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Abstract

Through the use of Carleman estimates, we investigate the drift-diffusion equation and demonstrate the
infinite propagation of its solutions, considering both the parabolic-parabolic and parabolic-elliptic forms.
A primary result is a Unique Continuation Theorem, which states that if a solution vanishes on a non-empty
open set, it must vanish throughout the whole space R". The proof relies on the Two-Sphere One-Cylinder
Inequality, derived from the Carleman estimates. As a consequence, we show the infinite speed of propa-
gation for solutions: even if the initial data has compact support, the solution corresponding to this initial
data will instantly extend to cover the whole space R”. This result highlights a solution structure typical of
linear diffusion equations of the heat type, where solutions exhibit immediate and global propagation.
© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Drift-diffusion equation; Infinite speed of propagation; Carleman estimates; Unique continuation theorem;
Two-sphere one-cylinder inequality

1. Introduction

We consider the drift-diffusion equation, which includes both parabolic—elliptic and parabolic—
parabolic types in a semi-linear form posed on the whole space R" with n > 1:

* Corresponding author.
E-mail address: sugiyama.ist@osaka-u.ac.jp (Y. Sugiyama).

https://doi.org/10.1016/j.jde.2025.113670
0022-0396/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2025.113670&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2025.113670
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by/4.0/
mailto:sugiyama.ist@osaka-u.ac.jp
https://doi.org/10.1016/j.jde.2025.113670
http://creativecommons.org/licenses/by/4.0/

Y. Imaida, K. Shibata and Y. Sugiyama Journal of Differential Equations 448 (2025) 113670

ou

5= Au+ xV - (ul?>uVv) inR"” x (0, T),

(DD) dv e
rngv—yv+u in R" x (0, T),
u(x,0) =ugpx), tv(x,0) =rtvy(x) in R,

where g > 2, y >0, x = %1, and r =0 or 1. Here, the functions u = u(x, ) and v = v(x, 1)
represent the density of the relevant quantity and the associated potential, respectively. The pre-
cise interpretation of the functions is determined by the modeling context, which may involve
physical, biological, or other types of systems.

We investigate sign-changing solutions to (DD) that emerge from initial data with changing
sign. The interest in such solutions stems from the case x = +1, under which (DD) exhibits
structural features closely related to a specific parameter regime. In this setting, (DD) is partially
derived from the system (S), referred to as the bi-polar drift-diffusion model, which is widely
used in semiconductor simulation:

0

a—’:—An—i—V-(nle):O inR” x (0, T),

ap o

5 ~Ap=V-(pV¥) =0 inR" x (0,7),
(S) "

TE—AWZ”—P inR" x (0, T),

n(x,0) =no(x), px,0)= po(x) in R".

By introducing the variable u :=n — p, the system (S) reduces to (DD) when ¢ =2, y =0, and
x = +1. This correspondence highlights the role of (DD) as a canonical model for capturing
dynamics involving sign-changing behavior.

Both cases y = =£1 are of structural interest. In particular, the case x = —1 is also known to
give rise to aggregation phenomena, despite the repulsive form of the drift term. The mechanism
of self-organization in this case is more subtle and model-dependent, and the resulting solution
behavior differs qualitatively from that observed in the case x = +1. Throughout this paper, we
consider both signs of x within a unified framework, with a particular focus on sign-changing
solutions and their structural properties.

Our initial aim is to construct solutions to (DD) that originate from initial data exhibiting sign
changes, with particular emphasis on those satisfying the following condition:

/uo(x) dx = /(no(x) — po(x)) dx #0. (1.1)

R~ R~

This assumption reflects a non-vanishing total charge and plays a key role in the qualitative
analysis of the solution structure. To clarify this point, we recall a classical principle from elec-
tromagnetism and semiconductor theory, known as the Principle of Charge Conservation:

e Principle of Charge Conservation: In an isolated system, the total net charge—defined as
the sum of all positive and negative charges—remains invariant in time.

2
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In view of this principle, it is natural to consider the case y = +1, where the total charge asso-
ciated with the quantity u :=n — p is expected to be conserved. Under appropriate assumptions,
this consideration leads to the identity:

/u(x,t)dx:[(n(x,t)—p(x,t))dx:/(no(x)—po(x))dx:/uo(x)dx #0, >0.

R~ R~ Rn R~

In particular, if the initial net charge is nonzero, then:

/u(x,t)dx;ﬁO, t>0. (1.2)
]Rn

This implies that u(x, t) does not vanish identically in R” at any positive time.

Building on this observation, the first objective of the present paper is to establish the Unique
Continuation Theorem for solutions of the drift-diffusion equation. The theorem asserts that if
the solution u vanishes at every point of a non-empty open set Dy, then it must vanish throughout
the whole space R”.

The key to proving the Unique Continuation Theorem is the derivation of the Two-Sphere
One-Cylinder Inequality, which is an application of the Carleman estimates. This inequality
plays a crucial role in controlling the behavior of solutions within specific domains. Specifically,
we derive the Two-Sphere One-Cylinder Inequality by introducing integrals over a cylindrical
domain involving both space and time variables. This allows us to bound the L*(B »(0)) integral
of the solution u over a sphere of radius p from above by the L2(B,(0)) integral of u over
a sphere of radius r for 0 < r < p. More precisely, the following holds: there exist constants
0<mny <1andC > 1 such that:

/ u?(x,0) dx < %(R_z / / u? dxdt)lie] ( / u(x,0) d)c)eI

B, (0) (0,R?) BR(0) B, (0)

forall r, p, R with 0 <r < p <R, where 6; = (Clog é)_l.

By shifting the center and applying the Two-Sphere One-Cylinder Inequality (for details, see
Step 2 of the proof of Lemma 5.4), we can ensure that the solution u vanishes at a given time
over the whole space R” through the Unique Continuation Theorem. Specifically, we consider
ue WZ ’ILC(QT) and fix an arbitrary Te (0, T). To control lower—order contributions, we further
assume that there exists a positive constant M such that

Au(x,t) — du(x, t)’ < M(|Vu(x, |+ |u(x, t)|) forae. (x,1) € R" x (0, 7"\).

Consequently, if there exists an open set Dy C R” such that u(-, f) =0 in Dy, then the solution
u must vanish identically throughout R" at time T.

Once this unique continuation property is established, it enables the proof of Identical Van-
ishing for the Backward Problem. In particular, assuming a function satisfies the following two
conditions: (1) its growth in the spatial direction is limited to exponential, and (2) when acted
upon by a parabolic operator, the function is bounded above by a constant multiple of the sum
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of its zeroth and first derivatives. Under these conditions, we demonstrate that if the function
vanishes identically everywhere in R” at some time 7', then it must remain identically zero
throughout R” for all times from the initial time up to 7.

Based on the above (1.2), the second objective of this paper is to establish the property of
infinite speed of propagation for solutions of the drift-diffusion equation. This property under-
pins the main theorem presented in this paper and is derived as a consequence of the Identical
Vanishing for the Backward Problem. More precisely, the infinite speed of propagation refers to
the phenomenon where the support of the solution u instantaneously spreads across the whole
space R"” when the initial data is a non-trivial function with compact support. Thus, the Unique
Continuation Theorem, along with the Identical Vanishing for the Backward Problem, plays a
fundamental role in revealing the structure of the solutions to the equation.

To provide further clarification, we explore the Carleman estimate. Initially introduced by
Carleman [2], the Carleman estimate is a fundamental tool in proving unique continuation for
two-dimensional elliptic equations. A detailed explanation of the Carleman estimate can be found
in [27] and [28]. In addition to the works by Carleman [2] and Vessella [26], many studies have
employed Carleman estimates to prove unique continuation. For instance, Koch and Tataru [10]
established it for elliptic equations in higher dimensions, while Escauriaza and Ferndndez [7]
extended it to parabolic operators. Further relevant works are referenced in Banerjee and Manna
[1]. Beyond their role in demonstrating unique continuation properties, the Carleman estimates
have applications in various fields of inverse problems, including control theory and stability
estimates.

2. Results

In what follows, we introduce the following simplified notations:

(D). By(a)={xeR"||x—a|<r, r>0,aeR"}, B, .= B,(0).

(2). Or —R" x (0,T).

(). 0 = 3, 0 = 00, 07 = 00,0k, V2 = (0]}, 00, ..), V3 = (37)1,07 )5, & =
i, ],k_l 2

4). Let Dbe a domain in R"™ and let I be an interval in (0, 7). When the weak derivatives Vu,
V2yu and 9,u are in L? (D x I) for some 1 < p <00,wesay u € W,%’I(D x I). Specifically,
this means:

k)

S

Wl (D x I) = {u e LP(I; W»P (D)) N W"P(I; LP (D)) | [|ul| 2 < o0},
V4

(DxI)

where the norm is defined as:

||u||W3~l(DX1) = ullpor:w2rpyy + lullwio.Lr(py)-

Similarly, when u and its weak derivatives Vu, V2yu and d,u belong to L; (Q7) for some

loc
1<p<oo,wesayuc Wﬁ:lloc(QT), which is defined as:

W2 (Q7) = LP(0, T: W (R") N WP (0, T LY, (R")).

4
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(5). For T > 0 and g > 2, we define the function space W (Qr) as follows:

Wiiig(Q1) x L™9(0, T; W2+ (R")) for t =0,
W(Qr) =
Wiy (Q1) X W23, (O7) for v =1

(6). For T > 0 and g > 2, we define the function space X7 as follows:
X7 = {u € L0, T; W>" T4 (R™)) | d,u € L"T(Qr),
||8[M||Ln+q(QT) + ”u”LOO(O,T;WZ*”Jrq(R”)) f 2||M0”W2-”+‘1(]R") + 1}

(7). For s > 0, the set of all Lebesgue measurable function f on R” satisfies the following
condition:

| Flsoo =sup {h>0[Am )¢} < oo, 2.1

where m (1) represents the Lebesgue measure of the set {x € R" | | f(x)| > A}. This space
is denoted by L*°°(R™), and is referred to as the Lorentz space. It is well known that:

[fls.00 = I lzs ®mys

and thus, L5 (R") C L5*°(R") for 1 <s < 00. Moreover, we have L°°(R") = L% (R").
Throughout this paper, we impose the following assumptions.
Assumption 2.1.

(I). parabolic-elliptic type (A):

(i). Letn>1and t =0.

(ii). Letg=2org >3;and y > 0.
(II). parabolic-elliptic type (B):

(i). Letn >2and t =0.

(ii). Letg =2o0rg >3;and y =0.
(IIT). parabolic-parabolic type:

(). Letn>1and t = 1.

(i1). Letg=2o0org >3;and y > 0.

Assumption 2.2.

(). parabolic-elliptic type (A):
Let ug € W2+ (R").
(II). parabolic-elliptic type (B):
Let ug € LY (R") N W2"+4(R") for some 1 <6 < n.
(IIT). parabolic-parabolic type:
(). Let ug € W24 (R").
(ii). Let vy € W3+ (R").
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The definition of a possibly sign-changing strong solution to (DD) is introduced next.

