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A B S T R A C T

The rapid growth of electric vehicles (EVs) and renewable energy has increased the importance of detailed power 
system planning at multiple scales ranging from local distribution networks to macro-level generation capacity 
and operations. To maximize the contribution of EVs to decarbonization and system transitions, high spatio
temporal data on EV charging demand and flexibility applicable at multiple scales would be effective. Previous 
research has established useful modeling approaches. However, limitations to expressing macro and local 
characteristics simultaneously remain. To address this deficiency, this study developed a data-driven workflow to 
extract vehicle usage profiles from human mobility big data collected from mobile devices to quantify vehicle 
usage, EV charging demand, and flexibility on a large scale at a high spatiotemporal resolution. The application 
to entire Japan showed that if all the private vehicles are electric, uncontrolled home charging would reach a 
maximum of 25 GW. EVs have significant flexibility potential through smart charging and vehicle-to-grid op
erations. The 1 km-mesh-resolution data showed that activity patterns, demand, and flexibility vary considerably 
depending on the accessibility to public transportation. The established method can provide high spatiotemporal 
resolution EV data for various purposes and also allows for iterative studies that integrate local and macro-level 
power systems.

1. Introduction

Electrifying vehicles is essential to reducing carbon dioxide emis
sions. The expansion of electric vehicles (EVs) use may pose challenges 
for the capacity management and operation of power generation and 
distribution systems [1–3]. Moreover, smart charging and 
vehicle-to-grid (V2G) operations provide solutions to these problems 
and contribute to mitigating the impacts of a large-scale deployment of 
renewable energy sources such as solar photovoltaic and wind power 
generation through demand response and virtual power plants [4–6]. To 
address these challenges, models are required that can estimate the EV 
charging demand and its flexibility under EV ownership and charging 
option scenarios [7–9]. Such models are particularly effective when the 
EV penetration is low and real-world data are insufficient.

However, conventional spatiotemporal approaches for modeling EV 
usage patterns have limitations on simultaneously representing aggre
gated features of the demand and flexibility for electricity generation 
systems on a large scale and local features for power distribution systems 

at a high spatiotemporal resolution. Models with such capability may 
help smooth power system transitions by enabling the testing of stra
tegies for various purposes and conducting iterative studies that inte
grate local and macro-level power systems. To fill the gap, this study 
develops a data-driven EV usage model based on location log big data 
collected from mobile devices.

1.1. Related works

Diana et al. [7] classified EV usage modeling approaches into three 
categories in a systematic review: 1) summary travel statistics models 
(STSMs) that develop summary statistics or empirical distributions to 
generate deterministic or stochastic vehicle use patterns, 2) models 
based on entire activity travel schedules (direct use of observed activity 
travel schedules (DUOATS) and proper activity based models (ABMs)), 
and 3) Markov chain models (MCMs) that represent the stochastic 
characteristic of vehicle state transition when driving or parked at home 
or other places. STSM has limitations in terms of expressing spatial and 
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temporal details. MCM is developed based on observed EV usage data. 
The review by Yaghoubi et al. [57] highlighted the development of 
data-driven machine learning, deep learning, and ensemble methods 
using observed data in recent years. MCM and these data-driven 
methods are ineffective where EV penetration is low as these have 
been developed in data-rich environments. DOUATS and ABM are 
generally developed based on travel diaries collected from travel sur
veys, or using location log data. DOUATS uses fixed travel schedules 
from observations and is less flexible than an ABM that defines agents 
performing travel activities stochastically considering features charac
terized by input data.

Considering heterogeneous spatiotemporal characteristics helps 
represent realistic EV usage patterns [8]. ABM has progressed signifi
cantly in this regard. Mu et al. [10] developed an ABM with a high 
spatiotemporal resolution by considering a detailed origine-destination 
(OD) matrix. Mangipinto et al. [11] modeled the EV charging demand of 
28 European countries and showed that the hourly patterns vary 
significantly by country owing to the weather and user behavior. Lin 
et al. [12] developed an ABM that explicitly considers trip chains, which 
distinguish between travel purposes and the types of places visited. 
Jahangir et al. [13] proposed a neural network model of the travel 
distance based on the relationship with the departure and arrival times. 
Zhang et al. [14] considered the variation in activity with individuals’ 
demographics and location types. Pareschi et al. [15] showed that travel 
survey data effectively represent the mobility behavior of EVs. Liu et al. 
[16] developed a model representing the population of the Atlanta 
metropolitan area and quantified the spatiotemporal distribution of the 
charging demand. Gschwendtner et al. [17] applied a high spatiotem
poral resolution ABM (the Multi-Agent Transportation Simulation 
(MATSim)) to three Swiss cities representing urban, suburban, and rural 
areas. They showed that the charging demand and flexibility vary 
significantly depending on the region and type of location. Szinai et al. 
[18] and Wu et al. [19] applied MATSim to California, USA, and con
ducted an integrated analysis of the power system and charging station 
planning. Vollmuth et al. [5] applied this model to show that significant 
cost advantages could be achieved. POLARIS is acknowledged as a 
highly advanced ABM transportation simulation with high temporal 
resolution and fidelity in behavioral representation compared with 
MATSim. This enables detailed representation of user behavior in 
various contexts [23,24]. Integrated analyses with residential buildings 
have been also performed by combining models of in-home activity and 
the resultant household energy demand [20–22].

