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Abstract

Through the use of Carleman estimates, we investigate the drift-diffusion equation and demonstrate the 
infinite propagation of its solutions, considering both the parabolic-parabolic and parabolic-elliptic forms. 
A primary result is a Unique Continuation Theorem, which states that if a solution vanishes on a non-empty 
open set, it must vanish throughout the whole space Rn. The proof relies on the Two-Sphere One-Cylinder 
Inequality, derived from the Carleman estimates. As a consequence, we show the infinite speed of propa
gation for solutions: even if the initial data has compact support, the solution corresponding to this initial 
data will instantly extend to cover the whole space Rn. This result highlights a solution structure typical of 
linear diffusion equations of the heat type, where solutions exhibit immediate and global propagation.
© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Drift-diffusion equation; Infinite speed of propagation; Carleman estimates; Unique continuation theorem; 
Two-sphere one-cylinder inequality

1. Introduction

We consider the drift-diffusion equation, which includes both parabolic–elliptic and parabolic--
parabolic types in a semi-linear form posed on the whole space Rn with n ≥ 1:
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(DD)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t 
= Δu + χ∇ · (|u|q−2u∇v) in Rn × (0, T ),

τ
∂v

∂t 
= Δv − γ v + u in Rn × (0, T ),

u(x,0) = u0(x), τv(x,0) = τv0(x) in Rn,

where q ≥ 2, γ ≥ 0, χ = ±1, and τ = 0 or 1. Here, the functions u = u(x, t) and v = v(x, t)

represent the density of the relevant quantity and the associated potential, respectively. The pre
cise interpretation of the functions is determined by the modeling context, which may involve 
physical, biological, or other types of systems. 

We investigate sign-changing solutions to (DD) that emerge from initial data with changing 
sign. The interest in such solutions stems from the case χ = +1, under which (DD) exhibits 
structural features closely related to a specific parameter regime. In this setting, (DD) is partially 
derived from the system (S), referred to as the bi-polar drift-diffusion model, which is widely 
used in semiconductor simulation:

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t 
− Δn + ∇ · (n∇ψ) = 0 in Rn × (0, T ),

∂p

∂t 
− Δp − ∇ · (p∇ψ) = 0 in Rn × (0, T ),

τ
∂ψ

∂t 
− Δψ = n − p in Rn × (0, T ),

n(x,0) = n0(x), p(x,0) = p0(x) in Rn.

By introducing the variable u := n − p, the system (S) reduces to (DD) when q = 2, γ = 0, and 
χ = +1. This correspondence highlights the role of (DD) as a canonical model for capturing 
dynamics involving sign-changing behavior.

Both cases χ = ±1 are of structural interest. In particular, the case χ = −1 is also known to 
give rise to aggregation phenomena, despite the repulsive form of the drift term. The mechanism 
of self-organization in this case is more subtle and model-dependent, and the resulting solution 
behavior differs qualitatively from that observed in the case χ = +1. Throughout this paper, we 
consider both signs of χ within a unified framework, with a particular focus on sign-changing 
solutions and their structural properties. 

Our initial aim is to construct solutions to (DD) that originate from initial data exhibiting sign 
changes, with particular emphasis on those satisfying the following condition:∫︂

Rn

u0(x) dx =
∫︂
Rn

(︁
n0(x) − p0(x)

)︁
dx ≠ 0. (1.1)

This assumption reflects a non-vanishing total charge and plays a key role in the qualitative 
analysis of the solution structure. To clarify this point, we recall a classical principle from elec
tromagnetism and semiconductor theory, known as the Principle of Charge Conservation:

• Principle of Charge Conservation: In an isolated system, the total net charge—defined as 
the sum of all positive and negative charges—remains invariant in time.
2 
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In view of this principle, it is natural to consider the case χ = +1, where the total charge asso
ciated with the quantity u := n − p is expected to be conserved. Under appropriate assumptions, 
this consideration leads to the identity:∫︂
Rn

u(x, t) dx =
∫︂
Rn

(︁
n(x, t) − p(x, t)

)︁
dx =

∫︂
Rn

(︁
n0(x) − p0(x)

)︁
dx =

∫︂
Rn

u0(x) dx ≠ 0, t > 0.

In particular, if the initial net charge is nonzero, then:∫︂
Rn

u(x, t) dx ≠ 0, t > 0. (1.2)

This implies that u(x, t) does not vanish identically in Rn at any positive time. 

Building on this observation, the first objective of the present paper is to establish the Unique 
Continuation Theorem for solutions of the drift-diffusion equation. The theorem asserts that if 
the solution u vanishes at every point of a non-empty open set D0, then it must vanish throughout 
the whole space Rn.

The key to proving the Unique Continuation Theorem is the derivation of the Two-Sphere 
One-Cylinder Inequality, which is an application of the Carleman estimates. This inequality 
plays a crucial role in controlling the behavior of solutions within specific domains. Specifically, 
we derive the Two-Sphere One-Cylinder Inequality by introducing integrals over a cylindrical 
domain involving both space and time variables. This allows us to bound the L2(Bρ(0)) integral 
of the solution u over a sphere of radius ρ from above by the L2(Br(0)) integral of u over 
a sphere of radius r for 0 < r ≤ ρ. More precisely, the following holds: there exist constants 
0 < η1 < 1 and C ≥ 1 such that:∫︂

Bρ(0)

u2(x,0) dx ≤ CR

ρ

(︂
R−2

∫︂
(0,R2)

∫︂
BR(0)

u2 dxdt
)︂1−θ1

(︂ ∫︂
Br (0)

u2(x,0) dx
)︂θ1

for all r, ρ,R with 0 < r ≤ ρ ≤ η1R, where θ1 = (︁
C log R

r

)︁−1
.

By shifting the center and applying the Two-Sphere One-Cylinder Inequality (for details, see 
Step 2 of the proof of Lemma 5.4), we can ensure that the solution u vanishes at a given time 
over the whole space Rn through the Unique Continuation Theorem. Specifically, we consider 
u ∈ W

2,1
2,loc(QT ) and fix an arbitrary ˆ︁T ∈ (0, T ). To control lower–order contributions, we further 

assume that there exists a positive constant M such that⃓⃓⃓
Δu(x, t) − ∂tu(x, t)

⃓⃓⃓
≤ M

(︁|∇u(x, t)| + |u(x, t)|)︁ for a.e. (x, t) ∈ Rn × (0,ˆ︁T ).

Consequently, if there exists an open set D0 ⊂ Rn such that u(·,ˆ︁T ) ≡ 0 in D0, then the solution 
u must vanish identically throughout Rn at time ˆ︁T .

Once this unique continuation property is established, it enables the proof of Identical Van
ishing for the Backward Problem. In particular, assuming a function satisfies the following two 
conditions: (1) its growth in the spatial direction is limited to exponential, and (2) when acted 
upon by a parabolic operator, the function is bounded above by a constant multiple of the sum 
3 
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of its zeroth and first derivatives. Under these conditions, we demonstrate that if the function 
vanishes identically everywhere in Rn at some time ˆ︁T , then it must remain identically zero 
throughout Rn for all times from the initial time up to ˆ︁T . 

Based on the above (1.2), the second objective of this paper is to establish the property of 
infinite speed of propagation for solutions of the drift-diffusion equation. This property under
pins the main theorem presented in this paper and is derived as a consequence of the Identical 
Vanishing for the Backward Problem. More precisely, the infinite speed of propagation refers to 
the phenomenon where the support of the solution u instantaneously spreads across the whole 
space Rn when the initial data is a non-trivial function with compact support. Thus, the Unique 
Continuation Theorem, along with the Identical Vanishing for the Backward Problem, plays a 
fundamental role in revealing the structure of the solutions to the equation.

To provide further clarification, we explore the Carleman estimate. Initially introduced by 
Carleman [2], the Carleman estimate is a fundamental tool in proving unique continuation for 
two-dimensional elliptic equations. A detailed explanation of the Carleman estimate can be found 
in [27] and [28]. In addition to the works by Carleman [2] and Vessella [26], many studies have 
employed Carleman estimates to prove unique continuation. For instance, Koch and Tataru [10] 
established it for elliptic equations in higher dimensions, while Escauriaza and Fernández [7] 
extended it to parabolic operators. Further relevant works are referenced in Banerjee and Manna 
[1]. Beyond their role in demonstrating unique continuation properties, the Carleman estimates 
have applications in various fields of inverse problems, including control theory and stability 
estimates.

2. Results

In what follows, we introduce the following simplified notations:

(1). Br(a) := {x ∈ Rn | |x − a| < r, r > 0,a ∈ Rn}, Br := Br(0).
(2). QT := Rn × (0, T ).
(3). ∂i = ∂

∂xi
, ∂2

ij = ∂i∂j , ∂3
ijk = ∂i∂j ∂k , ∇2 = (∂2

11, ∂
2
12, . . .), ∇3 = (∂3

111, ∂
3
112, . . .), ∂t = ∂

∂t
, 

i, j, k = 1,2, . . . , n.
(4). Let D be a domain in Rn and let I be an interval in (0, T ). When the weak derivatives ∇u, 

∇2u and ∂tu are in Lp(D × I ) for some 1 ≤ p ≤ ∞, we say u ∈ W
2,1
p (D × I ). Specifically, 

this means:

W 2,1
p (D × I ) := {u ∈ Lp(I ;W 2,p(D)) ∩ W 1,p(I ;Lp(D)) | ∥u∥

W
2,1
p (D×I )

< ∞},

where the norm is defined as:

∥u∥
W

2,1
p (D×I )

:= ∥u∥Lp(I ;W 2,p(D)) + ∥u∥W 1,p(I ;Lp(D)).

Similarly, when u and its weak derivatives ∇u, ∇2u and ∂tu belong to Lp

loc(QT ) for some 
1 ≤ p ≤ ∞, we say u ∈ W

2,1
p,loc(QT ), which is defined as:

W
2,1

(QT ) := Lp(0, T ;W 2,p
(Rn)) ∩ W 1,p(0, T ;Lp

(Rn)).
p,loc loc loc

4 



Y. Imaida, K. Shibata and Y. Sugiyama Journal of Differential Equations 448 (2025) 113670 
(5). For T > 0 and q ≥ 2, we define the function space W(QT ) as follows:

W(QT ) :=
⎧⎨⎩W

2,1
n+q(QT ) × Ln+q(0, T ;W 2,n+q(Rn)) for τ = 0,

W
2,1
n+q(QT ) × W

2,1
n+q(QT ) for τ = 1

(6). For T > 0 and q ≥ 2, we define the function space XT as follows:

XT :=
{︂
u ∈ L∞(0, T ;W 2,n+q(Rn)) 

⃓⃓
∂tu ∈ Ln+q(QT ),

∥∂tu∥Ln+q (QT ) + ∥u∥L∞(0,T ;W 2,n+q (Rn)) ≤ 2∥u0∥W 2,n+q (Rn) + 1
}︂
.

(7). For s > 0, the set of all Lebesgue measurable function f on Rn satisfies the following 
condition:

|f |s,∞ := sup
{︁
λ > 0 | λ mf (λ)

1
s
}︁

< ∞, (2.1)

where mf (λ) represents the Lebesgue measure of the set {x ∈ Rn | |f (x)| > λ}. This space 
is denoted by Ls,∞(Rn), and is referred to as the Lorentz space. It is well known that:

|f |s,∞ ≤ ∥f ∥Ls(Rn),

and thus, Ls(Rn) ⊂ Ls,∞(Rn) for 1 ≤ s < ∞. Moreover, we have L∞(Rn) = L∞,∞(Rn).

Throughout this paper, we impose the following assumptions.

Assumption 2.1. 

(I). parabolic-elliptic type (A):
(i). Let n ≥ 1 and τ = 0.

(ii). Let q = 2 or q ≥ 3; and γ > 0.
(II). parabolic-elliptic type (B):

(i). Let n ≥ 2 and τ = 0.
(ii). Let q = 2 or q ≥ 3; and γ = 0.

(III). parabolic-parabolic type:
(i). Let n ≥ 1 and τ = 1.

(ii). Let q = 2 or q ≥ 3; and γ ≥ 0.

Assumption 2.2. 

(I). parabolic-elliptic type (A): 
Let u0 ∈ W 2,n+q(Rn).

(II). parabolic-elliptic type (B): 
Let u0 ∈ Lθ(Rn) ∩ W 2,n+q(Rn) for some 1 < θ < n.

(III). parabolic-parabolic type:
(i). Let u0 ∈ W 2,n+q(Rn).

(ii). Let v0 ∈ W 3,n+q(Rn).
5 
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The definition of a possibly sign-changing strong solution to (DD) is introduced next.

Definition 2.1. Let 1 ≤ p ≤ ∞, and let r satisfy the following conditions:⎧⎪⎨⎪⎩
p ≤ r ≤ r∗ for p < n

2 with 1 
r∗ = 1 

p
− 2 

n
;

n
2 ≤ r < ∞ for p = n

2 ;
p ≤ r ≤ ∞ for p > n

2 .

We assume that u0 ∈ W 2,p(Rn), and that v0 ∈ W 2,r (Rn) when τ = 1. A pair of functions (u, v)

on QT is called a possibly sign-changing strong solution of (DD) on [0, T ) in the class Sp,r (0, T )

if the following conditions are satisfied:

(i). u ∈ W
2,1
p (QT ),

(ii-a). v ∈ Lr(0, T ;W 2,r (Rn)) for τ = 0,
(ii-b). v ∈ W

2,1
r (QT ) for τ = 1,

(iii). (u, v) satisfies (DD) in QT .

The following theorem regarding the local existence of a possibly sign-changing strong solu
tion can be proven by suitably modifying the arguments presented in Sugiyama and Kunii [23].

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then, the following statements hold:

(I). (Existence of Time Local Solution)
Let τ = 0, 1. Then, there exists a positive time T1 depending only on n, q , γ , 
∥u0∥W 2,n+q (Rn), and τ∥v0∥W 3,n+q (Rn) such that (DD) has a possibly sign-changing strong 
solution (u, v) on [0, T1), uniquely in the class W(QT1) with u ∈ XT1 .
Since u ∈ XT1 , the solution u(t) satisfies the following estimate: there exists a positive 
constant C depending only on n and q such that:

sup 
0<t<T1

∥u(t)∥L∞(Rn) ≤ C
(︁∥u0∥W 2,n+q (Rn) + 1

)︁
. (2.2)

(II). (Extension Criterion)
Let τ = 0,1. If the solution u(t) obtained from Theorem 2.1 (I) satisfies:

sup 
0<t<T0

∥u(t)∥L∞(Rn) < ∞, (2.3)

then, there is T ′
0 > T0 such that (u, v) can be extended as a unique strong solution of (DD)

in W(QT ′
0
). Furthermore, if the maximal existence time Tmax of the above strong solution 

(u, v) is finite, then we have:

lim sup 
t→Tmax−0

∥u(t)∥L∞(Rn) = ∞.

(III). (Extended Existence of Solutions up to Maximal Time)
Let τ = 0,1. Then, (DD) has a possibly sign-changing strong solution (u, v) on [0, Tmax), 
6 
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which is unique in the class W(QTmax) with u ∈ XTmax , where Tmax is defined as in Theo
rem 2.1 (II).
In addition, let ˆ︁T be an arbitrary positive number with 0 < ˆ︁T < Tmax. Then, the following 
holds:

(i). parabolic-elliptic type (A): τ = 0, γ > 0. 
There exists a positive constant C depending only on n, q , γ , ˆ︁T and ∥u0∥W 2,n+q (Rn)

such that:

sup 
0<t<ˆ︁T ∥u(t)∥W 2,n+q (Rn) ≤ C. (2.4)

(ii). parabolic-elliptic type (B): τ = 0, γ = 0. 
There exists a positive constant C depending only on n, q , ˆ︁T , ∥u0∥Lθ (Rn) and 
∥u0∥W 2,n+q (Rn) such that:

sup 
0<t<ˆ︁T ∥u(t)∥Lθ (Rn) + sup 

0<t<ˆ︁T ∥u(t)∥W 2,n+q (Rn) ≤ C (2.5)

for some 1 < θ < n, where θ is introduced in Assumption 2.2.
(iii). parabolic-parabolic type: τ = 1, γ ≥ 0. 

