(x,D’) x Si(x,D’) =
I mod.,zﬂfg"o in V x (¢ U(—%¢"). Itis easy to see that the entries Bf(x,¢&’)
are Sssymbols inV x ¢’. We can assume without loss of generality tg{(x), ...,
An(X), Lo(X) € Z(R"; Mp(C)). Although the following lemma is well-known, for com-
pleteness we give the proof (see, e.g., [18]).

Lemma 2.3. There are symbols @,£') € M (775 ") and A*(x,&") € Mm, (1)
and C“(x,£') € My, (.#20) (1 < <r) such that the entries of @,&’), the AR (X, £
and the C'(x, &’) are S-symbols in \& ¢ and

(2.1)
A(x, €)= A(x, &) for (x,€)eV x% with [€]>1 and 1<pu<r,
S (x, D)L(x, D)Si(x, D)(I + Q(x, D))
= (1 + Q(x, D)) x {Dy! +diag(A*(x, D') + C*(x, D'), ..., A'(x, D) + C"(x, D))}

mod.Z; 5> in V x (¢ U(=%¢")).
Proof. Write
(2.2) QX &)~ > QI(x&), CHxE)~) CH(xE)
i=1 j=0

(asymptotic expansions), wher@!(x, &) (e C®(R x (T*R"1\ 0); Mn(C))) and
Cri(x, &) (e C®(R x (T*R™1\ 0); M, (C))) are positively homogeneous of degree
—j and T*R"1\ 0~ R x (R"1\ {0}). We also write

A(x, D') = S_(x, D')A(X, D')S:(x, D) € ff’ol,

A(x, &)~ > Aj(x,&) (asymptotic expansion),
=1

where A (x,&') (€ C®(R x (T*R"1\ 0); Mn(C))) is positively homogeneous of degree
—j. By Lemma 2.2 we have

'Kfl(xv %J) = diag(Al(X! g/)v e Ar (X, é/))
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for (x,£) € V x (¢’ U(=%¢")). ChooseA*(x,&) € M, (yfbl) (L < u <r) so that the
Ar(x, &) are positively homogeneous f¢§| > 1 and

diag(AY(x, &), ..., A'(x,£) = A_1(x, &)
for (x,&) eV x (¢' U (—%¢")) with |§'| > 1. We put

B(X, D) = S_(X, D')Si(e))(X, D') + A(x, D')
— diag(A*(x, D'), ..., A'(x, D')) + S_(X, D')Lo(X)Si(x, D).

and write

B(x, &)~ Y BI(x,&),

j=1

wheree; = (1,0,...,0) € (Z:)" and Bi(x,&’) is positively homogeneous of degregj
(j € Z+). Itis easy to see thaB~1(x,£') =0 in V x (¥’ U(=%")) and that the entries
of B(x,£') are Sssymbols inV x €. If (2.1) holds, then{QI(x, £")} and {C*i(x, &)}
satisfy

B'(X, £') + Qi (X, &)
R , .
+ ) o diagAt g, AT ED)Ql(x, E)

jHo|=1+1
j>1

1 v -
—_Bk@) iYe) /
v B E)Qu (. €)
j+k+e =l
j=1,k=0

2.3
(2:3) = diag(Cl'I(X,é’) ..... c" (x, &)

1 o .
+ Z mQJ(‘X)(X, &) diag( A (X, &), . .., Algy(X, &)
jHe/ |2 +1
j=1

1 _ o
£ Y S, E) diag(CR X, ), L CR(x,§)

j+k+a'|=l
j=1,k=0

inVx((©'u(=%¢)) (1=0,1,2,..), whereQ%x,&)=0. If A,, is anm, x m, matrix
1l<wu,v<r)yand A= (A.)ui1..r, we defineB,,(A) = A,,. We chooseQ(x,&")
v—>1

el
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so thatB, ,.(Q(x,&)) =0 for 1< <r. Then it follows from (2.3) that
C*(x,§") = Byi,u(B'(x,8)

r 1 , .
(.4) DS EBMVV(Bk(a)(X’5/))13%#((9301’)()('5/))’
j+kela’|=l y=1
j>1,k=0

Bl (Q (X, &) A"(X, &) — A (X, £')B,,,(Q(x, &)
= Bu(B'(X, £) + By (Qley (X, &)

l 7 i
a / ]
+ E = A )(x, & )BM’V(Q(O/)(X, 5/))
j+\a'_\=ll+l
1<j<

r
1 , .
Y ZEBW(BK(D‘)(X’5/))3%')(%')()(*5/))
jrkee|=l y=1 T
j>1,k=0

1 H A
— Y S BL(QE(x, EN AL, (X, E)
o'l
j+e/|=l+1
1<j=l

1 H A v
= Y B (@ ENCE(x.€)
jrkHa = T
j=1,k=0

(2.5)

inV x (@ U(=%¢)) forl=0,1,2,...and 1< p,v <r with v #Z u. Let A= (ax) €
Mn,.n,(C) and B = (bj)) € M;,,(C). Then the Kronecker produch ® B = (¢, ) €
Mni,.n1,(C) is defined byc, , =& by for A = (i, j) andu = (k,1), wherei € {(i, ) €
NZl1<i<nand 1<j<l}andpu e {kl)eN31<k<n,and 1< <}
are properly arranged. Assume thgt=ny, I; =1, and the repeated eigenvalues Af
and B are {Aj}i<j<n, and {zc}1<k<l,, respectively. Then the eigenvalues lpf® A —
B® |n1 = (h)»,u) are {)tj - fk}lgjgnl,lgkgll- For X = (Xi,j)i F= (fi,j) € Mll,nl(C) the
equationXA— BX = F is equivalent toy _ , h; ,x, = f; for A=(, j) with 1 <i <1y
and 1< j <nj. In particular, the equation is uniquely solvable ¥nif A; 7 ¢ for
1<j<n;and 1<k <l;. The eigenvalues ofA’(x, ") are different from those
of A*(x,&) for w # v and &, &) € V x €’. Therefore, by (2.4) and (2.5) we can
determine{Q! (x, £')} and {C*I(x, &)} in V x €”, inductively. Modifying the symbols
outside {(x, &) e V x (¢’ U (=%¢")); |&'| > 1}, we can choose&)(x, &') and C#(x, &)
(1 <p<r)so that (2.1) and (2.2) are valid. It is easy to see that theesnof
Q(x, &) and theCH(x, xi’) are S-symbols inV x ¢”. ]

As stated in§l, using elementary transformations we have the following

Lemma 2.4. With modifications of V ands” if necessary there are symbols
Ni(x, £) € Min(:#775 27™), Na(x,§) = (N2, (%, ) € Min(#775 ") and 1i(x,8) € A
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(1 < j <r) satisfying the following

() Nojk(x,&) = Npju(x,&) e A5 for L<k=m—r, Npji(x,§) = Npj,i(x,&) for
m—r <j<m Npjmork(X &) € yﬂ‘;’l for 1 <k <r, and N(x, D) and Nx(x, D)
have parametrices in M(.Z7% ™).

@iy '(x,&) can be written in the form

(%, 8) = G+ A&n)™ + 3 100 &)+ 2i80)™ K,
k=1

(&) e 706 (1< j<r, 1<k=m), The {(x,&) are S-symbols in \k ¢,
1%(x, &) = 11°(¢") and |°(6%) = 0, where |°(x, ') denotes the principal symbol of
le(x, €).
(i)
(2.6)  Ny(x, D)L(x, D)Na(x, D) = diag(l.. .., 1,I*(x, D), . ..,I"(x, D)) + R(x, D)
in V x (€U (%)), where Rx,£) € Mn(#75 7).