Notwithstanding the important knowledge gained by ABMs, several 
shortcomings in representing the spatiotemporal characteristics of EV 
usage have been identified [25]. Furthermore, owing to the complexity 
of model development, the spatial scale of model application is usually 
limited to cities or metropolitan areas. In addition, the highest level of 
spatial resolution is limited to cities or marginally smaller areas. These 
are insufficient for power system planning at multiple scales.

With the current spread of smartphones, an alternative approach 
using human mobility big data that utilizes smartphone location logs has 
been proposed. Liu and Dong [26] established a method for extracting 
human mobility patterns while identifying the homes, workplaces, and 
other locations of mobile phone users using a density-based spatial 
clustering algorithm. Martin et al. [27] proposed a standardized data 
processing pipeline for location log data. Several studies related to EVs 
have been conducted. Xu et al. [28] developed an ABM using call detail 
records collected from 1.39 million mobile phone users in the San 
Francisco Bay Area. Zhang et al. [29] analyzed location data collected 
from 1.6 million mobile phone users to assess the potential for wide
spread EV adoption. Zhang et al. [30] used the same data to analyze the 
variations in EV charging and residential electricity demand profiles 
owing to population aging.

1.2. Research gap and contribution

Research using location log big data shows considerable potential for 
application to more comprehensive and detailed EV charging and flex
ibility analysis. Because the trajectories of individual users are available, 
it is feasible to consider the spatiotemporal characteristics of EV usage, 
charging demand, and local constraints on flexibility application. 
Furthermore, the aggregated demand can be expressed as the sum of 
individual demands. This can potentially be applied for an integrated 
analysis at multiple scales. However, research has not been conducted 
using location log big data for analyzing EV usage, charging demand, 
and flexibility on a large scale with a high spatiotemporal resolution. A 
reason for this is that commercially available large-scale location log 
data is collected using simple location information receivers installed in 
mobile devices. The data contains a large margin of error, and the fre
quency of data acquisition varies. These conditions hinder the accurate 
extraction of vehicle usage. Thus, a workflow addressing these issues 
should be established.

This study aims to establish a workflow to extract vehicle usage from 
location log big data and model EV usage, charging demand, and flex
ibility that can be obtained by smart charging and V2G operation on a 
large scale at a high spatiotemporal resolution. This research makes two 
contributions. First, it establishes a workflow to apply low-quality 
location log data to EV usage modeling. Second, it presents a data- 
driven DOUATS approach that can provide EV usage data effective for 
both macro- and local-levels simultaneously under certain EV ownership 
and charging option scenarios.

1.3. Structure of the paper

Section 2 describes the proposed framework and data used in this 
study. Section 3 presents the results. This is followed by a discussion in 
Section 4 and the conclusions in Section 5.

2. Method

In this study, we applied location log data collected from mobile 
devices in Japan using location-based services provided by the company 
Agoop. The data was collected from 1.48 million devices, approximately 
0.1 % of Japan’s total population. Each device has a unique ID that can 
be used to monitor its trajectory.

Fig. 1 shows the process of estimating the EV usage, charging de
mand, and flexibility. After pre-processing, the location logs are classi
fied into two types: stay logs recorded while staying at a random 
location, and movement logs obtained while moving by means of 
transportation. The travel modes in movement logs are then identified as 
car, train, walking, and others. Using stay logs, the areas where the user 
stayed are identified and called spots. A spot is selected for each users’ 
living and working areas using a 1 km mesh. These classification pro
cesses are implemented using machine learning techniques. Continuous 
movement logs between spots are called trips. For user trips by car, the 
demand for EV charging and the flexibility that can be provided by smart 
charging and V2G are quantified based on scenarios. In this study, we 
considered only EV charging and V2G operation while users were 
staying in their living area.

2.1. Location log data

2.1.1. Data
The data contained in the location logs from Agoop [31] are shown in 

Table 1. The location coordinates specified by the latitude and longitude 
of the device are provided with a timestamp. The logs include the ac
curacy, which indicates the scale of potential errors. The 100-m mesh 
code of the device’s location is also provided. The device is identified by 
a unique ID, and the trajectory of the device’s location can be monitored. 
This study used data collected from 1.48 million devices over a 12-day 
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period from October 24 to November 4, 2019. No user demographic 
information is available. Owing to privacy concerns, the logs near home 
and workplace are not available.

The location logs were collected from Android and iOS devices that 
record at different frequencies. Android devices typically collect loca
tion logs at fixed time intervals. Meanwhile, iOS devices collect logs 
more frequently when the user is moving and less frequently otherwise. 
Furthermore, logs collected from iOS devices generally have a time lag 
when reading the location signal at the start of movement. The recording 
frequency is also affected by the device’s app settings.