There exists a positive constant C depending only on n, q , γ , ˆ︁T , ∥u0∥W 2,n+q (Rn), and 
∥v0∥W 3,n+q (Rn) such that:

sup 
0<t<ˆ︁T ∥u(t)∥W 2,n+q (Rn) + sup 

0<t<ˆ︁T ∥v(t)∥W 3,n+q (Rn) ≤ C. (2.6)

Furthermore, for all n + q ≤ r ≤ ∞, it holds:

u ∈ C([0,ˆ︁T ];Lr
loc(R

n)). (2.7)

(IV). (Charge Conservation Law)
Let τ = 0,1. We impose the assumption that the initial data u0 satisfies u0 ∈ L1(Rn). Let 
Tmax be the maximal existence time of the strong solution (u, v) obtained from Theorem 2.1
(I), (II) and (III). Let ˆ︁T be an arbitrary positive number with 0 < ˆ︁T < Tmax. Then the strong 
solution u belongs to L∞(0,ˆ︁T ;L1(Rn)) and satisfies:∫︂

Rn

u(x, t) dx =
∫︂
Rn

u0(x) dx a.e. 0 ≤ t < ˆ︁T . (2.8)

(V). (Non-Negativity)
Let τ = 0,1. We assume that the initial data u0 ∈ L2(Rn) satisfy:

u0 ≥ 0 and u0 ≢ 0 for a.e. x ∈Rn.

Let Tmax be the maximal existence time of the strong solution (u, v) obtained from Theo
rem 2.1 (I), (II) and (III). Let ˆ︁T be an arbitrary positive number with 0 < ˆ︁T < Tmax. Then 
the strong solution u satisfies the non-negativity property:
7 
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u(x, t) ≥ 0 for a.e. (x, t) ∈Rn × (0,ˆ︁T ). (2.9)

Remark 1. The extension criterion for the solution is derived from (2.2) in Theorem 2.1 (I), and 
follows as a consequence of Theorem 2.1 (II). This criterion, which is crucial for understanding 
the behavior of solutions near potential blow-up points, is discussed in detail in Section 4. In 
that section, we conduct a thorough analysis of the conditions under which the solution can be 
extended beyond its initial interval of existence.

Remark 2. The existence of mild solutions in critical function spaces for various types of drift
diffusion equations (DD) has been studied extensively; see, for example, [11--14,16,19,21,22].

Furthermore, the existence and uniqueness of weak solutions have been addressed for a broad 
class of nonlinear extensions of (DD), including degenerate and semilinear systems; see, for 
instance, [3], [5], [9], [15] and [20]. In the critical and supercritical cases, the asymptotic profile 
of solutions is given by the fundamental solution of the heat equation or the porous medium 
equation without advection; see, for example, [17] and [18]. In contrast, solutions are known to 
approach a nontrivial stationary state in the subcritical regime [4].

The following is one of the main results in this paper: the Identical Vanishing for the Backward 
Problem. This theorem asserts that, under specific conditions, the solution to a given problem can 
be uniquely determined by its past behavior, meaning that if the solution vanishes identically at 
a certain time, it must vanish identically for all previous times as well. The proof of this theorem 
is based on the Unique Continuation Theorem and the principles of identical vanishing.

Theorem 2.2 (Identical Vanishing for the Backward Problem). Let Assumption 2.1 and 2.2 hold, 
and let Tmax be the maximal existence time of the strong solution (u, v) obtained from Theo
rem 2.1. Let ˆ︁T be an arbitrary positive number with 0 < ˆ︁T < Tmax. If there exists a non-empty 
open set D0 ⊂ Rn such that u(·,ˆ︁T ) ≡ 0 in D0, then, u ≡ 0 in Qˆ︁T .

The following theorem follows from Theorem 2.2, which establishes the Identical Vanishing 
for the Backward Problem as a consequence of the Unique Continuation Theorem. As a result, 
we obtain the theorem stated below.

Theorem 2.3 (The Property of Infinite Speed of Propagation). Let Assumptions 2.1 and 2.2 hold. 
We impose the assumption that the initial data u0 satisfies u0 ∈ L1(Rn), and assume that:

∫︂
Rn

u0(x) dx ≠ 0. (2.10)

We denote by Tmax the maximal existence time of the strong solution (u, v) obtained from Theo
rem 2.1. Let ˆ︁T be an arbitrary positive number with 0 < ˆ︁T < Tmax. Then, the support of u(·, t)
coincides with Rn for all 0 < t < ˆ︁T .

Remark 3. If (2.10) holds, then the support of u0 is non-empty. Hence, to derive a contradiction 
by applying the unique continuation theorem in the proof of the infinite speed of propagation, it 
is not necessary to assume that suppu0 is non-empty: this fact is already ensured by (2.10).
8 
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Remark 4. Theorem 2.3 concerns sign-changing strong solutions of (DD) in the class W(Qˆ︁T ). 
However, when the initial data u0(x) is non-negative and not identically zero, the corresponding 
solution u satisfies the non-negativity property stated in Theorem 2.1 (V). In this case, The
orem 2.3 implies that the strong solution u is positive at x ∈ Rn almost everywhere for each 
0 < t < ˆ︁T , even if u0(x) has compact support. Indeed, non-negative solutions are expected to 
remain positive for all positive times. While the positivity of solutions is fundamental to the 
structure of the solution, its full mathematical justification remains open and presents a signifi
cant problem to be addressed.

Remark 5. For strong solutions satisfying the non-negativity property (V) stated in Theorem 2.1, 
Theorem 2.3 can be deduced from the general theory of the strong maximum principle and unique 
continuation for parabolic equations.

In the following section, we will introduce several lemmas that will be frequently referenced 
throughout this paper. Section 4 will be dedicated to organizing the proofs of Theorem 2.1. In 
Section 5, we will present the proof of Theorem 2.2, which establishes the Unique Continuation 
Theorem. Additionally, Section 6 will explore the topic of infinite speed of propagation and 
provide the proof of Theorem 2.3.

3. Preliminary

In this section, we introduce several lemmas that will be frequently employed in the subse
quent sections. First, we define a cut-off function in the following lemma.

Lemma 3.1. Let R ≥ 1. We define ϕ̃R by:

ϕ̃R(r) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0 ≤ r < R,

1 − 2 
R2 (r − R)2 R ≤ r < 3

2R,

2 
R2 (r − 2R)2 3

2R ≤ r < 2R,

0 2R ≤ r

and set ϕR(x) as ϕ̃R(|x|) for x ∈Rn. Then, the following estimates hold:

|∇ϕR(x)| ≤ 2
√

n

R
, |ΔϕR(x)| ≤ 12n

R2 for all x ∈Rn

and:

|∇ϕR(x)| ≤ 2
√

2

R
(ϕR(x))

1
2 for all x ∈Rn.

In addition, the following estimates are satisfied:

∥∇ϕR∥Lp(Rn) ≤ CR
−1+ n 

p and ∥ΔϕR∥Lp(Rn) ≤ CR
−2+ n 

p for all 1 ≤ p ≤ ∞, (3.1)

where C depends only on n and p.
9 
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The following estimates are obtained from Duoandikoetxea [6, p. 110].

Lemma 3.2. Let w ∈ W 2,r (Rn). Then, the following estimate holds :

∥∇2w∥Lr(Rn) ≤ C

(︃
r2

r − 1

)︃2

∥Δw∥Lr(Rn) for all 1 < r < ∞, (3.2)

where C depends only on n.

The following lemma provides a variant of the Gagliardo-Nirenberg inequality, which was 
derived from [25, Lemma 2.4]. This inequality will be frequently used in the next section as a 
key component of our argument.

Lemma 3.3 (Gagliardo-Nirenberg inequality). Let n ≥ 1, m ≥ 1, a > 2, and let f ∈ Lq1(Rn)

with q1 ≥ 1, and |f | r+m−3
2 f ∈W 1,2(Rn) with r > 0. If q1∈[1, r +m− 1], q2∈[ r+m−1

2 ,
a(r+m−1)

2 ], 
and: ⎧⎪⎨⎪⎩

1 ≤ q1 ≤ q2 ≤ ∞ when n = 1,

1 ≤ q1 ≤ q2 < ∞ when n = 2,

1 ≤ q1 ≤ q2 ≤ (r+m−1)n
n−2 when n ≥ 3,

then, the following estimate holds:

∥f ∥Lq2 (Rn) ≤ C
2 

r+m−1 ∥f ∥1−Θ
Lq1 (Rn)

∥∇(|f | r+m−3
2 f )∥

2Θ 
r+m−1

L2(Rn)
,

with:

Θ = r + m − 1

2 

(︂ 1 
q1

− 1 
q2

)︂(︂1 
n

− 1

2
+ r + m − 1

2q1

)︂−1
,

where: ⎧⎨⎩C depends only on n and a when q1 ≥ r+m−1
2 ,

C = c
1 
β

0 with c0 depending only on n and a when 1 ≤ q1 < r+m−1
2 ,

and:

β = q2 − r+m−1
2 

q2 − q1

[︂ 2q1

r + m − 1
+
(︂

1 − 2q1

r + m − 1

)︂ 2n 
n + 2

]︂
.

We now define the kernel Gγ of the Bessel potential using the following expression:

Gγ (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ

n
2 −1ane

−√
γ |x|

∞ ∫︂
0 

e−√
γ |x|s(︂s + s2

2 

)︂ n−3
2 

ds for n ≥ 2,

a γ − 1
2 e−√

γ |x| for n = 1,
1

10 
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where the constant an is given by:

an :=

⎧⎪⎨⎪⎩
1 

2(2π)
n−1

2 Γ( n−1
2 )

for n ≥ 2,

1
2 for n = 1,

where Γ(·) denotes the gamma function. We also introduce the Kernel G0 of the Newtonian 
potential, given the expression:

G0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 

n(n−2)ωn
|x|2−n for n ≥ 3,

− 1 
2π

log |x| for n = 2,

− 1
2 |x| for n = 1,

where ωn represents the volume of unit ball in Rn. The kernel Gγ tends to the kernel of the New
tonian potential as γ → +0 for n ≥ 3. However, it is well known that Gγ becomes discontinuous 
as γ → +0 for n = 1 and n = 2. 

We provide L1(Rn)-estimates for Gγ and ∇Gγ when γ > 0, which can be derived through 
direct calculation.

Lemma 3.4. For γ > 0, the following estimates hold:

∥Gγ ∥L1(Rn) = 1 
γ

and ∥∇Gγ ∥L1(Rn) ≤ C, (3.3)

where C depends only on n and γ .

Remark 6. In the case where γ > 0, we observe:⎧⎨⎩∥∇Gγ ∥Ls(Rn) < ∞ for n ≥ 2, 1 ≤ s < n 
n−1 ,

∥∇Gγ ∥Ls(Rn) < ∞ for n = 1, 1 ≤ s ≤ ∞.

On the other hand, in the case where γ = 0, we find:⎧⎨⎩∥∇Gγ ∥
L

n 
n−1 ,∞

(Rn)
< ∞ for n ≥ 2,

∥∇Gγ ∥L∞(Rn) < ∞ for n = 1,

where Ls,∞(Rn) denotes the Lorentz space equipped with (2.1).

In the following, we define the function z by:

z(x) =
∫︂

n

Gγ (x − y)f (y) dy for f ∈ Lp(Rn), (3.4)
R

11 
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where 1 ≤ p ≤ ∞. It is well known that the potential z of f in (3.4) satisfies the Poisson equation 
as follows:

Lemma 3.5. Let n ≥ 1, γ > 0, and 1 ≤ p ≤ ∞. Then, z ∈ W 2,p(Rn) and satisfies the following 
equation:

−Δz = −γ z + f in Rn.

We now provide the Lp(Rn)-estimate for ∇z, where z is the potential of f in (3.4).

Lemma 3.6. Let n ≥ 1, γ > 0, and let z be defined by (3.4). In addition, we assume that f ∈
L∞(0, T ;Lp(Rn)) for 1 ≤ p ≤ ∞. Then, the following estimates hold:

sup 
0<t<T

∥z(t)∥Lp(Rn) ≤ 1 
γ

sup 
0<t<T

∥f (t)∥Lp(Rn), (3.5)

and:

sup 
0<t<T

∥∇z(t)∥Lp(Rn) ≤ C sup 
0<t<T

∥f (t)∥Lp(Rn), (3.6)

where C depends only on n and γ .

Proof of Lemma 3.6. Since Gγ ,∇Gγ ∈ L1(Rn), we apply the Young inequality and (3.3) to 
obtain:

∥z(t)∥Lp(Rn) ≤ ∥Gγ ∥L1(Rn)∥f (t)∥Lp(Rn) = 1 
γ

∥f (t)∥Lp(Rn)

and:

∥∇z(t)∥Lp(Rn) ≤ ∥∇Gγ ∥L1(Rn)∥f (t)∥Lp(Rn) ≤ C∥f (t)∥Lp(Rn)

for a.e. 0 < t < T , where C depends only on n and γ . This completes the proof of Theo
rem 3.6. □

Next, we define the function z by:

z(x) =
∫︂
Rn

G0(x − y)f (y)dy for f ∈ Lp(Rn), (3.7)

where 1 ≤ p ≤ ∞. It is well known that the potential z of f in (3.7) satisfies the Poisson equation 
as follows:

Lemma 3.7. Let n ≥ 1, γ = 0, and 1 ≤ p ≤ ∞. Then, z ∈ W
2,p

loc (Rn) with ∂2
ij z ∈ Lp(Rn), and 

satisfies the following equation:

−Δz = f in Rn,
12 
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for n ≥ 2. In the case where n = 1, for f ∈ L1(R) with |x|f ∈ L1(R), it holds z ∈ C1(R). 
Furthermore, ∂1z is bounded and absolutely continuous on R, and z satisfies:

−∂2
1z = f in R.

Here, we consider the following Cauchy problem:

(P)

⎧⎪⎨⎪⎩
∂w

∂t 
= Δw − γw + f in Rn × (0, T ),

w(x,0) = w0(x) in Rn.

The following definition is a standard one from semi-group theory.

Definition 3.1. Let 1 ≤ p ≤ ∞, and let w0 ∈ Lp(Rn). If f ∈ L1(0, T ;Lp(Rn)), then (P) has a 
unique mild solution w in C([0, T );Lp(Rn)), which is given by:

w(t) = e−γ t etΔw0 +
t∫︂

0 

e−γ (t−s)e(t−s)Δf (s) ds (3.8)

for all 0 ≤ t < T , where (etΔf )(x, t) = ∫︁
Rn(4πt)− n

2 e− |x−y|2
4t f (y) dy.

The following lemma is crucial for establishing the a priori estimates of v in (DD), which are 
derived using the Lp(Rn)--Lq(Rn) estimates for the heat kernel.

Lemma 3.8. Let 1 ≤ p∗ ≤ p ≤ ∞, 1 
p∗ − 1 

p
< 1 

n
, and let w0 ∈ W 1,p(Rn). We suppose that w is 

the mild solution given by (3.8) in Definition 3.1. If f ∈ L∞(0,∞;Lp∗
(Rn)), then the following 

estimates hold:

∥w(t)∥Lp(Rn) ≤ ∥w0∥Lp(Rn) + Ct
1− n

2 
(︁ 1 
p∗ − 1 

p

)︁
1 − n

2 
(︁ 1 

p∗ − 1 
p

)︁ sup 
0<s<t

∥f (s)∥Lp∗
(Rn), (3.9)

and:

∥∇w(t)∥Lp(Rn) ≤ ∥∇w0∥Lp(Rn) + Ct
1
2 − n

2 
(︁ 1 
p∗ − 1 

p

)︁
1
2 − n

2 
(︁ 1 

p∗ − 1 
p

)︁ sup 
0<s<t

∥f (s)∥Lp∗
(Rn) (3.10)

for all 0 ≤ t < T , where C depends only on n.
In addition, let |∇ iw0| ∈ Lp(Rn) and let f ∈ L2(0, T ;Wi−1,p(Rn)) for i = 1,2,3. Then, it 

holds :

∥∇ iw(t)∥2
Lp(Rn) ≤ ∥∇ iw0∥2

Lp(Rn) + 2(p + n − 2)

t∫︂
∥∇ i−1f (s)∥2

Lp(Rn) ds (3.11)
0 

13 
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for all 0 ≤ t < T .

4. Proof of Theorem 2.1

4.1. Proof of Theorem 2.1 (I): existence of time local solution

To establish the local existence of solutions for (DD), we refer to Sugiyama and Kunii [23, 
Proposition 8] and Sugiyama and Yahagi [24]. In these works, the existence of a non-negative so
lution to the Keller-Segel system was established under both quasilinear and semilinear diffusion 
structures, each of which involves a uniformly elliptic leading term. 