Proof. We fixu € {1,2,...,r}. As stated in§l, there are symbol&,(x, &) =
(Nojk(x, 8) € Mm, (7% 7Y) (v = 1,2) satisfying the following: ()N,.; ;(x, ) = 1,
Nojk(6, &) =0 (j > k), Npjk(x, &) = Nyju(x, &) € 2 (j < k <my), Npjx(x, &) =
No,jk(x, &) € 70 for j <k <m, and Npjm, (x,8) € Ay ™™ (i) Ni(x, D)
(= Nu(x, D)) and Na(x, D) have the inverses iMn, (£2;) and M, (Zs ), respec-
tively. (iii)

Ni(x, D)LA(x, D)Na(x, D) = Z*(x, D) in V x (€' U(=%"),

where L(x,£) is as in (1.1) andZ*(x,&) = (,,;”J-’fk(x,é)) has the same form as in (1.2)
which is valid inV x (¢’ U(—%")). We note thatf (x,£)+g(x,&) and f(x,£)g(x,&) are
Ssymbols inV x %" if f(x,£) andg(x,£) are Ssymbols inV x%". Leth(x,&) € 75
be anS-symbol inV x %" such thath®(x%,£%) = 0, whereh(x,£’) denotes the principal
symbol of h(x,£'). Then there is a symbdi(x, ) € #5* such thatk(x, ') is an
S-symbol inV x ¢’ and k(x, D’) is a parametrix of D, + h(x, D’)) in V x ¢”, with
modifications ofV and ¢” if necessary. Thereforeﬁv,j,k(x,g) and D?j‘fk(x,S) (v=1,2,
1< j,k<m,) are Ssymbols inV x ¢”. It follows from the reduction procedure that

T“(x, D) — (1™ K _(x, D) - Kb (x, DK} (x, D)D" € Zyg

in V x (¢'U(=¢"), i.e., (#(x,D)— (1™~ _1(x,D): - -kf'(x,D')Dy") x ¥r(x,D’) €
f{f‘{l’l for any v (x, &) € /2, with suppy C V x (¢” U (—%")), wherekj'(x, D') is
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a parametrix ofD, +I~§‘(x, D)inV x(¢'U(=%¢")) (L<j<m,—1). Now we multi-
ply .Z#(x, D) on the right by diagk; (x,D’),.. K, 1(x, D) ke (x, D’)) and, then, on
the left by operators corresponding to elementary transitions for the rows to anni-
hilate the off-diagonal entries iV x (¢” U (—%")), wherek¥(x, D) = (=1)™ (D, +
I (x,D)- - - (Do +lyy _4(x,D")). Finally we obtain*(x, D) of the form (1.3) inV x
(€'U(=%"), i.e., there areN/(x,&) = (NL| (x,8)) € Mm(#15 ") (v = 1,2) satisfying
the following: (i) N3 ;(x, &) = Kk (x, &) (1 <j=m, -1, N pm,m, (X, €) = KH(X, &),
NE (%, €) =0 (j > K), N (x, &) € ZIgm " NS L (x 8) = NJj (. &) € A5
(k < my), szm (X, &) € ylm(’)‘fl, and the Ni"jvk(x,é) are Sssymbols inV x %”.
(i) N“(x D) has the inverse inMp, (.,2”10 l) and N (x, D) has a parametrix in

Mm, (27 ) (iii)
Ni'(x, D)L*(x, D)NS(x, D) = £*(x,D) in V x (¢ U(=%")).
This proves the lemma. ]
Let q(x, &) be anSAsymbol inV x %”, and assume that

q(x, &)

@7) pE —i9)

<oo forany xeV.

§eRxE”, €121
By definition there areN € N, a semi-algebraic subset of RN*"~1 and a polynomial
F(x,&,1) of (£,1) (= (£, A1,...,An)) and a polynomialG(x, &', ») of (£/,1), whose

coefficients belong taC*(V), satisfying the conditions (1)—(3) of Definition 2.1 (ii)
with f(x, &) replaced byqg(x, £). Write

FOGEN= Y a0, 8,500 e C2(V),

lo|+|Bl<M

whereM € Z., B = (B1,...,Bn) € (Z+)N and AP = )Jfl . ~)J,f,”. We put

oo},

where N’ = (M*07"), A(E) = (A1), - .., An(g)) is as in the condition (1) of Def-
inition 2.1 (ii) and G(x, &', A(¢")) is homogeneous of degreein &' € ¢ U (—%").

{b (b il +1B] < M) e CV;

sup  |&'[7"
EeRxE, |E'|>1

by 6 A(E")?
2 ee—in |

le|+|BI<M
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Then Z is a subspace ofN'. Let {bj}jzlv___J be a basis of4. From (2.7) we have
a(x) = (a,3(x); la| + |Bl = M) € 2. Therefore, there araj(x) € C*(V) (1< j <1)
such thata(x) = Z'j:1 a; (x)b’. This gives the following

Lemma 2.5. Under the above assumptions there are IN, SA-symbols g§)
1<j<h)inVx% (orR"x%"), aj(x) eC®(\V) 1<j<=<l),keZand €x,§) e
C®(V x (¢'U(=%"))) such that éx,£’) is homogeneous of degreein ¢ € €' U(—%"),
e(x,&") Z0for (x,&) eV x ¢ and

a;(§)

o1 PE —19)

§eRxL”, |E|21

‘IE’I_” <o (I=j=),

|
a(x, &) =) _ aj(x)ex, §)1q; ).

j=1
3. Proof of the assertion (i) of Theorem 1.1

In this section we shall prove the assertion (i) of Theoreth &pplying Theo-
rem 1.4 of [14]. We use the notations in [14]. The conditions .¢"*(x, D; z°),
N?(x,D;2%) and R(x, D;z%) in (1.3) of [14] are slightly different from the conditions
satisfied byN;(x, D), No(x, D) and R(x, D) in (2.6). Therefore, we must show that
Theorem 1.4 of [14] is still valid if, instead of the conditi® there, #*(x, D; 2%) =
(%X, D; 2%)), A2(x, D; 2%) = (A5, D; 2%)) and R(x, D; 2%) = (Rjk(x, D; 2%))
satisfy the following:

(N-1) There is m,m’,m € Z, and Z(x,&; 2% = (#jx(x,&;2%) such that
MR E D) e A ™M ix, 6 2%) € Ay ™ and #(x, D; 2%) s

a microlocal parametrix of4%(x, D; z%) (mod ,,9,”1"’_“6“’0) in a conic neighborhood
¢'(2%) of 2.

(N-2) A3 (x, & 2%) € yl_;"_"“”m/‘_m/ and R(x, &;2%) € yl'f’g"”**m"‘”.

