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ARTICLE INFO ABSTRACT

Handling Editor: X Ou The rapid growth of electric vehicles (EVs) and renewable energy has increased the importance of detailed power
system planning at multiple scales ranging from local distribution networks to macro-level generation capacity
and operations. To maximize the contribution of EVs to decarbonization and system transitions, high spatio-
temporal data on EV charging demand and flexibility applicable at multiple scales would be effective. Previous
research has established useful modeling approaches. However, limitations to expressing macro and local
characteristics simultaneously remain. To address this deficiency, this study developed a data-driven workflow to
extract vehicle usage profiles from human mobility big data collected from mobile devices to quantify vehicle
usage, EV charging demand, and flexibility on a large scale at a high spatiotemporal resolution. The application
to entire Japan showed that if all the private vehicles are electric, uncontrolled home charging would reach a
maximum of 25 GW. EVs have significant flexibility potential through smart charging and vehicle-to-grid op-
erations. The 1 km-mesh-resolution data showed that activity patterns, demand, and flexibility vary considerably
depending on the accessibility to public transportation. The established method can provide high spatiotemporal
resolution EV data for various purposes and also allows for iterative studies that integrate local and macro-level
power systems.
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1. Introduction at a high spatiotemporal resolution. Models with such capability may

help smooth power system transitions by enabling the testing of stra-

Electrifying vehicles is essential to reducing carbon dioxide emis-
sions. The expansion of electric vehicles (EVs) use may pose challenges
for the capacity management and operation of power generation and
distribution systems [1-3]. Moreover, smart charging and
vehicle-to-grid (V2G) operations provide solutions to these problems
and contribute to mitigating the impacts of a large-scale deployment of
renewable energy sources such as solar photovoltaic and wind power
generation through demand response and virtual power plants [4-6]. To
address these challenges, models are required that can estimate the EV
charging demand and its flexibility under EV ownership and charging
option scenarios [7-9]. Such models are particularly effective when the
EV penetration is low and real-world data are insufficient.

However, conventional spatiotemporal approaches for modeling EV
usage patterns have limitations on simultaneously representing aggre-
gated features of the demand and flexibility for electricity generation
systems on a large scale and local features for power distribution systems

tegies for various purposes and conducting iterative studies that inte-
grate local and macro-level power systems. To fill the gap, this study
develops a data-driven EV usage model based on location log big data
collected from mobile devices.

1.1. Related works

Diana et al. [7] classified EV usage modeling approaches into three
categories in a systematic review: 1) summary travel statistics models
(STSMs) that develop summary statistics or empirical distributions to
generate deterministic or stochastic vehicle use patterns, 2) models
based on entire activity travel schedules (direct use of observed activity
travel schedules (DUOATS) and proper activity based models (ABMs)),
and 3) Markov chain models (MCMs) that represent the stochastic
characteristic of vehicle state transition when driving or parked at home
or other places. STSM has limitations in terms of expressing spatial and
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temporal details. MCM is developed based on observed EV usage data.
The review by Yaghoubi et al. [57] highlighted the development of
data-driven machine learning, deep learning, and ensemble methods
using observed data in recent years. MCM and these data-driven
methods are ineffective where EV penetration is low as these have
been developed in data-rich environments. DOUATS and ABM are
generally developed based on travel diaries collected from travel sur-
veys, or using location log data. DOUATS uses fixed travel schedules
from observations and is less flexible than an ABM that defines agents
performing travel activities stochastically considering features charac-
terized by input data.

Considering heterogeneous spatiotemporal characteristics helps
represent realistic EV usage patterns [8]. ABM has progressed signifi-
cantly in this regard. Mu et al. [10] developed an ABM with a high
spatiotemporal resolution by considering a detailed origine-destination
(OD) matrix. Mangipinto et al. [11] modeled the EV charging demand of
28 European countries and showed that the hourly patterns vary
significantly by country owing to the weather and user behavior. Lin
et al. [12] developed an ABM that explicitly considers trip chains, which
distinguish between travel purposes and the types of places visited.
Jahangir et al. [13] proposed a neural network model of the travel
distance based on the relationship with the departure and arrival times.
Zhang et al. [14] considered the variation in activity with individuals’
demographics and location types. Pareschi et al. [15] showed that travel
survey data effectively represent the mobility behavior of EVs. Liu et al.
[16] developed a model representing the population of the Atlanta
metropolitan area and quantified the spatiotemporal distribution of the
charging demand. Gschwendtner et al. [17] applied a high spatiotem-
poral resolution ABM (the Multi-Agent Transportation Simulation
(MATSim)) to three Swiss cities representing urban, suburban, and rural
areas. They showed that the charging demand and flexibility vary
significantly depending on the region and type of location. Szinai et al.
[18] and Wu et al. [19] applied MATSim to California, USA, and con-
ducted an integrated analysis of the power system and charging station
planning. Vollmuth et al. [5] applied this model to show that significant
cost advantages could be achieved. POLARIS is acknowledged as a
highly advanced ABM transportation simulation with high temporal
resolution and fidelity in behavioral representation compared with
MATSim. This enables detailed representation of user behavior in
various contexts [23,24]. Integrated analyses with residential buildings
have been also performed by combining models of in-home activity and
the resultant household energy demand [20-22].