We present the following modification of the formal statement of the result provided by 
Sugiyama and Kunii [23, Proposition 8]:

Proposition 4.1. Let q ≥ 2 and τ = 0 or 1. We assume that the initial data u0 satisfies u0 ∈
W 2,n+q(Rn). In the case τ = 1, we additionally assume that v0 ∈ W 3,n+q(Rn). Then there exists 
a positive time T1 = T1

(︁
n,q,∥u0∥W 2,n+q , τ∥v0∥W 3,n+q

)︁
such that (DD) has a unique strong 

solution (u, v) in the space 𝒲(QT1). Here, 𝒲(QT1) is defined as follows:

(i). parabolic-elliptic type: τ = 0.

𝒲(QT1) := W
2,1
n+q(QT1) × Ln+q(0, T1;W 2,n+q(Rn)).

(ii). parabolic-parabolic type: τ = 1.

𝒲(QT1) := W
2,1
n+q(QT1) × W

2,1
n+q(QT1).

By applying the same argument as in [23, Proposition 8], we obtain the existence and unique
ness of a strong solution (u, v) to (DD) on [0, T1), uniquely in W(QT1) with u ∈ XT1 , where the 
initial data u0 (and v0, if applicable) is specified in Assumption 2.2. This completes the proof of 
Theorem 2.1 (I). □
4.2. Proof of Theorem 2.1 (II): extension criterion

We now establish the extension criterion for the solution of (DD). To proceed, we present the 
following Lemma:

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold. Let (u, v) be the strong solution of (DD) on 
[0, T1) obtained from Theorem 2.1 (I) with the property (2.2). Then, the strong solution (u, v) on 
[0, T1) satisfies the following properties:

(i). parabolic-elliptic type (A): Let τ = 0 and γ > 0. There exists a positive constant C de
pending only on n, q , γ , T1, and ∥u0∥W 2,n+q (Rn) such that:

sup ∥u(t)∥W 2,n+q (Rn) ≤ C.

0<t<T1

14 
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(ii). parabolic-elliptic type (B): Let τ = 0 and γ = 0. There exists a positive constant C de
pending only on n, q , T1, ∥u0∥Lθ (Rn) and ∥u0∥W 2,n+q (Rn) such that:

sup 
0<t<T1

∥u(t)∥Lθ (Rn) ≤ C, and sup 
0<t<T1

∥u(t)∥W 2,n+q (Rn) ≤ C

for some 1 < θ < n, where θ is introduced in Assumption 2.2.
(iii). parabolic-parabolic type: Let τ = 1 and γ ≥ 0. There exists a positive constant C de

pending only on n,q, γ,T1,∥u0∥W 2,n+q (Rn) and ∥v0∥W 3,n+q (Rn) such that:

sup 
0<t<T1

∥u(t)∥W 2,n+q (Rn) ≤ C, and sup 
0<t<T1

∥v(t)∥W 3,n+q (Rn) ≤ C.

Proof of Lemma 4.2. 

(i). parabolic-elliptic type (A): τ = 0, γ > 0.
We establish the following regularities:

∇v, Δv ∈ L∞(0, T1;L∞(Rn)), (4.1)

u ∈ L∞(0, T1;Ln+q(Rn)), (4.2)

∇u ∈ L∞(0, T1;Ln+q(Rn)), (4.3)

∇u ∈ L∞(0, T1;L∞(Rn)), (4.4)

∂i∇v, ∂iΔv ∈ L∞(0, T1;L∞(Rn)) for all i = 1,2, . . . , n, (4.5)

∂i∇u ∈ L∞(0, T1;Ln+q(Rn)) for all i = 1,2, . . . , n. (4.6)

We first prove (4.1). By applying (3.5) and (3.6) in Lemma 3.6 and using the second equation 
of (DD), we derive the following estimates:

sup 
0<t<T1

∥∇v(t)∥L∞(Rn) ≤ C sup 
0<t<T1

∥u(t)∥L∞(Rn), (4.7)

and:

sup 
0<t<T1

∥Δv(t)∥L∞(Rn) ≤ γ sup 
0<t<T1

∥v(t)∥L∞(Rn) + sup 
0<t<T1

∥u(t)∥L∞(Rn)

≤ 2 sup 
0<t<T1

∥u(t)∥L∞(Rn), (4.8)

where C depends only on n and γ .
Next, we establish (4.2). Let 1 < r < ∞. By multiplying both sides of the first equation of 

(DD) by |u|r−2u and integrating over Rn, we obtain:

1

r

d

dt
∥u(t)∥r

Lr (Rn) = −(r − 1)

∫︂
n

|u|r−2|∇u|2 dx − χ(r − 1) 
r + q − 2

∫︂
n

∇v · ∇|u|r+q−2 dx
R R

15 
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= −(r − 1)

∫︂
Rn

|u|r−2|∇u|2 dx + χ(r − 1) 
r + q − 2

∫︂
Rn

Δv |u|r+q−2 dx

≤ r − 1 
r + q − 2

∥Δv(t)∥L∞(Rn)∥u(t)∥q−2
L∞(Rn)

∥u(t)∥r
Lr (Rn)

≤ 2(r − 1) 
r + q − 2

∥u(t)∥q−1
L∞(Rn)

∥u(t)∥r
Lr (Rn),

which yields:

∥u(t)∥Lr(Rn) ≤ ∥u0∥Lr(Rn) + 2(r − 1) 
r + q − 2

t∫︂
0 

∥u(s)∥q−1
L∞(Rn)

∥u(s)∥Lr(Rn) ds

≤ ∥u0∥Lr(Rn) + 2(r − 1) 
r + q − 2

sup 
0<t<T1

∥u(t)∥q−1
L∞(Rn)

t∫︂
0 

∥u(s)∥Lr(Rn) ds

for a.e. 0 < t < T1. By applying the Gronwall inequality, we obtain the following:

sup 
0<t<T1

∥u(t)∥Lr(Rn) ≤ ∥u0∥Lr(Rn) exp

{︃
2(r − 1) 
r + q − 2

T1 sup 
0<t<T1

∥u(t)∥q−1
L∞(Rn)

}︃
. (4.9)

Therefore, since q = 2 or q ≥ 3, and n + q > 1, by taking r = n + q , we obtain (4.2).
We move on to proving (4.3). Let 2 ≤ r < ∞. To establish (4.3), we differentiate both sides 

of the first equation of (DD) with respect to x once and multiply by |∇u|r−2∇u. This gives us 
the following inequality:

1

r

d

dt
∥∇u(t)∥r

Lr (Rn) ≤ (r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∇u(t)∥r
Lr (Rn)

+ (r + n − 2)∥u(t)∥2(q−2)

L∞(Rn)
∥u(t)∥2

Lr(Rn)∥Δv(t)∥2
L∞(Rn)∥∇u(t)∥r−2

Lr(Rn)
,

which leads to the following estimate:

sup 
0<t<T1

∥∇u(t)∥Lr(Rn)

≤
(︃

∥∇u0∥Lr(Rn) +√︁
2(r + n − 2)T1 sup 

0<t<T1

∥u(t)∥q−2
L∞(Rn)

× sup 
0<t<T1

∥u(t)∥Lr(Rn) sup 
0<t<T1

∥Δv(t)∥L∞(Rn)

)︃

× exp

{︃
(r + n − 2)(q − 1)2T1 sup 

0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn)

}︃
. (4.10)

Thus, since q = 2 or q ≥ 3, and n + q ≥ 2, by taking r = n + q , we conclude the proof of (4.3).
16 
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We now proceed to establish (4.4) by applying the Moser iteration technique. Let n + q ≤
r < ∞. Differentiating both sides of (DD) with respect to x and multiplying by |∇u|r−2∇u, we 
obtain the following identity:

1

r

d

dt
∥∇u(t)∥r

Lr (Rn) =
∫︂
Rn

(∇Δu) · |∇u|r−2∇u dx + χ

∫︂
Rn

∇(∇ · (|u|q−2u∇v)) · |∇u|r−2∇u dx

=: I1 + I2. (4.11)

By performing integration by parts once, we derive the following expression for I1:

I1 =
∫︂
Rn

n ∑︂
i=1 

∂i

n ∑︂
j=1 

∂2
j u |∇u|r−2∂iu dx

= −
∫︂
Rn

n ∑︂
i=1 

n ∑︂
j=1 

(∂i∂ju) ∂j (|∇u|r−2∂iu) dx

= −(r − 2)

∫︂
Rn

|∇u|r−4
n ∑︂

j=1 
|∂j∇u · ∇u|2 dx −

∫︂
Rn

|∇u|r−2
n ∑︂

j=1 
|∂j∇u|2 dx

=: −(r − 2)J1 − J2. (4.12)

Next, we establish the bound for I2:

I2 = χ

∫︂
Rn

n ∑︂
i=1 

∂i(∇ · (uq−1∇v)) |∇u|r−2∂iu dx

= −χ

∫︂
Rn

(∇ · (|u|q−2u∇v))

n ∑︂
i=1 

∂i(|∇u|r−2∂iu) dx

= −χ

∫︂
Rn

(︁
(q − 1)|u|q−2∇u · ∇v + |u|q−2uΔv

)︁

×
{︂
(r − 2)|∇u|r−4

n ∑︂
i=1 

n ∑︂
j=1 

(∂i∂ju)(∂ju)(∂iu) + |∇u|r−2
n ∑︂

i=1 
∂2
i u
}︂

dx

≤ r − 2

4 

∫︂
Rn

|∇u|r−4
n ∑︂

j=1 
|∂j∇u · ∇u|2 dx

+ (r − 2)(q − 1)2
∫︂
Rn

|u|2(q−2)|∇u|2|∇v|2|∇u|r−4|∇u|2 dx

+ r − 2

4 

∫︂
n

|∇u|r−4
n ∑︂

j=1 
|∂j∇u · ∇u|2 dx + (r − 2)

∫︂
n

|u|2(q−1)|Δv|2|∇u|r−4|∇u|2 dx
R R

17 
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+ 1

4

∫︂
Rn

|∇u|r−2
n ∑︂

j=1 
|∂j∇u|2 dx + n(q − 1)2

∫︂
Rn

|u|2(q−2)|∇u|2|∇v|2|∇u|r−2 dx

+ 1

4

∫︂
Rn

|∇u|r−2
n ∑︂

j=1 
|∂j∇u|2 dx + n

∫︂
Rn

|u|2(q−1)|Δv|2|∇u|r−2 dx

≤ r − 2

2 
J1 + 1

2
J2 + (r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∇u(t)∥r
Lr (Rn)

+ (r + n − 2)∥u(t)∥2(q−2)

L∞(Rn)
∥Δv(t)∥2

L∞(Rn)∥u(t)∥2
Lr(Rn)∥∇u(t)∥r−2

Lr(Rn)

≤ r − 2

2 
J1 + 1

2
J2 + (r + n − 2) sup 

0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥Δv(t)∥2
L∞(Rn)∥u(t)∥r

Lr (Rn)

+ (r + n − 2)(q − 1)2 sup 
0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)

×
(︃

sup 
0<t<T1

∥∇v(t)∥2
L∞(Rn) + sup 

0<t<T1

∥Δv(t)∥2
L∞(Rn)

)︃
∥∇u(t)∥r

Lr (Rn)

for a.e. 0 < t < T1. This yields that I2 can be bounded as follows:

I2 = r − 2

2 
J1 + 1

2
J2 + (r + n − 2)

(︂
M1∥u(t)∥r

Lr (Rn) + M2∥∇u(t)∥r
Lr (Rn)

)︂
(4.13)

for a.e. 0 < t < T1, where M1 and M2 are determined from the estimates already derived in (2.2)
in Theorem 2.1 (I), (4.7), and (4.8) as follows:

M1 := sup 
0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥Δv(t)∥2
L∞(Rn)

and:

M2 := (q − 1)2 sup 
0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)

(︃
sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn) + sup 

0<t<T1

∥Δv(t)∥2
L∞(Rn)

)︃
.

Thus, from (4.11) to (4.13), we obtain the following differential inequality:

1

r

d

dt
∥∇u(t)∥r

Lr (Rn) ≤ − r − 2

2 
J1 − 1

2
J2

+ (r + n − 2)
(︂
M1∥u(t)∥r

Lr (Rn) + M2∥∇u(t)∥r
Lr (Rn)

)︂
(4.14)

for a.e. 0 < t < T1.
For n + q ≤ r < ∞, applying Lemma 3.3 with m = 1, a = 3, q1 = r

n+q
∈ [1, r], q2 = r ∈

[ r , ar ], f = |∇u|, Θ = n(n+q−1) = 1 − 2 and β = n(n+q−1)+2 , we obtain:
2 2 n(n+q−1)+2 n(n+q−1)+2 (n+q−1)(n+2)
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∥∇u(t)∥r
Lr (Rn) ≤

(︂
c

1 
β
· 2
r

0

)︂r∥∇u(t)∥r(1−Θ)

L
r

n+q (Rn)

⃦⃦⃦
∇|∇u| r

2 (t)

⃦⃦⃦2Θ

L2(Rn)

≤ c

2(n+q−1)(n+2)
n(n+q−1)+2 

0 ∥∇u(t)∥
2r 

n(n+q−1)+2

L
r

n+q (Rn)

⃦⃦⃦
∇|∇u| r

2 (t)

⃦⃦⃦ 2n(n+q−1) 
n(n+q−1)+2

L2(Rn)
,

where c0 depends only on n. Thus, we observe from the Young inequality, with ℓ = n(n+q−1)+2
n(n+q−1) 

and ℓ′ = n(n+q−1)+2
2 :

∥∇u(t)∥r
Lr (Rn) ≤ Cε

(︃
c

2(n+q−1)(n+2)
n(n+q−1)+2 

0 ∥∇u(t)∥
2r 

n(n+q−1)+2

L
r

n+q (Rn)

)︃ℓ′

+ ε

⃦⃦⃦
∇|∇u| r

2 (t)

⃦⃦⃦2

L2(Rn)
,

where ε = r−2 
r2(r+n−2)M2

and Cε = 1 
ℓ′ (εℓ)−

ℓ′
ℓ = 2 

n(n+q−1)+2

(︂
M2

n(n+q−1) 
n(n+q−1)+2 · r2(r+n−2)

r−2 

)︂ n(n+q−1)
2 

. 
Since r + n − 2 < 2r , noting:

⃦⃦⃦
∇|∇u| r

2 (t)

⃦⃦⃦2

L2(Rn)
= r2

4 
J1 and Cε ≤ (2M2)

n(n+q−1)
2 rn(n+q−1),

we obtain the following inequality:

(r + n − 2)M2∥∇u(t)∥r
Lr (Rn)

≤ 2
n(n+q−1)+2

2 c
(n+q−1)(n+2)

0 M
n(n+q−1)+2

2 
2 rn(n+q−1)+1∥∇u(t)∥r

L
r

n+q (Rn)
+ r − 2

4 
J1. (4.15)

Hence, for all n + q ≤ r < ∞, we see from (4.14) and (4.15):

1

r

d

dt
∥∇u(t)∥r

Lr (Rn) ≤ (r + n − 2)M1∥u(t)∥r
Lr (Rn)

+ 2
n(n+q−1)+2

2 c
(n+q−1)(n+2)
0 M

n(n+q−1)+2
2 

2 rn(n+q−1)+1∥∇u(t)∥r

L
r

n+q (Rn)

≤ M∗rn(n+q−1)+1
(︃

∥u(t)∥r
Lr (Rn) + ∥∇u(t)∥r

L
r

n+q (Rn)

)︃
(4.16)

for a.e. 0 < t < T1, where M∗ is defined as follows:

M∗ := max

{︃
2M1, 2

n(n+q−1)+2
2 c

(n+q−1)(n+2)
0 M

n(n+q−1)+2
2 

2

}︃
.

Therefore, integrating both sides of (4.16) from 0 to t , we have, for all n + q ≤ r < ∞:

∥∇u(t)∥r
Lr (Rn)

≤ ∥∇u0∥r
Lr (Rn) + M∗rn(n+q−1)+2

t∫︂ (︃
∥u(s)∥r

Lr (Rn) + ∥∇u(s)∥r

L
r

n+q (Rn)

)︃
ds
0 
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≤ ∥∇u0∥r
Ln+q (Rn)

+ ∥∇u0∥r
L∞(Rn)

+ M∗rn(n+q−1)+2

t∫︂
0 

(︃
∥u(s)∥r

Ln+q (Rn)
+ ∥u(s)∥r

L∞(Rn) + ∥∇u(s)∥r

L
r

n+q (Rn)

)︃
ds

≤ (M∗ + 1)rn(n+q−1)+2
[︃

2 max
{︂
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn)

}︂r

+ 3 max

{︃
sup 

0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥
L

r
n+q (Rn)

}︃r

T1

]︃

≤ 5(M∗ + 1)(T1 + 1)rn(n+q−1)+2 max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥
L

r
n+q (Rn)

}︃r

.