Definition 2.1. Let 1 < p < o0, and let r satisfy the following conditions:

* n 11 _ 2.
p=<r=<r forp<§ with =5
t<r<oo forp=14;

n
p=<r=<oo forp>3.

We assume that ug € WP (R"), and that vg € W2" (R") when t = 1. A pair of functions (u, v)
on Qr is called a possibly sign-changing strong solution of (DD) on [0, T') in the class S, ;- (0, T')
if the following conditions are satisfied:

@). ueWy'(Qr),
(ii-a). ve L"(0,T; W2"(R™)) for t =0,
(ii-b). ve W' (Qp) fort =1,
(>iii). (u, v) satisfies (DD) in Q7.

The following theorem regarding the local existence of a possibly sign-changing strong solu-
tion can be proven by suitably modifying the arguments presented in Sugiyama and Kunii [23].

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then, the following statements hold:

(D). (Existence of Time Local Solution)
Let t =0, 1. Then, there exists a positive time T\ depending only on n, q, y,
luollw2.ntqwny, and Tllvoll w3n+qny such that (DD) has a possibly sign-changing strong
solution (u, v) on [0, T1), uniquely in the class W(Qr,) with u € X7,.
Since u € X7y, the solution u(t) satisfies the following estimate: there exists a positive
constant C depending only on n and q such that:

sup [u(0)|| ooy < C (luollyw2na ey + 1) - (2.2)
0<t<Ty

(II). (Extension Criterion)
Let T =0, 1. If the solution u(t) obtained from Theorem 2.1 (1) satisfies:

sup [lu(#) [l Loo(rm) < 00, (2.3)
0<t<Tpy

then, there is T > Ty such that (u, v) can be extended as a unique strong solution of (DD)
in W(QT(;). Furthermore, if the maximal existence time Tmax of the above strong solution
(u, v) is finite, then we have:

limsup [u(?) || poorny = 00.
t—>Tmax—0

(IIT). (Extended Existence of Solutions up to Maximal Time)
Let T =0, 1. Then, (DD) has a possibly sign-changing strong solution (u, v) on [0, Tmax),

6
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av).

V).

which is unique in the class W(Qr,,,,) with u € X1, , where Tnay is defined as in Theo-
rem 2.1 (I).
In addition, let T be an arbitrary positive number with 0 < T < Tmax. Then, the following
holds:
(i). parabolic-elliptic type (A): 7 =0, y > 0.
There exists a positive constant C depending only on n, q, y, T and luollw2.n+a g
such that:

sup_[1u(0)ly2nva gy < C- 2.4)
0<t<T

(ii). parabolic-elliptic type (B): t =0, y =0. R
There exists a positive constant C depending only on n, q, T, |luollpegn) and
”M0||W2,n+q (Rm) such that:

sup_[lu()l oggny + Sup_Nu(t) 2o oy < C 2.5)
0<t<T 0<t<T

for some 1 <60 < n, where 0 is introduced in Assumption 2.2.

(iii). parabolic-parabolic type: t =1, y > 0.
There exists a positive constant C depending only onn, q, y, T, luollw2.n+q Ry and
lvolly3.n+arny such that:

Sllp/\”u(t)llwln-f—q(]Rn) + SupA||U(t)||W3,n+q(]Rn < C. (26)
0<t<T 0<t<T

Furthermore, for alln + g <r < 0o, it holds:

ueC(0,T1; L, (R™). 2.7)

(Charge Conservation Law)

Let T =0, 1. We impose the assumption that the initial data uq satisfies ug € L' (R™). Let
Timax be the maximal existence time of the strong solution (u, v) obtained from Theorem 2.1
(D, A1) and (11). Let T be an arbltmry positive number with 0 < T < Tmax. Then the strong
solution u belongs to L*°(0, 7.L! (R™)) and satisfies:

/u(x,t) dx:/uo(x) dx ae0O<t<T. (2.8)
R~ R~

(Non-Negativity)
Let T =0, 1. We assume that the initial data ug € L>(R") satisfy:

uop>0andug#0 fora.e x € R".

Let Timax be the maximal existence time of the strong solution (u, v) obtained from Theo-
rem 2.1 (I), (1) and (I). Let T be an arbitrary positive number with 0 < T < Tyax. Then
the strong solution u satisfies the non-negativity property:
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u(x,t)>0 fora.e. (x,1) e R" x (0, ’7?). 2.9)

Remark 1. The extension criterion for the solution is derived from (2.2) in Theorem 2.1 (I), and
follows as a consequence of Theorem 2.1 (II). This criterion, which is crucial for understanding
the behavior of solutions near potential blow-up points, is discussed in detail in Section 4. In
that section, we conduct a thorough analysis of the conditions under which the solution can be
extended beyond its initial interval of existence.

Remark 2. The existence of mild solutions in critical function spaces for various types of drift-
diffusion equations (DD) has been studied extensively; see, for example, [11-14,16,19,21,22].

Furthermore, the existence and uniqueness of weak solutions have been addressed for a broad
class of nonlinear extensions of (DD), including degenerate and semilinear systems; see, for
instance, [3], [5], [9], [15] and [20]. In the critical and supercritical cases, the asymptotic profile
of solutions is given by the fundamental solution of the heat equation or the porous medium
equation without advection; see, for example, [17] and [18]. In contrast, solutions are known to
approach a nontrivial stationary state in the subcritical regime [4].

The following is one of the main results in this paper: the Identical Vanishing for the Backward
Problem. This theorem asserts that, under specific conditions, the solution to a given problem can
be uniquely determined by its past behavior, meaning that if the solution vanishes identically at
a certain time, it must vanish identically for all previous times as well. The proof of this theorem
is based on the Unique Continuation Theorem and the principles of identical vanishing.

Theorem 2.2 (Identical Vanishing for the Backward Problem). Let Assumption 2.1 and 2.2 hold,
and let Tmax be the maximal existence time of the strong solution (u,v) obtained from Theo-
rem 2.1. Let T be an arbitrary positive number with 0 < T < Tmax. If there exists a non-empty
open set Dy C R" such that u(-, f) =0in Dy, then, u =0 in Q7.

The following theorem follows from Theorem 2.2, which establishes the Identical Vanishing
for the Backward Problem as a consequence of the Unique Continuation Theorem. As a result,
we obtain the theorem stated below.

Theorem 2.3 (The Property of Infinite Speed of Propagation). Let Assumptions 2.1 and 2.2 hold.
We impose the assumption that the initial data ug satisfies ug € LY(R"™), and assume that:

/uo(x) dx #0. (2.10)

R~

We denote byATmax the maximal existence time of the strong solution (u, v) obtained from Theo-
rem 2.1. Let T be an arbitrary positive number with 0 < T < Tmax. Then, the support of u(-, )
coincides with R" forall0 <t < T.

Remark 3. If (2.10) holds, then the support of u( is non-empty. Hence, to derive a contradiction
by applying the unique continuation theorem in the proof of the infinite speed of propagation, it
is not necessary to assume that supp uq is non-empty: this fact is already ensured by (2.10).
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Remark 4. Theorem 2.3 concerns sign-changing strong solutions of (DD) in the class W (Q#7).
However, when the initial data u((x) is non-negative and not identically zero, the corresponding
solution u satisfies the non-negativity property stated in Theorem 2.1 (V). In this case, The-
orem 2.3 implies that the strong solution u is positive at x € R” almost everywhere for each
0<t<T,even if up(x) has compact support. Indeed, non-negative solutions are expected to
remain positive for all positive times. While the positivity of solutions is fundamental to the
structure of the solution, its full mathematical justification remains open and presents a signifi-
cant problem to be addressed.

Remark 5. For strong solutions satisfying the non-negativity property (V) stated in Theorem 2.1,
Theorem 2.3 can be deduced from the general theory of the strong maximum principle and unique
continuation for parabolic equations.

In the following section, we will introduce several lemmas that will be frequently referenced
throughout this paper. Section 4 will be dedicated to organizing the proofs of Theorem 2.1. In
Section 5, we will present the proof of Theorem 2.2, which establishes the Unique Continuation
Theorem. Additionally, Section 6 will explore the topic of infinite speed of propagation and
provide the proof of Theorem 2.3.

3. Preliminary

In this section, we introduce several lemmas that will be frequently employed in the subse-
quent sections. First, we define a cut-off function in the following lemma.

Lemma 3.1. Let R > 1. We define ¢ by:

1 0<r <R,
3ot 1— 2 —R)? R<r<3R,
R(r) =
2(r —2R)? 3R <r<2R,
0 2R<r

and set pr(x) as ¢~>R(|x|)f0r x € R". Then, the following estimates hold:

2 12
|V¢R(x)|§%ﬁ, |A¢R(X)ISR—Z forall x e R"

and:

[Vor(x)| < ¥(¢R(x))% forall x e R".

In addition, the following estimates are satisfied:
n

IVorllLr@n <CR™'r and | Agrlr@n <CRZTr foralll <p<oo, (3.1)

where C depends only on n and p.
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The following estimates are obtained from Duoandikoetxea [6, p. 110].

Lemma 3.2. Ler w € W27 (R"). Then, the following estimate holds :

2 2

r
||V2w||Lr(]Rn) < C (:) ”AU)”Lr(Rn) fOV alll <r < o0, (32)

where C depends only on n.

The following lemma provides a variant of the Gagliardo-Nirenberg inequality, which was
derived from [25, Lemma 2.4]. This inequality will be frequently used in the next section as a
key component of our argument.

Lemma 3.3 (Gagliardo-Nirenberg inequality). Let n > 1, m > 1, a > 2, and let f € L9 (R")
r+m—3

vith g1 2 1, and |13 FEWL2RM) withr > 0. Ifgiell, r+m — 1], gpe[FH=1 arim=)
and:

I<q =g =<© whenn =1,
I1<q1<gqa<0o0 whenn =2,
156115%507"%1)'1 when n > 3,

then, the following estimate holds:

20 ;
B

r4+m-—3
2

2 1-©
I f Loz @y < CH =T fll oy oy IV (S
(R™)

with:
r+m—1/1 1 1 1 r4+m—1\-1
oS- LGt
2 a1 @/\n 2 2q1
where:
C dep(fnds onlyonn and a when q1 > r+n21—1’
C= coE with co depending only on n and a  when 1 < q; < %
and:
B= q2 — r+r£z—l [ 2q1 n (1 B 2q1 ) on ]
 n-q r+m—1 r+m—1/n+21

We now define the kernel G,, of the Bessel potential using the following expression:
¢ §2, 13
y%_lane_ﬁm/e_ﬁ'x”(s—l-3> * ds forn > 2,
Gy (x) = 0
aly*%e_ﬁm forn=1,

10
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where the constant a, is given by:
forn > 2,

1 _
3 forn =1,

where I'(-) denotes the gamma function. We also introduce the Kernel G of the Newtonian

potential, given the expression:

mm?—" forn >3,
Golx) = —% log | x| forn =2,
—%|x| forn=1,

where w, represents the volume of unit ball in R”. The kernel G, tends to the kernel of the New-
tonian potential as y — +0 for n > 3. However, it is well known that G,, becomes discontinuous

asy > +0forn=1and n=2.