Fig. 2 shows (a) the cumulative frequency distributions of intervals 
between consecutive logs for all location logs, and (b) those of average 
log intervals for each user. Fig. 2(a) indicates that most of the logs 
collected from the iOS and Android devices were recorded within 15 min 
of the previous log. In Fig. 2(b), approximately 30 % of users have an 
average of 60 min or more, i.e., one log per hour on average, indicating 
that there are many users whose logs were recorded infrequently.

2.1.2. Annotation
Annotated data were prepared to train and evaluate the machine 

learning models developed in the classification processes. 1,500 Android 
users and 1,500 iOS users were selected randomly. In the manual 
annotation process, the logs contained in the user’s movement trajectory 
were plotted on map tiles and satellite photograph tiles in conjunction 
with a timeline. Furthermore, the state of stay/movement or the selected 
travel mode was determined for each log. First, if logs were recorded 
continuously in the same location, the user was determined as staying 
there. Any other behavior was determined as movement. For the stay 
logs, we considered the frequency of visits, arrival and departure times, 
length of stay, and characteristics of the area (such as residential area, 
office district, and factory zone) to label the type of place where the user 
was staying (living area, working area, and others). For the logs labeled 
as movement, we rationally determined the travel mode (car, walking, 
train, and others) by considering the speed of movement and the rela
tionship with the road network and railway lines.

2.2. Preprocessing

2.2.1. Noise filtering
The location log contains errors caused by various factors such as 

signal reflection and the absence of nearby base stations. If the error is 
large, the distance between consecutive logs becomes unnaturally large 
(in the scale of tens of kilometers). To remove erroneous logs, we applied 
anomaly detection based on heuristics [32]. In this method, logs that 
start from a certain log, leave the vicinity of that log, and then return 
within a short time are considered as noise and are removed.

2.2.2. Interpolation
Because the interval between logs in the location log data is not 

constant, we linearly interpolated consecutive logs to convert these into 
1 min intervals.

Fig. 1. Developed workflow.

Table 1 
Attributes of the location logs.

Attributes Description

Location 
coordinate

The latitude and longitude in the World Geodetic System 
(WGS84) with six decimal places of precision.

Timestamp The date and time when the log was obtained. The timestamp is 
recorded with a minimum resolution of minutes.

Accuracy Horizontal accuracy of the log. In the case of data collected from 
Android devices, this is the radius of the circle that has a 68 % 
probability of containing the point indicated by the acquired log. 
The definition of horizontal accuracy for iOS data is not 
disclosed.

100 m mesh code A 100 m mesh that includes the location indicated in the log. The 
mesh is based on the 1/10 subdivision of the third mesh defined 
by the Ministry of Land, Infrastructure, Transport and Tourism.

OS The operating system of the device owned by the user.
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2.3. Stay-move classification

To classify the stay logs and movement logs, a density-based spatial 
clustering algorithm, DBSCAN-TE [33], was applied to the interpolated 
trajectory data. When an individual is staying at a location, multiple 
consecutive logs are detected as being located nearby. A group of 
consecutive logs is identified as a cluster and classified as stay logs. 
When an individual is moving, the distance between logs is identified. 
We added to the two processes explained in Supplementary Material A 
for adapting the characteristics of the low-quality location log data.

2.4. Travel mode classification

For the movement log, XGBoost identified the travel mode by 
considering whether the user traveled by car, on foot, by train, or by 
other means (e.g., boat or plane). Bicycles were included in the walking 
category. For developing the classification models for iOS and Android, 
80 % of the annotated data was used to train the classification models. 
The remaining 20 % was used for validation. Appendix A.1 describes the 
considered features.

As a preliminary process, trips consisting of at least three logs were 
labeled as high-quality trips, and the remaining were labeled as low- 
quality trips. We classified the travel modes for high-quality trips 
before classifying those for low-quality trips. When classifying the travel 
modes of low-quality trips, we used the estimated travel modes of the 
high-quality trips before and after these as features.

In addition, we distinguished bus trips from other vehicle trips. We 
considered the first and final movements between leaving from and 
returning to the living area by car to be non-bus travel. This is because 
we assumed that logs of walking from the living area to the bus stop and 
vice versa were recorded.

2.5. Stay point classification

After classifying the movement logs and stay logs, spots (where the 
user stayed) were identified by applying DBSCAN. Then, the living and 
working areas were selected. Although the locations of homes and 
workplaces have been deleted from the log data (see Section 2.1.1), it is 
reasonable that many interpolation logs are within the vicinity where 
individuals spend a considerable amount of time. A 1 km mesh was 

selected with the highest probability for living, whereas working area 
was selected for each individual if the probability was higher than 50 %. 
The probability was estimated by XGBoost for each mesh of identified 
spots. Appendix A.2 explains the classification in detail.