This yields:

∥∇u(t)∥Lr(Rn) ≤
{︂

5(M∗ + 1)(T1 + 1)rn(n+q−1)+2
}︂ 1

r
max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥
L

r
n+q (Rn)

}︃

for a.e. 0 < t < T1. Let r = (n + q)k with k ≥ 1. Then, we find:

∥∇u(t)∥
L(n+q)k (Rn)

≤
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂ k

(n+q)k max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥
L(n+q)k−1

(Rn)

}︃

≤
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂ k

(n+q)k
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂ k−1 

(n+q)k−1

× max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn), sup 

0<t<T1

∥u(t)∥Ln+q (Rn),

× sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥
L(n+q)k−2

(Rn)

}︃

≤
k−1∏︂
ℓ=1 

{︂
5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2

}︂ k−ℓ+1 
(n+q)k−ℓ+1

max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup ∥u(t)∥Ln+q (Rn), sup ∥u(t)∥L∞(Rn), sup ∥∇u(t)∥Ln+q (Rn)

}︃

0<t<T1 0<t<T1 0<t<T1
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=
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂∑︁k−1

ℓ=1
k−ℓ+1 

(n+q)k−ℓ+1
max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥Ln+q (Rn)

}︃

=
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂∑︁k

ℓ=2
ℓ 

(n+q)ℓ max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥Ln+q (Rn)

}︃
≤
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂2

max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥Ln+q (Rn)

}︃
(4.17)

for a.e. 0 < t < T1. Here, we notice that 
∑︁k

ℓ=2
ℓ 

(n+q)ℓ
≤∑︁∞

ℓ=1
ℓ 
2ℓ = 2.

At this point, we introduce the fundamental theorem regarding the limiting norm of ∥·∥Lp(Rn). 
Specifically, let (X,μ) be a measure space. If f ∈ Lp0(X,μ) for some p0 < ∞, the following 
holds:

lim 
p→∞∥f ∥Lp(X) = ∥f ∥L∞(X). (4.18)

See Grafakos [8, p. 11, Exercise 1.1.3] for further details. Therefore, taking the limit as k → ∞
on the left-hand side of (4.17) and applying the result from (4.18), we conclude:

sup 
0<t<T1

∥∇u(t)∥L∞(Rn)

≤
{︂

5(M∗ + 1)(T1 + 1)(n + q)n(n+q−1)+2
}︂2

max

{︃
∥∇u0∥Ln+q (Rn),∥∇u0∥L∞(Rn),

sup 
0<t<T1

∥u(t)∥Ln+q (Rn), sup 
0<t<T1

∥u(t)∥L∞(Rn), sup 
0<t<T1

∥∇u(t)∥Ln+q (Rn)

}︃
.

We now turn to the proof of (4.5). Applying the Young inequality, we have:

sup 
0<t<T1

∥∂i∇v(t)∥L∞(Rn) ≤ ∥∇Gγ ∥L1(Rn) sup 
0<t<T1

∥∇u(t)∥L∞(Rn)

≤ C sup 
0<t<T1

∥∇u(t)∥L∞(Rn), (4.19)

where C depends only on n and γ . In addition, from the second equation of (DD), we have:

sup 
0<t<T1

∥∂iΔv(t)∥L∞(Rn) ≤ γ sup 
0<t<T1

∥∇v(t)∥L∞(Rn) + sup 
0<t<T1

∥∇u(t)∥L∞(Rn). (4.20)

This inequality directly leads to the proof of (4.5).
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We now address the proof of (4.6). Let 2 ≤ r < ∞. By differentiating both sides of the first 
equation of (DD) with respect to x twice and multiplying by |∂i∇u|r−2∂i∇u, we derive the 
following from (4.7), (4.8), (4.10), (4.19) and (4.20):

1

r

d

dt
∥∂i∇u(t)∥r

Lr (Rn)

≤ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∂i∇u(t)∥r
Lr (Rn)

+ 2(r + n − 2)(q − 1)2(q − 2)2∥u(t)∥2(q−3)

L∞(Rn)
∥∇u(t)∥2

L∞(Rn)∥∇v(t)∥2
L∞(Rn)

× ∥∇u(t)∥2
Lr(Rn)∥∂i∇u(t)∥r−2

Lr(Rn)

+ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∂i∇v(t)∥2

L∞(Rn)∥∇u(t)∥2
Lr(Rn)∥∂i∇u(t)∥r−2

Lr(Rn)

+ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥Δv(t)∥2

L∞(Rn)∥∇u(t)∥2
Lr(Rn)∥∂i∇u(t)∥r−2

Lr(Rn)

+ 2(r + n − 2)∥u(t)∥2(q−2)

L∞(Rn)
∥∂iΔv(t)∥2

L∞(Rn)∥u(t)∥2
Lr(Rn)∥∂i∇u(t)∥r−2

Lr(Rn)
, (4.21)

which leads to:

sup 
0<t<T1

∥∂i∇u(t)∥Lr(Rn)

≤
(︃

∥∂i∇u0∥Lr(Rn)+2(q−1)(q−2)
√︁

(r+n−2)T1 sup 
0<t<T1

∥u(t)∥q−3
L∞(Rn)

sup 
0<t<T1

∥∇u(t)∥L∞(Rn)

× sup 
0<t<T1

∥∇v(t)∥L∞(Rn) sup 
0<t<T1

∥∇u(t)∥Lr(Rn)

+ 2(q−1)
√︁

(r+n−2)T1 sup 
0<t<T1

∥u(t)∥q−2
L∞(Rn)

sup 
0<t<T1

∥∂i∇v(t)∥L∞(Rn) sup 
0<t<T1

∥∇u(t)∥Lr(Rn)

+ 2(q−1)
√︁

(r+n−2)T1 sup 
0<t<T1

∥u(t)∥q−2
L∞(Rn)

sup 
0<t<T1

∥Δv(t)∥L∞(Rn) sup 
0<t<T1

∥∇u(t)∥Lr(Rn)

+ 2
√︁

(r+n−2)T1 sup 
0<t<T1

∥u(t)∥q−2
L∞(Rn)

sup 
0<t<T1

∥∂iΔv(t)∥L∞(Rn) sup 
0<t<T1

∥u(t)∥Lr(Rn)

)︃
× exp

{︃
2(q−1)2(r+n−2)T1 sup 

0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn)

}︃
. (4.22)

Therefore, since q = 2 or q ≥ 3, and n + q ≥ 2, and since ∂i∇u0 ∈ Ln+q(Rn), from (4.22), we 
have ∂i∇u ∈ L∞(0, T1;Ln+q(Rn)). Thus, we conclude the proof of (4.6).

(ii). parabolic-elliptic type (B): τ = 0, γ = 0.
We establish the following regularities:

Δv ∈ L∞(0, T1;L∞(Rn)), (4.23)

u ∈ L∞(0, T1;Lθ(Rn)) ∩ L∞(0, T1;Ln+q(Rn)), (4.24)

∇v ∈ L∞(0, T1;L∞(Rn)), (4.25)
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∇u ∈ L∞(0, T1;Ln+q(Rn)), (4.26)

∇u ∈ L∞(0, T1;L∞(Rn)), (4.27)

∂iΔv ∈ L∞(0, T1;L∞(Rn)) for all i = 1,2, . . . , n, (4.28)

∂i∇u ∈ L∞(0, T1;Ln+q(Rn)) for all i = 1,2, . . . , n, (4.29)

where θ is the exponent introduced in Assumption 2.2 as part of the function space imposed on 
the initial data u0.

With regard to (4.23), by applying (2.2) from Theorem 2.1 (I), and the second equation of 
(DD), we obtain:

sup 
0<t<T1

∥Δv(t)∥L∞(Rn) ≤ sup 
0<t<T1

∥u(t)∥L∞(Rn). (4.30)

Therefore, (4.23) follows from (4.30).
Let 1 < r < ∞. Regarding (4.24), by multiplying both sides of the first equation of (DD) by 

|u|r−2u and integrating over Rn, we obtain:

1

r

d

dt
∥u(t)∥r

Lr (Rn) = −(r − 1)

∫︂
Rn

|∇u|2|u|r−2 dx − χ(r − 1)

∫︂
Rn

|u|q−2u∇v · |u|r−2∇u dx

= −(r − 1)

∫︂
Rn

|∇u|2|u|r−2 dx + χ(r − 1) 
r + q − 2

∫︂
Rn

Δv |u|r+q−2 dx

≤ r − 1 
r + q − 2

∥u(t)∥q−2
L∞(Rn)

∥Δv(t)∥L∞(Rn)∥u(t)∥r
Lr (Rn).

By applying (4.30), we have:

sup 
0<t<T1

∥u(t)∥Lr(Rn) ≤ ∥u0∥Lr(Rn) exp

{︃
T1 sup 

0<t<T1

∥u(t)∥q−2
L∞(Rn)

sup 
0<t<T1

∥Δv(t)∥L∞(Rn)

}︃
≤ ∥u0∥Lr(Rn) exp

{︃
T1 sup 

0<t<T1

∥u(t)∥q−1
L∞(Rn)

}︃
. (4.31)

Therefore, since q = 2 or q ≥ 3, 1 < θ < n and n + q > 1, by choosing r = θ and r = n + q , we 
deduce (4.24), where θ is the exponent introduced in Assumption 2.2.

Next, we establish (4.25). Considering that ∇G0 ∈ L
n 

n−1 ,∞(Rn) for n ≥ 2, we apply the weak
type Young inequality (see Grafakos, for example, [8, p. 73 Theorem 1.4.25]). Consequently, we 
obtain the following estimate:

∥∇v(t)∥Lr(Rn) ≤ ∥∇G0∥
L

n 
n−1 ,∞

(Rn)
∥u(t)∥Lθ (Rn) (4.32)

for all n 
n−1 < r < ∞ and 1 < θ < n, with 1

r
= n−1

n + 1 
θ

− 1 = − 1 
n

+ 1 
θ

. Then, for all n < r < ∞, 
using the embedding theorem, (3.2) in Lemma 3.2, (4.31) and (4.32), and applying the second 
equation of (DD), we derive the following:
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∥∇v(t)∥L∞(Rn) ≤ C∥∇v(t)∥W 1,r (Rn)

≤ C
(︂
∥∇v(t)∥Lr(Rn) + ∥Δv(t)∥Lr(Rn)

)︂
≤ C

(︂
∥u(t)∥Lθ (Rn) + ∥u(t)∥Lr(Rn)

)︂
for a.e. 0 < t < T1, where 1

r
= − 1 

n
+ 1 

θ
, and C depends only on n and θ . Thus, since u0 ∈

Lθ(Rn) ∩ L∞(Rn), we conclude that (4.25) holds.
The regularities (4.26), (4.27), (4.28) and (4.29) follow from similar arguments used in the 

parabolic-elliptic case with τ = 0 and γ > 0 as in (4.10) through (4.22).

(iii). parabolic-parabolic type: τ = 1, γ ≥ 0.
We establish the following regularities:

∇v ∈ L∞(0, T1;L∞(Rn)), (4.33)

u,v,∇v ∈ L∞(0, T1;Lr(Rn)) for all n + q ≤ r < ∞, (4.34)

∇u,Δv ∈ L∞(0, T1;Lr(Rn)) for all n + q ≤ r < ∞, (4.35)

∇2u,∇3v ∈ L∞(0, T1;Ln+q(Rn)), (4.36)

∇u,Δv ∈ L∞(0, T1;L∞(Rn)). (4.37)

We first prove (4.33) and (4.34). From (3.9) and (3.10) in Lemma 3.8, we obtain the following 
estimates:

sup 
0<t<T1

∥∇v(t)∥L∞(Rn) ≤ ∥∇v0∥L∞(Rn) + C sup 
0<t<T1

∥u(t)∥L∞(Rn), (4.38)

where C depends only on n and T1. Additionally, let 1 < r < ∞. By multiplying both sides of 
the first equation of (DD) by |u|r−2u and integrating over Rn, we obtain:

1

r

d

dt
∥u(t)∥r

Lr (Rn) = −(r − 1)

∫︂
Rn

|u|r−2|∇u|2 dx − χ(r − 1)

∫︂
Rn

|u|q−2u∇v · |u|r−2∇u dx

≤ −(r − 1)

∫︂
Rn

|u|r−2|∇u|2 dx

+ r − 1

4 

∫︂
Rn

|u|r−2|∇u|2 dx + (r − 1)

∫︂
Rn

|∇v|2|u|r+2q−4 dx

≤ (r − 1)∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥u(t)∥r
Lr (Rn),

which, by applying (2.2) from Theorem 2.1 (I), (4.38) and the Gronwall inequality, leads to:

sup ∥u(t)∥Lr(Rn)

0<t<T1
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≤ ∥u0∥Lr(Rn) exp

{︃
(r − 1)T1 sup 

0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn)

}︃
.

Since q = 2 or q ≥ 3, and n + q > 1, we have u ∈ L∞(0, T1;Lr(Rn)) for all n + q ≤ r < ∞.
By applying (3.9) and (3.10) in Lemma 3.8, we obtain the following estimates:

sup 
0<t<T1

∥v(t)∥Lr(Rn) ≤ ∥v0∥Lr(Rn) + C sup 
0<t<T1

∥u(t)∥Lr(Rn)

and:

sup 
0<t<T1

∥∇v(t)∥Lr(Rn) ≤ ∥∇v0∥Lr(Rn) + C sup 
0<t<T1

∥u(t)∥Lr(Rn),

where C depends only on n and T1. Thus, we conclude (4.34).
We now turn to the proof of (4.35). Let 2 ≤ r < ∞. By applying (3.11) in Lemma 3.8, we 

obtain the following estimate:

∥Δv(t)∥2
Lr(Rn) ≤ C∥∇2v(t)∥2

Lr(Rn)

≤ C∥∇2v0∥2
Lr(Rn) + C(r + n − 2)

t∫︂
0 

∥∇u(s)∥2
Lr(Rn) ds (4.39)

for a.e. 0 < t < T1, where C depends only on n. Additionally, by differentiating both sides of the 
first equation of (DD) with respect to x once and multiplying by |∇u|r−2∇u, we obtain:

1

r

d

dt
∥∇u(t)∥r

Lr (Rn) ≤ (r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∇u(t)∥r
Lr (Rn)

+ (r + n − 2)∥u(t)∥2(q−1)

L∞(Rn)
∥Δv(t)∥2

Lr(Rn)∥∇u(t)∥r−2
Lr(Rn)

,

which, by using (4.39), yields:

sup 
0<t<T1

∥∇u(t)∥Lr(Rn) ≤
(︃

∥∇u0∥Lr(Rn)+
√︁

C(r+n − 2)T1 sup 
0<t<T1

∥u(t)∥q−1
L∞(Rn)

∥∇2v0∥Lr(Rn)

)︃

× exp

{︃
C(r+n − 2)2(q − 1)2(T1+1)2 sup 

0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)

×
(︂

sup 
0<t<T1

∥u(t)∥2
L∞(Rn)+ sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn)

)︂}︃
, (4.40)

where C depends only on n. Thus, since q = 2 or q ≥ 3, and n + q ≥ 2, we observe that ∇u ∈
L∞(0, T1;Lr(Rn)) for all n + q ≤ r < ∞. Moreover, from (4.39) together with (4.40), we infer 
Δv ∈ L∞(0, T1;Lr(Rn)). Thus, we conclude (4.35).