We provide L'(R")-estimates for G, and VG, when y > 0, which can be derived through

direct calculation.

Lemma 3.4. For y > 0, the following estimates hold:
1
”GV”LI(R") :; al’ld ”VGV”LI(R" SC,

where C depends only on n and y.

Remark 6. In the case where y > 0, we observe:

n

||VGV||LS‘(RH) <0 forn > 2, 1 <s< P

IVGyllps@wn <00 forn=1, 1 <s <o0.
On the other hand, in the case where y = 0, we find:

1961, 20

||VGy||Loo(]Rn) <0 forn = 1,

<oo forn=>2,

where L5->°(R") denotes the Lorentz space equipped with (2.1).

In the following, we define the function z by:

Z(X)=/Gy(x—y)f(y) dy for f e LP(R"),

R»

11

(3.3)

(3.4)
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where 1 < p < oo. Itis well known that the potential z of f in (3.4) satisfies the Poisson equation
as follows:

Lemma3.5.Letn>1,y >0,and 1 < p <oo. Then, z € W“’(R”) and satisfies the following
equation:

—Az=—yz+f in R".
We now provide the L? (R")-estimate for Vz, where z is the potential of f in (3.4).

Lemma 3.6. Let n > 1, y > 0, and let z be defined by (3.4). In addition, we assume that f €
L*°(0, T; LP(R™)) for 1 < p < oco. Then, the following estimates hold:

1
sup |lz()llLprny < — sup [If @OllLr®rr), (3.5)
0<t<T Y 0<t<T
and:
sup [VzOllLr@ny <C sup | fOllLr@wry, (3.6)
0<t<T O<t<T

where C depends only on n and y.

Proof of Lemma 3.6. Since G, VG, € L'(R™), we apply the Young inequality and (3.3) to
obtain:

1
Iz@lLr®ny < NGy L@y Lf Ol Lr @y = ;”f(l)”LI’(IR")
and:

Vel ®n = IVGy Iy L fF OllLe®ey = CILF O Lr @

for ae. 0 <t < T, where C depends only on n and y. This completes the proof of Theo-
rem 3.6. O

Next, we define the function z by:
2= [ Gotx =y for f LR, 3)
Rn

where 1 < p < oo. Itis well known that the potential z of f in (3.7) satisfies the Poisson equation
as follows:

Lemma 3.7.Letn>1, y =0, and 1 < p <o0. Then, 7 € Wli’cp(R”) with BI.ZJ.Z e LP(R"), and
satisfies the following equation:

—Az=f inR",

12
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for n > 2. In the case where n =1, for f € LYR) with x| f € LY(R), it holds 7 € CL(R).
Furthermore, 01z is bounded and absolutely continuous on R, and z satisfies:

—dfz=f inR.

Here, we consider the following Cauchy problem:

9

Y Aw—yw+f in R"x (0,T),
(P) Jat

w(x, 0) =wo(x) in R”".

The following definition is a standard one from semi-group theory.

Definition 3.1. Let 1 < p < oo, and let wg € LP(R"). If f € L'(0, T; L?(R")), then (P) has a
unique mild solution w in C([0, T'); L? (R")), which is given by:

t
w(t) =e e P wy —I—/e_y(t_s)e(’_smf(s) ds (3.8)
0

2
forall 0 <1 < T, where (¢'® f)(x, 1) = [u (470) "3~ T £(y) dy.

The following lemma is crucial for establishing the a priori estimates of v in (DD), which are
derived using the LP (R")-L4(R") estimates for the heat kernel.

Lemma 3.8. Ler 1 < p* < p < 09, # — % < %, and let wg € Wl’p(R"). We suppose that w is

the mild solution given by (3.8) in Definition 3.1. If f € L*°(0, co; LP"(R™)), then the following
estimates hold:

Ct !
lw) Lo < l1wollLp@n) + ————= suD [ @y (3.9)
1— 5(—* - —) O<s<t
p
and:

IVw®lo@e < IVwollLr@e + 1 sup 11.£ ()l o e (3.10)
7 Z(F - F) O<s<t

forallO <t <T, where C depends only on n. '
In addition, let |Viwg| € LP(R") and let f € L>(0, T; Wi=LP(R™)) for i = 1,2, 3. Then, it
holds -

t
IV wOI o @y < 1V w0l ey +2(p +1=2) / IV O e s GD)
0

13



Y. Imaida, K. Shibata and Y. Sugiyama Journal of Differential Equations 448 (2025) 113670

forallO<t <T.
4. Proof of Theorem 2.1
4.1. Proof of Theorem 2.1 (I): existence of time local solution

To establish the local existence of solutions for (DD), we refer to Sugiyama and Kunii [23,
Proposition 8] and Sugiyama and Yahagi [24]. In these works, the existence of a non-negative so-
lution to the Keller-Segel system was established under both quasilinear and semilinear diffusion
structures, each of which involves a uniformly elliptic leading term.

We present the following modification of the formal statement of the result provided by

Sugiyama and Kunii [23, Proposition 8]:

Proposition 4.1. Let g > 2 and © = 0 or 1. We assume that the initial data uq satisfies ug €
W24 (R™). In the case T = 1, we additionally assume that vg € W3"T4(R™). Then there exists
a positive time Ty = T (n,q, luoll w2n+q, T||U()||W3.n+q) such that (DD) has a unique strong
solution (u, v) in the space W(Qr,). Here, W(Qr,) is defined as follows:

(i). parabolic-elliptic type: 7 =0.
W(Qr,) = Wi (07,) x L"M(0, Ty; W (R™)).

(ii). parabolic-parabolic type: T = 1.

W(Qr,) = Wik (01) x Wi (01).

By applying the same argument as in [23, Proposition 8], we obtain the existence and unique-
ness of a strong solution (u, v) to (DD) on [0, 77), uniquely in W (Qr,) with u € X7,, where the
initial data u¢ (and vy, if applicable) is specified in Assumption 2.2. This completes the proof of
Theorem 2.1 (I). O

4.2. Proof of Theorem 2.1 (Il): extension criterion

We now establish the extension criterion for the solution of (DD). To proceed, we present the
following Lemma:

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold. Let (u,v) be the strong solution of (DD) on
[0, T1) obtained from Theorem 2.1 (1) with the property (2.2). Then, the strong solution (u, v) on
[0, T1) satisfies the following properties:

(i). parabolic-elliptic type (A): Let T =0 and y > 0. There exists a positive constant C de-
pending only on n, q, y, Th, and |\uo|ly2.n+q Rrny sSuch that:

sup |[u(?) | w2n+gwry < C.
0<r<Ty

14
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(ii). parabolic-elliptic type (B): Let 1 =0 and y = 0. There exists a positive constant C de-
pending only on n, q, T, |luollpowrny and |[uo |l w2.n+qgny such that:

sup |u(@)llgerny <C, and  sup |lu@)lly2n+qmny <C
0<t<Ty O<t<T

for some 1 <60 < n, where 0 is introduced in Assumption 2.2.
(iii). parabolic-parabolic type: Let T = 1 and y > 0. There exists a positive constant C de-
pending only onn,q,y, Th, |uolly2n+qrny and ||vollyw3n+qny such that:

sup u@llw2ntawny <C, and  sup [[v(D)|ly3n+qrny < C.
0<t<Ty 0<t<Ty

Proof of Lemma 4.2.

(i). parabolic-elliptic type (A): 7 =0, y > 0.
We establish the following regularities:

Vv, Ave L>(0, T1; L®R")), 4.1)
ue L®0, T; LM (R")), “4.2)

Vu € L*(0, Ty; L' (R™)), (4.3)

Vu e L0, Ty; L (R")), 4.4)
9;Vv,0; Av e L*(0, T1; L°(R")) foralli=1,2,...,n, 4.5)
8 Vu e L®(,T; L"TI(R")) foralli=1,2,...,n. (4.6)

We first prove (4.1). By applying (3.5) and (3.6) in Lemma 3.6 and using the second equation
of (DD), we derive the following estimates:

sup V(@) |lpeorry < C sup |lu(@®)|lpoorry, 4.7)
0<t<Ty O<t<Ty

and:

sup [[Av(D)|[Lewny <y sup [[v(@)zecwny + sup [lu@) ]|z wr)

O<t<Ty O<t<Ty 0<t<Ty

<2 sup |lu()|lpom®ny, (4.8)

0<t<Ty

where C depends only on n and y.
Next, we establish (4.2). Let 1 < r < co. By multiplying both sides of the first equation of
(DD) by |u|"~2u and integrating over R”, we obtain:

1d ) 2 x(r—1) -2
;E”M(l)HrLr(Rn) =—(- 1)/ lul""*|Vul|” dx — m/vv - Vu|% dx
R~ R~

15
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1
=_(r—1)/|u|’ 2\Vu)? dx +—)/Av lu| 172 dx
Rn

A

-2
—S 1AvO @) 2t (O oo oy 14 O N ey

2 _
L2r=b fa a1 g 1O o
r+gq—

which yields:

) 1
lull L ®my < luollrr ey + IIM(S)IILOC(Rn)IIM(S)IIU(R") ds

200 — 1)
< lluollr@®m + ———> sup_[[u(®)[ o gn /IIM(S)IIU Rr) ds
& r+q— 20<t<T1 L (R ’

for a.e. 0 <t < T7. By applying the Gronwall inequality, we obtain the following:

2(r—1)
sup [u(@)llLr®ny < lluollLr®n exp{iﬂ sup [|u()[|] oo gn } 4.9)
0<t<T) &9 &Y r +q -2 O<t<Ty L (R )

Therefore, since ¢ =2 or ¢ > 3, and n 4 g > 1, by taking r = n + g, we obtain (4.2).

We move on to proving (4.3). Let 2 < r < oo. To establish (4.3), we differentiate both sides
of the first equation of (DD) with respect to x once and multiply by |Vu| ~2Vu. This gives us
the following inequality:

Ly QU] gy = ¢+ 1= D = DI L 1700 ey IO
F i rRry = q u(t)”Lm(Rn) l v(t)”LOO(Rn) Vu@)ll r(R)

2(g—2 -2
+ (1= D% o 1O oy | AV o oy IV O Gy

which leads to the following estimate:

sup [[Vu(@®)llLrrn)
O<t<Ty

<||Vu0||L’(R")+\/2(r+n—2)Tl sup IIM(I)IILDO(R”

0<t<Ty

x sup [u(@)|lLr@n) sup IIAv(t)IILoo(]Rn))
O<t<Ty O<t<Ty

2(qg—2
xexp{<r+n—z><q—1>2n sup [lu() 7%z sup ||Vv<t>||Loo(Rn} (4.10)

O<t<Ty O<t<Ty
Thus, since ¢ =2 or g > 3, and n 4 g > 2, by taking r = n + g, we conclude the proof of (4.3).