Notwithstanding the important knowledge gained by ABMs, several
shortcomings in representing the spatiotemporal characteristics of EV
usage have been identified [25]. Furthermore, owing to the complexity
of model development, the spatial scale of model application is usually
limited to cities or metropolitan areas. In addition, the highest level of
spatial resolution is limited to cities or marginally smaller areas. These
are insufficient for power system planning at multiple scales.

With the current spread of smartphones, an alternative approach
using human mobility big data that utilizes smartphone location logs has
been proposed. Liu and Dong [26] established a method for extracting
human mobility patterns while identifying the homes, workplaces, and
other locations of mobile phone users using a density-based spatial
clustering algorithm. Martin et al. [27] proposed a standardized data
processing pipeline for location log data. Several studies related to EVs
have been conducted. Xu et al. [28] developed an ABM using call detail
records collected from 1.39 million mobile phone users in the San
Francisco Bay Area. Zhang et al. [29] analyzed location data collected
from 1.6 million mobile phone users to assess the potential for wide-
spread EV adoption. Zhang et al. [30] used the same data to analyze the
variations in EV charging and residential electricity demand profiles
owing to population aging.
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1.2. Research gap and contribution

Research using location log big data shows considerable potential for
application to more comprehensive and detailed EV charging and flex-
ibility analysis. Because the trajectories of individual users are available,
it is feasible to consider the spatiotemporal characteristics of EV usage,
charging demand, and local constraints on flexibility application.
Furthermore, the aggregated demand can be expressed as the sum of
individual demands. This can potentially be applied for an integrated
analysis at multiple scales. However, research has not been conducted
using location log big data for analyzing EV usage, charging demand,
and flexibility on a large scale with a high spatiotemporal resolution. A
reason for this is that commercially available large-scale location log
data is collected using simple location information receivers installed in
mobile devices. The data contains a large margin of error, and the fre-
quency of data acquisition varies. These conditions hinder the accurate
extraction of vehicle usage. Thus, a workflow addressing these issues
should be established.

This study aims to establish a workflow to extract vehicle usage from
location log big data and model EV usage, charging demand, and flex-
ibility that can be obtained by smart charging and V2G operation on a
large scale at a high spatiotemporal resolution. This research makes two
contributions. First, it establishes a workflow to apply low-quality
location log data to EV usage modeling. Second, it presents a data-
driven DOUATS approach that can provide EV usage data effective for
both macro- and local-levels simultaneously under certain EV ownership
and charging option scenarios.

1.3. Structure of the paper

Section 2 describes the proposed framework and data used in this
study. Section 3 presents the results. This is followed by a discussion in
Section 4 and the conclusions in Section 5.

2. Method

In this study, we applied location log data collected from mobile
devices in Japan using location-based services provided by the company
Agoop. The data was collected from 1.48 million devices, approximately
0.1 % of Japan’s total population. Each device has a unique ID that can
be used to monitor its trajectory.

Fig. 1 shows the process of estimating the EV usage, charging de-
mand, and flexibility. After pre-processing, the location logs are classi-
fied into two types: stay logs recorded while staying at a random
location, and movement logs obtained while moving by means of
transportation. The travel modes in movement logs are then identified as
car, train, walking, and others. Using stay logs, the areas where the user
stayed are identified and called spots. A spot is selected for each users’
living and working areas using a 1 km mesh. These classification pro-
cesses are implemented using machine learning techniques. Continuous
movement logs between spots are called trips. For user trips by car, the
demand for EV charging and the flexibility that can be provided by smart
charging and V2G are quantified based on scenarios. In this study, we
considered only EV charging and V2G operation while users were
staying in their living area.

2.1. Location log data

2.1.1. Data

The data contained in the location logs from Agoop [31] are shown in
Table 1. The location coordinates specified by the latitude and longitude
of the device are provided with a timestamp. The logs include the ac-
curacy, which indicates the scale of potential errors. The 100-m mesh
code of the device’s location is also provided. The device is identified by
a unique ID, and the trajectory of the device’s location can be monitored.
This study used data collected from 1.48 million devices over a 12-day
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Fig. 1. Developed workflow.

Table 1
Attributes of the location logs.
Attributes Description
Location The latitude and longitude in the World Geodetic System
coordinate (WGS84) with six decimal places of precision.
Timestamp The date and time when the log was obtained. The timestamp is
recorded with a minimum resolution of minutes.
Accuracy Horizontal accuracy of the log. In the case of data collected from

Android devices, this is the radius of the circle that has a 68 %
probability of containing the point indicated by the acquired log.
The definition of horizontal accuracy for i0OS data is not
disclosed.