In particular, (N-1) implies that the parametri¥/(x, D; 2%) of .4#1(x, D; 2%) is
a differential operator of;. We assume that the above conditions (N-1) and (N-2)
are satisfied, and we shall modify the proof of Lemmas 4.113 4nd 4.14 in [14].
By (N-2) we have

lovk_l\',j +m’

|25 (%, & 2% ¥)| < Crap(E)y €)M

for M € Z.. Therefore, Lemma 4.11 of [14] is valid. We pUre(x, & 2% y) =
(X, E 21— O, /8(8") (1 =1,2) and.Z(x, ;2% y) =" 4 (x, & 2%)(1 - O, 8(8")),
where'##(x,D;z%) and' 4 *(x,£;z%) denote the transposed operator.af*(x, D;z%)
and the symbol of 4*(x, D;z%), respectively. It follows from (N-1) that for any
W(x, &) € PR x TR with supp¥(x, &) C —¢"(2%) there isry(x,&;y) =
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(ro,jk(%, & 7)) € Mp(#1%~) satisfying
A X, D; 2% y) (X, D; 2% p)W, (X, D) = W, (X, D)l +1,(X, D; ),
& (% & 9)] < Capm(®)THE),M (M € Z4),

where W, (x, £') = (1 — ©, 2(E))¥(x, ). Instead of #1(x, D; 2% b; y)* we simply
use.Z(x, D +iy9; 2% y) = (#jx(x, D +iyd; 2% y)). Note that

mg—lo,j+m”—ay

|70 (x, & +iy9; 2% )| < Cop8)) (&, ™ 1,
The estimates in Lemma 4.13 of [14] are replaced by

~ H . S0,
H%(Xy D +i Vﬁ, z /1 y)v||+yy'[|0'j}'(| ) = C”U||+,y,{mj},(I+m”,s—m”),

|Wa(x, D').Z(x, D +iy®; 2%; y)Wa(x, D/)v||+,y,{|0,,},(|,s)

< Cmllvll+y maem—my (M € Zy)

if Wj(x,&) e R x TR™) (j = 1,2) satisfy supry N supp¥, = ¥ and
|\IJJ(‘E‘2)(X,§’)| < Ca/,ﬂ(g’);“"". The proof of the above estimates is obvious while the
proof of Lemma 4.13 of [14] is not so simple. Instead of (4.20)d (4.71) of [14],
we have

¥, (x, D')u=AYx, D +iyo; 2% y)(exp[ A'])(x, D')v —ry(x, D +iy®d; y)u
— Y%, D +iy9; 2% p)F(x, D').Z(x, D +iy®; 2% y)¥,(x, D')u.
L2+ (X, D+iyo; 2%
= (ex)[ —A'])(x, D) A 2(x, D +iy9; 2% y)¢, (x, D)L(x, D +iyd)u
+ 3, D +iyd; 2% p)['L(X, D +iyd), ¥, (x, D) In]u
+(L2(x, D +iy9; 2%) — H2(x, D +iy9; 2% y) 'L(x, D +iy?)
x AYx, D +iyw; 2%; ¥))(L +7(x, D))
x M (X, D +iyv; 2% y)¥,(x, D)u
+ 4 2(x, D +iy9; 2% y) 'L(x, D +iy?)
x (Y%, D+iyv; 2% y)F(x, D)
x (X, D+iyo; 2% VIV (X, D) +1y(x, D +iy®; y))ul,
respectively. Hence (4.72)—(4.74) in [14] are replaced by
| (exp[=A"])(x, D) A %(x, D +iy9; 2% y)¥, (x, D') L(x, D +i V’?)u||+,y,{|\.,,-},(|,0)
< Car [I'L(X, D +iyD)Ullsy (—n; ) +m @ (6@) o)) —m)»
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[ (exp[—AT)(x, D)A2(x, D +iy9; 2% »)I'L(X, D +iy), v, (6, D)nIUl,, 4 o)

<Cy ||u||+,y,{mi},(I+m’,—2a’5(z°’)71—m’),
(ex)[—A'])(x, D)(.L(x, D +iy9; 2%) — #Xx, D +iys; 2% y)
x W(x, D+iy9) A x, D +iyv; 2% y)) (L +F(x, D))

x (L= 9, (%, DA (x, D +iy?; 2% y), (6, DY, )

= Ca’,I,M||U||+,y,{mj},(I+2m’+m”,—M) (M e Z.),
respectively.@(x,g; )= (@i,j(x,g; z°’)) defined in [14], with obvious modifications,
satisfies

—lyiHoj+2m —a

%55 (%, &1 2%)] < Cuap &)y M.
Instead of (4.75) and (4.76) in [14], we have
| (exd —A'])(x, D")|Z(x, D; ). 7 (x, D +iy®; 2% y)y, (x, D)
+ /2(x, D +iy9;2% y) 'L(x, D +iy®)
x (Y, D+iyv; 2% y)F(x, D)
x M (X, D +iy; 2% y)¥, (X, D) + 1y (X, D +iy®; V))}u||+,y,{|‘.,,»},(|,0)
=< Cary mIlUll+y (m; 1,040 ,— M)
11+ .010;1.0.0)
< C{II'"L(x, D +i YWl fonp), 0+ as () —m) + ||u||+,y,{mi},(I+T’,—s)}y
respectively, wheren’ = max2m’+m’, m’ + m+max; m; —min; m;}, "= max|’+2m +
m’, I’ +m,1” +m"’} ands < 2a'8(z%) + 1 +m'. Modifying |’ if necessary, instead of
(4.76)—(4.78) in [14] we have
lvll+ 110,1.0.0)
< C{I'L(x, D +i YNUll+y (ny)a+ras@)—m) + Ul myy0+,-9)
1t (X, DU+ (m; .0 - = (Bars(2%)/2—v)..0)
< 1, (%, D)Wy im0 = —3as @) 24m)
< Callvll+y 00;1.0,0 * Cat MU+ 5 (m;), 0+ —2m,—M)s
Il (X, D')Ull+,y im;1,0.,0)
< C{I'L(X, D +iy®)Ull+y =n1,0+12,0) + 1Ull+y im0+ —1—1))

respectively, wheres < 2a’8(z%) +1+m’, I1 =" + (3a'8(z%)/2 — m'), + &'8' (%), |, =
max{l’ + m',m — m'} + (3a8(z%)/2 — m'), @ = max{asd(z®), m, 2(I" — ), 2(m —
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3m)}/8(z%) and a. = maxa, 0}. With these modifications, Lemma 4.14 and the ar-
guments after Lemma 4.14 ig¢ of [14] are valid and Theorem 1.4 of [14] is valid
under the conditions (N-1) and (N-2) or'1(x, D;z%), #?3(x, D;z%) and R(x, D; z%).
Now we return to the proof of the assertions (i) of Theorem M fixt > 0. We
shall show that for everg® = (x%,&%) € R" x "2 with x? =t the condition (E-2) ; of
[14] is satisfied. We should remark thatz”) = 1 in our case. Let)(s) be a function
in C5°(R) such that 0< ©(s) < 1, ©(s) = 1 if |s| < 1, and sup® C (—2,2). Let
@1(§") and ¢a(x, £') be symbols in?; such that 0< ¢1(£'), va(x, ') < 1, ¢a(§) and
v2(x, &) are positively homogeneous of degree 0 foff > 1, ¢1(§') = 1 in a conic
neighborhood of supp, if |&'| > 1, suppps C {§' € €; |§'| = 1/4}, ¢2(X, &) =1 in
a conic neighborhood ofxf, £%) if |&’] > 1, and supw, C {(x,&') € V x ¢'; |§| >
1/2}, whereV and ¢” are a neighborhood 0%° and a conic neighborhood dfv,
respectively, as in Lemma 2.4. We put

Pj(x, £)

2/x — X0 m,
“PE) ®(¥>¢2(x, §) D (k% 8) = 19,(E0) G+ )™,

k=1

Pi(§) = (B2 + Ajpr(8)E)™ + D19 (EN@r (8 (Er + A jpa(E)E)™ ¥
k=1
A<j<r)yandp)= ]_[’j:l p; (&), where thex; and thel;j(x,£) are as in Lemma 2.4.

We note thatp(§) = p(§) if ¢o(x,£") #0 and thatp; (&) is hyperbolic with respect to
9. Put

Qx.§) = ]"{ Pj(x, £) = P(&).
i=
Then the condition (L) implies that there & > 0 satisfying
(3.1) |Q(x, §)| < CIp(E —iv)] for (x,) e R" x R",
and, therefore,
IPi(x,€) — pj(§)l < Clpj( —iv)| for (x,&) e R" x R".