2.6. Sampling

This process excludes users who may introduce errors in the esti
mation of vehicle energy consumption, based on the upper and lower 
limits of the parameters listed in Table 2. For various reasons, the actual 
movement and the trajectory do not match in certain cases. For example, 
the following would involve underestimation of the distance traveled: 
users who have not turned on the location information function on their 
smartphone and therefore do not have sufficient location information, 
and users who have left their smartphone at home and gone out. These 
users showed high average values at the log recording intervals shown in 
Fig. 2(b). Meanwhile, users who have a high frequency of logs with large 
location measurement errors over a short period of time would have 
their distance traveled overestimated because the noise cannot be 
identified in the noise removal process. A similar phenomenon can also 
be observed for users using an application to conceal their location in
formation. Supplementary Material D shows the distributions of the 
selected parameters to justify their selection.

Fig. 2. Distribution of recorded intervals. (a) shows those of all logs, and (b) shows those of the average interval between logs for each user.

Table 2 
Parameters used to remove outlier users.

Definition Limit Unit Value

Location 
uncertaintya

The difference between the 
recorded position and estimated 
position

Upper %b 30
Lower %b 26

Proportion of 
movement logs

Proportion of movement logs in 
trajectory data

Upper %b 0.01
Lower %b 16.0

Number of logs Number of logs per user Lower %b 47
Logged days Number of days in which logs 

were recorded
Lower Days 10

a The location uncertainty represents the average distance between the 
observed latitude or longitude and the latitude or longitude estimated from the 
previous and following logs for all the logs in the trajectory data (see Supple
mentary Material C).

b The “%” mark indicates the percentage of users excluded when using the 
highest value as the upper limit and the lowest value as the lower limit.
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The upper and lower limits of the parameters were adjusted using 
Bayesian optimization so that the distance traveled per individual per 
day in each prefecture could be compared with the National Road and 
Street Traffic Conditions Survey [34]. The values that minimized the 
root mean square error (RMSE) for each parameter were selected. As a 
result of selecting users by these parameters, the number of individuals 
targeted for estimation was 212,990. The RMSE was 3.51 
km/day/vehicle.

2.7. Enlargement to the population

The estimated charging demand of users was multiplied by the 
expansion rate and expanded to the total population. Fig. 3 shows the 
distribution of the expansion rate of municipalities. The rate was 
calculated by dividing the number of private vehicles owned in each 
municipality [35,36] by the number of private passenger car users. 
Municipalities with fewer than five users were combined with neigh
boring areas based on the prefectural assembly election districts.

2.8. Operation of battery

In this study, we analyzed the temporal and spatial distribution of the 
charging demand. The assumption was that all the private vehicles in 
Japan would be replaced with EVs. In this estimation, we assumed that 
the vehicle power efficiency was 7 km/kWh and that the charging power 
was 6 kW. We also assumed that charging was not controlled and that all 
the vehicles would be charged immediately after the users return to their 
living area. For simplicity, we assumed that the battery capacity is equal 
to the maximum cumulative power use with uncontrolled charging 
during the period.

We also calculated the flexibility of charging and discharging. First, 
we determined the baseline charging schedule that minimizes the 
charging costs by mixed integer linear programming [37,38] consid
ering the wholesale electricity price for that period of the Japan Electric 
Power Exchange [39]. Then, we calculated the number of EVs that can 
be charged or discharged continuously over a certain period of time. We 
multiplied the number of EVs that can be charged or discharged by the 
rated power of the charger to obtain the potential flexibility of elec
tricity. In this study, we assumed that the time for continuous charging 
and discharging would be 1 h, 2 h, 3 h, or 6 h. EVs providing flexibility 
were defined as those staying in living areas with all travel demands 
satisfied and a state of charge (SOC) between 20 % and 100 % after 
charging and discharging.

This study only considered private vehicles and home charging. We 
considered vehicle trips that do not return to the user’s living area and 
rather depart from and return to the user’s working area to be com
mercial vehicle trips.

3. Result

3.1. Log classifications

Fig. 4 shows the distribution of stay logs, divided into living area, 
working area, and other spots. Fig. 5 shows the results of classifying 
movement logs by mode of transportation, divided into car, walking, 
train, and others. As shown in the figures, the stay logs cover entire 
Japan. However, there are fewer logs in areas with low population 
density. Supplementary Material E presents an example of the classifi
cation results for a user to demonstrate the classification processes.

3.2. Validation

3.2.1. Classification tasks
We evaluated the classification tasks using annotated test data. 

Table 3 lists the accuracies and F-1 scores of the classification processes. 
The lowest F-1 score of 0.76 was detected in iOS for the classification of 
living areas. In general, for GPS trajectory classification tasks, accuracies 
or F-1 scores exceeding 80 % are commonly considered as being indic
ative of high performance, and scores above 90 % are evaluated as 
representing significantly high classification accuracy [40]. Therefore, 
our results indicated high model performance. As mentioned earlier, iOS 
devices record logs when the user is staying at a location. Therefore, 
when iOS users start moving, certain misclassifications are observed 
owing to insufficient logs. Consequently, the length of stay could not be 
calculated accurately for certain places. By the same criteria, the scores 
are sufficiently reasonable.