A 100 m mesh that includes the location indicated in the log. The
mesh is based on the 1/10 subdivision of the third mesh defined
by the Ministry of Land, Infrastructure, Transport and Tourism.
The operating system of the device owned by the user.

100 m mesh code

oS

period from October 24 to November 4, 2019. No user demographic
information is available. Owing to privacy concerns, the logs near home
and workplace are not available.

The location logs were collected from Android and iOS devices that
record at different frequencies. Android devices typically collect loca-
tion logs at fixed time intervals. Meanwhile, iOS devices collect logs
more frequently when the user is moving and less frequently otherwise.
Furthermore, logs collected from iOS devices generally have a time lag
when reading the location signal at the start of movement. The recording
frequency is also affected by the device’s app settings.

Fig. 2 shows (a) the cumulative frequency distributions of intervals
between consecutive logs for all location logs, and (b) those of average
log intervals for each user. Fig. 2(a) indicates that most of the logs
collected from the iOS and Android devices were recorded within 15 min
of the previous log. In Fig. 2(b), approximately 30 % of users have an
average of 60 min or more, i.e., one log per hour on average, indicating
that there are many users whose logs were recorded infrequently.

2.1.2. Annotation

Annotated data were prepared to train and evaluate the machine
learning models developed in the classification processes. 1,500 Android
users and 1,500 iOS users were selected randomly. In the manual
annotation process, the logs contained in the user’s movement trajectory
were plotted on map tiles and satellite photograph tiles in conjunction
with a timeline. Furthermore, the state of stay/movement or the selected
travel mode was determined for each log. First, if logs were recorded
continuously in the same location, the user was determined as staying
there. Any other behavior was determined as movement. For the stay
logs, we considered the frequency of visits, arrival and departure times,
length of stay, and characteristics of the area (such as residential area,
office district, and factory zone) to label the type of place where the user
was staying (living area, working area, and others). For the logs labeled
as movement, we rationally determined the travel mode (car, walking,
train, and others) by considering the speed of movement and the rela-
tionship with the road network and railway lines.

2.2. Preprocessing

2.2.1. Noise filtering

The location log contains errors caused by various factors such as
signal reflection and the absence of nearby base stations. If the error is
large, the distance between consecutive logs becomes unnaturally large
(in the scale of tens of kilometers). To remove erroneous logs, we applied
anomaly detection based on heuristics [32]. In this method, logs that
start from a certain log, leave the vicinity of that log, and then return
within a short time are considered as noise and are removed.

2.2.2. Interpolation

Because the interval between logs in the location log data is not
constant, we linearly interpolated consecutive logs to convert these into
1 min intervals.
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Fig. 2. Distribution of recorded intervals. (a) shows those of all logs, and (b) shows those of the average interval between logs for each user.

2.3. Stay-move classification

To classify the stay logs and movement logs, a density-based spatial
clustering algorithm, DBSCAN-TE [33], was applied to the interpolated
trajectory data. When an individual is staying at a location, multiple
consecutive logs are detected as being located nearby. A group of
consecutive logs is identified as a cluster and classified as stay logs.
When an individual is moving, the distance between logs is identified.
We added to the two processes explained in Supplementary Material A
for adapting the characteristics of the low-quality location log data.

2.4. Travel mode classification

For the movement log, XGBoost identified the travel mode by
considering whether the user traveled by car, on foot, by train, or by
other means (e.g., boat or plane). Bicycles were included in the walking
category. For developing the classification models for iOS and Android,
80 % of the annotated data was used to train the classification models.
The remaining 20 % was used for validation. Appendix A.1 describes the
considered features.

As a preliminary process, trips consisting of at least three logs were
labeled as high-quality trips, and the remaining were labeled as low-
quality trips. We classified the travel modes for high-quality trips
before classifying those for low-quality trips. When classifying the travel
modes of low-quality trips, we used the estimated travel modes of the
high-quality trips before and after these as features.

In addition, we distinguished bus trips from other vehicle trips. We
considered the first and final movements between leaving from and
returning to the living area by car to be non-bus travel. This is because
we assumed that logs of walking from the living area to the bus stop and
vice versa were recorded.

2.5. Stay point classification

After classifying the movement logs and stay logs, spots (where the
user stayed) were identified by applying DBSCAN. Then, the living and
working areas were selected. Although the locations of homes and
workplaces have been deleted from the log data (see Section 2.1.1), it is
reasonable that many interpolation logs are within the vicinity where
individuals spend a considerable amount of time. A 1 km mesh was

selected with the highest probability for living, whereas working area
was selected for each individual if the probability was higher than 50 %.
The probability was estimated by XGBoost for each mesh of identified
spots. Appendix A.2 explains the classification in detail.