16
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We now proceed to establish (4.4) by applying the Moser iteration technique. Let n + g <
r < oo. Differentiating both sides of (DD) with respect to x and multiplying by |Vu| ~2Vu, we
obtain the following identity:

1d r r—2 -2 r—2
_E”V”(I)”L'(R") = [ (VAuw) - |Vu|""*Vudx+ x | V(V-(u|?""uVv)) - |Vu|""*Vu dx
r
R~ R~
=N +D. 4.11)

By performing integration by parts once, we derive the following expression for /;:

n n
I :/Za, Otu |Vul 3 dx
Re i=1 j=l

- _/Zz(aiaj“) 8J(|V“|r_23iu) dx

R i=1j=1
n n
=_(r—2)/|Vu|’*42|ajw.vu|2dx—/|Vu|’*22|a,vu|2dx
R~ j:l R~ j:l
= —(r—2J1 — . (4.12)

Next, we establish the bound for I5:

n
L=y / > 0;(V - @I V)) [ Vul 20 dx
R7 i=1

n
=—x / (V- (u92uV0)) Y i (IVul0u) dx
Rn i=1
=—x / ((g = DuT2Vu - Vo + |u|""*uAv)
Rn
n n n
x H(r — )Vl 3N 0000 (30 (Byu) + |Vu|’—2Za,.2u} dx
i=1 j=1 i=1

-2 n
<! Z /|W|’—4Z|a,-v14-w|2 dx
R~ j:1

+(r—2)(q — 1)2f 1?92\ Vu 2| Vo2 Vul" "4 Vu|* dx
Rn

-2 n
+rT/|Vu|’*4Z|a,-w-W|2dx+(r—2)/|u|2<‘1*1>|Av|2|W|r*4|W|2dx
R~ j:1 Rn

17
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1
4/|Vu|’ 2Z|a Vul*> dx +n(g — 1) /|u|2<‘1 DIVulP Vo2 Vul "% dx

Rn / 1 ]Rn
/|W|’ 2Z|3,vu| dx+n/|u|2(q D1 AvP VU 72 dx
Rn
r—2 1 Vg — 1) 2(4-2) 2 r
< P Ji+ 2J2+(r+n )(61 ) ”u(t)”LOO(Rn)”Vv(t)”Lco(]Rn)”Vu(t)”Lr(Rn)

2(g—2
+ (1 = 2) () 7% o | AV s gy 10 O oy | V17 ey

2(g—2
5 2) sup ;L gn sup NAVD I s IO g
O<t<Ty

O0<t<Ty

2 2
+r+n=2)@— D sup Ju@ll; %z,

0<t<Ty

x( sup ([ Vo) 2o e, + sup ||Av<r)||Loo(Rn)nvmr)nzr(m

O0<t<Ty O<t<T

for a.e. 0 < ¢t < Tp. This yields that I can be bounded as follows:

I, =

r—2 1
S+ 3+ 0 =D (MO gy + M VEO N ) @13)

fora.e. 0 <t < Tp, where M| and M, are determined from the estimates already derived in (2.2)

in Theorem 2.1 (I), (4.7), and (4.8) as follows:

2(qg—2
My= sup [lu)} %, sup VOl @y
0<t<Ty O0<t<T

and:

2(g—2
My:=(q—1)* sup ||u(t>||L(:é(Rl)( sup V()2 o+ SUp ||Av(r)||Loc(Rn>

0<t<Ty 0<t<Ty O<t<Ty

Thus, from (4.11) to (4.13), we obtain the following differential inequality:

_21 oy
2 1T

+ G+ = 2) (MO oy + Mo VHO ) (414)

Lo

forae. 0 <t <Tj.

For n + g <r < oo, applying Lemma 3.3 withm =1, a =3, g1 = n:_q ell,rl,go=rc¢€
(5.5 f=IVul|,® = nintg—l) 1 _ 2 and f = 20F4-D+2 e obtain:
[3- uls nntg-D+2 — - nliFg-D+2 = Grg-Dr2 WV :

18
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|2
2

B 1-0
VOl oy = () 1902 [orvutioo]

L2(R")
<" ol fnlind MAAEION [l
I (R") L2(R")

- et g n(ntg—D+2

where ¢ depends only on 7. Thus, we observe from the Young inequality, with £ = = Tra=1
;_ nn+g—14+2.
and ¢ = ———5——=:

2(n+q—1)(n+2)
r n(n+q—1)+2 n(n+q D+2 5
IV gy < Ce (co Va7 o )) velvivaito| oy
n(n+q—1)
2

__r=2 _len-Y _ 2 ntg=1)  r’(r4+n-2)
where ¢ = m and Cg = F(&'g) = nitqg—D+2 <M2n(n+q71)+2 . —2

Since r +n — 2 < 2r, noting:

2

r nn +£I
=—Ji and C,<(2M Lyt =1),
L2R™) 4 1 e < ( 2)

waz(r)\

we obtain the following inequality:

(r +n =)Mo Vi) Iy g,

nOtgD (g —1)nt2) " g -1y , -2
<2 2 Cy M2 r Hvu(t)”Lﬁ(]R") + n Ji. 4.15)
Hence, for all n + g <r < 0o, we see from (4.14) and (4.15):
1 d r r
P IVu@O N r gy < (r +n=2)M w7 gy
notq=D42  (n4a—1)(n+2) , , Rote=Di2
2 2 c(()" q—1)(n )M2 ) prtg—D+1 V)|
n+q R")
n(n+q—1)+1 r ,
< M,r <||u(t)”Lr(Rn) + ”V”(Z)”Lniq(w)) (4.16)

fora.e. 0 <t < Ty, where M, is defined as follows:

n(n+q—1+2 _ n(ntqg—D+2
M, = max {ZMI, o M C(()n+q 1)(n+2)M 2

Therefore, integrating both sides of (4.16) from O to ¢, we have, foralln + ¢ <r < oo:

t

< ||V”0||FL'(]R") + M*rn(n+q—1)+2/ (“M(S)”Lr(Rn) + ||Vu(S)|| it (IR")) ds
0

19



Y. Imaida, K. Shibata and Y. Sugiyama Journal of Differential Equations 448 (2025) 113670

= ||Vu0||2n+q(Rn) + ”Vu()”zoo(]Rn)
t

+ Mt / (nu(s)n;ww) + (oo oy + IV n;q(w)) ds
0

,
< (M* + l)rn(ll+¢]—l)+2 I:ZmaX{HVM()”Ln-H](Rn), ||VM0||Lw(Rr1)}
p
+3max{ sup fu(®llLr+any, sup Nu@len, sup [IVu®Il oz o } Tl]
O0<t<Ty O<t<Ty O<t<Ty R™

<5(My + 1)(T) + Dr"0Ha=D+2 max { IVttoll Lrra ey | VU0 ll oo Ry

p
sup fu(@)llprtany, sup |u(®)lLomny, sup [[Vu(@®)| - }
O<t<Ty ( )O<t<T1 ( )()<t<T1 L7¥ (Rm)
This yields:

IVl @ny < {5+ DT + D=2 max { IVutoll o ey, Va0l 2 e,

sup (lu (@)l Lr+a ey, sup [lu(®)llLoo@ny, sup [Vu(@)|l nng}
0<t<Ty O0<t<Ty 0<t<Ty L R

forae. O<t<T).Letr=(n+ q)k with k > 1. Then, we find:

IVuON 0t e

k
= {5+ D@1+ D+ g 17042 5 max { IVttoll o ey | Vitoll oo ey,

sup |u(@)ll Lrta®ry, sup [lu(®)llpo®n), sup IIVu(t)||L<n+q>kl<Rn)}
0<t<Ty 0<t<Ty O<t<Ty

k

k—1
= {5+ D@1+ D+ g DR ET S £ 1 (T 4 104 gy e

X max { IVuoll pr+ta@®ry, Vuollpooey, sup  Nu(O) || r+arrys

O<t<Ty

X sup [Ju(t)l| e, sup ||Vu(t)||L<n+q>kz(R,,)}
0<t<Ty O0<t<Ty

k—1 k=041

_ P 2=
= [T {5 + 1T+ D 4+ gyrieraDe2| om0 max{||wo||Ln+q<Rn),||Vuo||Loo<R»),
=1

sup |[u(?) || pn+a®ny, sup |lu(?)|lLooRr), sup IIVM(I)IILn+a(Rn)}
0<t<Ty 0<t<Ty O<t<Ty
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k—1 k—t+1

— {S(M* +1)(Ty 4+ D(n + q)”<"+‘1*‘)+2] = ax { IVl prsarys Vo]l Loy

sup |u (@)l Lrtawry, sup [lu(®)llpo®n), sup IIVM(I)IILn+q(Rn)}
0<t<Ty 0<t<Ty O<t<Ty

k 14
}Zl:Z (n+q)t

= {5+ DT + D0 + gy ra=D+2 max { IVttoll o ey, Va0l o e,

sup |u (@)l Lrta®ry, sup [lu(®)llpo®n), sup IIVM(I)IILn+q(Rn)}
0<t<Ty 0<t<Ty O<t<Ty

2
< {S(M* + l)(Tl + 1)(}’1 +q)n(n+(1*1)+2} maX{”vuo”LnJrq(]Rn), ||Vu0||LOO(RYl),

sup Nu(®)l|Lr+awny, sup fu(@)|[zom®n), sup IIVM(I)IILn+q(Rn)} (4.17)

0<t<Ty 0<t<Ty O<t<Ty

: k 4 oo ¢f
fora.e. 0 <t < T). Here, we notice that ) ,_, yraw <> 2= 2.
At this point, we introduce the fundamental theorem regarding the limiting norm of | - || 7.r (R

Specifically, let (X, ;) be a measure space. If f € LP(X, u) for some py < oo, the following
holds:

Lim || fllrx)y =11 fllLex)- (4.18)
p*)OO

See Grafakos [8, p. 11, Exercise 1.1.3] for further details. Therefore, taking the limit as k — oo
on the left-hand side of (4.17) and applying the result from (4.18), we conclude:

sup [|Vu(t)|l oo ®n)
0<t<Ty

2
< {S(M* + 1)(T1 + 1)(n + q)n(n+q—l)+2} max { ||VM()||Ln+q(Rn), ”VMO”LOO(R”)v

sup ()l r+awny, sup fu(@)lLoorn), sup ||V”(t)||L”+‘1(R”)}~

0<t<Ty O<t<Ty 0<t<Ty

We now turn to the proof of (4.5). Applying the Young inequality, we have:

sup [10; Vo@)llLoo®ny < IVGy llpirny sup  [Vu(@)llLoo®n)