We now establish (4.36). Using a similar calculation as in (4.21), we derive the following 
inequality:
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1

r

d

dt
∥∂i∇u(t)∥r

Lr (Rn)

≤ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∂i∇u(t)∥r
Lr (Rn)

+ 2(r+n−2)(q−1)2(q−2)2∥u(t)∥2(q−3)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∇u(t)∥4
L2r (Rn)

∥∂i∇u(t)∥r−2
Lr(Rn)

+ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∂i∇v(t)∥2

L2r (Rn)
∥∇u(t)∥2

L2r (Rn)
∥∂i∇u(t)∥r−2

Lr(Rn)

+ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥Δv(t)∥2

L2r (Rn)
∥∇u(t)∥2

L2r (Rn)
∥∂i∇u(t)∥r−2

Lr(Rn)

+ 2(r + n − 2)∥u(t)∥2(q−1)

L∞(Rn)
∥∂iΔv(t)∥2

Lr(Rn)∥∂i∇u(t)∥r−2
Lr(Rn)

(4.41)

for a.e. 0 < t < T1 and for all 2 ≤ r < ∞. Additionally, taking i = 3 in (3.11) in Lemma 3.8, we 
obtain:

∥∂iΔv(t)∥2
Lr(Rn) ≤ C∥∇3v(t)∥2

Lr(Rn)

≤ C∥∇3v0∥2
Lr(Rn) + C(r + n − 2)

t∫︂
0 

∥∇2u(s)∥2
Lr (Rn) ds (4.42)

for a.e. 0 < t < T1, where C depends only on n. Combining (4.41) with (4.42), we observe the 
following inequality:

1

2

d

dt
∥∂i∇u(t)∥2

Lr(Rn)

≤ (r + n − 2)
(︂

2(q − 1)2(q − 2)2∥u(t)∥2(q−3)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∇u(t)∥4
L2r (Rn)

+ 2(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∂i∇v(t)∥2

L2r (Rn)
∥∇u(t)∥2

L2r (Rn)

+ 2(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥Δv(t)∥2

L2r (Rn)
∥∇u(t)∥2

L2r (Rn)

+ ∥∇3v0∥2
Lr(Rn)∥u(t)∥2(q−1)

L∞(Rn)

)︂
+ 2(r + n − 2)(q − 1)2∥u(t)∥2(q−2)

L∞(Rn)
∥∇v(t)∥2

L∞(Rn)∥∂i∇u(t)∥2
Lr(Rn)

+ C(r + n − 2)2∥u(t)∥2(q−1)

L∞(Rn)

t∫︂
0 

∥∇2u(s)∥2
Lr(Rn) ds (4.43)

for a.e. 0 < t < T1, where C depends only on n. Noting:

t∫︂
0 

τ∫︂
0 

∥∇2u(s)∥2
Lr (Rn) dsdτ ≤

t∫︂
0 

t∫︂
0 

∥∇2u(s)∥2
Lr(Rn) dsdτ = T1

t∫︂
0 

∥∇2u(s)∥2
Lr (Rn) ds,

and:
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n− r
2 ∥∇2u(t)∥r

Lr (Rn) ≤
n ∑︂

i=1 
∥∂i∇u(t)∥r

Lr (Rn),

by integrating both sides of (4.43) from 0 to t , we have, for all 2 ≤ r < ∞:

∥∇2u(t)∥2
Lr(Rn)

≤ ∥∇2u0∥2
Lr(Rn) + 2n

r
2 (r + n − 2)T1

×
(︃

2(q − 1)2(q − 2)2 sup 
0<t<T1

∥u(t)∥2(q−3)

L∞(Rn)
sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn) sup 

0<t<T1

∥∇u(t)∥4
L2r (Rn)

+ 2(q − 1)2 sup 
0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥∇2v(t)∥2
L2r (Rn)

sup 
0<t<T1

∥∇u(t)∥2
L2r (Rn)

+ 2(q − 1)2 sup 
0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥Δv(t)∥2
L2r (Rn)

sup 
0<t<T1

∥∇u(t)∥2
L2r (Rn)

+ ∥∇3v0∥2
Lr(Rn) sup 

0<t<T1

∥u(t)∥2(q−1)

L∞(Rn)

)︃

+ 4n
r
2 (r + n − 2)(q − 1)2 sup 

0<t<T1

∥u(t)∥2(q−2)

L∞(Rn)
sup 

0<t<T1

∥∇v(t)∥2
L∞(Rn)

t∫︂
0 

∥∇2u(s)∥2
Lr(Rn) ds

+ Cn
r
2 (r + n − 2)2T1 sup 

0<t<T1

∥u(t)∥2(q−1)

L∞(Rn)

t∫︂
0 

∥∇2u(s)∥2
Lr (Rn) ds

=: ∥∇2u0∥2
Lr(Rn)

+ 2n
r
2 (r + n − 2)T1(M

2
3 + M2

4 + M2
5 + M2

6 ) + (M7 + M8)

t∫︂
0 

∥∇2u(s)∥2
Lr (Rn) ds

for a.e. 0 < t < T1, where C depends only on n. Here, M3,M4,M5,M6,M7,M8 are defined as 
follows:

M3 := √
2(q − 1)(q − 2) sup 

0<t<T1

∥u(t)∥q−3
L∞(Rn)

sup 
0<t<T1

∥∇v(t)∥L∞(Rn) sup 
0<t<T1

∥∇u(t)∥2
L2r (Rn)

,

M4 := √
2(q − 1) sup 

0<t<T1

∥u(t)∥q−2
L∞(Rn)

sup 
0<t<T1

∥∇2v(t)∥L2r (Rn) sup 
0<t<T1

∥∇u(t)∥L2r (Rn),

M5 := √
2(q − 1) sup 

0<t<T1

∥u(t)∥q−2
L∞(Rn)

sup 
0<t<T1

∥Δv(t)∥L2r (Rn) sup 
0<t<T1

∥∇u(t)∥L2r (Rn),

M6 := ∥∇3v0∥Lr(Rn) sup 
0<t<T1

∥u(t)∥q−1
L∞(Rn)

,

M7 := 4n
r
2 (r + n − 2)(q − 1)2 sup ∥u(t)∥2(q−2)

L∞(Rn)
sup ∥∇v(t)∥2

L∞(Rn),

0<t<T1 0<t<T1
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M8 := Cn
r
2 (r + n − 2)2T1 sup 

0<t<T1

∥u(t)∥2(q−1)

L∞(Rn)
,

where C depends only on n. This, together with the Gronwall inequality, leads to:

sup 
0<t<T1

∥∇2u(t)∥Lr(Rn) ≤
(︃

∥∇2u0∥Lr(Rn) +
√︂

2n
r
2 (r + n − 2)T1(M3 + M4 + M5 + M6)

)︃
× exp

{︃
1

2
(M7 + M8)T1

}︃
(4.44)

for a.e. 0 < t < T1, where C depends only on n. Since ∇2u0,∇3v0 ∈ Ln+q(Rn), from (4.42) and 
(4.44), we have ∇2u,∇3v ∈ L∞(0, T1;Ln+q(Rn)). Thus, we conclude (4.36).

We prove (4.37) as follows. By the Morrey inequality, there exists a positive constant C de
pending only on n and q such that:

sup 
0<t<T1

∥∇u(t)∥L∞(Rn) ≤ C sup 
0<t<T1

∥∇u(t)∥W 1,n+q (Rn)

and:

sup 
0<t<T1

∥Δv(t)∥L∞(Rn) ≤ C sup 
0<t<T1

∥Δv(t)∥W 1,n+q (Rn)

From (4.35) and (4.36), we have the boundedness of ∥∇u(t)∥W 1,n+q(Rn) and ∥Δv(t)∥W 1,n+q (Rn). 
Consequently, (4.37) is obtained. This completes the proof of Lemma 4.2. □
Continuation of the Proof of Theorem 2.1 (II). We are now ready to prove Theorem 2.1 (II). 
From the construction of the solution described in Subsection 4.1, we observe that the local exis
tence time T1 depends on n, q , γ and u0 (and on v0, if applicable). Specifically, the dependencies 
for each case are as follows:

(i). parabolic-elliptic type (A): τ = 0, γ > 0. 
The time T1 depends only on n, q , γ , and ∥u0∥W 2,n+q (Rn).

(ii). parabolic-elliptic type (B): τ = 0, γ = 0. 
The time T1 depends only on n, q , ∥u0∥Lθ (Rn), and ∥u0∥W 2,n+q (Rn) for some 1 < θ < n, 
where θ is introduced in Assumption 2.2.

(iii). parabolic-parabolic type: τ = 1, γ ≥ 0. 
The time T1 depends only on n, q , γ , ∥u0∥W 2,n+q (Rn), and ∥v0∥W 3,n+q (Rn).

Our objective is to extend the strong solution (u, v) from [0, T1) to [0,ˆ︁T ), where T1 < ˆ︁T <

Tmax. Here, Tmax refers to the maximal existence time, the upper bound for the interval during 
which the solution remains bounded in the L∞(Rn)-norm. In other words, Tmax is characterized 
by the property:

lim sup 
t→Tmax−0

∥u(t)∥L∞(Rn) = ∞,

indicating that the solution u(t) becomes unbounded in the L∞(Rn)-norm as t approaches Tmax.
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To achieve this extension, we assume (2.3). Under this condition, we derive the following 
estimates from Lemma 4.2:

(i). parabolic-elliptic type (A): τ = 0, γ > 0. 
There exists a positive constant C depending only on n, q , γ , T0 and ∥u0∥W 2,n+q (Rn) such 
that:

sup 
0<t<T0

∥u(t)∥W 2,n+q (Rn) ≤ C. (4.45)

(ii). parabolic-elliptic type (B): τ = 0, γ = 0. 
There exists a positive constant C depending only on n, q , T0, ∥u0∥Lθ (Rn) and 
∥u0∥W 2,n+q (Rn) such that:

sup 
0<t<T0

∥u(t)∥Lθ (Rn) + sup 
0<t<T0

∥u(t)∥W 2,n+q (Rn) ≤ C (4.46)

for some 1 < θ < n, where θ is introduced in Assumption 2.2.
(iii). parabolic-parabolic type: τ = 1, γ ≥ 0. 

There exists a positive constant C depending only on n, q , γ , T0, ∥u0∥W 2,n+q (Rn), and 
∥v0∥W 3,n+q (Rn) such that:

sup 
0<t<T0

∥u(t)∥W 2,n+q (Rn) + sup 
0<t<T0

∥v(t)∥W 3,n+q (Rn) ≤ C. (4.47)

From (4.45), (4.46) and (4.47), the solution u(T0) (and on v(T0), if applicable) belongs to the 
same function space as the initial data specified in Assumption 2.2.

We then consider T0 as an initial time and apply the construction method outlined in Subsec
tion 4.1, using u(T0) (and on v(T0), if applicable) as initial data. This enables us to extend the 
strong solution (u, v) over [T0, T

(1)
1 ). Here, the existence time T (1)

1 is determined by n, q , γ and 
u(T0) (and on v(T0), if applicable), as specified in Assumption 2.2. By applying Lemma 4.2, 
we derive the same estimates as in (4.45), (4.46), and (4.47), but now over [T0, T

(1)
0 ], where 

T
(1)
0 < T

(1)
1 .

From the estimates obtained over [T0, T
(1)
0 ], we ensure that the solution u(T

(1)
0 ) (and on 

v(T
(1)
0 ), if applicable) belongs to the same function space as the initial data specified in As

sumption 2.2. Consequently, we are able to reapply the construction method from Subsection 
4.1, treating u(T

(1)
0 ) (and on v(T

(1)
0 ), if applicable) as the initial data. This allows us to construct 

the strong solution (u, v) on [T (1)
0 , T

(2)
1 ).

Repeating this procedure iteratively, we define sequences {T (k)
0 } and {T (k)

1 } for k = 1,2, . . .. 

In addition, we set T (0)
0 := T0, and construct solutions on [T (k−1)

0 , T
(k)
1 ), ensuring at each step 

that:

• The same estimates as in (4.45), (4.46), and (4.47) hold over [T (k−1)
0 , T

(k)
0 ], where T (k)

0 <

T
(k)
1 . These estimates are guaranteed by Lemma 4.2.

• The construction method from Subsection 4.1 can be reapplied using u(T
(k)
0 ) (and on 

v(T
(k)

), if applicable) as initial data
0
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• We extend the strong solution (u, v) over [T (k)
0 , T

(k+1)
1 ).

Therefore, by this method of iterative extension, we have successfully extended the strong solu
tion (u, v) to [0,ˆ︁T ) for any ˆ︁T < Tmax.

Based on the above facts, the following conclusion follows: the solution can be extended to 
the maximal existence time Tmax, at which time the solution may become unbounded in the 
L∞(Rn)-norm. Specifically, Tmax is characterized by the condition:

lim sup 
t→Tmax−0

∥u(t)∥L∞(Rn) = ∞,

indicating that the solution may not cease to exist in the strong sense beyond Tmax. This condition 
suggests that a blow-up in the L∞(Rn)-norm is a potential cause for the termination of the 
solution’s existence at Tmax. This completes the proof of Theorem 2.1 (II). □
4.3. Proof of Theorem 2.1 (III): extended existence of solutions up to maximal time

To establish Theorem 2.1 (III), we first apply the local existence result in Theorem 2.1 (I), 
which guarantees the existence of a strong solution on a small time interval [0, T1) for some 
T1 > 0, depending on the norms of the initial data u0 (and on v0, if applicable) introduced in 
Assumption 2.2. The solution is constructed in the appropriate function spaces W(QT1) ∩ XT1 , 
and by the a priori estimates derived in Subsection 4.2, we ensure that, as long as the L∞(Rn)
norm of u(t) is bounded, the W 2,n+q(Rn)-norm of u(t) (and the W 3,n+q(Rn)-norm of v(t), if 
applicable) remains finite.

Furthermore, the uniqueness of the solution in the class W(QTmax) ∩ XTmax follows from the 
contraction mapping principle applied in the proof of Theorem 2.1 (II), ensuring that no other 
solutions with the same initial data exist in this class. Therefore, the strong solution (u, v) is 
unique on [0, Tmax).

In addition, we aim to establish (2.7) in Theorem 2.1 (III):

u ∈ C([0, T ];Lr
loc(R

n)) for all n + q ≤ r ≤ ∞. (4.48)

From Lemma 4.2, the following regularity properties hold:

u ∈ L∞(0, T ;W 1,n+q(Rn)) and ∂tu ∈ L∞(0, T ;Ln+q(Rn)).

These regularity conditions, combined with the compact embedding W 1,n+q(Ω) ⊂ C(Ω) for any 
bounded subset Ω ⊂ Rn, imply that:

u ∈ C([0, T ];C(Ω))

for all bounded subset Ω. Since this embedding is valid only on bounded domains, we restrict our 
analysis to such regions. By invoking the Aubin-Lions Lemma, we conclude that u is continuous 
in the local Lr(Rn)-spaces, leading to the desired result (4.48). Thus, we confirm that u resides in 
the appropriate continuity space for all n+ q ≤ r ≤ ∞. This completes the proof of Theorem 2.1
(III). □
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4.4. Proof of Theorem 2.1 (IV): charge conservation law

We now proceed with the proof of Theorem 2.1 (IV). Let 0 < ˆ︁T < Tmax, where Tmax denotes 
the maximal existence time. We assume that the initial data satisfies u0 ∈ L1(Rn). Since u0 ∈
L1(Rn) ∩ L∞(Rn), by modifying Lemma 4.2, there exists a constant C such that the following 
bound holds:

sup 
0<t<ˆ︁T ∥u(t)∥Lp(Rn) ≤ C for all 1 < p ≤ ∞, (4.49)

and:

sup 
0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn) ≤ C. (4.50)

Here, the constant C depends as follows:

(i). parabolic-elliptic type (A): τ = 0, γ > 0. 
The constant C depends only on n, q , γ , ∥u0∥L1(Rn) and ∥u0∥W 2,n+q (Rn).

(ii). parabolic-elliptic type (B): τ = 0, γ = 0. 
The constant C depends only on n, q , ∥u0∥L1(Rn) and ∥u0∥W 2,n+q (Rn).

(iii). parabolic-parabolic type: τ = 1, γ ≥ 0. 
The constant C depends only on n, q , γ , ∥u0∥L1(Rn), ∥u0∥W 2,n+q (Rn) and ∥v0∥W 3,n+q (Rn).

To establish Theorem 2.1 (IV), we first present the following lemma:

Lemma 4.3. We suppose that all assumptions of Theorem 2.1 (IV) hold. We assume, moreover, 
that the initial data u0 belongs to L1(Rn). Then, the strong solution u satisfies:

u ∈ L∞(0,ˆ︁T ;L1(Rn)).

Proof of Lemma 4.3. We begin by defining the positive and negative parts of a function f as 
follows:

[f ]+(x) := max{0, f (x)}, [f ]−(x) := −min{0, f (x)}. (4.51)

Then, we have the identity:

|f (x)| = [f ]+(x) + [f ]−(x) = [f ]+(x) + [−f ]+(x). (4.52)

We next focus on the contribution arising from the positive part of u, which constitutes the 
first step toward establishing its L1(Rn)-integrability. To this end, we introduce a cut-off function 
η ∈ C1(R) satisfying 0 ≤ η(s) ≤ 1 and 0 ≤ η′(s) ≤ 2 for all s ∈ R, and specifically set:

η(s) :=
{︄

0 for s ≤ 0,

1 for s ≥ 1.
(4.53)
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We further define, for each parameter m = 1,2, . . ., the cut-off function:

ηm : R−→ [0,1], ηm(r) := η(mr) for all r ∈R,

where r is the variable and m indexes the family {ηm}m∈N . Then, it holds that:

0 ≤ η′
m(r) ≤ 2m for all r ∈ R. (4.54)

Multiplying the first equation of (DD) by ηm(u) ϕR and integrating over Rn × (t0, t1), we 
obtain:

t1∫︂
t0

∫︂
Rn

∂su ηm(u) ϕR dxds = I + II, (4.55)

for a.e. 0 < t0 < t1 < ˆ︁T , where we set:

I := −
t1∫︂

t0

∫︂
Rn

∇u · ∇(︁ηm(u) ϕR

)︁
dxds,

II := χ

t1∫︂
t0

∫︂
Rn

∇ · (︁|u|q−2u ∇v
)︁
ηm(u) ϕR dxds.