So, in order to verify (E-2) 4, it suffices to prove (E-2); with £(x,&;2%) re-
placed byP;(x,&) for 1 < j <r. Fix j so that 1< j <r. It is obvious that the
conditions (i)—(v) of (E-2p ; are satisfied with a conic neighborho&d(z) of 2% in

R x (T*R"1\0), (z%) = {x € R"; [x —x°| <t} andk =m;/(m; —1). Letz! = (x1,&%)
be a point inQ(z%) x "1 such that dp;)(Y) = 0. Since we can easily obtain micro-
local a priori estimates forP;(x, D) = DT", we can assume that! € ¢’ (see, e.g.,



380 S. WAKABAYASHI

Lemma 2.10 of [14]). Define the localization polynomiaj:(n) of p; at& by
pj(§ +sn) =s"(pje(m) +0o(1)) as s|0, pje(m)#0 in 7.

Then p; £(n) is hyperbolic with respect t@. (see, e.g., [7]). Let.(x, &) andt(x, &)
are positively homogeneous of degree U,t)(z') € I'(pj z2, ) and

2

t(X, £) =xg — X} + [x = x}2 £ ‘é—| F&l  near 2.

Now we can prove thaPj(x, D —iy®) satisfies the conditiofE; z!, 61, 42, {at.(x, ) +
a't(x,&)10g(&’) /109(¢) tazap, a=ay, M/(M— 1),oo), where%) and ¢, are conic neighbor-
hoods ofZ* satisfying%; N R" x S € %>, i.e., there argjy(x,£) € C®*(T*R"\ 0)
(k=1,2),lIk e R (1 <k <4) such that thae/y(x, &) are positively homogeneous of de-
gree 0, supp>NR" x "t € %, ¥i(x,£) =1 in a conic neighborhood ¢f; (k=1,2)
and for anya > 1, & > 1 andb € R there areyp > 1, K > 1 andC > 0 satisfying

[(Dyiu] < C{[(D)2P;A(x, D;y)u]
+ [{D)2(1 — Yin(x, D) + [(D)4OR(D)u|}

if ue HOR"), y > 10, h = Ky™™-1 and

A(X, &) (= Aaabh(X, £))
= {(at.(x, £) — b) log(&) +a't(x, &) log(&")}(1 — Onsa(&))¥2(X, §),

where ©(§) = ©(1§1/h), Y1n(X,&) = (1— On/2(8))¥1(x,§) and P A(x, D;y) = (€*)(x,
D)P;(x, D — iy®)(e*)(x, D). Here A € B means that the closuré of A is com-
pact and included in the interioB of B, and || f| = (o |f(x)|2dx)1/2. Indeed, it
follows from (3.1), Lemma 2.5 and Lemma 2.7 of [28] tHa{(x, D) satisfies the con-
dition (A-2)x of [15] (see, also, Lemma 2.1 of [15]). Similarly, we can prothat
tP;(x, D +iy ) satisfies the conditiofE; (x!, —£1), €1, €2, {—at_(x, &) — a't(x, —&') x
l0g(&") /109(£) Yaza, a=ay,M/(M—1),00), whereéi = {(x,—£);(x,£) € 4} and'Pj(x,&) =
U(tpj (x,D)). Hereo (a(x,D)) (=o(a(x,D))(x,&)) denotes the symbol &f(x,D). There-
fore, the condition (E-2), of [14] is satisfied for every?® = (x°, &%) e R" x S"2
with x° =t. By the same argument we can prove that the condition ¢Edf)[14]
is satisfied for every® = (x%, €% e R" x S with x? > 0 and @p)(£°) = 0. For the
condition (U) of [14] we need the following

Lemma 3.1. Let Ne N and% be an open conic subset of“R"\0. Assume that

L(x, D) = Mi(x, D)I(x, D)Mx(x, D) + R(x, D) in ¥,
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where M(x,£) € Mm(STo") (k=1,2),1(x,&) € Mm(S), R(X,&) € Mn(S, ") and the
entries of M(x,&) (k=1,2),I(x,&) and Rx,&) are classical symbolsHere Ax, D) =
B(x, D) in ¥ means that &, &) = B(x, &) in €. Let ¢(x) € C®(R") satisfydxs(X) €
ZA[R") (1 <k <n). Then there are j«(x, &) € Mn(SI > N) (0 <k < 3(N — 1))
such that

e 7ML (x, D)™ (= L(x, D) +y L1(—i V£(X)))

(3.2) 3(N-1)
= Myn-1(X, D; y)In-1(X, D; y)Man-1(X, D;y) + Z Y ruk(x, D)
k=0
in ¢, where

ME(X, &) (¥ (X))
ol

Mun-1(X, & y) = Z (n=1,2),

le|=N-1

(@)
Inoa(X &) Y (X, §)wa(r (X))

ol
Je|<N-1

and w, (y (X)) = eV peeri®),

Proof. We can write

o (€7 M, (x, D)X, §) = Mun-a(x, & )+ Mun(x £17) (1 =1,2),
U(eiyg(X)I (X1 D)eyg(X))(Xi g) = IN—l(Xv %-a J/) +TN (X! 51 7/)1

where M, n(%,£;7) € Mm(ST ™) (1 =1,2) andin(x,&;7) € Mm(SyN). So we have
L(x, D) + ¥ La(=iV¢(X))
= Min—1(X, D; ¥)In-1(X, D; ¥)Mzn-1(X, D; ) + Ru(X, D; )

3(N=1)
= > yM(A(x, D)+ Bx(x, D)) + Ry(x, D; ) in %,
k=0

AX,E) ~ D ALxE) if k<N-1,
=0

where Ry(x, £; ) € M (S527N), the A{/(x,£) are positively homogeneous of degree
3m—2—Kk—pu, Ax,£) =0 for N <k <3(N — 1) and B(x, &) € M (S57>N).
So, modifying theA(x, &) for |£] < 1, we may assume thako(x, &) = L(x, &) in ¢,
Ai(X, &) = L1(—iVE(X)) In €, and Ac(x,£E) =0 in ¥ if 2 <k <3(N —1). This gives

3(N-1)

R, &)=~ Y. y*Bux.§) in €.

k=0
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Taking ryk(X, &) = —Bk(x, §) we have (3.2). U

Applying the same arguments as§8 of [15], we can prove that the condition (U)
of [14] is satisfied. Then the assertion (i) of Theorem 1.lilgdsllows from Theo-
rem 1.4 of [14].

4. Proof of the assertion (ii) of Theorem 1.1

In this section we assume that the Cauchy problem (@PLT> well-posed for
anyt > 0. We can assume without loss of generality th4k,£) € My(-#7,). For
T€R, peZ+ g€ R andu e C*(R") we define

Iulle.— o) = > 1{D)IDull; -,

le|<p

1/2
||u||,,_:</ |u(x)|2dx) .

From Banach’s closed graph theorem or the Baire categoiyréhe we have the fol-
lowing lemma (see, e.g., [10] and [27]).

Lemma 4.1. Let t > 0. Then for every compact subset K pf € R"; x; > t}
and pe Z, there are C=C,x > 0 and g€ Z; such that

lullz - p.0) < CIIL(X, D)ull¢ - (q,0)

for any r >t and ue CF(R"; C™) with suppu C K.