2.6. Sampling

This process excludes users who may introduce errors in the esti-
mation of vehicle energy consumption, based on the upper and lower
limits of the parameters listed in Table 2. For various reasons, the actual
movement and the trajectory do not match in certain cases. For example,
the following would involve underestimation of the distance traveled:
users who have not turned on the location information function on their
smartphone and therefore do not have sufficient location information,
and users who have left their smartphone at home and gone out. These
users showed high average values at the log recording intervals shown in
Fig. 2(b). Meanwhile, users who have a high frequency of logs with large
location measurement errors over a short period of time would have
their distance traveled overestimated because the noise cannot be
identified in the noise removal process. A similar phenomenon can also
be observed for users using an application to conceal their location in-
formation. Supplementary Material D shows the distributions of the
selected parameters to justify their selection.

Table 2
Parameters used to remove outlier users.
Definition Limit Unit Value
Location The difference between the Upper %" 30
uncertainty” recorded position and estimated ~ Lower %" 26
position
Proportion of Proportion of movement logsin ~ Upper %" 0.01
movement logs trajectory data Lower %" 16.0
Number of logs Number of logs per user Lower %" 47

Logged days Number of days in which logs

were recorded

Lower Days 10

# The location uncertainty represents the average distance between the
observed latitude or longitude and the latitude or longitude estimated from the
previous and following logs for all the logs in the trajectory data (see Supple-
mentary Material C).

b The “%” mark indicates the percentage of users excluded when using the
highest value as the upper limit and the lowest value as the lower limit.
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The upper and lower limits of the parameters were adjusted using
Bayesian optimization so that the distance traveled per individual per
day in each prefecture could be compared with the National Road and
Street Traffic Conditions Survey [34]. The values that minimized the
root mean square error (RMSE) for each parameter were selected. As a
result of selecting users by these parameters, the number of individuals
targeted for estimation was 212,990. The RMSE was 3.51
km/day/vehicle.

2.7. Enlargement to the population

The estimated charging demand of users was multiplied by the
expansion rate and expanded to the total population. Fig. 3 shows the
distribution of the expansion rate of municipalities. The rate was
calculated by dividing the number of private vehicles owned in each
municipality [35,36] by the number of private passenger car users.
Municipalities with fewer than five users were combined with neigh-
boring areas based on the prefectural assembly election districts.

2.8. Operation of battery

In this study, we analyzed the temporal and spatial distribution of the
charging demand. The assumption was that all the private vehicles in
Japan would be replaced with EVs. In this estimation, we assumed that
the vehicle power efficiency was 7 km/kWh and that the charging power
was 6 kW. We also assumed that charging was not controlled and that all
the vehicles would be charged immediately after the users return to their
living area. For simplicity, we assumed that the battery capacity is equal
to the maximum cumulative power use with uncontrolled charging
during the period.

We also calculated the flexibility of charging and discharging. First,
we determined the baseline charging schedule that minimizes the
charging costs by mixed integer linear programming [37,38] consid-
ering the wholesale electricity price for that period of the Japan Electric
Power Exchange [39]. Then, we calculated the number of EVs that can
be charged or discharged continuously over a certain period of time. We
multiplied the number of EVs that can be charged or discharged by the
rated power of the charger to obtain the potential flexibility of elec-
tricity. In this study, we assumed that the time for continuous charging
and discharging would be 1 h, 2 h, 3 h, or 6 h. EVs providing flexibility
were defined as those staying in living areas with all travel demands
satisfied and a state of charge (SOC) between 20 % and 100 % after
charging and discharging.

This study only considered private vehicles and home charging. We
considered vehicle trips that do not return to the user’s living area and
rather depart from and return to the user’s working area to be com-
mercial vehicle trips.

400

300

200 -

100 A

Number of municipalities

o

0

200 400 600 800 1000 1200 1400
Expansion rate

Fig. 3. Distribution of expansion rate. The vertical axis shows the number of 1
km mesh squares with the expansion rate shown on the horizontal axis (in-
tervals of 100).
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3. Result
3.1. Log classifications

Fig. 4 shows the distribution of stay logs, divided into living area,
working area, and other spots. Fig. 5 shows the results of classifying
movement logs by mode of transportation, divided into car, walking,
train, and others. As shown in the figures, the stay logs cover entire
Japan. However, there are fewer logs in areas with low population
density. Supplementary Material E presents an example of the classifi-
cation results for a user to demonstrate the classification processes.

3.2. Validation

3.2.1. Classification tasks

We evaluated the classification tasks using annotated test data.
Table 3 lists the accuracies and F-1 scores of the classification processes.
The lowest F-1 score of 0.76 was detected in i0S for the classification of
living areas. In general, for GPS trajectory classification tasks, accuracies
or F-1 scores exceeding 80 % are commonly considered as being indic-
ative of high performance, and scores above 90 % are evaluated as
representing significantly high classification accuracy [40]. Therefore,
our results indicated high model performance. As mentioned earlier, i0S
devices record logs when the user is staying at a location. Therefore,
when iOS users start moving, certain misclassifications are observed
owing to insufficient logs. Consequently, the length of stay could not be
calculated accurately for certain places. By the same criteria, the scores
are sufficiently reasonable.