3.2.2. Average distance traveled by car and energy consumption
To verify the travel distance obtained from trajectory data, we used 

data from the National Road and Street Traffic Conditions Survey [34]. 
These data include the average distance traveled by private vehicles in a 
day. The aggregated values are available for only 10 regions in Japan, 
which are made up of multiple prefectures. Fig. 6(a) shows the estimated 
result fitted well.

To verify the estimated energy consumption, we used data of the 
household consumption of gasoline for private passenger cars in the 
transportation sector described in the general national energy statistics 
[41]. To estimate the amount of gasoline consumed from location logs, 
we divided the distance traveled by the average JC08 mode fuel effi
ciency in 2019 (22.6 km/L) and multiplied it by the calorific value of 
gasoline (33.36 MJ/L) [42]. Fig. 6(b) shows the result. The model esti
mation agreed well (RMSE = 12 PJ/year).

3.3. Estimation of charging demand with uncontrolled charging

Fig. 7 shows the cumulative distribution of battery capacity required 
for uncontrolled charging during the twelve days. As shown in the 
figure, most of the distances traveled by users were less than 350 km 
(equivalent to 50 kWh of battery capacity) and can be supported by 
major EVs sold worldwide.

Fig. 8 shows the average daily charging demand per household in the 
1 km mesh across Japan. The gray areas indicate locations where suf
ficient data is not available. The charging demand per household is the 
lowest in the central parts of the Tokyo, Nagoya, and Osaka metropol
itan areas, and higher in the suburbs. The demand is low in the central 
parts owing to convenient access to public transportation. In suburban 
and rural areas, individuals drive more frequently and travel longer 
distances. Therefore, the demand tends to increase in a concentric 
pattern around these areas.

Fig. 9 shows the spatial and temporal distribution of charging de
mand per household in each 1 km mesh in central Japan’s major 
metropolitan areas (Tokyo, Nagoya, and Osaka) at 0:00, 6:00, 12:00 and 
18:00 on Saturday, November 2. Due to uncontrolled charging, the de
mand for charging at 6:00 is very low. Peak demand occurs at 18:00 

Fig. 3. Distribution of expansion rate. The vertical axis shows the number of 1 
km mesh squares with the expansion rate shown on the horizontal axis (in
tervals of 100).
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relative to the other time periods.
Fig. 10 shows the time series patterns of the total charging demand in 

Japan and the charging demand per household over time. The peak 
demand is observed around 19:00, with a total of approximately 26 GW 
and a per household value of 0.5 kW. This implies that approximately 

1/12 of all EVs are being charged during peak time. The peak hours are 
shorter on weekdays than on holidays. However, the peak demand is 
approximately equal on all days.

The evening peak coincides with the timing of peak residential 
electricity demand. Thus, it could have an adverse impact on power 

Fig. 4. Locations of stay logs observed in (a) living area, (b) working area, and (c) other spots.

Fig. 5. Travel mode classification result: (a) car, (b) walking, (c) rail/train, and (d) other modes.
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generation and distribution networks. Figure B.1 shows the estimated 
EV charging demand overlaid on the actual electricity demand 
throughout Japan for the same period [43–52]. The total electricity 
demand would increase by an average of approximately 10 %, rising to 
approximately 30 % during peak times. The peak shape from the eve
ning to the night would become sharper owing to the increase in EVs, 
and the peak time would be delayed by 1 h. These results indicate that 
EVs would have a significant impact on the total amount of electricity 
demand and its temporal characteristics.

3.4. Spatial variation in EV charging demand

To understand how the regional characteristics are reflected in the 
spatial distribution of charging demand, we analyzed the relationship 
with the accessibility to public transportation networks. In this study, we 

used public transport accessibility level [53], PTAL, as an indicator of 
accessibility. Appendix C explains the method to quantify PTAL for each 
1 km mesh from PTAL 1 to 6 (from the lowest to the highest accessi
bility) and mapped its spatial distribution.

Fig. 11 shows the estimated values of the charging demand per 
household in each PTAL. In PTALs 1, 2, and 3, the scale of charging 
demand was almost equal. However, the demand for charging decreased 
from PTAL 4. The peak demand for charging in PTAL 6 was 

Table 3 
Accuracies and F-1 scores of the classification models.

Classification process OS Accuracy F-1 
score

Stay-move classification Android 0.96 0.87
iOS 0.87 0.90

Travel mode 
classification

Android 0.88 0.91
iOS 0.91 0.94

Living area estimation Android 0.99 0.97
iOS 0.90 0.76

Working area estimation Android 0.99 0.96
iOS 0.99 0.92

Fig. 6. Estimated daily vehicle distance traveled and annual total energy consumption in 10 regions of Japan.

Fig. 7. Distribution of battery capacity required for uncontrolled charging.
Fig. 8. Spatial distribution of daily charging demand.
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Fig. 9. Spatiotemporal distribution of charging demand on Saturday, November 2.

Fig. 10. Total charging demand from all EVs during uncontrolled charging periods. The background color indicates the distinction of weekdays (blue) or holi
days (pink).