0<t<Ty 0<t<Ty

<C sup [[Vu(@®)|poe®n), (4.19)

0<t<Ty

where C depends only on n and y. In addition, from the second equation of (DD), we have:

sup [|3; Av(D)|[Lowry <y sup V(@) llzeomny + sup [[Vu(@) |l Lo mwn).- (4.20)

O0<t<Ty O<t<Ty 0<t<Ty

This inequality directly leads to the proof of (4.5).
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We now address the proof of (4.6). Let 2 < r < oo. By differentiating both sides of the first
equation of (DD) with respect to x twice and multiplying by |9; Vu|"~28; Vu, we derive the
following from (4.7), (4.8), (4.10), (4.19) and (4.20):

1d ,
;E”aivu(t)”Lr(Rn)

2(g—2
<200 +n—=2)(q = DX 1u@ 7% gn IV o ey 10 VO I gy

2(q-3
+20r + 1 =2)(q = (g = 2 1@ 7% @n I VO I oo gy IVVO I )

X ”Vu(t)”Lr(]Rn) “al Vu(t)”Lr(]Rn

2(g—2
+20r + 1 = 2)(q — DN 17 gy 10 VOO I o gy | VO gy 10 Vi (O 7 oy

2(qg—2
+20r 41— 2)(q — D217 g | AV oo oy | VO oy 10 V(O Gy

2(g—2 —
+ 20+ 1 = D17 gy 10, AV e ey 18O 1 ey |0 VO By (421

which leads to:

sup ||8; Vu(@®) |- )

0<t<Ty
3
<||3 VuollLr®ny+2(g—1(g—2)y/ (r+n—2)T1 sup IIM(I)IILOO(RH) sup (| Vu(t)|| Loo )
0<t<Ty 0<t<Ty

x sup [[Vo@)llpoony sup [[Vu(@)llL-wn)

0<t<T 0<t<T

+2(g—Dv/ (r+n=2)T1 sup IIM(t)IILOO(Rn sup [|0; V(@) |lLony sup [[Vu(®)|lLr wr)

0<t<Ty O<t<Ty 0<t<Ty

+2(g—=Dv (r+n=2)T1 sup IM(I)IILOO(Rn) oS [Av(@O L ®n sup [Vu(®)llzr wn
<1

0<t<Ty 0<t<Ty

+ 2y (r+n=2)T1 sup Ilu(t)IILm(Rn sup [|0; Av(®)[|Loorry sup ||u(t)||L’(]R”)>
0

0<t<Ty <t<Ty O<t<Ty

2(g—2
xexp{z(q—1>2(r+n—2>T1 sup lu(t)l17% g, sup ||Vv<r)||ioo(R,l)}. (4.22)

0<t<Ty 0<t<Ty

Therefore, since ¢ =2 or ¢ > 3, and n 4 ¢ > 2, and since 9; Vug € L"T4(R"), from (4.22), we
have 9; Vu € L>®(0, Ty; L4 (R")). Thus, we conclude the proof of (4.6).

(ii). parabolic-elliptic type (B): t =0, y =0.
We establish the following regularities:

Av e L0, Ty; L®(R")), (4.23)
ue L0, Ty: LY (R™) N L0, Ty; L' (R")), (4.24)
Vv e L0, Ty; L®(R")), (4.25)
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Vu e L®(0, Ty; L' (R")), (4.26)
Vu € L0, Ty; L>°(R")), (4.27)
9iAve L*®0, T; L°(R") foralli=1,2,...,n, (4.28)
8 Vu € L0, Ty; L"™(R")) foralli=1,2,...,n, (4.29)

where 6 is the exponent introduced in Assumption 2.2 as part of the function space imposed on
the initial data ug.

With regard to (4.23), by applying (2.2) from Theorem 2.1 (I), and the second equation of
(DD), we obtain:

sup [[Av(D)[[po®ry = sup [u(@) | Loowrn)- (4.30)

0<t<Ty 0<t<Ty

Therefore, (4.23) follows from (4.30).
Let 1 <r < oco. Regarding (4.24), by multiplying both sides of the first equation of (DD) by
|u|"~?u and integrating over R”, we obtain:

d
Oy = =0 = 1)/ \Vul?|ul"% dx — x(r — 1)/ || uVv - [u|" "> Vu dx

RVL
_—(r—l)/|Vu| lul =2 dx + )/ v |u"t1? dx
Rn
.
<— |I (t)IILOO(Rn)IIAv(t)IILooaRn)||u(t)||’Lr(R,,).

r+gq

By applying (4.30), we have:

sup IIM(I)IILr(Rn)E||uo||Lr(]Rn)eXP{T sup IIM(t)IILOO(Rn sup IIAU(I)IILOO(R")}

0<t<Ty 0<t<Ty 0<t<Ty
< ||u()||L"(]R")eXp{T sup IIM(t)IILoo(Rn } (4.31)
0<t<Ty

Therefore, sinceq =2orqg >3,1 <6 <nandn+¢q > 1, by choosingr =0 andr =n + ¢, we
deduce (4.24), where 6 is the exponent introduced in Assumption 2.2.

Next, we establish (4.25). Considering that VG € L 7100 (R™) for n > 2, we apply the weak-
type Young inequality (see Grafakos, for example, [8, p. 73 Theorem 1.4.25]). Consequently, we
obtain the following estimate:

IVl ey = IVGoll | 1y ()l e rn) (4.32)

R
foralln’%] <r<ooand1<9<n,with}="n;1+%—lz—%—f—%.Then,foralln <71 <00,
using the embedding theorem, (3.2) in Lemma 3.2, (4.31) and (4.32), and applying the second

equation of (DD), we derive the following:
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V(@) Lo ny < CIVU@O) w1 ey
= C(IVo@ @y + 1AV ) )

= (Il @ + 0@l )

for a.e. 0 <t < Ty, where % = —% + %, and C depends only on n and 6. Thus, since ug €
LY(R™) N L% (R"), we conclude that (4.25) holds.

The regularities (4.26), (4.27), (4.28) and (4.29) follow from similar arguments used in the
parabolic-elliptic case with 7 =0 and y > 0 as in (4.10) through (4.22).

(iii). parabolic-parabolic type: T =1, y > 0.
We establish the following regularities:

Vv e L0, T; L®(R")), (4.33)
u,v,Vve L*, T1; L" (R™)) foralln+qg <r < o0, (4.34)
Vu,Ave L0, T; L"(R") foralln+q <r < o0, (4.35)

V2u, V3 e L=, Ty; LT (R")), (4.36)
Vu, Av € L*(0, Ty; L (R")). 4.37)

We first prove (4.33) and (4.34). From (3.9) and (3.10) in Lemma 3.8, we obtain the following
estimates:

sup [[Vo(®)lloorry < [Vvollzoony +C sup [lu(@) || oo ). (4.38)

O<t<Ty O0<t<Ty

where C depends only on n and 7;. Additionally, let 1 < r < co. By multiplying both sides of
the first equation of (DD) by |u|"~2u and integrating over R”, we obtain:

1d
;Enu(t)ngr(w):—(r—1)[|u|’*2|wﬂdx—x<r—1>/|u|4*2uw-|u|r*2w dx
R~ R~

<—(r— 1)/ |u|" 2| Vul|* dx
Rn

r—1

4

+ /|M|"—2|Vu|2 dx+(r—1)/|Vv|2|u|r+2‘l—4 dx

R~ R~
2(g—2
< = D@L @ IV 0O oo oy 1O ey

which, by applying (2.2) from Theorem 2.1 (I), (4.38) and the Gronwall inequality, leads to:

sup |lu()l LR
O<t<Ty
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2(qg—2
§||MO||L’(]R")CXP{(V—1)T1 sup ||u(t)||L(éi(Rl) sup IIVv(t)II%oo(Rn)}.
O<t<Ty O<t<Ty

Sinceq=2orqg >3,andn+¢q > 1, we have u € L0, T1; L"(R™)) foralln +q <r < o0.
By applying (3.9) and (3.10) in Lemma 3.8, we obtain the following estimates:

sup flo@)llrrry < llvollzr @y +C sup [lu@)||Lrrny
0<t<Ty 0<t<Ty

and:

sup [[Vo@)llrrry = IVvollzr@ey +C sup [lu@)|lLrwn).

0<t<Ty 0<t<Ty

where C depends only on n and 7. Thus, we conclude (4.34).
We now turn to the proof of (4.35). Let 2 < r < co. By applying (3.11) in Lemma 3.8, we
obtain the following estimate:

1AVOIZ ey < CIVZOO - @y

t
< CIV*wll 3, @n + Cr+n—2) / IVu@) I3, g ds (439
0

fora.e. 0 <t < T7, where C depends only on n. Additionally, by differentiating both sides of the
first equation of (DD) with respect to x once and multiplying by |Vu|"~2Vu, we obtain:
1)l gy = 41 =2 = DAOILE IV00) e g V00 ]
- drt Lr®m = 1 LoR") L*(R") Lr(R")
2(g—1) 2 -2
+ 0+ 1= D@17 o 1AV 12 @ VO 17 0.
which, by using (4.39), yields:

-1
sup ||Vu(f)||Lr(Rﬂ)§(||VM0||Lr(Rn)+\/C(r+n—2)T1 sup ||M(f)||[£oo(Rn)||V2U0||Lr(Rn))

O<t<Ty 0<t<Ty

2(qg—2
xexp{C(r+n—2)2(q— DXT+D? sup Jlu@; % g,
0<t<Ty

X( sup [[u(®) |7 oqgny+ Sup IIVv(t)lliOO(Rn))}, (4.40)
0<t<Ty

O<t<Ty

where C depends only on n. Thus, since ¢ =2 or ¢ > 3, and n + g > 2, we observe that Vu €
L*°(0, Ty; L™ (R™)) for all n + g < r < co. Moreover, from (4.39) together with (4.40), we infer
Av e L*(0, Ty; L" (R")). Thus, we conclude (4.35).