3.2.2. Average distance traveled by car and energy consumption

To verify the travel distance obtained from trajectory data, we used
data from the National Road and Street Traffic Conditions Survey [34].
These data include the average distance traveled by private vehicles in a
day. The aggregated values are available for only 10 regions in Japan,
which are made up of multiple prefectures. Fig. 6(a) shows the estimated
result fitted well.

To verify the estimated energy consumption, we used data of the
household consumption of gasoline for private passenger cars in the
transportation sector described in the general national energy statistics
[41]. To estimate the amount of gasoline consumed from location logs,
we divided the distance traveled by the average JCO8 mode fuel effi-
ciency in 2019 (22.6 km/L) and multiplied it by the calorific value of
gasoline (33.36 MJ/L) [42]. Fig. 6(b) shows the result. The model esti-
mation agreed well (RMSE = 12 PJ/year).

3.3. Estimation of charging demand with uncontrolled charging

Fig. 7 shows the cumulative distribution of battery capacity required
for uncontrolled charging during the twelve days. As shown in the
figure, most of the distances traveled by users were less than 350 km
(equivalent to 50 kWh of battery capacity) and can be supported by
major EVs sold worldwide.

Fig. 8 shows the average daily charging demand per household in the
1 km mesh across Japan. The gray areas indicate locations where suf-
ficient data is not available. The charging demand per household is the
lowest in the central parts of the Tokyo, Nagoya, and Osaka metropol-
itan areas, and higher in the suburbs. The demand is low in the central
parts owing to convenient access to public transportation. In suburban
and rural areas, individuals drive more frequently and travel longer
distances. Therefore, the demand tends to increase in a concentric
pattern around these areas.

Fig. 9 shows the spatial and temporal distribution of charging de-
mand per household in each 1 km mesh in central Japan’s major
metropolitan areas (Tokyo, Nagoya, and Osaka) at 0:00, 6:00, 12:00 and
18:00 on Saturday, November 2. Due to uncontrolled charging, the de-
mand for charging at 6:00 is very low. Peak demand occurs at 18:00
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(c) Other spots

Fig. 4. Locations of stay logs observed in (a) living area, (b) working area, and (c) other spots.

(a) Train

relative to the other time periods.

Fig. 10 shows the time series patterns of the total charging demand in
Japan and the charging demand per household over time. The peak
demand is observed around 19:00, with a total of approximately 26 GW
and a per household value of 0.5 kW. This implies that approximately

(b) Others

Fig. 5. Travel mode classification result: (a) car, (b) walking, (c) rail/train, and (d) other modes.

1/12 of all EVs are being charged during peak time. The peak hours are
shorter on weekdays than on holidays. However, the peak demand is
approximately equal on all days.

The evening peak coincides with the timing of peak residential
electricity demand. Thus, it could have an adverse impact on power
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Table 3
Accuracies and F-1 scores of the classification models.
Classification process oS Accuracy F-1
score
Stay-move classification Android 0.96 0.87
i0S 0.87 0.90
Travel mode Android 0.88 0.91
classification i0S 0.91 0.94
Living area estimation Android 0.99 0.97
i0S 0.90 0.76
Working area estimation Android 0.99 0.96
HO 0.99 0.92
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Fig. 6. Estimated daily vehicle distance traveled and annual total energy consumption in 10 regions of Japan.

generation and distribution networks. Figure B.1 shows the estimated
EV charging demand overlaid on the actual electricity demand
throughout Japan for the same period [43-52]. The total electricity
demand would increase by an average of approximately 10 %, rising to
approximately 30 % during peak times. The peak shape from the eve-
ning to the night would become sharper owing to the increase in EVs,
and the peak time would be delayed by 1 h. These results indicate that
EVs would have a significant impact on the total amount of electricity
demand and its temporal characteristics.

3.4. Spatial variation in EV charging demand

To understand how the regional characteristics are reflected in the
spatial distribution of charging demand, we analyzed the relationship
with the accessibility to public transportation networks. In this study, we
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Fig. 7. Distribution of battery capacity required for uncontrolled charging.

used public transport accessibility level [53], PTAL, as an indicator of
accessibility. Appendix C explains the method to quantify PTAL for each
1 km mesh from PTAL 1 to 6 (from the lowest to the highest accessi-
bility) and mapped its spatial distribution.