Fig. 11. Average EV charging demand per household in PTAL 1–PTAL 6: (a) daily and (b) hourly.
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approximately 10 % of the demand in PTAL 1. The daily demand on 
holidays, particularly on Sundays, was higher than that on weekdays. 
This trend was consistent across PTALs. The daily demand did not vary 
considerably from Tuesday to Friday. The temporal pattern shows no 
significant difference between PTALs, with the lowest demands at 4:00 
and the highest demands at 19:00. The peak during the night is steeper 
on weekdays compared to weekends. This temporal pattern is obtained 
from the vehicle usage pattern shown in Figure C.2.

3.5. Estimation of flexibility

Fig. 12 shows the estimated charging and discharging flexibility of 
entire Japan. The flexibility was obtained based on the baseline condi
tion (red area) that minimized operating costs. There were eight days 
when peak demand occurred around noon due to the impact of elec
tricity prices. The flexibility indicated by the dotted lines decreases as 
the charging and discharging durations increase. In addition, when the 
electricity price is low, the potential for flexibility approaches zero 
because charging has been implemented in the baseline. Conversely, the 
potential for flexibility increases at night and early in the morning when 
the operating rate of EVs is low. In addition, the charging flexibility 
tends to attain its peak when EVs return to the living areas because the 
SOC is low. The discharging flexibility tends to attain its peak early in 
the morning, when the SOC is high before the EVs leave.

The charging flexibility for 6 h was estimated to be almost zero 
during the daytime when the output of solar photovoltaics becomes 
large because charging operations were assigned at the baseline, as 
mentioned above. The discharging flexibility for V2G during the evening 
peak between 17:00 and 19:00 was estimated to be 20 GW, 25 GW, and 
50 GW for 3, 2, and 1 h on average. The discharging flexibility is larger 

on weekdays than on holidays, and vice versa for the charging flexi
bility. Comparing peak values, charging flexibility on weekdays was 18 
% higher than on holidays, while discharge flexibility on holidays was 
16 % higher than on weekdays.

Fig. 13 shows the time-series variation in charging and discharging 
flexibility per household (assuming that the duration of charging and 
discharging is 1 h) by PTAL. In areas with PTAL 1 to PTAL 3, the 
charging and discharging flexibility barely differ. However, the peak 
value of charging and discharging flexibility decreases gradually from 
PTAL 4 to PTAL 6. Meanwhile, there is almost no variation in the time 
characteristics from PTAL 4 to PTAL 6. This is because as PTAL in
creases, the battery capacity allocated to EVs and the number of EVs that 
can be charged and discharged for flexibility decrease.

4. Discussion

4.1. Establishment of workflow

The workflow to extract vehicle usage from the low-quality location 
log data consists of classification tasks for stay-move state of logs, travel 
mode of trips, and location type of spots. Machine learning techniques 
were applied for these. The evaluation using annotated data described in 
Section 3.1 revealed that each task was performed with a high accuracy. 
The comparison in Section 3.2 reveals that the average travel distance 
per day and daily energy consumption of private vehicles agreed well 
with publicly available data. Although the spatial resolution was 10 
Japanese regional divisions because of the data availability, it indicates 
that the developed model effectively represents the vehicle usage in 
Japan. Because of the method, large-scale data on vehicle usage were 
obtained from all over Japan at a high spatiotemporal resolution.

Fig. 12. Estimated total charging and discharging flexibility and per household. The gray area indicates the discharge by driving, whereas the red area indicates the 
charging demand with cost minimum charging (the electricity system price is shown by the orange bars). The charging and discharging flexibilities that can be 
provided by EV battery operation are shown by the lines for different charging/discharging durations.

Fig. 13. Estimated total flexibility in PTAL 1–PTAL 6 with 1 h duration of charging and discharging.
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However, a critical uncertainty remains on how well the location log 
data represents the vehicle usage of population. First, insufficient log 
samples were available in sparsely populated areas. Second, the location 
log data contains data that do not represent the user behavior appro
priately as explained in Section 2.6. Therefore, only 20 % of users were 
sampled to obtain a good fit with the national survey data. Although the 
proportion of valid users is small, the thresholds selected in Table 2 are 
reasonable constraints to ensure data is removed that may not represent 
the actual behavior of users as shown in the distributions of the selected 
parameters in Supplementary Material D. We confirmed that the per
centage of valid samples was 20.9 %, 21.7 %, 21.0 %, 17.9 %, 14.7 %, 
and 10.2 % for PTAL 1 (rural) to PTAL 6 (urban) areas, respectively. 
Appendix D compares the difference in charging demand by the sam
pling process and shows that omitting the sampling process significantly 
reduces total charging demand and peak charging demand. These results 
indicate that users with logs showing low frequency of movement 
outside the home mesh area were deleted more frequently, especially in 
urban areas. Although we used Bayesian optimization to determine the 
parameters to remove outlier users as in Table 2, a data-driven evalua
tion of valid users and days would be possible to increase the dataset 
used by machine learning methods trained with annotated data.