We now establish (4.36). Using a similar calculation as in (4.21), we derive the following
inequality:
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}%nal»wa)ngr(w)

<20 +n—=2)(q — D@74 @ IV o ey 10 Vu @1 ey
+20r+n=2) (= D=2 lu @ 1 7L g IV VO o o IV 2 o 1 VO G,
+20r 41— 2)(g = D217 @ 10, V0O 1 o g I VO 122y oy 105 Vi (O 7 G
+20r 41 = 2)(q = D)7 g 1AV O 12 oy IV O 1227 o 1 VO T
+20r 41 = 2D @) 1L g 10 AV oy 10 V1157 G 4.41)

fora.e. 0 <t < 77 and for all 2 <r < oco. Additionally, taking i =3 in (3.11) in Lemma 3.8, we
obtain:

19: AV gy < CIV OO gy

< CIVwll}, gn + Cr+n—2) / IV2u()7r e, ds (4.42)
0

for a.e. 0 <t < T1, where C depends only on n. Combining (4.41) with (4.42), we observe the
following inequality:

5T Lo, vul2 g,

<G+n-2) (2<q = D2(q = 22l 7L @ IV VO oo oy IV O} 2 e
+2(q = D217 g 19 VOO I o oy I VO 12 2 oy
+2(q = DO g 1AVO 1220 gy IVH O 1220 o

2(g—1
+ 19200 o 17 0, )

2(g—2
+20r + 1 = 2)(q — D217 g 1YV oo oy 10 Vi1 oy

t
2(g—1
+C +n— 22 u®) % g / IV2u@)17, gy ds (4.43)

for a.e. 0 <t < T1, where C depends only on n. Noting:

r T ot t
//||V2u(s)||%,(Rn) dsdtf//||v2u(s)||%,(Rn) dsdr:T1/||V2u(s)||%,(Rn) ds,
0

0 0 0 0

and:
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n
n VU gy < DN VUl gy
i=1

by integrating both sides of (4.43) from O to ¢, we have, for all 2 <r < oo:

Va7, gy

< IV?uo |13 gy + 202 (r +1n = 2Ty

(2<q—1> @ =27 sup Ol L@n S IVVOin@n) s Va0

0<r<Ty 0<t<Ty 0<t<T
2(q — 1) 24-2) v2 v
+ (q ) Sup “u(t)”Loo(]Rn) Sup ” v(t)||L2t(]Rn) Sup || u(t)”LZr(Rn
0<r<Ty 0<r<Ty 0<r<Ty
2(g—2
+2(g =17 sup JuOIFLgn sup 1AV ga, Sup 1VHOI 2 gy
0<r<Ty 0<r<Ty 0<t<Ty

2 1
+ V20013, gy sup ||u(r>||L<£(Rl)

O<t<

+4n2(r+n—-2)(g - 1)* sup ||u(r)||Lw(Rn) sup || Vo) 17 o) / IV U1 gy ds

0<t<Ty 0<t<Ty

r 2(g—1
+Cni+n—27T1 sup [u()]; % g0 / IV2u ()12, g ds

O<t<Ty

. 2 2
=V MOHLr(Rn)

+2n2(r +n—2)Ty (M2 + M2 + M2 + M2) + (M7 + Mg)/ IV2u)17r gn) ds

for a.e. 0 <t < Ty, where C depends only on n. Here, M3, M4, M5, Mg, M7, Mg are defined as
follows:

-3
Ms:=v2(q =g =2 sup lu@®Iiigs sup IVO@OllLe@n sup [Vu®Iy g,

O<t<Ty O<t<Ty O<t<Ty

Mai=v2q =1 sup Ol f<ign S0 IOl sup NG

O0<r<Ty <T 0<t<T;

-2
Ms:=~2(q—1) sup [[u@®ixigs, sp IAVOll 2 @e, sup VU@l 2@,
O<t<T 0<t<Ty 0<t<Ty

Mg = V>vol|Lrwn) sup ||u(r>||Lw(Rn),

O<t<T

My —4nz<r+n—2>(q—1>2 sup ||u<r>||LOO(Rn sup | Vo) 17 oo ()
<t<Ty

0<t<Ty
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r 2(g—1
Ms:=Cn(r+n—2)"T1 sup |lu(t)ll7% g,
0<t<Ty

where C depends only on n. This, together with the Gronwall inequality, leads to:

sup [|V2u(t)ll @y < (nvzuonLr(Rn) +\/2n%<r +n—2)T1 (M3 + My + Ms +M6>)

O0<t<Ty

X exp { %(M7 + M3)T, } (4.44)

fora.e. 0 <t < T1, where C depends only on n. Since VZug, V3vg € L't (R"), from (4.42) and
(4.44), we have VZu, V3v € L®(0, Ty; L4 (R™)). Thus, we conclude (4.36).

We prove (4.37) as follows. By the Morrey inequality, there exists a positive constant C de-
pending only on n and ¢ such that:

sup [[Vu(@)|lzeowny <C sup [[Vu()llyintqmny
0<t<Ty O<t<Ty

and:

sup [[Av(D)|lLoerny = C sup [[AV(@)[ly1ntewr)
0<r<Ty 0<t<Ty

From (4.35) and (4.36), we have the boundedness of | Vu(t) |y 1.n+qgny and | Av() [y 1.n+qgny-
Consequently, (4.37) is obtained. This completes the proof of Lemma 4.2. O

Continuation of the Proof of Theorem 2.1 (IT). We are now ready to prove Theorem 2.1 (I).
From the construction of the solution described in Subsection 4.1, we observe that the local exis-
tence time 7' depends on n, ¢, y and ug (and on vy, if applicable). Specifically, the dependencies
for each case are as follows:

(i). parabolic-elliptic type (A): t =0, y > 0.
The time 7 depends only on n, g, y, and [luo |l y2.n+q Rr)-
(i1). parabolic-elliptic type (B): t =0,y =0.
The time 77 depends only on n, g, |luollze®ny. and [luolly2.n+qny for some 1 <6 <n,
where 6 is introduced in Assumption 2.2.
(iii). parabolic-parabolic type: t =1,y > 0.
The time 7} depends only on n, g, v, [uo |l w2.n+q®ny> and |[vollys.n+e ®ny-

Our objective is to extend the strong solution (u, v) from [0, T7) to [0, T), where T < T <
Tmax- Here, Timax refers to the maximal existence time, the upper bound for the interval during
which the solution remains bounded in the L°(R")-norm. In other words, Tyyax is characterized
by the property:

limsup [lu(?)|| oo ®ny = 00,

t— Tnax—0

indicating that the solution u(¢) becomes unbounded in the L°°(IR")-norm as ¢ approaches Tpax.
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To achieve this extension, we assume (2.3). Under this condition, we derive the following
estimates from Lemma 4.2:

(i). parabolic-elliptic type (A): t =0, y > 0.
There exists a positive constant C depending only on n, g, y, To and [lug |l y2.n+q Ry such
that:

sup ||M([)||W2<n+q(1[gn <C. (4.45)

0<[<T0
(ii). parabolic-elliptic type (B): t =0, y =0.

There exists a positive constant C depending only on n, g, To, |luollper») and
”MO” w2n+q (Rm) such that:

sup Nu(®)llLo@my + sup (u(@)lly2ntqgny < C (4.46)

0<t<Ty 0<t<Ty

for some 1 < 8 < n, where 6 is introduced in Assumption 2.2.

(iii). parabolic-parabolic type: 7 =1, y > 0.
There exists a positive constant C depending only on n, q, y, To, |luolw2n+q R")> and
lvollw3.n+qrn) such that:

sup ||l/i(t)||W2 n+q(Rn) + sup ||v(t)||W"5 )H»q(Rn C (447)

0<t<Ty 0<r<Ty

From (4.45), (4.46) and (4.47), the solution u(Tp) (and on v(Tp), if applicable) belongs to the
same function space as the initial data specified in Assumption 2.2.

We then consider Ty as an initial time and apply the construction method outlined in Subsec-
tion 4.1, using u(Ty) (and on v(Tp), if applicable) as initial data. This enables us to extend the

strong solution (u, v) over [Ty, Tl(l)). Here, the existence time Tl(l) is determined by #n, ¢, y and
u(To) (and on v(Tp), if applicable), as specified in Assumption 2.2. By applying Lemma 4.2,
we derive the same estimates as in (4.45), (4.46), and (4.47), but now over [Ty, To(l)], where
To(l) < Tl(l).

From the estimates obtained over [Ty, To(l)], we ensure that the solution u(To(l)) (and on
v(TO(I)), if applicable) belongs to the same function space as the initial data specified in As-
sumption 2.2. Consequently, we are able to reapply the construction method from Subsection
4.1, treating u(To(l)) (and on v(TO(])), if applicable) as the initial data. This allows us to construct
the strong solution (u, v) on [To(l), T](z)).

Repeating this procedure iteratively, we define sequences {To(k)} and {Tl(k)} fork=1,2,....

In addition, we set TO(O) = Tp, and construct solutions on [To(k_l), Tl(k)), ensuring at each step
that:

e The same estimates as in (4.45), (4.46), and (4.47) hold over [T,* ™", T\¥], where T\¥ <
Tl(k). These estimates are guaranteed by Lemma 4.2.
e The construction method from Subsection 4.1 can be reapplied using u(TO(k)) (and on

v(TO(k)), if applicable) as initial data
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e We extend the strong solution (u, v) over [To(k), Tl(k+1)).

Therefore, by this method of iterative extension, we have successfully extended the strong solu-
tion (u, v) to [0, /T\) for any T < Trax-

Based on the above facts, the following conclusion follows: the solution can be extended to
the maximal existence time Ty, at which time the solution may become unbounded in the
L*(R"™)-norm. Specifically, Tnax is characterized by the condition:

limsup [|u(#) |00 rr) = 00,

t—> Tmax—0

indicating that the solution may not cease to exist in the strong sense beyond Tpax. This condition
suggests that a blow-up in the L°°(R")-norm is a potential cause for the termination of the
solution’s existence at Tpax. This completes the proof of Theorem 2.1 (II). O

4.3. Proof of Theorem 2.1 (1Il): extended existence of solutions up to maximal time

To establish Theorem 2.1 (III), we first apply the local existence result in Theorem 2.1 (I),
which guarantees the existence of a strong solution on a small time interval [0, 77) for some
T1 > 0, depending on the norms of the initial data uo (and on vy, if applicable) introduced in
Assumption 2.2. The solution is constructed in the appropriate function spaces W(Qr,) N X7,
and by the a priori estimates derived in Subsection 4.2, we ensure that, as long as the L*°(R")-
norm of u(¢) is bounded, the W24 (R")-norm of u(¢) (and the W3"+4(R")-norm of v(¢), if
applicable) remains finite.

Furthermore, the uniqueness of the solution in the class W(Qr,,,,) N X1,,, follows from the
contraction mapping principle applied in the proof of Theorem 2.1 (II), ensuring that no other
solutions with the same initial data exist in this class. Therefore, the strong solution (u, v) is
unique on [0, Tiax)-

In addition, we aim to establish (2.7) in Theorem 2.1 (III):

ueC(0,T]; L .(R™) forall n+gq <r <oc. (4.48)

loc

From Lemma 4.2, the following regularity properties hold:
ueL®0,T; W @®R"Y) and du e L¥(0, T; L" 1 (R")).