Fig. 11 shows the estimated values of the charging demand per
household in each PTAL. In PTALs 1, 2, and 3, the scale of charging
demand was almost equal. However, the demand for charging decreased
from PTAL 4. The peak demand for charging in PTAL 6 was
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Fig. 8. Spatial distribution of daily charging demand.
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Fig. 12. Estimated total charging and discharging flexibility and per household. The gray area indicates the discharge by driving, whereas the red area indicates the
charging demand with cost minimum charging (the electricity system price is shown by the orange bars). The charging and discharging flexibilities that can be
provided by EV battery operation are shown by the lines for different charging/discharging durations.

approximately 10 % of the demand in PTAL 1. The daily demand on
holidays, particularly on Sundays, was higher than that on weekdays.
This trend was consistent across PTALs. The daily demand did not vary
considerably from Tuesday to Friday. The temporal pattern shows no
significant difference between PTALs, with the lowest demands at 4:00
and the highest demands at 19:00. The peak during the night is steeper
on weekdays compared to weekends. This temporal pattern is obtained
from the vehicle usage pattern shown in Figure C.2.

3.5. Estimation of flexibility

Fig. 12 shows the estimated charging and discharging flexibility of
entire Japan. The flexibility was obtained based on the baseline condi-
tion (red area) that minimized operating costs. There were eight days
when peak demand occurred around noon due to the impact of elec-
tricity prices. The flexibility indicated by the dotted lines decreases as
the charging and discharging durations increase. In addition, when the
electricity price is low, the potential for flexibility approaches zero
because charging has been implemented in the baseline. Conversely, the
potential for flexibility increases at night and early in the morning when
the operating rate of EVs is low. In addition, the charging flexibility
tends to attain its peak when EVs return to the living areas because the
SOC is low. The discharging flexibility tends to attain its peak early in
the morning, when the SOC is high before the EVs leave.

The charging flexibility for 6 h was estimated to be almost zero
during the daytime when the output of solar photovoltaics becomes
large because charging operations were assigned at the baseline, as
mentioned above. The discharging flexibility for V2G during the evening
peak between 17:00 and 19:00 was estimated to be 20 GW, 25 GW, and
50 GW for 3, 2, and 1 h on average. The discharging flexibility is larger

on weekdays than on holidays, and vice versa for the charging flexi-
bility. Comparing peak values, charging flexibility on weekdays was 18
% higher than on holidays, while discharge flexibility on holidays was
16 % higher than on weekdays.

Fig. 13 shows the time-series variation in charging and discharging
flexibility per household (assuming that the duration of charging and
discharging is 1 h) by PTAL. In areas with PTAL 1 to PTAL 3, the
charging and discharging flexibility barely differ. However, the peak
value of charging and discharging flexibility decreases gradually from
PTAL 4 to PTAL 6. Meanwhile, there is almost no variation in the time
characteristics from PTAL 4 to PTAL 6. This is because as PTAL in-
creases, the battery capacity allocated to EVs and the number of EVs that
can be charged and discharged for flexibility decrease.

4. Discussion
4.1. Establishment of workflow

The workflow to extract vehicle usage from the low-quality location
log data consists of classification tasks for stay-move state of logs, travel
mode of trips, and location type of spots. Machine learning techniques
were applied for these. The evaluation using annotated data described in
Section 3.1 revealed that each task was performed with a high accuracy.
The comparison in Section 3.2 reveals that the average travel distance
per day and daily energy consumption of private vehicles agreed well
with publicly available data. Although the spatial resolution was 10
Japanese regional divisions because of the data availability, it indicates
that the developed model effectively represents the vehicle usage in
Japan. Because of the method, large-scale data on vehicle usage were
obtained from all over Japan at a high spatiotemporal resolution.
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Fig. 13. Estimated total flexibility in PTAL 1-PTAL 6 with 1 h duration of charging and discharging.
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However, a critical uncertainty remains on how well the location log
data represents the vehicle usage of population. First, insufficient log
samples were available in sparsely populated areas. Second, the location
log data contains data that do not represent the user behavior appro-
priately as explained in Section 2.6. Therefore, only 20 % of users were
sampled to obtain a good fit with the national survey data. Although the
proportion of valid users is small, the thresholds selected in Table 2 are
reasonable constraints to ensure data is removed that may not represent
the actual behavior of users as shown in the distributions of the selected
parameters in Supplementary Material D. We confirmed that the per-
centage of valid samples was 20.9 %, 21.7 %, 21.0 %, 17.9 %, 14.7 %,
and 10.2 % for PTAL 1 (rural) to PTAL 6 (urban) areas, respectively.
Appendix D compares the difference in charging demand by the sam-
pling process and shows that omitting the sampling process significantly
reduces total charging demand and peak charging demand. These results
indicate that users with logs showing low frequency of movement
outside the home mesh area were deleted more frequently, especially in
urban areas. Although we used Bayesian optimization to determine the
parameters to remove outlier users as in Table 2, a data-driven evalua-
tion of valid users and days would be possible to increase the dataset
used by machine learning methods trained with annotated data.