4.2. Data-driven spatiotemporal characterization of EV charging demand 
and flexibility

Despite location log data limitations, Sections 3.3–3.5. demonstrate 
the advantages of combining location log data with the DUOATS 
approach. It enables the quantification of the spatiotemporal charac
teristics of EV usage, charging demand, and flexibility at the national 
and local levels simultaneously. According to Section 3.3, the total 
charging demand reaches a maximum of 25 GW on both weekdays and 
holidays. The peak duration is longer during holidays than during 
weekdays. This indicates that the peak duration may be longer during 
summer and winter owing to the electricity demand for air-conditioning, 
because the observation in Shanghai revealed that the charging demand 
is two times higher than that in the other months [55]. Meanwhile, as 
shown in Section 3.5, EVs can provide significant charging flexibility for 
smart charging and discharging for V2G. Shifting evening charging de
mand to nighttime or daytime shown in the baseline operation in Fig. 12
helps alleviate evening peak loads. This also helps mitigate the impact of 
large-scale PV deployment during daytime. V2G operations can provide 
an additional 20 and 25 GW of discharge flexibility during evening peak 
hours for 3- and 2-h long discharge periods, respectively. On the other 
hand, additional daytime charging flexibility is limited when daytime 
charging is allocated in the baseline. We observed that the discharging 
flexibility is higher on weekdays than on holidays, and vice versa for the 
charging flexibility. Although we considered only private vehicles and 
home charging in this study, other places and company cars can be 
considered.

In Sections 3.4 and 3.5, the results reveal that the scale of charging 
demand and flexibility differs significantly among PTALs. However, 
their temporal patterns are similar. Although we used PTAL considering 
the accessibility to public transportation as the unit of analysis, it in
dicates that a detailed analysis can be performed at the local level to 
reflect the characteristics of EV usage and constraints for flexibility.

The proposed framework can generate the EV charging demand and 
flexibility across multiple spatial scales from a single vehicle at the 
household level to the city, prefectural, regional, and even national 
levels across the target area. These results reflect the regional charac
teristics and provide effective insights for power system planning at 
multiple scales.

4.3. Limitations and future works

Validation should be performed more comprehensively using avail
able data sources. Furthermore, a more detailed analysis is required to 

fully understand EV charging demand and flexibility. This is because the 
quantification process used several simplified assumptions regarding EV 
battery capacity (using maximum energy consumption during the 
period), charging behavior (assuming only uncontrolled charging), and 
flexibility participation scenarios (assuming that all vehicles are con
nected to the power grid while parked at home and always provide 
flexibility). These assumptions may have a significant impact on EV 
charging demand and flexibility. The presented workflow can be 
extended to analyze more realistic conditions and diverse charging and 
flexibility scenarios (e.g., charging/discharging at workplaces and other 
locations, commercial vehicle cases, etc.).

As explained in Section 4.1, the impact of user sampling on estima
tion results should be better understood. This is particularly important 
for the accurate representation of sparsely populated areas where the 
availability of original data is generally low. In this paper, we merged 
such areas with neighboring areas. Furthermore, methods should be 
established to fully use available location logs. A potential method is to 
develop an ABM based on developed activity data combined with other 
data sources. Owing to the unavailability of demographic information in 
the location log, the integrated use with travel survey data would be 
advantageous [20]. Location log data would contribute to better char
acterizing the spatiotemporal features of user behavior in ABMs. The 
development of an ABM considering a synthetic population provides 
flexible applications to take into account different periods and future 
situations. This, in turn, would enable a more integrated analysis with 
the energy demands of building sectors [30] and power systems [5]. In 
addition, this study relied on mobility trajectories observed under 
existing conditions. It did not incorporate the potential variations in 
vehicle usage and ownership because of vehicle electrification and 
automation or variations in the availability and accessibility of charging 
infrastructure. Future research should address these behavioral 
responses.

5. Conclusion

Location log big data collected from mobile devices has a significant 
potential to enhance the spatiotemporal resolution in modeling EV 
usage, battery charging demand, and flexibility. Notwithstanding its 
potential, no research has been conducted on using location log big data 
to model these elements on a large scale at a high spatiotemporal res
olution. This study established a data-driven workflow to extract vehicle 
activity schedules from location log data and directly used the extracted 
activity schedules to quantify the vehicle usage, EV charging demand, 
and flexibility at the national and local levels while considering the local 
activity characteristics and constraints. The workflow was validated at 
the log and individual levels with annotated data and at the aggregated 
level with average distance traveled per day and annual energy con
sumption from subnational-level statistics. The result showed that the 
EV charging demand in Japan would reach a maximum of 25 GW in mid 
seasons with uncontrolled charging on both weekdays and holidays. The 
peak durations are longer on holidays than on weekdays, and an in
crease in energy consumption causes an increase in peak durations. The 
activity patterns, demand, and flexibility significantly vary with the 
accessibility to public transportation. The results demonstrate that the 
established method can provide high spatiotemporal resolution EV data 
for various power system analyses while considering common scenarios 
in terms of EV deployment, charging schedule, and flexibility operation. 
Additionally, it allows for iterative studies that integrate local and 
macro-level power systems. Further research is required to integrate 
spatiotemporal characteristics obtained from location log data with 
activity-based vehicle usage models to fully utilize the potential of 
location log data.
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Appendices. 