Lett > 0, x° € R" and ¥ € S"2 such thatx{ = t, and letV = V(x° &%) and
¢ =¢'(x% &%) be as in the condition (L) and Lemmas 2.2 and 2.4. Moreover;,le
mj (1<j<r), N(x,£) (k= 1,2),11(x,€) (1< j <r) and R(x,£) be as in Lemma 2.4.
Choose an open subs¥} of V, an open conic subséf; of ¢’ and x € Cg°(V) and
U(g') e C®(R" 1) so thatVp € V, 65N S"2 € ¢, x(x) =1 in Vo, ¥(£) is positively
homogeneous of degree 0 f#'| > 1, W(§) =1 for &' € 6§ with |£'| > 1 and supgr C
(&' e €€ = 1/2}. We putW. (&) =W (££). Then from Lemma 2.4 we have

N1(x, D)L(x, D)N2(x, D)W (D')(x (x)u(x))

(4.1)
=1(x, D)W4(D)(x (x)u(x)) + Re(x, D)u,

wherel (x, &) = diag(L,. .., 1,1%(x, &), ...,1"(x, £)) and R.(x, §) € Mm(-#75 ).
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Lemma 4.2. Lett > 0. Then for every compact subset K pof € Vp; x; > t}
there are Gm >0 (M €Zy) and g € Z+ (1 <] < 3) such that

max|u(x)| < Ck m(lIl (X, D)ullz - (p.0)
X1<7
+ ||U||r,—,(p2,—M) + ||(1 - \yi(D/))u”r,—,(pz,O))

for any r > t, u € C(R"; C™) with suppu c K and M € Z,.

Proof. Letr >t, and letK and K; (j =1,2) be compact subsets ¢ € Vo,
X1 > t} satisfyingK € K1 € K. We chooseyj € C*(R") (j =1, 2) so thaty;(x) =1
near K, suppx: C Ki, x2(x) =1 nearK; and supp; C Ko. Let u € CFF(R"; C™M)
satisfy suppu € K. Then by (4.1) we have
N1(X, D)L(X, D)x2(X)Nz(x, D)W.(D")u =1(x, D)W.(D')u + Ry (X, D)u,
Ry (X, D) = Ni(x, D)L(X, D)(x2(x) — )N2(x, D)W+ (D) x1(x)

+R.(x, D) € £ 7.

4.2)

Let p € Z, satisfy p>m — 1. From Lemma 4.1 it follows that there a@ > 0 and
q € Z+ satisfying
Il x2(x)N2(X, D)W.(D)llz - (p,0)

4.3)
< ClIL(X, D)x2(X)No(x, D)W.(D")ull; - (q,0)-

Let Mj(x, D) € ff‘gl be a parametrix oN;j(x, D) (j =1, 2). Then we have

L(X, D)x2(x)Nz2(x, D)¥.(D')u
= Ma(x, D)N1(x, D)L(X, D) x2(X)N2(x, D)W, (D")u + Rz+(x, D)u,
Ro(x, &) € £70727.
This, together with (4.2) and (4.3), yields
Il x2(x)N2(x, D)W (D")ull: — (p0)
< Cm(ll(x, D)W (DYullz,— (g+tm-1,0)F lUllz — (q+3m—2,—M))
< Cy (X, D)ullz - gtm-1,0)F lUllz,— (g+am—2,-m)

+ (1 — wL(D)Ullr, g+2m-1,0)

(4.4)

(M € Z4). On the other hand, we have
u= \Ifi(D/)U + (1 — ‘Iji(D,))U

4.5
*9) = Maz(X, D)x2(x)N2(x, D)W(D")u + (1 — w+(D")u + Rs (X, D)u,
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where Rz 1 (X, &) € 5”125"2""0. From (4.4) and (4.5) we have

lullz — (p—m+1,0) < Cm (Il (X, D)ull+,— +m=1,0) + IUllz,— (s, —M)
+ (1 = (D )ullz - (ps,0)):

whereM € Z,, pp=max{g+3m—2,p+m—1} and p3 =maxq+2m—1,p—m+1}.
This proves the lemma. U

Let xX° e R" and £” € S"2, and letV and ¢’ be an open neighborhood of
and an open conic neighborhood &%, respectively, such that” is semi-algebraic.
Moreover, letq(x, &) be anSAsymbol inV x %’ such that

q(x, A&) = A*g(x, &) for (x,&) e VxR x (€'U(=%¢") and 1 eR\ {0},
whereu € N. For a conic subsefl of R x ¢’ and a fixedx € V we define

q(x, &) oo}_

(p.atx D) =inf{p e sup 6| A0S <

§el, &1

Let n° e R x ¢’ N "L, and put
N,o = {fl(s) = S_l<n° + ZS”’n‘>, n eR",
j=1
I € N and #(s) is convergent for O< s <« 1}.

For x € V and# € N,o we definen(x; 7) = n(p,q(x, -); ) € R by
‘ ax, (s)
p(ii(s) — i)

wherec(x;n) # 0. Here we have definen(x; ) = —oc if q(x,7(s)) =0 in's. Moreover,
we define

— S—n(x;fz)(c(X, n)+o(1)) as sl O,

n(p, a(x, -); 1% = supn(p, a(x, -); 7); 71 € Nyo}.

Lemma 4.3. (i) For a fixed xe V there is g > 0 such thatl'(c) c R x ¢’ and
n(p, q(x, -); 7% =n(p,q(x, -); '(c)) for any c> 0 with ¢ < ¢y, whereT'(c) = {¢ ¢
R™\ {0}; 1§/1&1 = n°l < c}.

(i) Let c> O satisfyI'(c) c R x %', whereI'(c) is as in the assertior(i). Then
n(p,q(x, -);'(c)) € Q for x € V, and for a fixed xe V there is C> 0 satisfying

‘ ax, &)

n(p,ax,);r(c))
5C —10) < C(¢) for & e I'(c).
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(i) The set{n(p,q(x,-);&);(X,§) e VxRx %" and || = 1} is finite, with a modification
of ¢” if necessary

(iv) Let 7 € No. Then for any open subset U of V there is an open subgedfll
such that

maxn(p, q(x, -);7) =n(p.aly, -);7) for y e Uo.

(v) Assume that (p,q(x, -);&) < 0 for every xe K and & € w, where K is a compact
subset of V and is a compact subset @ x ¥’NS"~1. Then there is C> 0 such that

A | ¢t xek, fecw and [#]21.

(4.6) ‘ D& —i19)| €]

Proof. The assertion (i) can be proved by the same argumenis the proof of
Lemma 1.2.3 of [26] (see, also, the proof of Lemma 1.2 of [23]et us prove the
assertion (ii). Put

& ={(¢,€,r) € R™% ¢|p(E —i?)” = lq(x, &)I%,
E2=r2r >1and|t —rn%? < c?r?,

wherex € V is fixed. By assumptio® is a semi-algebraic set. It follows from Corol-
lary A.2.6 of [8] that there ar@ € Q and A € C\ {0} such that

sup¢: there isé € R" satisfying ¢,&,r) € &} =r?(A+0o(1)) as r — oc.