These regularity conditions, combined with the compact embedding W1"+4(Q2) c C () for any
bounded subset 2 C R”, imply that:

ueC(0,T]; C(2)

for all bounded subset 2. Since this embedding is valid only on bounded domains, we restrict our
analysis to such regions. By invoking the Aubin-Lions Lemma, we conclude that u is continuous
in the local L” (R")-spaces, leading to the desired result (4.48). Thus, we confirm that u resides in
the appropriate continuity space for all n + ¢ < r < co. This completes the proof of Theorem 2.1
am. o
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4.4. Proof of Theorem 2.1 (IV): charge conservation law

We now proceed with the proof of Theorem 2.1 (IV). Let 0 < T < Tiax, Where Ti.x denotes
the maximal existence time. We assume that the initial data satisfies ug € L' (R"). Since ug €
L' (R") N L°°(R"), by modifying Lemma 4.2, there exists a constant C such that the following
bound holds:

sup [lu(®)llLprny <C  forall 1 < p < oo, (4.49)
0<t<T
and:
supA ||VU(I)||LOO(Rn) + SllpA I AU(I)”LOO(]RM) <C. (4.50)
O<t<T O<t<T

Here, the constant C depends as follows:
(i). parabolic-elliptic type (A): 1 =0,y > 0.
The constant C depends only on n, g, ¥, |luoll 1 (R7) and [lug || y2.n+q (R7)-
(>ii). parabolic-elliptic type (B): t =0, y =0.
The constant C depends only on 7, ¢, ||u0||LI(]Rn) and |[ugl| W2nta (R -
(iii). parabolic-parabolic type: t =1,y > 0.
The constant C depends only on n, ¢, y, ||M0||L1(Rn), leeo Il yr2.n+4 (R") and |vo|| W3nta (R7)-

To establish Theorem 2.1 (IV), we first present the following lemma:

Lemma 4.3. We suppose that all assumptions of Theorem 2.1 (IV) hold. We assume, moreover,
that the initial data uo belongs to L' (R™). Then, the strong solution u satisfies:

ueL®0,T; L"(R")).

Proof of Lemma 4.3. We begin by defining the positive and negative parts of a function f as
follows:

[F17 () =max{0, f(x)}, [f]1”(x) :=—min{0, f(x)}. 4.51)

Then, we have the identity:

|f I =1T7 @)+ [f17 ) = [f17 @) + [= /T (). (4.52)

We next focus on the contribution arising from the positive part of u, which constitutes the
first step toward establishing its L! (R")-integrability. To this end, we introduce a cut-off function
n € C'(R) satisfying 0 < n(s) < 1 and 0 < /(s) <2 for all s € R, and specifically set:

0 fors <0
- =5 453
M= forg =1, (4.53)
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We further define, for each parameter m =1, 2, ... ., the cut-off function:
nm : R — [0, 1], Nm(r) :=n(mr) forallr e R,
where r is the variable and m indexes the family {7,,},,eN- Then, it holds that:

0<mn,@r)<2m forallreR. (4.54)

Multiplying the first equation of (DD) by n5,,(#) ¢g and integrating over R" x (to, t1), we
obtain:

13
// Osu Ny (u) prdxds =1+ 11, 4.55)
o R~

fora.e. 0 <ty <t < T, where we set:

131
I:= —//Vu . V(nm(u) qu) dxds,
o R

131
II:=x / / V.- (|u|q_2u Vv) Nm (1) Pr dxds.
o R»
We first bound the term /. Applying the Leibniz rule, we obtain:

151

1
I:—//|Vu|277;n(u)¢Rdxds—/[Vu-nm(u)V¢Rdxds =L+ 1L (4.56)

to Rn o R»

Since n,’n (r) = 0 for all r € R, as stated in (4.54), we have I} > 0. Hence, to obtain an upper
bound for I, it suffices to estimate /I, from above. To this end, we introduce:

Dyi={r0eR x 0.7) | 0<utxe,n < L],
Using (4.54) and Lemma 3.1 yields:

n 151
Ig://Mn;n(u)Vu-V(dexds—i—//unm(u)Aqudxds

o R» o R»

n 151
1 1
< i+ / / |0, (u) VR ¢—dxds + / f U (u) A dxds
R

fo D))zﬂsupp¢R o R»
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3]

1

16n 12n

I +/ / deds+ﬁf||u(s)||L1(Rn)ds. 4.57)
fo

10 DipNsupp Pr

Combining (4.56) and (4.57) gives:

131 131

3 16n 12n

15—111-’*/ / de‘ls"‘ﬁ/||”(S)||L1(R")ds' (4.58)
10 suppdr fo

We now bound the term /1. Applying the Leibniz rule, we obtain:

sl
11=X(q—1)ff|u|q—2vu-anm(u)¢Rdxds
lO Rn
51

+X//|u|q_2uAvnm(u)¢Rdxds
o R”
=111+ 1I,. 4.59)

We next bound /1 using the identity:
(g = D[l Van, ) = Vul?™" g, ).

We apply the Leibniz rule and perform integration by parts. Together with Lemma 3.1, this yields:

I
11 =)(//V|u|q_1 - Vun,(u) g dxds
o R”
3] 1
=—X//|u|q71Avnm(u)¢Rdxds—xf/|u|‘171Vv~n;n(u)Vu¢Rdxds
o R~ o R»

n

—)(//|u|q_1Vv-nm(u)V¢Rdxds

o R
) Zﬁ
= supAllu(t)II’inn)(— sup_[[Vo@)llzoown) + SUPA”AU(I)”LOO(R"))
O<t<T 0<t<T 0<t<T
1 1
X/||M(S)||L1(]Rn)d5—)(//|u|q_1VU~n,/n(u)Vu¢Rdxds. (4.60)
fo o R»

We consider the third term on the right-hand side of (4.60). Since 7, (r) < 2m for all r € R,
as stated in (4.54), we apply Lemma 3.1 to obtain:
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131

—x//|u|q—1Vv-n;n(u)vu¢Rdxds

o R~
1
1
< i+ / / u? 73 |Vo|? ), (u) pr dxds
h Rn

1 2m )
=3 s SR VYOl / 4 1 gy ds- (4.61)

Combining (4.60) and (4.61), we deduce:

1 -2
II] < le + {ﬁ SUPA”VU(I)”%oo(Rn) + SupA“u(t)”(;AOO(Rn)

m=4 O<t<T O<t<T

2/n :
X | ——= sup_[[Vo@)llpemwn + sup [[Av() L mwn) ()l 21 Ry ds-

O<t<T O<t<T
(4.62)
We now turn to the estimate of II;, and observe that:
-2
< sup u()|figsy sup_ AV o ®en) / ()1l 1 ey ds. (4.63)
O<t<T O<t<T

Combining (4.62) and (4.63), we conclude that:

2
~—a—4 Sup ”Vv(t)”Loo(]Rn + sup ”u(t)“Loo(]Rn

1
n=<-n+ {
4 m=4 0<t<T 0<t<T

2./n
X | —= sup_[[Vo@)llpo®n +2 sup [|Av(@)|[Loown) lu() 1 rny ds
O<t<T O<t<T

(4.64)

forae. O<ty<t < 7. We then combine (4.55), (4.58), and (4.64) to obtain:

141
//i%-u(nm(u))d)ze dxds

th R»
n
16n 12n
< gz dxds+ )y +2 sup VOO e, + sup ||u(t)||Loo(Rn)

o suppor 0<t<T 0<t<T
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O<t<T O<t<T

1
2./n
x (T sup_ IVllze@n +2 sup_ | AvOlzxen |1 [ 1) li@nds (4.65)
]
forae. 0<tp <t < T. It follows from the Lebesgue dominated convergence theorem that:

n 1
//Bsu(x,s)nm(u(x,s))¢R(x)dxds—>//Bsu(x,s) sign(u(x, s)) pr(x)dxds

th Rn 1 Rn
3]
_ f f 0yTu(x, $)T* dr (x) dxds.
th Rn

as m — oo, where [-]T denotes the positive part defined in (4.51), and:

0 fors <0,

1 fors>0.

sign(s) = {
By passing to the limit m — oo in both sides of (4.65), we obtain:
[ 1 gt ax
R»

12n
< f [u(x,to)]+¢R<x>dx+{ 5 +2 sup_ VU gy + sUp_ (O] Lo,

0<t<T 0<t<T

O<t<T 0<t<T

t
2/n 1
“\ %~ sup [[Vo(@lleony +2 sup [[Av(0)]| oo wrr ()l 1 gy ds-
1
(4.66)

We then let 79 — 0 and subsequently R — oo in (4.66). Applying the Fatou lemma to the integral
on the left-hand side and the monotone convergence theorem to the first term on the right-hand
side, we obtain:

[t dx < [tuoeort dx +z( sup_[IV0(0) | g,

Rn R~ O<t<T

+ sup Ilu(t)IILOO(Rn) SupA”AU(t)”LOQ(R”))/”u(s)”Ll(R”)ds (4.67)
0<t<T O<t<T

forae. 0 <t < T.
We now turn to the contribution arising from the negative part of u, in order to establish the
L' (R")-integrability of u. Recall from (4.53) that:
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0 fi >0,
| foru_ , and 0<un,(—u)<2m foru<O0.
oru < —+

Nm (—u) = n(m(—u)) = {

We multiply the first equation of (DD) by n,,(—u) ¢g to obtain:

1
f / 0y (—it) i (—t) b dxdls

o R»

1
— [ [ v V) da) das

o R»

1
+x//v-(|u|q*2(—u)w) N (—1) pr dxds
o R
=: T~|—I7

forae. O<tg<t; < T.
We now estimate /. Applying the Leibniz rule, we obtain:

1 f
7= —// |V (—u)? n,(—u) g dxds — / / V(—u) - g (—10) Vg dxds
o R~ o Rn
=1+ D.