4.2. Data-driven spatiotemporal characterization of EV charging demand
and flexibility

Despite location log data limitations, Sections 3.3-3.5. demonstrate
the advantages of combining location log data with the DUOATS
approach. It enables the quantification of the spatiotemporal charac-
teristics of EV usage, charging demand, and flexibility at the national
and local levels simultaneously. According to Section 3.3, the total
charging demand reaches a maximum of 25 GW on both weekdays and
holidays. The peak duration is longer during holidays than during
weekdays. This indicates that the peak duration may be longer during
summer and winter owing to the electricity demand for air-conditioning,
because the observation in Shanghai revealed that the charging demand
is two times higher than that in the other months [55]. Meanwhile, as
shown in Section 3.5, EVs can provide significant charging flexibility for
smart charging and discharging for V2G. Shifting evening charging de-
mand to nighttime or daytime shown in the baseline operation in Fig. 12
helps alleviate evening peak loads. This also helps mitigate the impact of
large-scale PV deployment during daytime. V2G operations can provide
an additional 20 and 25 GW of discharge flexibility during evening peak
hours for 3- and 2-h long discharge periods, respectively. On the other
hand, additional daytime charging flexibility is limited when daytime
charging is allocated in the baseline. We observed that the discharging
flexibility is higher on weekdays than on holidays, and vice versa for the
charging flexibility. Although we considered only private vehicles and
home charging in this study, other places and company cars can be
considered.

In Sections 3.4 and 3.5, the results reveal that the scale of charging
demand and flexibility differs significantly among PTALs. However,
their temporal patterns are similar. Although we used PTAL considering
the accessibility to public transportation as the unit of analysis, it in-
dicates that a detailed analysis can be performed at the local level to
reflect the characteristics of EV usage and constraints for flexibility.

The proposed framework can generate the EV charging demand and
flexibility across multiple spatial scales from a single vehicle at the
household level to the city, prefectural, regional, and even national
levels across the target area. These results reflect the regional charac-
teristics and provide effective insights for power system planning at
multiple scales.

4.3. Limitations and future works

Validation should be performed more comprehensively using avail-
able data sources. Furthermore, a more detailed analysis is required to
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fully understand EV charging demand and flexibility. This is because the
quantification process used several simplified assumptions regarding EV
battery capacity (using maximum energy consumption during the
period), charging behavior (assuming only uncontrolled charging), and
flexibility participation scenarios (assuming that all vehicles are con-
nected to the power grid while parked at home and always provide
flexibility). These assumptions may have a significant impact on EV
charging demand and flexibility. The presented workflow can be
extended to analyze more realistic conditions and diverse charging and
flexibility scenarios (e.g., charging/discharging at workplaces and other
locations, commercial vehicle cases, etc.).

As explained in Section 4.1, the impact of user sampling on estima-
tion results should be better understood. This is particularly important
for the accurate representation of sparsely populated areas where the
availability of original data is generally low. In this paper, we merged
such areas with neighboring areas. Furthermore, methods should be
established to fully use available location logs. A potential method is to
develop an ABM based on developed activity data combined with other
data sources. Owing to the unavailability of demographic information in
the location log, the integrated use with travel survey data would be
advantageous [20]. Location log data would contribute to better char-
acterizing the spatiotemporal features of user behavior in ABMs. The
development of an ABM considering a synthetic population provides
flexible applications to take into account different periods and future
situations. This, in turn, would enable a more integrated analysis with
the energy demands of building sectors [30] and power systems [5]. In
addition, this study relied on mobility trajectories observed under
existing conditions. It did not incorporate the potential variations in
vehicle usage and ownership because of vehicle electrification and
automation or variations in the availability and accessibility of charging
infrastructure. Future research should address these behavioral
responses.

5. Conclusion

Location log big data collected from mobile devices has a significant
potential to enhance the spatiotemporal resolution in modeling EV
usage, battery charging demand, and flexibility. Notwithstanding its
potential, no research has been conducted on using location log big data
to model these elements on a large scale at a high spatiotemporal res-
olution. This study established a data-driven workflow to extract vehicle
activity schedules from location log data and directly used the extracted
activity schedules to quantify the vehicle usage, EV charging demand,
and flexibility at the national and local levels while considering the local
activity characteristics and constraints. The workflow was validated at
the log and individual levels with annotated data and at the aggregated
level with average distance traveled per day and annual energy con-
sumption from subnational-level statistics. The result showed that the
EV charging demand in Japan would reach a maximum of 25 GW in mid
seasons with uncontrolled charging on both weekdays and holidays. The
peak durations are longer on holidays than on weekdays, and an in-
crease in energy consumption causes an increase in peak durations. The
activity patterns, demand, and flexibility significantly vary with the
accessibility to public transportation. The results demonstrate that the
established method can provide high spatiotemporal resolution EV data
for various power system analyses while considering common scenarios
in terms of EV deployment, charging schedule, and flexibility operation.
Additionally, it allows for iterative studies that integrate local and
macro-level power systems. Further research is required to integrate
spatiotemporal characteristics obtained from location log data with
activity-based vehicle usage models to fully utilize the potential of
location log data.
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Appendices.