Appendix A. Machine learning models used for classification processes

A.1. Machine learning model for travel mode classification
The features listed in Table A.1 were considered in the model development. Supplementary Material B.1 provides details of the features.

Table A.1 
Features used for classifying travel mode

Feature Low-quality trips High-quality trips

Average speed ✓ ✓
Variance of speed ​ ✓
85th percentile of speed ✓ ✓
Average acceleration ​ ✓
Variance of acceleration ​ ✓
85th percentile of acceleration ​ ✓
Average turning angular velocity ​ ✓
Variance of turning angular velocity ​ ✓
85th percentile of turning angular velocity ​ ✓
Percentage of logs with low speed ✓ ✓
Number of logs ✓ ✓
Route length ✓ ✓
Linear distance ✓ ✓
Ratio of linear distance to route length ✓ ✓
Concordance rate with train mesh ✓ ✓
Number of airports passed through ✓ ✓
Concordance rate with sea mesh ✓ ✓
Transportation for previous high-quality trip ✓ ​
Transportation for next high-quality trip ✓ ​

A.2. Machine learning model for spot classification
The XGBoost model calculated the probability that the spot was the user’s living area or working area. One kilometer mesh of the spot with the 

highest probability of being the user’s living area was considered as their living area. Then, among the spots other than the living area, 1 km mesh of 
the spot with the highest probability of being the working area was considered to be the working area (among the spots with a workplace probability of 
at least 0.5). Users who did not have a workplace probability of at least 0.5 at any of the spots other than their living area were considered to be non- 
commuters. Table A.2 lists the features considered in the XGBoost model. Supplementary Material B.1 provides details of the features. Spots that users 
have visited only one time cannot be classified because the variance of arrival and departure times cannot be calculated. Moreover, it was assumed that 
most individuals stayed in living or working areas at least two times within 12 days.

Table A.2 
Feature values for classifying stay points

Feature value Living area Working area

Number of days visited ✓ ✓
Total time spent ✓ ✓
Average arrival time ✓ ✓
Variance of arrival time ✓ ✓
Average departure time ✓ ✓
Variance of departure time ✓ ✓
Population of 1 km mesh ✓ ​
Distance from living area ​ ✓
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Appendix B. EV charging demand

Figure B.1 shows the estimated EV charging demand with the uncontrolled charging overlaid on the actual electricity demand throughout Japan 
for the same period [43–52].

Fig. B.1. Actual demand for electricity in Japan and the demand for EV charging with uncontrolled charging.

Appendix C. PTAL

The accessibility index AI for each mesh was calculated as in Eq. (C.1) based on two factors1: the walk time WT from each mesh to the nearby train 
station or bus stop, and the average waiting time at the stations SWT. 

AImesh =
∑

Station

1
WT + SWT

(C.1) 

WT was calculated by increasing the straight-line distance from the center point of the mesh to the station by 30 % to account for the differences 
from the actual route, and then dividing by the assumed walking speed of 5 km/h. SWT was expressed as the average time interval between trains and 
buses departing from each station.2 Stations are those within a 3 km radius from the center point of the target mesh.

The distribution of AImesh is shown in Figure C.1(a). As illustrated in Figure C.1(b), the distribution fits the lognormal distribution well. Thus, the 
meshes were classified into six PTALs using the mean μ and standard deviation σ of the lognormal distribution fitted by the maximum likelihood 
estimation method excluding those where AImesh was 0 as PTAL = 1 where AImesh < μ − 2σ, the least accessible areas, to PTAL = 6 where AImesh > μ+

2σ, the most convenient meshes as Level 6.

Fig. C.1. Distribution of PTALmesh and AImesh

Figure C.2 presents the percentage of vehicles in motion, charging, or parked in living areas in PTALs 1 and 6. Vehicles are parked in living areas for 
longer periods in PTAL 6 than in PTAL 1, wherein vehicles are parked longer in working area or other spots. 

1 Unlike the original concept underlying the AI calculation formula, the reliability coefficient was not considered because of the high reliability of Japan’s public 
transportation system.

2 The daytime service frequency data of train stations is a dataset [54]. The data source is the 2019 timetable. The data include the number of passenger trains 
arriving and leaving stations between 10:00 and 17:00 on weekdays.
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Fig. C.2. Composition of the state of vehicle under uncontrolled charging in (a) PTAL 1 and (b) PTAL 6.

Appendix D. Charging demand estimated with all location log

Figure D.1 shows the difference in charging demand under the uncontrolled charging with/without the sampling process. The peak became half, 
and the total charging demand decreased by 46 % compared with the case with sampling.

Fig. D.1. Comparison of charging demand with/without the sampling process.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.energy.2025.137804.

Data availability
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