We first bound the term I . Applying the Leibniz rule, we obtain:

I = −
t1∫︂

t0

∫︂
Rn

|∇u|2 η′
m(u) ϕR dxds −

t1∫︂
t0

∫︂
Rn

∇u · ηm(u) ∇ϕR dxds =: − I1 + I2. (4.56)

Since η′
m(r) ≥ 0 for all r ∈ R, as stated in (4.54), we have I1 ≥ 0. Hence, to obtain an upper 

bound for I , it suffices to estimate I2 from above. To this end, we introduce:

Dm :=
{︂
(x, t) ∈ Rn × (0,ˆ︁T ) 

⃓⃓⃓
0 < u(x, t) < 1 

m

}︂
.

Using (4.54) and Lemma 3.1 yields:

I2 =
t1∫︂

t0

∫︂
Rn

u η′
m(u) ∇u · ∇ϕR dxds +

t1∫︂
t0

∫︂
Rn

u ηm(u) ΔϕR dxds

≤ 1

4
I1 +

t1∫︂
t

∫︂
|u|2η′

m(u) |∇ϕR|2 1 
ϕR

dxds +
t1∫︂

t

∫︂
n

u ηm(u) ΔϕR dxds
0 Dm∩suppϕR 0 R
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≤ 1

4
I1 +

t1∫︂
t0

∫︂
Dm∩suppϕR

16n 
mR2 dxds + 12n

R2

t1∫︂
t0

∥u(s)∥L1(Rn) ds. (4.57)

Combining (4.56) and (4.57) gives:

I ≤ −3

4
I1 +

t1∫︂
t0

∫︂
suppϕR

16n 
mR2 dxds + 12n

R2

t1∫︂
t0

∥u(s)∥L1(Rn) ds. (4.58)

We now bound the term II. Applying the Leibniz rule, we obtain:

II = χ(q − 1)

t1∫︂
t0

∫︂
Rn

|u|q−2 ∇u · ∇v ηm(u) ϕR dxds

+ χ

t1∫︂
t0

∫︂
Rn

|u|q−2u Δv ηm(u) ϕR dxds

=: II1 + II2. (4.59)

We next bound II1 using the identity:

(q − 1) |u|q−2∇u ηm(u) = ∇|u|q−1 ηm(u).

We apply the Leibniz rule and perform integration by parts. Together with Lemma 3.1, this yields:

II1 = χ

t1∫︂
t0

∫︂
Rn

∇|u|q−1 · ∇v ηm(u) ϕR dxds

= −χ

t1∫︂
t0

∫︂
Rn

|u|q−1Δv ηm(u) ϕR dxds − χ

t1∫︂
t0

∫︂
Rn

|u|q−1∇v · η′
m(u) ∇u ϕR dxds

− χ

t1∫︂
t0

∫︂
Rn

|u|q−1∇v · ηm(u) ∇ϕR dxds

≤ sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)

(︃
2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃

×
t1∫︂

t0

∥u(s)∥L1(Rn) ds − χ

t1∫︂
t0

∫︂
Rn

|u|q−1∇v · η′
m(u) ∇u ϕR dxds. (4.60)

We consider the third term on the right-hand side of (4.60). Since η′
m(r) ≤ 2m for all r ∈ R, 

as stated in (4.54), we apply Lemma 3.1 to obtain:
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−χ

t1∫︂
t0

∫︂
Rn

|u|q−1∇v · η′
m(u) ∇u ϕR dxds

≤ 1

4
I1 +

t1∫︂
t0

∫︂
Rn

|u|2q−3 |∇v|2 η′
m(u) ϕR dxds

≤ 1

4
I1 + 2m 

m2q−3 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn)

t1∫︂
t0

∥u(s)∥L1(Rn) ds. (4.61)

Combining (4.60) and (4.61), we deduce:

II1 ≤ 1

4
I1 +

{︃
2 

m2q−4 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn) + sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)

×
(︃

2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃ t1∫︂
t0

∥u(s)∥L1(Rn) ds.

(4.62)

We now turn to the estimate of II2, and observe that:

II2 ≤ sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

t1∫︂
t0

∥u(s)∥L1(Rn) ds. (4.63)

Combining (4.62) and (4.63), we conclude that:

II ≤ 1

4
I1 +

{︃
2 

m2q−4 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn) + sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)

×
(︃

2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + 2 sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃ t1∫︂
t0

∥u(s)∥L1(Rn) ds

(4.64)

for a.e. 0 < t0 < t1 < ˆ︁T . We then combine (4.55), (4.58), and (4.64) to obtain:

t1∫︂
t0

∫︂
Rn

∂su (ηm(u))ϕR dxds

≤
t1∫︂

t

∫︂
16n 
mR2 dxds +

{︃
12n

R2 + 2 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn) + sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
0 suppϕR
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×
(︃

2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + 2 sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃ t1∫︂
t0

∥u(s)∥L1(Rn) ds (4.65)

for a.e. 0 < t0 < t1 < ˆ︁T . It follows from the Lebesgue dominated convergence theorem that:

t1∫︂
t0

∫︂
Rn

∂su(x, s) ηm(u(x, s)) ϕR(x) dxds →
t1∫︂

t0

∫︂
Rn

∂su(x, s) sign(u(x, s)) ϕR(x) dxds

=
t1∫︂

t0

∫︂
Rn

∂s[u(x, s)]+ ϕR(x) dxds,

as m → ∞, where [·]+ denotes the positive part defined in (4.51), and:

sign(s) :=
{︄

0 for s ≤ 0,

1 for s > 0.

By passing to the limit m → ∞ in both sides of (4.65), we obtain:∫︂
Rn

[u(x, t1)]+ ϕR(x) dx

≤
∫︂
Rn

[u(x, t0)]+ ϕR(x) dx +
{︃

12n

R2 + 2 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn) + sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)

×
(︃

2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + 2 sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃ t1∫︂
t0

∥u(s)∥L1(Rn) ds.

(4.66)

We then let t0 → 0 and subsequently R → ∞ in (4.66). Applying the Fatou lemma to the integral 
on the left-hand side and the monotone convergence theorem to the first term on the right-hand 
side, we obtain:∫︂
Rn

[u(x, t1)]+ dx ≤
∫︂
Rn

[u0(x)]+ dx + 2

(︃
sup 

0<t<ˆ︁T ∥∇v(t)∥2
L∞(Rn)

+ sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃ t1∫︂
0 

∥u(s)∥L1(Rn) ds (4.67)

for a.e. 0 < t1 < ˆ︁T .
We now turn to the contribution arising from the negative part of u, in order to establish the 

L1(Rn)-integrability of u. Recall from (4.53) that:
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ηm(−u) = η(m(−u)) =
{︄

0 for u ≥ 0,

1 for u ≤ − 1 
m

,
and 0 < η′

m(−u) < 2m for u < 0. (4.68)

We multiply the first equation of (DD) by ηm(−u) ϕR to obtain:

t1∫︂
t0

∫︂
Rn

∂s(−u) ηm(−u) ϕR dxds

= −
t1∫︂

t0

∫︂
Rn

∇(−u) · ∇(︁ηm(−u) ϕR

)︁
dxds

+ χ

t1∫︂
t0

∫︂
Rn

∇ · (︁|u|q−2(−u)∇v
)︁
ηm(−u) ϕR dxds

=:ˆ︁I +ˆ︁II (4.69)

for a.e. 0 < t0 < t1 < ˆ︁T .
We now estimate ˆ︁I . Applying the Leibniz rule, we obtain:

ˆ︁I = −
t1∫︂

t0

∫︂
Rn

|∇(−u)|2 η′
m(−u) ϕR dxds −

t1∫︂
t0

∫︂
Rn

∇(−u) · ηm(−u) ∇ϕR dxds

=: −ˆ︁I1 +ˆ︁I2. (4.70)

Since (4.68) ensures η′
m(−u) ≥ 0, it follows that ˆ︁I1 ≥ 0.

We proceed to an estimate of ˆ︁I2. To this end, we introduce the set:

ˆ︁Dm :=
{︂
(x, t) ∈Rn × (0,ˆ︁T ) 

⃓⃓⃓
− 1 

m
< u(x, t) < 0

}︂
.

Applying Lemma 3.1, we obtain:

ˆ︁I2 =
t1∫︂

t0

∫︂
Rn

(−u) η′
m(−u) ∇(−u) · ∇ϕR dxds +

t1∫︂
t0

∫︂
Rn

(−u) ηm(−u) ΔϕR dxds

≤ 1

4
ˆ︁I1 +

t1∫︂
t0

∫︂
ˆ︁Dm∩suppϕR

|u|2 η′
m(−u) |∇ϕR|2 1 

ϕR

dxds

+
t1∫︂ ∫︂

n

(−u) ηm(−u) ΔϕR dxds
t0 R
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≤ 1

4
ˆ︁I1 +

t1∫︂
t0

∫︂
ˆ︁Dm∩suppϕR

16n 
mR2 dxds + 12n

R2

t1∫︂
t0

∥u(s)∥L1(Rn) ds. (4.71)

Combining (4.70) with (4.71) yields:

ˆ︁I ≤ −3

4
ˆ︁I1 +

t1∫︂
t0

∫︂
suppϕR

16n 
mR2 dxds + 12n

R2

t1∫︂
t0

∥u(s)∥L1(Rn) ds. (4.72)

We next bound ˆ︁II. Proceeding in the same way as for II, we obtain:

ˆ︁II ≤ 1

4
ˆ︁I1 +

{︃
2 

m2q−4 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn) + sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)

×
(︃

2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + 2 sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃ t1∫︂
t0

∥u(s)∥L1(Rn) ds.

(4.73)

Combining (4.69), (4.72), and (4.73), we deduce:

t1∫︂
t0

∫︂
Rn

∂s(−u) (ηm(−u))ϕR dxds

≤
t1∫︂

t0

∫︂
suppϕR

16n 
mR2 dxds +

{︃
12n

R2 + 2 sup 
0<t<ˆ︁T ∥∇v(t)∥2

L∞(Rn) + sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)

×
(︃

2
√

n

R
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + 2 sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃ t1∫︂
t0

∥u(s)∥L1(Rn) ds (4.74)

for a.e. 0 < t0 < t1 < ˆ︁T . Adapting the argument in (4.65)--(4.67), we obtain:∫︂
Rn

[−u(x, t1)]+ dx ≤
∫︂
Rn

[−u0(x)]+ dx + 2

(︃
sup 

0<t<ˆ︁T ∥∇v(t)∥2
L∞(Rn)

+ sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃ t1∫︂
0 

∥u(s)∥L1(Rn) ds.

(4.75)

Therefore, combining (4.52), (4.67), and (4.75), we obtain:

∥u(t1)∥L1(Rn) ≤ ∥u0∥L1(Rn) + 4

(︃
sup ∥∇v(t)∥2

L∞(Rn)

0<t<ˆ︁T
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+ sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃ t1∫︂
0 

∥u(s)∥L1(Rn) ds.

The Gronwall inequality then yields:

∥u(t1)∥L1(Rn)

≤ ∥u0∥L1(Rn) exp

{︃
4ˆ︁T(︃ sup 

0<t<ˆ︁T ∥∇v(t)∥2
L∞(Rn) + sup 

0<t<ˆ︁T ∥u(t)∥q−2
L∞(Rn)

sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

)︃}︃

for a.e. 0 < t1 < ˆ︁T . This completes the proof of Lemma 4.3. □
With these preparations in place, we now turn to the proof of Theorem 2.1(IV).

Proof of Theorem 2.1 (IV). Let ϕR be the cut-off function defined in Lemma 3.1. Multiplying 
both sides of the first equation of (DD) by ϕR = ϕR(x) and integrating it over B2R , we obtain:

d

dt

∫︂
B2R

uϕR dx =
∫︂

B2R

ΔuϕR dx + χ

∫︂
B2R

∇ · (|u|q−2u∇v)ϕR dx. (4.76)

Regarding the first term on the right-hand side of (4.76), by applying the Gauss divergence 
theorem twice, we observe from u ∈ W

2,1
n+q(Qˆ︁T ):∫︂

B2R

ΔuϕR dx =
∫︂

B2R

uΔϕR dx. (4.77)

Indeed, we have:

∥∇u(t)ϕR∥L1(B2R) + ∥∇ · (∇u(t)ϕR)∥L1(B2R)

≤ ∥∇u(t)ϕR∥L1(B2R) + ∥∇u(t) · ∇ϕR∥L1(B2R) + ∥Δu(t)ϕR∥L1(B2R)

≤ ∥∇u(t)∥Ln+q (B2R)∥ϕR∥
L

n+q 
n+q−1 (B2R)

+ ∥∇u(t)∥Ln+q (B2R)∥∇ϕR∥
L

n+q 
n+q−1 (B2R)

+ ∥Δu(t)∥Ln+q (B2R)∥ϕR∥
L

n+q 
n+q−1 (B2R)

< ∞

for a.e. 0 < t < ˆ︁T , which implies that (4.77) holds.
Additionally, concerning the second term on the right-hand side of (4.76), noting (4.50), and 

using u ∈ W
2,1
n+q(Qˆ︁T ), we find, by the Gauss divergence theorem, the following equality:

χ

∫︂
B2R

∇ · (|u|q−2u∇v)ϕR dx = −χ

∫︂
B2R

(|u|q−2u∇v) · ∇ϕR dx. (4.78)

Indeed, it follows:
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∥(|u|q−2u∇v)(t)ϕR∥L1(B2R) ≤ ∥u(t)∥q−1
L∞(B2R)∥∇v(t)∥L∞(B2R)∥ϕR∥L1(B2R) < ∞

and:

∥∇ · ((|u|q−2u∇v)(t)ϕR)∥L1(B2R)

≤ ∥((q − 1)|u|q−2∇u · ∇v)(t)ϕR∥L1(B2R) + ∥(|u|q−2uΔv)(t)ϕR∥L1(B2R)

+ ∥(|u|q−2u∇v)(t) · ∇ϕR∥L1(B2R)

≤ (q − 1)∥u(t)∥q−2
L∞(B2R)

∥∇u(t)∥Ln+q (B2R)∥∇v(t)∥L∞(B2R)∥ϕR∥
L

n+q 
n+q−1 (B2R)

+ ∥u(t)∥q−1
L∞(B2R)∥Δv(t)∥L∞(B2R)∥ϕR∥L1(B2R)

+ ∥u(t)∥q−1
L∞(B2R)∥∇v(t)∥L∞(B2R)∥∇ϕR∥L1(B2R) < ∞

for a.e. 0 < t < ˆ︁T , which yields that (4.78) holds.
Combining (4.76), (4.77) and (4.78), we obtain the following equality:

d

dt

∫︂
B2R

uϕR dx =
∫︂

B2R

uΔϕR dx − χ

∫︂
B2R

(|u|q−2u∇v) · ∇ϕR dx. (4.79)

By integrating both sides of (4.79) from 0 to t , we obtain the following expression:∫︂
B2R

uϕR dx −
∫︂

B2R

u0ϕR dx

=
t∫︂

0 

∫︂
B2R

uΔϕR dxds − χ

t∫︂
0 

∫︂
B2R

(|u|q−2u∇v) · ∇ϕR dxds (4.80)

for a.e. 0 < t < ˆ︁T . According to (4.80), we obtain the following expression:⃓⃓⃓ ∫︂
B2R

uϕR dx −
∫︂

B2R

u0ϕR dx

⃓⃓⃓

≤
⃓⃓⃓ t∫︂

0 

∫︂
B2R

uΔϕR dxds

⃓⃓⃓
+
⃓⃓⃓ t∫︂

0 

∫︂
B2R

(|u|q−2u∇v) · ∇ϕR dxds

⃓⃓⃓
=: IR + IIR. (4.81)

Noting that (4.49), (4.50) and (3.1) in Lemma 3.1, we have:

IR ≤
ˆ︁T∫︂

0 

∥u(s)∥
L

2n 
2n−1 (B2R)

∥ΔϕR∥L2n(B2R) ds ≤ Cˆ︁T R− 3
2 sup 

0<t<ˆ︁T ∥u(t)∥
L

2n 
2n−1 (Rn)

, (4.82)

and:
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IIR ≤
ˆ︁T∫︂

0 

∥(|u|q−2u∇v)(s) · ∇ϕR∥L1(B2R) ds

≤ sup 
0<t<ˆ︁T ∥∇v(t)∥L∞(Rn)

ˆ︁T∫︂
0 

∥u(s)∥q−1

L
2n(q−1)

2n−1 (Rn)

∥∇ϕR∥L2n(B2R) ds

≤ Cˆ︁T R− 1
2 sup 

0<t<ˆ︁T ∥u(t)∥q−1

L
2n(q−1)

2n−1 (Rn)

sup 
0<t<ˆ︁T ∥∇v(t)∥L∞(Rn). (4.83)

Therefore, concerning (4.81), (4.82), (4.83), we obtain:⃓⃓⃓ ∫︂
Rn

uϕR dx −
∫︂
Rn

u0ϕR dx

⃓⃓⃓
≤ Cˆ︁T (︁R− 3

2 + R− 1
2
)︁
.