Appendix A. Machine learning models used for classification processes

A.1. Machine learning model for travel mode classification
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The features listed in Table A.1 were considered in the model development. Supplementary Material B.1 provides details of the features.

Table A.1
Features used for classifying travel mode

Feature

Low-quality trips High-quality trips

Average speed

Variance of speed

85th percentile of speed

Average acceleration

Variance of acceleration

85th percentile of acceleration

Average turning angular velocity

Variance of turning angular velocity

85th percentile of turning angular velocity
Percentage of logs with low speed
Number of logs

Route length

Linear distance

Ratio of linear distance to route length
Concordance rate with train mesh
Number of airports passed through
Concordance rate with sea mesh
Transportation for previous high-quality trip
Transportation for next high-quality trip

v

v

AN N N N N YN N N Y N N N N NN

AN NN N NN VNN

A.2. Machine learning model for spot classification

The XGBoost model calculated the probability that the spot was the user’s living area or working area. One kilometer mesh of the spot with the
highest probability of being the user’s living area was considered as their living area. Then, among the spots other than the living area, 1 km mesh of
the spot with the highest probability of being the working area was considered to be the working area (among the spots with a workplace probability of
at least 0.5). Users who did not have a workplace probability of at least 0.5 at any of the spots other than their living area were considered to be non-
commuters. Table A.2 lists the features considered in the XGBoost model. Supplementary Material B.1 provides details of the features. Spots that users
have visited only one time cannot be classified because the variance of arrival and departure times cannot be calculated. Moreover, it was assumed that
most individuals stayed in living or working areas at least two times within 12 days.

Table A.2
Feature values for classifying stay points

Feature value

Living area

Working area

Number of days visited
Total time spent

Average arrival time
Variance of arrival time
Average departure time
Variance of departure time
Population of 1 km mesh
Distance from living area

AN NN NN

AN N N N

AN

11



Y. Yamaguchi et al. Energy 335 (2025) 137804

Appendix B. EV charging demand

Figure B.1 shows the estimated EV charging demand with the uncontrolled charging overlaid on the actual electricity demand throughout Japan
for the same period [43-52].

[- Actual electricity demand I EV charging demand]

Electricity demand
throughout Japan[GW]

0
10/26[Sat] 10/27[Sun] 10/28[Mon] 10/29[Tue] 10/30[Wed] 10/31[Thu] 11/01[Fri] 11/02[Sat] 11/03[Sun] 11/04[Mon]
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Fig. B.1. Actual demand for electricity in Japan and the demand for EV charging with uncontrolled charging.

Appendix C. PTAL

The accessibility index AI for each mesh was calculated as in Eq. (C.1) based on two factors': the walk time WT from each mesh to the nearby train
station or bus stop, and the average waiting time at the stations SWT.

1
Alpesh = _ C.1
mesh S%,IWT + SWT ( )

WT was calculated by increasing the straight-line distance from the center point of the mesh to the station by 30 % to account for the differences
from the actual route, and then dividing by the assumed walking speed of 5 km/h. SWT was expressed as the average time interval between trains and
buses departing from each station.” Stations are those within a 3 km radius from the center point of the target mesh.

The distribution of Al is shown in Figure C.1(a). As illustrated in Figure C.1(b), the distribution fits the lognormal distribution well. Thus, the
meshes were classified into six PTALs using the mean y and standard deviation ¢ of the lognormal distribution fitted by the maximum likelihood
estimation method excluding those where Al was 0 as PTAL = 1 where Al,.s, < u — 20, the least accessible areas, to PTAL = 6 where Al > pt+
20, the most convenient meshes as Level 6.
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Fig. C.1. Distribution of PTAL s, and Alpesn

Figure C.2 presents the percentage of vehicles in motion, charging, or parked in living areas in PTALs 1 and 6. Vehicles are parked in living areas for
longer periods in PTAL 6 than in PTAL 1, wherein vehicles are parked longer in working area or other spots.

! Unlike the original concept underlying the AI calculation formula, the reliability coefficient was not considered because of the high reliability of Japan's public
transportation system.

2 The daytime service frequency data of train stations is a dataset [54]. The data source is the 2019 timetable. The data include the number of passenger trains
arriving and leaving stations between 10:00 and 17:00 on weekdays.
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Fig. C.2. Composition of the state of vehicle under uncontrolled charging in (a) PTAL 1 and (b) PTAL 6.

Appendix D. Charging demand estimated with all location log

Figure D.1 shows the difference in charging demand under the uncontrolled charging with/without the sampling process. The peak became half,
and the total charging demand decreased by 46 % compared with the case with sampling.
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Fig. D.1. Comparison of charging demand with/without the sampling process.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.energy.2025.137804.
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