This givesn(p, q(x, -); I'(c)) =a/2 and proves the assertion (ii). We omit the proof
of the assertion (iii) since we will not use it in this paperdahcan be proved by the
same arguments as in the beginning§afl of [26] and in the proof of Lemma 1.1.3
of [26]. Next let us prove the assertion (iv). By definitioreth areN € N, a semi-
algebraic setez in RN*""1 and a polynomialF(x, &, 1) of (£,1) (= (£, A1,...,AN))
and a polynomialG(x, &, 1) of (¢/, 1), whose coefficients belong 6>°(V), satisfying
the conditions (1)—(3) of Definition 2.1 (i) withf (x, &) replaced byg(x, §). Put

G(x, §) = F(x, &1, 71 (§))IE"17",

where v is as in the condition (1) of Definition 2.1 (i) an@(x, 7 ~1(¢")) is homo-
geneous of degree. Let 7 € N,o, and letU be an open subset &f. It is obvious
that there arey € C\ {0} and g € Q such thatp(i(s) —iv9) =s #°(cp+0(1)) ass | 0.
We may assume thdi(x,7(s)) # 0 in (x,s) € U x(0,5], where 0< 55 <« 1. Then there
arec(x) € C*(U) and 1 € Q such thatc(x) £ 0 in U and§(x, 7(s)) = s #2(c(x)+0(1))
ass | 0. Therefore, we hava(p,q(x, -); ) < u1—puo for x e U, andn(p,q(x, -); 1) =
w1 — o for x € U with ¢(x) # 0. Sincen(p, q(x, -); ) =n(p, (X, -); 1), this proves
the assertion (iv). The assertion (v) easily follows frone #ssertions (i) and (ii) and
Lemma 2.5. ]
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Now suppose that the condition (L) is not satisfied. Then liofes from Lem-
ma 4.3 that there arex{ £%) € R" x "2, (y%,1%) € V x (R x ' n $"*) and
i(s) =s1 Y528 'n} € Njo such thaty? > 0 and

max_n(p, Ql(y°, -);d) >0,

1<j<m-

where V = V(x%,£9), ¢ = ¢/(x° &%) and Q(x, &) = Q(x, &; x% &%) are as in the
condition (L) and Lemmas 2.2 and 2.8} (x, &) is positively homogeneous of degree
m — j and Q(x, &) ~ Zf‘il Qi(x,£). By the assertion (iv) of Lemma 4.3 we may
assume thay) > 0 and

o (=o()
n+(p, Qj(xr ) ): ;])
1<j=m-1 j +ne(p, QI(X, -); 1)

xeV, x>0
- n+(p1 QJ(yOI : ), ?])
1<j<m-1 J + n+(p1 Qj(X01 : )v ﬁ),

where n.(p, g; 7) = maxn(p, q; 1), 0}. We note that O< o < 1. By translation we
may assume thag® = 0. Then there i4p > 0 such that the Cauchy problem (GR
C* well-posed for anyt > —ty. Let I#(x,&) (1 < u <r) be as in Lemma 2.4, and
write 1(x, £) ~ 355511 (x,€) (1 < <r), wherel*I(x,§) is positively homogeneous
of degreem, — j (j € Z:). We may also assume th&t°%(n° = 0. Then we have
1#0(n%) # 0 for 2< u <r. Recall that

@7 Qi) —iv)= Y M AE) —i9) -1 (x, () - i9)

k=0, jat+jr =]
(j € N).
Lemma 4.4. Modifying 77 € N,o if necessarywe have

n(1M9 1M (x, -); 7 +§)

o= XEVr,nxllzfto J + n+(| 1'05 |l'J (X1 ° )l ?] + g)
(4.8) EeR", j>1
_ (%, 14(0, -); )
- 1<j=m—1 j +ne (110,155 (0, -); )’
and
4.9) n( 0,140, -); ) = n(1*, 1% (0, -); 72)

if o =n.(1%0111(0,-);7)/(j +ne(1201%9(0,-);7)), 0<r<l,aeRandl<j <m-—1,
where 7(s) = s7/Pj(sA-N) + ap.
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Proof. From (4.7) we have
n(p, Q(x, -); ) < max(n( %, 1M (x, ); 7) +k — )
=K=]

(1< j=<m-1). This yields
n+(I 1’01 Il,k(O, : )1 ﬁ)
< max m
7= 1<j=m-11s<k<j K+n.(119, 11K, -); )

10 |1k AR
S max n+(| t I (0, )! n),\
1<k=m;—1 k + n+(| 1’0, |1'k(01 : ); 77)

&l

sincen(I10,11%(x, -); 7) < 0 for k > m;. Put

10 11k ) &
ko:max{keN;kfml—land (%1740, ) ) :6}.

k+n.(119,11(, -); )
Then there it > 0 such that

‘ Q(0,ii(s) —iv) | _ |IM*(0,ii(s) i)

p(i(S) —i9) |~ | 159(H(s) —i9)
. h'”‘“v(o,ﬁ(s)—iza)
) B e OBl L))

pate+ir =Ko

>cs /-9 for 0<s«1,
sincen(10,11%(0, -); 7)) = ko6 /(1 — &) > k6 /(1 — &) — (ko — k) = n(I110,12%(0, -); /) —
(ko — k) for 0 < k < kg. This gives (4.8). (4.9) can be proved by the same argument
as in the proof of Lemma 1.2.4 of [26]. ]
Let o; > 0 (j =1, 2) satisfy O< 0} < o, and define

I(y, n;'s) = 1(s™y1, ™Y, 81, S %0).
We shall determiner; and o, later. It is obvious that

(1(x, DJu)(s™y1, 5™Y) = I(y, Dy; s)us(y),

where ug(y) = u(s™ys, s°2y’). The following lemma easily follows from Lemma 4.2.

Lemma 4.5. For any open bounded neighborhood W of the originRh there
are W) > 0,Cy =Cy(W) >0 (M e Z;) and p € Z+ (j = 1, 2, 3)such that We
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{x € R"; (sS(W)"2xq, S(W)?2x") € V and §W)?x; > —to} and

(4.10)

01,0 —o101—0o|a’ apl .
u©) = $**Cymaxt D s DIy, Dy; s)u(y)

 Ulal=py

+ Y sl s~ D) M DEu(ys, )l (y)

ler] < p2

+ Z Sfalalfffz\a/\“(l_\.Ili(Dy/;S))D;[U(ylyy/)”(yl)

lor| < p3

for u e C§°(R") with suppu C W, 0 <s < s(W) and M € Z., where do1,02) = (o1 +
(n— 1)02)/2, We(n'; 9) = We(s ') and | F(y)I(y) = (f 1 (y1, )12 dy) "%

Let N e N andy € R\ {0}, and put

N-1 —my+j+(1—0o)|e|,, —my+j+al] 1,j (@ o
s Miti+-olaly, ~mitjHel| Lil@) (x| sp(s))E
PN ESI)=D . Y o

j=0 |a|=n(N—j;0)
RN(x, &;8,7) = 11X, ¥ 1n(s) +s 7€) — Pu(X, & S; ¥),

where n(s) = s ?j(s' ) and n(N;0) = [N/(1 — o). Then R¥(x,&;s;y) =
YT RVI(x, &5 s, y)g] satisfies
IR @ (x. & s 7)]
(4.11) < Crnap (ST 7N (s + 577 &/ |y
+sTMEN T+ E) VAT
Choosecy > 0 andsy > 0 so thatn” + & € ¢’ for & € R"1 with |£'| < ¢y and
12252, s pl| < co/4 for 0 < s < 5. For <s<s and& e R™ with [&'] <
Coly %" 71| /4 we write
RY(x, &5, 7) = RI(X, &5, ) + RY(X, & 51 y),
where

N—-1
RY (X, &5 9) =15 x, y tn(s) +5 7€) = D 1M (X, ¥ tn(s) +s %),
i=0

N—-1
RY(, &:517) = ) 1M (x, ¥ tn(s) +57°8) — Pu(X, £;'S; ¥).
=0
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Then it is easy to see that
(4.12) R 06,8 8;7)| < Cranply)sh—mer =i,
(4.13) |R£\‘(}‘j)(“/)(x' £ )/)‘ < CN’a,’ﬂ(y)Smel (g N/ao)+

if 1&] < coly™'s”71/4, 0 <s < s and 0< j < my, where RN(x,&;s;y) =
Y R s p)E] (k=1,2). Write