Thus, applying Lemma 4.3 and the Lebesgue dominated convergence theorem, we have:⃓⃓⃓ ∫︂
Rn

u dx −
∫︂
Rn

u0 dx

⃓⃓⃓

≤
⃓⃓⃓ ∫︂
Rn

u dx −
∫︂
Rn

uϕR dx

⃓⃓⃓
+
⃓⃓⃓ ∫︂
Rn

u0 dx −
∫︂
Rn

u0ϕR dx

⃓⃓⃓
+
⃓⃓⃓ ∫︂
Rn

uϕR dx −
∫︂
Rn

u0ϕR dx

⃓⃓⃓

≤
⃓⃓⃓ ∫︂
Rn

u dx −
∫︂
Rn

uϕR dx

⃓⃓⃓
+
⃓⃓⃓ ∫︂
Rn

u0 dx −
∫︂
Rn

u0ϕR dx

⃓⃓⃓
+ Cˆ︁T (︁R− 3

2 + R− 1
2
)︁→ 0

as R → ∞. This completes the proof of Theorem 2.1 (IV). □
4.5. Proof of Theorem 2.1 (V): non-negativity

We turn to the proof of Theorem 2.1 (V). Let 0 < ˆ︁T < Tmax, where Tmax denotes the maximal 
existence time. By Lemma 4.2, there exists a constant C such that the following bound holds:

sup 
0<t<ˆ︁T ∥u(t)∥L∞(Rn) ≤ C, (4.84)

and:

sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn) ≤ C. (4.85)

Here, the constant C depends as follows:

(i). parabolic-elliptic type (A): τ = 0, γ > 0. 
The constant C depends only on n, q , γ , ∥u0∥L2(Rn) and ∥u0∥W 2,n+q (Rn).

(ii). parabolic-elliptic type (B): τ = 0, γ = 0. 
The constant C depends only on n, q , ∥u0∥L2(Rn) and ∥u0∥W 2,n+q (Rn).
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(iii). parabolic-parabolic type: τ = 1, γ ≥ 0. 
The constant C depends only on n, q , γ , ∥u0∥L2(Rn), ∥u0∥W 2,n+q (Rn) and ∥v0∥W 3,n+q (Rn).

Proof of Theorem 2.1 (V). Multiplying both sides of the first equation of (DD) by u− :=
−min{0, u} and integrating over Rn, we obtain:

1

2

d

dt
∥u−(t)∥2

L2(Rn)

≤ −
∫︂
Rn

|∇u−|2dx + 1 
q

sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn) sup 

0<t<ˆ︁T ∥u(t)∥q−2
L∞(Rn)

∥u−(t)∥2
L2(Rn)

.

By the Gronwall inequality, it follows that:

sup 
0<t<ˆ︁T ∥u−(t)∥2

L2(Rn)
≤ ∥u−

0 ∥2
L2(Rn)

· exp

{︄
2ˆ︁T
q

sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn) sup 

0<t<ˆ︁T ∥u(t)∥q−2
L∞(Rn)

}︄
= 0

since u−
0 (x) = 0 for a.e. x ∈Rn. Thus, we conclude:

u(x, t) ≥ 0 for a.e. (x, t) ∈Rn × (0,ˆ︁T ).

This completes the proof of Theorem 2.1 (V). □
5. Proof of Theorem 2.2

5.1. Unique continuation theorem

Let us consider the symmetric matrix-valued function {gij (x, t)}ni,j=1, which satisfies a uni
form ellipticity condition. Let g(x, t) = {gij (x, t)}ni,j=1 represent the inverse of the matrix 

{gij (x, t)}ni,j=1. Consequently, we have:

g−1(x, t) = {gij (x, t)}ni,j=1. (5.1)

In this section, we introduce the following notation for a function w and a vector field ξ with 
g and g−1 used as weights:

Notation. 

(1). |ξ |2g(x, t) =∑︁n
i,j=1 gij (x, t)ξiξj ,

(2). ∇w = (︁
∂w 
∂x1

, . . . , ∂w 
∂xn

)︁
,

(3). ∇gw(x, t) = g−1(x, t)∇w(x, t).

The following lemma, known as the ``Two-Sphere One-Cylinder Inequality'', was obtained by 
Vessella [26, Theorem 4.2.6]. This inequality pertains to the evaluation of the square integral 
over a large integration domain through integrals over smaller regions, including spheres and 
cylindrical domains.
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Proposition 5.1 (Vessella [26], Two-Sphere One-Cylinder Inequality for General Parabolic Op
erators). Let λ, Λ and R be positive numbers, with 0 < λ ≤ 1. Let P be the parabolic operator:

P =
n ∑︂

i,j=1

∂

∂xi

(︃
gij (x, t)

∂

∂xj

)︃
+ ∂

∂t
, (5.2)

where {gij (x, t)}ni,j=1 is a real symmetric n × n matrix. When ξ ∈ Rn, (x, t), (y, t) ∈ Rn+1, we 
assume :

λ|ξ |2 ≤
n ∑︂

i,j=1

gij (x, t)ξiξj ≤ λ−1|ξ |2 (5.3)

and: (︄
n ∑︂

i,j=1

(gij (x, t) − gij (y, τ ))2

)︄1/2

≤ Λ

R

(︁|x − y|2 + |t − τ |2)︁1/2
. (5.4)

Let w ∈ W
2,1
2 (BR × (0,R2)) satisfy the inequality:

|Pw(x, t)| ≤ Λ

(︃ |∇gw|g(x, t)

R
+ |w(x, t)|

R2

)︃
f or a.e. (x, t) ∈ BR × (0,R2). (5.5)

Then, there exist constants 0 < η < 1 and C ≥ 1, which depend only on λ and Λ, such that for 
all r and ρ with 0 < r ≤ ρ ≤ ηR, the following inequality holds:

∫︂
Bρ

w2(x,0) dx ≤ CR

ρ

(︂
R−2

R2∫︂
0 

∫︂
BR

w2(x, t) dxdt
)︂1−θ(︂∫︂

Br

w2(x,0) dx
)︂θ

, (5.6)

where θ = (C log R
r
)−1.

Remark 7. Vessella [26, Theorem 5.2] considered a parabolic equation of semi-linear type, given 
by (5.2), where {gij (x, t)}1≤i,j≤n represents a real symmetric positive definite matrix with suffi
ciently smooth components. The analysis was carried out using the Carleman estimate.

In Proposition 5.1, by setting gij (x, t) as the Kronecker delta δij , we derive the following 
lemma.

Lemma 5.2 (Two-Sphere One-Cylinder Inequality for the Classical Heat Operator). Let R be a 
positive number, and let w ∈ W

2,1
2 (BR × (0,R2)). We assume that there exists a positive constant 

Λ such that w satisfies the following inequality :⃓⃓⃓⃓
Δw(x, t) + ∂w(x, t)

⃓⃓⃓⃓
≤ Λ

(︃ |∇w(x, t)| + |w(x, t)|
2

)︃
for a.e. (x, t) ∈ BR × (0,R2). (5.7)
∂t R R
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Then, there exist constants 0 < η < 1 and C ≥ 1, which depend only on Λ, such that for all r
and ρ with 0 < r ≤ ρ ≤ ηR, the following inequality holds:

∫︂
Bρ

w2(x,0) dx ≤ CR

ρ

(︂
R−2

R2∫︂
0 

∫︂
BR

w2(x, t) dxdt
)︂1−θ(︂∫︂

Br

w2(x,0) dx
)︂θ

, (5.8)

where θ = (C log R
r
)−1.

Proof of Lemma 5.2. Let i, j = 1,2, . . . , n, and define gij (x, t) as follows:

gij (x, t) = δij . (5.9)

By setting {gij (x, t)}ni,j=1 = δij in Proposition 5.1, we can prove Lemma 5.2. Indeed, 

{gij (x, t)}ni,j=1 forms the identity matrix, making {gij (x, t)}ni,j=1 it a real symmetric n × n

matrix. Thus, (5.3) holds with λ = 1 since gij (x, t) satisfies the following equality:

n ∑︂
i,j=1

gij (x, t)ξiξj =
n ∑︂

i,j=1

δij ξiξj =
n ∑︂

i=1 
ξ2
i = |ξ |2.

Additionally, we observe from (5.9):(︄
n ∑︂

i,j=1

(gij (x, t) − gij (y, τ ))2

)︄1/2

=
(︄

n ∑︂
i,j=1

(δij − δij )
2

)︄1/2

= 0.

Therefore, for every positive constant Λ, inequality (5.4) in Proposition 5.1 holds.
We verify that (5.5) in Proposition 5.1 is satisfied. Using (5.9) in (5.2) from Proposition 5.1, 

P can be expressed as:

P =
n ∑︂

i,j=1

∂

∂xi

(︂
gij (x, t)

∂

∂xj

)︂
+ ∂

∂t
=

n ∑︂
i,j=1

∂

∂xi

(︂
δij

∂

∂xj

)︂
+ ∂

∂t
= Δ + ∂

∂t
. (5.10)

By applying the definition of ∇g and (5.1), we obtain:

∇gw(x, t) := g−1(x, t)∇w(x, t) = ∇w(x, t).

Thus, from the definition of | · |g , we have:

|∇gw|2g(x, t) = |∇w|2g(x, t) =
n ∑︂

i,j=1

gij (x, t)
∂w 
∂xi

∂w 
∂xj

=
n ∑︂

i,j=1

δij

∂w 
∂xi

∂w 
∂xj

=
n ∑︂

i=1 

(︂ ∂w 
∂xi

)︂2 = |∇w(x, t)|2. (5.11)
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By utilizing (5.10) and (5.11) on the left-hand side and right-hand side of (5.5) in Proposition 5.1, 
we deduce (5.7). Thus, the conclusion of Proposition 5.1, namely (5.6), ensures the conclusion 
of Lemma 5.2, specifically (5.8). Therefore, Lemma 5.2 is established. This completes the proof 
of Lemma 5.2. □

We introduce the following lemma, known as the Unique Continuation Theorem in bounded 
domains. Specifically, this lemma states that if a function u with sufficient regularity vanishes in 
a ball of radius r at time T , then it also vanishes in the ball of radius 2r centered at the same 
point.

Lemma 5.3 (Unique Continuation Theorem in bounded domains). Let T be a positive number, 
a ∈ Rn and let u ∈ W

2,1
2 (B√

T
(a)×(0, T ))∩C([0, T ];L2(B√

T
(a))). We assume that there exists 

a positive constant Λ such that u satisfies the following inequality:

⃓⃓⃓⃓
Δu(x, t) − ∂u(x, t)

∂t 

⃓⃓⃓⃓
≤ Λ

(︃ |∇u(x, t)|√
T

+ |u(x, t)|
T

)︃
for a.e. (x, t) ∈ B√

T
(a) × (0, T ).

(5.12)
Then, for r satisfying 0 < r < 1

2η
√

T , if u(·, T ) ≡ 0 in Br(a), it follows that u(·, T ) ≡ 0 in 
B2r (a).

Proof of Lemma 5.3. We define wa(x, t) := u(x+a,T − t). From this definition of wa , together 
with the fact that u ∈ W

2,1
2 (B√

T
(a) × (0, T )), it follows that w ∈ W

2,1
2 (B√

T
(0) × (0, T )). In 

addition, from (5.12), we derive the following:

⃓⃓⃓⃓
Δwa(x, t) + ∂wa

∂t 
(x, t)

⃓⃓⃓⃓
=
⃓⃓⃓⃓
(Δu)(x + a,T − t) −

(︂∂u

∂t 

)︂
(x + a,T − t)

⃓⃓⃓⃓
≤ Λ

(︃ |(∇u)(x + a,T − t)|√
T

+ |(u)(x + a,T − t)|
T

)︃
= Λ

(︃ |∇wa(x, t)|√
T

+ |wa(x, t)|
T

)︃

for a.e. (x, t) ∈ B√
T
(0)× (0, T ). From this, we see that (5.7) in Lemma 5.2 holds with R = √

T .
Therefore, by applying Lemma 5.2, there exist constants 0 < η < 1 and C ≥ 1, which depend 

only on Λ, such that for all r and ρ with 0 < r ≤ ρ ≤ η
√

T , we have:

∫︂
Bρ(a)

w2
a(x,0) dx ≤ C

√
T

ρ

(︂
T −1

T∫︂
0 

∫︂
B√

T
(a)

w2
a(x, t) dxdt

)︂1−θ(︂ ∫︂
Br(a)

w2
a(x,0) dx

)︂θ

, (5.13)

where θ := (C log
√

T
r

)−1.
Let 0 < r < 1

2η
√

T . Then, since 0 < r < 2r < η
√

T , taking ρ = 2r in (5.13), we obtain the 
following inequality:
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∫︂
B2r(a)

w2
a(x,0) dx ≤ C

√
T

2r 

(︂
T −1

T∫︂
0 

∫︂
B√

T
(a)

w2
a(x, t) dxdt

)︂1−θ(︂ ∫︂
Br(a)

w2
a(x,0) dx

)︂θ

,

which is equivalent to the following, based on the definition of wa:

∫︂
B2r (a)

u2(x, T ) dx ≤ C
√

T

2r 

(︂
T −1

T∫︂
0 

∫︂
B√

T
(a)

u2(x, t) dxdt
)︂1−θ(︂ ∫︂

Br (a)

u2(x, T ) dx
)︂θ

,

where θ := (C log
√

T
r

)−1. Thus, assuming u(·, T ) ≡ 0 in Br(a), it follows that u(·, T ) ≡ 0 in 
B2r (a). This completes the proof of Lemma 5.3. □

We extend Lemma 5.3, which guarantees the Unique Continuation Theorem in bounded do
mains, to cases where the function u vanishes in the whole space Rn. The following lemma 
demonstrates that if u satisfies certain conditions and vanishes in an open subset of Rn at a 
specific time T , then u must also vanish throughout the whole space Rn at the same time.

Lemma 5.4 (Unique Continuation Theorem in Rn). Let T be a positive number, and let u ∈
W

2,1
2,loc(QT )∩ C([0, T ];L2

loc(R
n)). We assume that there exists a positive constant Λ such that u

satisfies the following inequality:⃓⃓⃓⃓
Δu(x, t) − ∂u(x, t)

∂t 

⃓⃓⃓⃓
≤ Λ

(︃ |∇u(x, t)|√
T

+ |u(x, t)|
T

)︃
for a.e. (x, t) ∈ QT .

Then, if there exists an open set D0 ⊂ Rn such that u(·, T ) ≡ 0 in D0, we conclude that u is 
identically zero in the whole space Rn at t = T , i.e., u(·, T ) ≡ 0 in Rn.

Proof of Lemma 5.4. Let T > 0 and a ∈ Rn. Lemma 5.3 guarantees the existence of a constant 
0 < η < 1, depending only on Λ, such that for every 0 < r < 1

2η
√

T the following holds: if 
u(·, T ) ≡ 0 in Br(a), it follows that u(·, T ) ≡ 0 in B2r (a).

Assume now that u(·, T ) ≡ 0 on a non-empty open set D0 ⊂ Rn. Applying Lemma 5.3, we 
obtain a point a∗ ∈ D0 and a radius 0 < r∗ < 1

2η
√

T such that Br∗(a∗) ⊂ D0. Consequently,

u(·, T ) ≡ 0 in B2r∗(a∗).

Next, we define the enlarged set:

D1 := D0 ∪ {︁x ∈ Rn
⃓⃓

dist(x,D0) < r∗
}︁
.

Since the choice of a∗ is arbitrary in D0, the same argument applied to every point of D0 yields:

u(·, T ) ≡ 0 in D1.