L@ (x, sn(s)) = 8"¢(Cj «(x) +0(1)) as s| 0, Cju(x)#0

for x € V with x; > —to, if IM1@®)(x,sp(s)) # 0 in (x,) for x € V with x; > —to. Note
that Co.(x) = Co,. We putCj,(x) =0 and i, = oo if 11@(x,sp(s)) =0 in (x,s)
for x € V with x; > —tp. Moreover, we put; = max, (M — j — puj« — (1 — o)l|).
Then we can write

I10((s) + &) = s o om/(-9)(co(&) + 0(1)),

1M1 (x, fi(s) + &) = s~ =7 M=D/A=2)(c; (x, £) + 0(1)),

if jzl, nj > —00, (X,S)EVXRn and x; > —tg

ass | 0, wherecy(§) #£ 0 andcj(x,§) #0 in (X,£) € V x R" with x; > —to. Then
we have

w= Yy

My —ptoq—(1—0)le|=po

IO

My~ —pjo—(1-0)lal=p;

for j > 1 with uj > —oo and §,£) € V x R" with x; > —to. From (4.8) it follow that

0= max {n(ll'o,ll’j(xw)?ﬁ’fg)— 7) }

XeV, x1>—tp 1 — 0
EeR", j>1
= max T Ho

1<j<mg, pj>—00 1-0

This yields
= max i (: max )
Ho 1sjsm1—1ul j=1 i

Put

T,(x8) =y Meo(y&)+ Y. v ™Ic(x, vE)

1<j=m -1
Hj=Ko
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for (x,&) € V x R" with x; > —t5. By assumption we havé, (0,£) #£ 0 in £. Choose
N € N so thatN > (1 — o)my, which yieldsN > m; — uo. Then there are a positive
constantsp € Q and a polynomiak (X, &;'s; ) of (&, y) such that

(4.14) Pn(X, &S y) = sTH(T, (X, &) +S®rn(X, & S5 7)),
(4.15) I a(s)(X; S5 V)| < Cn g p () sl iommu=do):

for (x,€) € V x R" with x; > —tg, 0 < s <5 anda, 8 € (Z.)" with |a| <[N/(1—0)],
wherery(x,&;s;y) = Z|a|5[N/(1fa)],a15mlrN,a(X?S?V)ga- From the arguments as in the
proof of Theorem 1.2.5 of [26] there ar®” € R"1, a neighborhoodJ of ¢?, y €
R\ {0} andq € N such that the equatiom, (0,7, ") =0 in r has a root with negative
imaginary part forn’ € U and its multiplicity is equal tay for n' € U (see, also§§2.2
and 2.3 of [26]). We fixy as above. Then there are real analytic functio(g) and
T(z,n') defined fory’ € U such thatT (¢, ') is a polynomial ofz, T(z(), n’) # O,
Imz(n) <0 andT,(0,7,n)=(r —r(n’))qf(r,n’) for " e U. Let p(x) be a solution of

e , L0y o
o = T(Vee(), ¢(0.x) =x LY HiX)?
X1

in a neighborhoodv; of 0 in V. We chooseoy, o1 and o, so that O0< oy < 0/3,
01 =0 —op ando, =0 — 20¢9. We shall impose further conditions ary. It follows
from §3 of Chapter VI of [24] that

T,(0,5**D)(explis **¢(x)]u(x))
= expls™*¢(x)] ) T(0, Vo(x))Mu (X, D; S)u(x),

|e[=q

where ®(x, y) = ¢(y) — ¢(x) = (y — X) - Ve(x) and

Ny (X, D; S)u(x) = %sg"‘J'“'[D;“ (explis™* o (x, Y)u(y))],-,

(see, also, Lemma 3.1 of [2]). It is easy to see that

S3colzx|‘;;-a

MNa(X, &;5) = + " s%9lb, 5(x; S)E”,

o!
B<a

1By 5y (%; )| < Cip e S0l 1811 18D/2D,
byp(x;8)=0 if |o|—|Bl=1 and B <«
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for x € V1. Puto(y;s) = ¢(s%°yi1, sy'). Then a simple calculation yields
T,(0,5™Dy,, s*° Dy )(explis > (y; s)u(y))
= [T,(0,5*°Dy)(explis **p(X)Ju(s *°x1, s 7x'))]

= explis *p(y; 9)] Y T(0, (Vo)(s*°y1, sY)

le|=q

“ { sroa—2as-1a') Oy YY)

x1=5%0y;, X'=s70y’

a!

(4.16) + 3 su@2nIBDp, o (s¥oy,, sy 5)DEu(Y)

B<a

Dy, u(y)

= ™% explis "¢ (y; 9)] {Téqeﬂ(o, (€)=

+5% ) culy; )DSUY) |,

leel<0o

ICu(8)(Y: S)I < Cqpp

for y € R" with (s*°yy, sy') € Vi, whereqo = deg T,(0,£). Put

E(y; s) = expliy (s yana(s) + sy n'(9))],

wheren(s) = (n1(s),n’(s)). Let W be an open bounded neighborhood of QRth Then
we have

E(y; )7M(y, Dy; S)(E(y; S) explis—>"¢(y; s)]u(y))

=1}y, y 18" n1(s) + Dy,, ¥~ 's™1/(s) + Dy; s)(explis~ *w(y; s)u(y))

= {Pn(s7y1, 52y, 87Dy, 7 Dy; S; y)

+ RV(syy, 82y, 57Dy, s*°Dy; s; y)}(explis—>p(y; s)u(y))

(4.17)

for u e C*(W) and 0< s < s(W), where s(W) is a positive constant satisfying
{(s*y1,s™Y);y e W, 0 <s <s(W)} C Vin{xeR"x > —tg}. Now we take
oo = min{do/(1 +q), o /(3+q)}. From (4.14)—(4.16) we have

Pr(s™y1, 7Y, $™Dy,, s*° Dy s y)(expls~*"w(y; s)lu(y))
= 515 explis(y; 5)l a0 D5, u(y) — S Hu(y, Dy; Ju)},

where a = TO%(0,7(:%),¢%)/al (= T((®),¢%) # 0) and Hu(y,n;s) =
Z‘Q‘S[N/(l_g)]y <y Hn o (Y; S)n® satisfies

IHnw(5)(Y; S)| < Cngp fOr yeW and O<s<s(W).
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We define{un j(y; S)}lo<j<[N/og] DY
uno(y:s) =1,

DY un j(y; 9) = & *H(y, Dy; un,j 1(y; 9),
Dkuy;(0,y:) =0 (0<k<gq-—1),

or[2))

for y e W and O< s < s(W). Note that

(4.18) |Dyun,j(¥;9)| < Che

foryeW,0<s=<s(W),0<]j <[N/og] anda € (Z+)". It is easy to see that

(4.19) o(y;s) = sy - ¢¥ +is*0|y|? +s*01(:%)y; + O(s*®) as s 0,
e so(Im (¢%)y1 +1y'1?)
(4.20) Im s™%¢(y; s) > 5

for y e W with y; <0 and 0< s < s(W), modifying s(W) if necessary. Lety(x) be
a function inCg°(W) such thatx(x) = 1 near 0, and put

N /o
un(y; s) = [2/:0] sl un,i (y; 9)x(¥)-
j=0
Then, by standard arguments we have
max  s™7 =721 DE(E(y; S)Py(s™y1, 7Y, s Dy,, $*°Dy/; S; y)
(421) Y1=0, la|=p1
x (explis~*°¢(y; s)Jun(y; 5))}| < CnsNHoto0aPr,
From (4.18)—(4.20) it follows that fok,| € Z. andy; <0
(4.22) | DY.Zy [explis > o(y; s)]un(y; 9)I(n)| < Cnys K (s™*n) ",
where 7y [U](1) = [go: €Y " u(y) dy. Indeed, we have
| DI Zy lexplis ™ p(y; ]wMI(7)]
< / |DYDS explis *¢(y; s)]w(y) dy|