We now repeat this enlargement procedure countably many times. For each k ∈ N , we set:

Dk+1 := Dk ∪ {︁x ∈Rn
⃓⃓

dist(x,Dk) < r∗
}︁
.
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The sets Dk are increasing, and by construction u(·, T ) ≡ 0 in every Dk . Moreover, it holds:

∞ ⋃︂
k=0

Dk = Rn,

so passing to the union we conclude

u(·, T ) ≡ 0 in Rn.

This completes the proof of Lemma 5.4. □
5.2. Proof of Theorem 2.2

We now introduce the backward uniqueness property. Although Vessella [26] established this 
property in more general function spaces, we present it here under the assumptions specific to 
our main theorems.

Let H denote the set of functions w defined on QT , such that for every positive number R, its 
restriction w|BR×(0,T ) belongs to W 2,1

2 (BR × (0, T )). Furthermore, for a given positive constant 
K , we define:

ℋK,T :=
{︂
w ∈ H | w(x,0) = 0, we−K|x|2 ∈ L∞(QT )

}︂
.

In Vessella [26, Theorem 3.0.2], the time endpoint is set to 1. By changing the time endpoint to T , 
the theorem remains valid with minor modifications, as the method used in the proof iteratively 
extends the vanishing region, as stated in the following lemma.

Lemma 5.5 (Vessella [26]). Let T be a positive number, and let w ∈ ℋK,T . We assume that there 
exists a positive constant Λ such that w satisfies the following inequality:⃓⃓⃓⃓

Δw(x, t) + ∂w(x, t)

∂t 

⃓⃓⃓⃓
≤ Λ

(︂
|∇w(x, t)| + |w(x, t)|

)︂
for a.e. (x, t) ∈ QT .

Then, we conclude:

w ≡ 0 in QT .

Proof of Theorem 2.2. Let 0 < ˆ︁T < Tmax. From (2.4) to (2.6) in Theorem 2.1, in combination 
with the second equation of (DD) and by applying the Young inequality, there exists a constant 
C such that the following bounds hold:

sup 
0<t<ˆ︁T ∥u(t)∥L∞(Rn) ≤ C, (5.14)

sup 
0<t<ˆ︁T ∥∇v(t)∥L∞(Rn) + sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn) ≤ C. (5.15)

Here, the constant C depends as follows:
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(i). Parabolic-elliptic type (A): τ = 0, γ > 0. 
The constant C depends only on n, q , γ , and ∥u0∥W 2,n+q (Rn).

(ii). Parabolic-elliptic type (B): τ = 0, γ = 0. 
The constant C depends only on n, q , ∥u0∥Lθ (Rn), and ∥u0∥W 2,n+q (Rn) for some 1 < θ < n, 
where θ is introduced in Assumption 2.2.

(iii). Parabolic-parabolic type: τ = 1, γ ≥ 0. 
The constant C depends only on n, q , γ , ∥u0∥W 2,n+q (Rn) and ∥v0∥W 3,n+q (Rn).

On the flux term of (DD), since the following identity holds:

∇ · (|u|q−2u∇v) = (q − 1)|u|q−2∇u · ∇v + |u|q−2uΔv,

from (5.14) and (5.15), together with the first equation of (DD), we derive the following estimate:⃓⃓⃓⃓
Δu(x, t) − ∂u(x, t)

∂t 

⃓⃓⃓⃓
≤ (q − 1)|u|q−2|∇v||∇u| + |u|q−2|Δv||u|

≤ (q − 1) sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn)|∇u|

+ sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
sup 

0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)|u|

for a.e. (x, t) ∈ Qˆ︁T . This yields:⃓⃓⃓⃓
Δu(x, t) − ∂u(x, t)

∂t 

⃓⃓⃓⃓
≤ C∗

(︂
|u(x, t)| + |∇u(x, t)|

)︂
(5.16)

for a.e. (x, t) ∈ Qˆ︁T , where C∗ is defined as:

C∗ := sup 
0<t<ˆ︁T ∥u(t)∥q−2

L∞(Rn)
max

{︃
(q − 1) sup 

0<t<ˆ︁T ∥∇v(t)∥L∞(Rn), sup 
0<t<ˆ︁T ∥Δv(t)∥L∞(Rn)

}︃
.

(5.17)
By defining Λ as Λ = C∗ max

{︁√ˆ︁T ,ˆ︁T }︁, we obtain the following inequality:⃓⃓⃓⃓
Δu(x, t) − ∂u(x, t)

∂t 

⃓⃓⃓⃓
≤ Λ

(︃ |∇u(x, t)|√ˆ︁T + |u(x, t)|ˆ︁T
)︃

for a.e. (x, t) ∈ Qˆ︁T . (5.18)

In addition, using Theorem 2.1 (III) and (2.7) therein, we observe that u ∈ W
2,1
2,loc(Qˆ︁T ) ∩

C([0,ˆ︁T ];L2
loc(R

n)). Furthermore, under the assumptions of Theorem 2.2, there exists a non
empty open set D0 ⊂ Rn such that u(·,ˆ︁T ) ≡ 0 in D0. Therefore, (5.18) allows us to apply 
Lemma 5.4. Consequently, we conclude:

u(·,ˆ︁T ) ≡ 0 in Rn. (5.19)

To extend the vanishing property in (5.19) to the time direction, we apply Lemma 5.5. For this 
purpose, we define w as follows:
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w(x, t) := u
(︁
x,ˆ︁T − t

)︁
.

From u∈W
2,1
2,loc(Qˆ︁T )∩C([0,ˆ︁T ];L2

loc(R
n)), it follows that w∈W

2,1
2,loc(Qˆ︁T )∩C([0,ˆ︁T ];L2

loc(R
n)). 

Furthermore, we have w ∈ ℋK,ˆ︁T . Indeed, from (5.19), we observe that w(·,0) ≡ 0 in Rn. In 
addition, let M > 0. Then, the following inequality holds:⃓⃓⃓

w(x, t)e−M|x|2
⃓⃓⃓
=
⃓⃓⃓
u(x,ˆ︁T − t)

⃓⃓⃓ ⃓⃓⃓
e−M|x|2

⃓⃓⃓
≤ sup 

0<t<ˆ︁T ∥u(t)∥L∞(Rn)

for a.e. (x, t) ∈ Qˆ︁T . This shows that w ∈ ℋK,ˆ︁T . Moreover, since 0 < ˆ︁T − t < ˆ︁T for 0 < t < ˆ︁T , 
we deduce from (5.16):

⃓⃓⃓⃓
Δw(x, t) + ∂w

∂t 
(x, t)

⃓⃓⃓⃓
=
⃓⃓⃓⃓
(Δu)(x,ˆ︁T − t) −

(︂∂u

∂t 

)︂
(x,ˆ︁T − t)

⃓⃓⃓⃓
≤ C∗

(︂⃓⃓
u(x,ˆ︁T − t)| + |∇u(x,ˆ︁T − t)

⃓⃓)︂
= C∗

(︂⃓⃓
w(x, t)| + |∇w(x, t)

⃓⃓)︂
for a.e. (x, t) ∈ Qˆ︁T , where C∗ is defined in (5.17). Thus, by applying Lemma 5.5, we conclude 
that w ≡ 0 in Qˆ︁T . Consequently, it follows that u ≡ 0 in Qˆ︁T . This completes the proof of Theo
rem 2.2. □
6. Proof of Theorem 2.3

We assume that there exists 0 < t0 < ˆ︁T such that the support of u(·, t0) is not the whole space 
Rn. We define D0 := Rn \ suppu(·, t0). Then, D0 is a non-empty open set, and u(·, t0) ≡ 0 in 
D0. Combined with Theorem 2.2, this implies that u ≡ 0 in Rn × (0, t0).

On the other hand, according to (2.8), we have:

∫︂
Rn

u0(x) dx =
∫︂
Rn

u(x, t0) dx = 0,

which contradicts the assumption (2.10). This completes the proof of Theorem 2.3. □
Acknowledgments

The authors gratefully acknowledge the reviewer whose valuable and incisive comments 
greatly advanced this work. We also wish to express our sincere thanks to Professor S. Nagayasu 
for many insightful discussions.

Data availability

No data was used for the research described in the article.
48 



Y. Imaida, K. Shibata and Y. Sugiyama Journal of Differential Equations 448 (2025) 113670 
References

[1] A. Banerjee, R. Manna, Space-like strong unique continuation for sublinear parabolic equations, J. Lond. Math. 
Soc. (2) 102 (2020) 205--228.

[2] T. Carleman, Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables 
indépendentes, Ark. Mat. Astron. Fys. 26 (1939) 1--9.

[3] J.A. Carrillo, S. Lisini, E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. 
Syst. 34 (2014) 1319--1338.

[4] J.A. Carrillo, Y. Sugiyama, Compactly supported stationary states of the degenerate Keller-Segel system in the 
diffusion-dominated regime, Indiana Univ. Math. J. 67 (2018) 2279--2312.

[5] L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space 
dimensions, Milan J. Math. 72 (2004) 1--28.

[6] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, RI, 2000.
[7] L. Escauriaza, F.J. Fernández, Unique continuation for parabolic operators, Ark. Mat. 41 (2003) 35--60.
[8] L. Grafakos, Classical Fourier Analysis, 3rd ed., Graduate Texts in Mathematics, Springer, New York, 2010.
[9] T. Kawakami, Y. Sugiyama, Uniqueness theorem on weak solutions to the Keller-Segel system of degenerate and 

singular types, J. Differ. Equ. 260 (2016) 4683--4716.
[10] H. Koch, D. Tataru, Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth 

coefficients, Commun. Pure Appl. Math. 54 (2001) 339--360.
[11] H. Kozono, M. Miura, Y. Sugiyama, Time global existence and finite time blow-up criterion for solutions to the 

Keller-Segel system coupled with the Navier-Stokes fluid, J. Differ. Equ. 267 (2019) 5410--5492.
[12] H. Kozono, Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. 

Evol. Equ. 8 (2008) 353--378.
[13] H. Kozono, Y. Sugiyama, Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type 

with small data in scale invariant spaces, J. Differ. Equ. 247 (2009) 1--32.

[14] H. Kozono, Y. Sugiyama, Strong solutions to the Keller-Segel system with the weak L
n
2 initial data and its applica

tion to the blow-up rate, Math. Nachr. 283 (2010) 732--751.
[15] H. Kozono, Y. Sugiyama, Y. Yahagi, Existence and uniqueness theorem on weak solutions to the parabolic-elliptic 

Keller-Segel system, J. Differ. Equ. 253 (2012) 2295--2313.
[16] M. Kurokiba, T. Ogawa, Finite time blow up for a solution to system of the drift-diffusion equations in higher 

dimensions, Math. Z. 284 (2016) 231--253.
[17] S. Luckhaus, Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel sys

tems, Math. Model. Numer. Anal. 40 (2006) 597--621.
[18] S. Luckhaus, Y. Sugiyama, Asymptotic profile with the optimal convergence rate for a parabolic equation of chemo

taxis in super-critical cases, Indiana Univ. Math. J. 56 (2007) 1279--1297.
[19] T. Nagai, Global existence and decay estimates of solutions to a parabolic elliptic system of drift-diffusion type in 

R2, Differ. Integral Equ. 24 (2011) 29--68.
[20] M. Miura, Y. Sugiyama, On uniqueness theorem on weak solutions to the parabolic-parabolic Keller-Segel system 

of degenerate and singular types, J. Differ. Equ. 257 (2014) 4064--4086.
[21] T. Ogawa, S. Shimizu, End-point maximal regularity and its application to two-dimensional Keller-Segel system, 

Math. Z. 264 (2010) 601--628.
[22] O. Sawada, On the Spatial Analyticity of Solutions to the Keller-Segel Equations, Parabolic and Navier-Stokes 

Equations, Part 2, Banach Center Publ., vol. 81, Polish Acad. Sci. Inst. Math., Warszawa, 2008, pp. 421--431.
[23] Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power 

factor in the drift term, J. Differ. Equ. 227 (2006) 333--364.
[24] Y. Sugiyama, Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differ. 

Equ. 250 (2011) 3047--3087.
[25] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate 

Keller-Segel systems, Differ. Integral Equ. 19 (2006) 841--876.
[26] S. Vessella, Unique continuation properties and quantitative estimates of unique continuation for parabolic equa

tions, Handb. Differ. Equ: Evol. Equ. 5 (2009) 421--500.
[27] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl. 25 (2009) 14.
[28] M. Yamamoto, Spatial analyticity of solutions to the drift-diffusion equation with generalized dissipation, Arch. 

Math. 97 (2011) 261--270.
49 

http://refhub.elsevier.com/S0022-0396(25)00697-7/bib28F97F53A00C5AECBB3C3205328B401Fs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib28F97F53A00C5AECBB3C3205328B401Fs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib3062D6995F3A22F7BDDB7443C0337207s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib3062D6995F3A22F7BDDB7443C0337207s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib7A335B847842B6DCA98FCB5C8A3D16F4s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib7A335B847842B6DCA98FCB5C8A3D16F4s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib89B16B462D95E5883E83FC0001DCC7A1s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib89B16B462D95E5883E83FC0001DCC7A1s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibE94C09B0095D936A29047EF2CFA4ED83s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibE94C09B0095D936A29047EF2CFA4ED83s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib4C152F03D34AADE3C8D0EFD089970102s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibF1340FEC11F15DC1B153F79E37618B98s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib952B76B4DC6EAC1701103D32028FDBEDs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibB4F318FAD8BAC284398B0B48CBB9249As1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibB4F318FAD8BAC284398B0B48CBB9249As1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibC72BC82FA64A6560A2DE1B236C717E21s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibC72BC82FA64A6560A2DE1B236C717E21s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib3D72DFFF9DB39FABBB1A1524AAA7AF3Cs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib3D72DFFF9DB39FABBB1A1524AAA7AF3Cs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib54EF887BFC5646154433B13EBCDB51F8s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib54EF887BFC5646154433B13EBCDB51F8s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib813EAEFFD02149892B2B5093D44B6068s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib813EAEFFD02149892B2B5093D44B6068s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib5BF51F94E8FE95F2F955FEF6C19D8D7Cs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib5BF51F94E8FE95F2F955FEF6C19D8D7Cs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibD7279B914E9AAF14CB00ADE5849E9F8Fs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibD7279B914E9AAF14CB00ADE5849E9F8Fs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib0DB75D79DEE5029D2BB4A03180266CECs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib0DB75D79DEE5029D2BB4A03180266CECs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib2096CAAAD469AFEC4F940C2399F50CF5s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib2096CAAAD469AFEC4F940C2399F50CF5s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib77680FD19CB57129F68023BE627BEBD9s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib77680FD19CB57129F68023BE627BEBD9s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib7EB0BEC190FB69C067762280236ACD13s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib7EB0BEC190FB69C067762280236ACD13s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib28097725577AA1B666FCB5367023F387s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib28097725577AA1B666FCB5367023F387s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibEA09D949F3ED78129BED605239C50D33s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibEA09D949F3ED78129BED605239C50D33s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib96DE90F09DF9670B3AD2CA28C570D14Es1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib96DE90F09DF9670B3AD2CA28C570D14Es1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib580786B4993E4F1517E0D9887D3E3018s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib580786B4993E4F1517E0D9887D3E3018s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib273779ADF201E070E8D89E50509DB834s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib273779ADF201E070E8D89E50509DB834s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib1793CF9D33820ED95B286800AF8A3D11s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib1793CF9D33820ED95B286800AF8A3D11s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibFB402B4C30C0E71244120651C3E58A4Fs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bibFB402B4C30C0E71244120651C3E58A4Fs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib4B1AB37B5761804EAC4B9106051BB654s1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib650872299F1600F7C15FA9DAB4B35F4Cs1
http://refhub.elsevier.com/S0022-0396(25)00697-7/bib650872299F1600F7C15FA9DAB4B35F4Cs1

	Infinite speed of propagation and unique continuation for solutions of the drift-diffusion equation via Carleman estimates
	1 Introduction
	2 Results
	3 Preliminary
	4 Proof of Theorem 2.1
	4.1 Proof of Theorem 2.1 (I): existence of time local solution
	4.2 Proof of Theorem 2.1 (II): extension criterion
	4.3 Proof of Theorem 2.1 (III): extended existence of solutions up to maximal time
	4.4 Proof of Theorem 2.1 (IV): charge conservation law
	4.5 Proof of Theorem 2.1 (V): non-negativity

	5 Proof of Theorem 2.2
	5.1 Unique continuation theorem
	5.2 Proof of Theorem 2.2

	6 Proof of Theorem 2.3
	Acknowledgments
	Data availability
	References