< Cor(w)s™7k=200k1 for ) e C(R").
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Choosey(¢') € CP(R"Y) so thaty(§') = 1 for |&'] < co/(8ly]) and y(§') = O for
|&'| = co/(4]y]). From (4.11)—(4.13) we have

|Df RV (s7yy, 572y, %00’ 85y )y (sM %) |

< CN,ﬁSN*ml (SZo*on/)N/(lfaﬁl,

DY RN (57 ya, 872y, %001 5, y)(L = Y (s 2n))|

S CN ﬂSN—ml (Szﬂo)7/)ml—j+N/(l—0’)’

sinceCs'=7(soy’) > 1 if 1 — ¢ (s*~72x') # 0. This, together with (4.22), yields
(4.23)

max S_Ulal_az‘a/‘
Y1=0, le|=p1

Dy {E(y; S)RN(s™y1, 877y, s Dy,, $* Dy; S; y)
x (explis >°p(y; )un(y; 9))}| < C,p, SN ™ 20" P,
since (s%oy’) " < 720" ()" if 0 < s < 1. It is obvious that

(s772Dy) ™D (E(y; s) explis **g(y; s)]un(y; )
= E(y; 9)(y 7's™n1(S) + Dy,) ™ (y Tn'(s) + ™2 Dy) M

x (ys7n/(s) + Dy)* (explis > (y; S)lun(y; 5)),
[y (8) + 57720y M (y ~1s70/(8) + ') Y (s*2n)|
< Cyy &2 1#M=le|
[y /() +s 720y My 1s70/(s) + )" (1 — w(s*7n))
< G N 2ol (| € 7,)

if M > |o'|. So, (4.22) gives

max s e odl| (g2 p, )M pe
(4_24) y1=0, |e[<p2 Y

300

x (E(y; s) explis~>(y; S)lun(y; 8))[|(y1) < Cnm,p,S

if M > py+opon+1. Pute(y)=+if y >0 ande(y)=— if y <0. We modify 6
so thatn? e ¢ ThenW(g) = 1 if & belongs to a conic neighborhood of and
|E'| > 1. Sinceo = oy + 200, and 1< Cs'=72(y’) and (s%°n’)~t < Cs20(y)~1 if
1— W)y tn/'(s) +s92n) #0, by (4.22) we have

|DE(L — Wey(y 710/ (8) + 5720 ) (y 18720/ (8) + 1)

20 (y; )lun(y; 9)I(n)|
—ook+(1—0)l —200(|a’|+Nn/2) (n/) -n/2

x Fylexplis™

< Cnk/S
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for y; <0 andl € Z.. Therefore, we have

max s 72 (1 — @,(,)(Dy; 5))

(4_25) Y1=0, || <ps

—309

x (E(y; s) explis™¢(y; s)lun(y; S))II(y1) < Cn,psS.

By (4.17) the estimates (4.21) and (4.23)—(4.25) with> max{uo+ p1 +1— 00q, Mg +
200N+ pr+1} and M > p,+ogn+1 contradict (4.10), sinc&(0;s) explis—3¢(0;s)] x
un(0;s) = 1. This proves the assertion (ii) of Theorem 1.1.

5. Some remarks and examples

First we remark that we can obtain the same results on préipagaf singulari-
ties for operators satisfying the conditions (H), (R) andl & given in the colloray of
Theorem 3.1 of [25], combining the arguments in this papeh wesults in [13].

In the case where the characterisic polynomial depends,ome can also prove
C*> well-posedness of the Cauchy problem under the maximal camidition if for
each &% &%) € R" x S"2 the reduced operatoig (x, D) satisfy microlocala priori
estimates in [14], where thi¢‘(x, D) are defined as in the form of (2.6).

ExaMPLE 5.1. Letn=3, and let

&1+b(x) & &
L(x,§) = ax) &it& & .
0 —ax) &
It is easy to see thdt(x, D) satisfies the conditions (H) and (R). For edhe S' with
£9 # 0 there are a conic neighborhoad (%) of £, Ni(x, &) € Ma(2) (k = 1,2)
andl(x, §) € .77, such that theNc(x, D) have parametrices iMsz(.27,) and
N1(x, D)L(x, D)No(x, D) = diag(1, 11(x, D)) mod 2% > in V x ©'(¢%),
1(x, &)
= E7(61 + £2) + b(X)E1(51 + £2) + (@()b(X) — D1a(x))&s + (D1b(x))(2%1 + &)
+a(x)%&; + (D2b(X))€1 + (D1a(x))é16265 1 + (Da(x))ErES™
— {a()b(x)€1 (61 + £2)E565 T + 2((D2b(X))&2 + (Dsb(X))€3)£1 (61 + £2)
— ((D1a(x))(261 + &2) — (D2a(X))E1) 616565 — 2(D2a(X))E1£2E3
+(Dga()e(85 — £9)} (€5 +83) Tmod Sy in V< €%,



HYPERBOLIC SYSTEMS OF FIRST ORDER 395

where V is a bounded open subset Bf. Let é€¥ € S satisfy &) # 0. First we can
reducel(x, &) to

f1+b(x) —a(x)g; e =5 (2 +€)) —ag % 0
0 &1+ a(x)8; 63 0
0 0 E1+6&
mod Slfcl) in V x €'(€%) (block-diagonalization). Then, by elementary transfations
we can transformi(x, D) to

diag(1, DZ +b(x)Dy, D1 + Do) mod S, in V x " (§).

Therefore, it follows from Theorem 1.1 that the Cauchy peabl(CP) for L(x, D) is
C> well-posed for anyt > 0 if and only if Dia(x) = a(x)b(x) for any x € R? with
x1 > 0. On the other hand, for a fixede R detL(x, £) is hyperbolic with respect to
9, i.e., detL(x, £ —iv) #0 for any& € R3, if and only if a(x)b(x) = 0.

EXAMPLE 5.2. Letn=3, and let

L(x, &) = ( & +a(x) a(X)& +E+b(x) )

c(x) &1 +& +d(x)

Then p(&) = detLy(x, &) = &1(&1 + &) and L(x, D) satisfies the conditions (H) and (R).
Note that @p)(61,£%) # 0 for any & € R if &9 # 0, where&? = (£0,&J) € St Let
x% e R and &% = (0,+1) € St. Then there are a neighborhoat(x®) of x° a conic
neighborhoods”(£%) of %, Ni(x, &) € Ma(#1) (k= 1,2) andl(x,§) € .2, such that
the Nx(x, D) have parametrices iM,(.Z}) and

N1(x, D)L(x, D)Na(x, D) = diag(L,(x, D)) mod.Z ™ in V(x°) x ¢'(£?),
I(X, &) = &1(51 + &2) + (a(X) +d(X))é1 + a(x)é2
+ (D1 (X))E2(&1 + &2) (83 + (X)E2) T — C(X)&5 — a(X)C(X)E2
mod S in V(x% x ¢(¢§?). Therefore, it follows from Theorem 1.1 that the Cauchy

problem (CP) for L(x, D) is C* well-posed for anyt > 0 if and only if c(x) = 0 for
x € R3 with x; > 0. Forx® e R® and£% = (0,£1) € S' we have

1 0 1 0 [ & &3
(0 1+0¢(X)§2§31>L1(X’§)<0 (1+a<x)szsgl)-1>‘( 0 sl+sz>

in a conic neighborhood ofxf, £%). This implies thatL (x, D) can be reduced micro-
locally to a system with constant coefficient principal parHowever, we can not
directly apply the results of [29] th.(x, D) since the lower order terms become pseudo-
differential operators.
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