Since (4.68) ensures 1, (—u) > O/,\it follows that Tl > 0.
We proceed to an estimate of 1. To this end, we introduce the set:

Dpi={r.0eR" x 0.7) | -1 <utx.n <o},

Applying Lemma 3.1, we obtain:

n n

L= / /(—u) N, (—u) V(—u) - Vg dxds + / /(—u) Nm (—u) Apr dxds
to R o R”

5]
2.7 2 1
1+ lul”my, (—u) IVOR|” —— dxds
R PR
0 Dy Nsupp ¢r

n

-I—//(—u) Nm (—u) Apr dxds
fo R7
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31 151
1~ 16n 12n
< le+/ / WdXdS‘FF/||”(5)||L1(R")ds~ (471)
to

0 Bill Nsupp PR

Combining (4.70) with (4.71) yields:

—~ 3.
IS_Z 1+/ / d ds +—/||M(S)||L1(R")ds~ (4.72)

fo supppr

We next bound 71. Proceeding in the same way as for /I, we obtain:

IIS le + {m SupA”vv(t)”iOO(Rn) + supA||u(t)||Zm(er)
m O0<t<T O0<t<T

2/n
X\ —= sup_[[Vo@)llroo®n) +2 sup [[Av() [ Lo wr) lu() N L1 rny ds-
O<t<T 0<t<T

4.73)
Combining (4.69), (4.72), and (4.73), we deduce:

1
/ / 3y (=) (s (=) dxds
o R”
1

16n 12n 2
< gz dxds+ ) 7 +2 sup VOO ey + sup_ 4] g,
O<t<T O<t<T
0 suppor

O<t<T O<t<T

t
2./n :

X e supA||Vv(t)||Lo<>(Rn)+2 SupA||AU(t)||Loo(Rn) ||u(s)||L|(Rn)ds 4.74)
fo

forae. O<ty<rt < T. Adapting the argument in (4.65)—(4.67), we obtain:

/ (utr. el dr < [ 1- uo(x>]+dx+z< sup_ V00w

R~ O<t<T

+ sup IIu(t)IILOO(Rn) SupA||AU(t)||L°°(R”)>/”u(s)”Ll(R”)ds'
0<t<T 0<t<T

4.75)
Therefore, combining (4.52), (4.67), and (4.75), we obtain:
)l 1 gy < N0l 1 ey +4< sup_ Vo) 13 o ey
O<t<T
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1

-2

+ SUPAIIM(I)H%OC(R") SUPA”AUU)”LW(R"))/||'4(S)||L1(]R")ds-
O<t<T O<t<T 0

The Gronwall inequality then yields:

(ol L1 rn

~ -2
snuouu(Rn)exp{M( sup_[IVo()| 2oy + sup_lu()4 i) supAuAv(r)nLoO(Rn))}
O<t<T O<t<T O<t<T

forae. 0 <t < T. This completes the proof of Lemma 4.3. O
With these preparations in place, we now turn to the proof of Theorem 2.1(IV).

Proof of Theorem 2.1 (IV). Let ¢r be the cut-off function defined in Lemma 3.1. Multiplying
both sides of the first equation of (DD) by ¢r = ¢g(x) and integrating it over By, we obtain:

d
o upr dx = / Auppr dx + x / V. (|u|q72qu)¢R dx. 4.76)

Bar Bar Bar

Regarding the first term on the right-hand side of (4.76), by applying the Gauss divergence

. 2,1 -
theorem twice, we observe from u € W, +q(QT).

/ Augr dx = / uApg dx. “4.77)

Bor Bor

Indeed, we have:

IVu@@rl L1 (yz) + IV - (Vu©PR) L1 (8,
< IVu@OPrIlL1(Byg) + IVU(®) - VORI L1 (Byg) + 1AUPRII L1 (B,
=< ||Vu(t)||L"+q(B2R)||¢R||L e )+ IIVM(I)||Ln+q(32R)I|V¢RI|L ntq

n+4=1 (Byp 1+4=1 (Byp)
+ 1 Au@) |l Lr+aBp) 1PRI _nta <00
L™ta=1(Byg)

forae. 0 <t < f, which implies that (4.77) holds.
Additionally, concerning the second term on the right-hand side of (4.76), noting (4.50), and

using u € W,%_’:q (Q#%), we find, by the Gauss divergence theorem, the following equality:
X / V- (lul""2uVv)gr dx = —x f (lul9"*uVv) - Vop dx. (4.78)
Bar Bag

Indeed, it follows:
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— —1
Il (el 2MVU)(t)d)R||L1(192R) <@ I oo(g, ) I VOO L0 (Brg) IORII L1 (By) < O©
(B2r)

and:

IV - ((ul™2u Vo) ORI L1 3y
<1((g = DIl Vu - VOYOBRI L1 (5,5 + 111920 AVY O PR L1 By
+ 1l 2uV o) () - VORI L1 (5,5

<(q - 1)||u(t)||Loo<BZR)||Vu(t)||Ln+q(BzR)||Vv(t)||Loo(BZR)||¢R||Lnjr;rgl o)

+ 11t gy | AV % (Bar 1811 L1 (83

+ ”u(t)HLOO(BZR)”Vv(t)||L°O(BZR)”v¢R“LI(BZR) <0

fora.e. 0 <t < T, which yields that (4.78) holds.
Combining (4.76), (4.77) and (4.78), we obtain the following equality:

upr dx = / ulpr dx — x /(|u|q 2uVv) - Vg dx.

Bag Bag Bag

dt

By integrating both sides of (4.79) from 0 to 7, we obtain the following expression:

/M¢R dx — f ugpr dx

Bog Byr
1 t
:/ / uAPgr dxds — x/ /(|u|472qu) - Vg dxds
0 Bygr 0 Bog
forae 0<r<T. According to (4.80), we obtain the following expression:

‘/uqﬁR dx—/uoq&Rdx‘

Baor Bor

t t
< ‘/ / UAGR dxds‘—i—‘/ /(|u|q*2uw).v¢R dxds| =: Iz +1Ig.

0 Bar 0 Bar

Noting that (4.49), (4.50) and (3.1) in Lemma 3.1, we have:

T
~ 3
</ w IAGRI gy ds CTR™E sup [u@®l
f L3 (| A PRI o) o T(R)
0

and:
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T
lig < / 1l 2V 0)(s) - Vrll 11,y ds
0

< sup_[[Vo(0)lpeomrn) /llM(S)Hq mig—1) ||V¢R||L2"(BZR) ds
O<t<T 2n—1
~ 1 _
<CTR™® sup [u® 3y sup_ VOO, (4.83)
0<t<T L™ 2n=T (R") 0<t<T

Therefore, concerning (4.81), (4.82), (4.83), we obtain:
‘ /uqu dx —/uoqu dx‘ < C?(R_% + R_%).
R” R”
Thus, applying Lemma 4.3 and the Lebesgue dominated convergence theorem, we have:

‘fudx—/uodx‘

R~7

‘/udx—/ud)Rdx‘+‘/uodx—/uo¢1¢dx‘+‘/ud)Rdx—fuoqﬁRdx‘

R» R~ R

5‘[udx—/uq&Rdx‘+‘/uodx—/u0¢Rdx‘+CT(R*%+R*%)—>O

Rn ]Rn Rn Rn
as R — oo. This completes the proof of Theorem 2.1 (IV). O
4.5. Proof of Theorem 2.1 (V): non-negativity

We turn to the proof of Theorem 2.1 (V). Let 0 < T < Tax, Where Thax denotes the maximal
existence time. By Lemma 4.2, there exists a constant C such that the following bound holds:

sup_[lu(@) Loy = C, (4.84)
0<t<T
and:
sup [[Av(@) ][y = C. (4.85)
O0<t<T

Here, the constant C depends as follows:

(i). parabolic-elliptic type (A): 7 =0,y > 0.

The constant C depends only on n, g, v, lluoll 2(rny and [[uollw2.n+a ®ry-
(ii). parabolic-elliptic type (B): t =0,y =0.

The constant C depends only on n, g, |luollL2rn) and |luollyy2n+q Rr)-
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(iii). parabolic-parabolic type: t =1,y > 0.
The constant C depends only on n, g, v, lluoll 2rny» U0l w2n+awny and [[vo |l y3.n+q Ry -

Proof of Theorem 2.1 (V). Multiplying both sides of the first equation of (DD) by u™ =
—min{0, u} and integrating over R”, we obtain:

5 77 1 O g

<- / V| 2dx+— sup [ Av(0) oy sup_ (12 ge 6™ (0112 g
90<t<T 0<t<T

By the Gronwall inequality, it follows that:

=112 -2 2T q—2
SOy < 1 sy e 1 S s 1AV ey sup DI =0
since u, (x) = 0 for a.e. x € R". Thus, we conclude:

u(x,t)>0  forae. (x,7) e R" x (0, 7).

This completes the proof of Theorem 2.1 (V). O
5. Proof of Theorem 2.2
5.1. Unique continuation theorem

Let us consider the symmetric matrix-valued function {g"/ (x, [)}1 1> which satisfies a uni-
form ellipticity condition. Let g(x,?) = {g;;(x, t)}:’ j=1 represent the inverse of the matrix

{g’/ (x, t)}l i1 Consequently, we have:

g n=1{g" 0} ;. (5.1)

In this section, we introduce the following notation for a function w and a vector field & with
g and g~ ! used as weights:

Notation.

(D). [E[F0n 0 =307 12y 81 (x, D&,
). Vw= (22 Jw)

3x1’ " Bxn )

(3). Vew(x, 1) =g (x,1)Vw(x, 1).

The following lemma, known as the “Two-Sphere One-Cylinder Inequality”, was obtained by
Vessella [26, Theorem 4.2.6]. This inequality pertains to the evaluation of the square integral
over a large integration domain through integrals over smaller regions, including spheres and
cylindrical domains.
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Proposition 5.1 (Vessella [26], Two-Sphere One-Cylinder Inequality for General Parabolic Op-
erators). Let ., A and R be positive numbers, with 0 < A < 1. Let P be the parabolic operator:

29 3 9
P=Y —(g"@,)— )+, 5.2
i;axi@ (x )3)Cj>+3t (5-2)

where {g'/ (x, t)}l'.'j:] is a real symmetric n x n matrix. When &€ € R", (x,1), (y,t) € R"1 we
assume :

MEP < ) g, ngg <07 g (53)

ij=1

and:

(x =y 41— ?)2 (5.4)

x| >

n 1/2
( D n—gv, r))z) <

i,j=1
Letw € sz’l (Bg x (0, R2)) satisfy the inequality:

Vewlg(x, 1) |w(x, 1)l
R R2

|Pw(x,t)|§A< ) fora.e. (x,t) e Bgp x (0, Rz). (5.5)

Then, there exist constants 0 < n < 1 and C > 1, which depend only on A and A, such that for
all r and p with 0 <r < p < nR, the following inequality holds:

R2
/wz(x,()) dx < %(R_Z//wz(x,t) dxdt)l_e(/ w2(x, 0) dx)e, (5.6)
0

B, 0 Bg B,
where 0 = (C log §)’1.

Remark 7. Vessella [26, Theorem 5.2] considered a parabolic equation of semi-linear type, given
by (5.2), where {g"/ (x, t)}1<i, j<n represents a real symmetric positive definite matrix with suffi-
ciently smooth components. The analysis was carried out using the Carleman estimate.

In Proposition 5.1, by setting g”/ (x, ) as the Kronecker delta §; j» we derive the following
lemma.

Lemma 5.2 (Two-Sphere One-Cylinder Inequality for the Classical Heat Operator). Let R be a
positive number, and let w € W22 o1 (Br x (0, Rz)). We assume that there exists a positive constant
A such that w satisfies the following inequality :

Jw(x,t)

Aw(x,t) +
(x,1) o7

<A (IVw(x, Dl | w0l

R = ) fora.e. (x,1) € Bg x (0, R%). (5.7)
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Then, there exist constants 0 < n < 1 and C > 1, which depend only on A, such that for all r
and p with 0 <r < p < nR, the following inequality holds:

/w (x.0) dx < = // w2(x, 1) dxdt) 9(/ w?(x, 0) dx)e, (5.8)

B, 0 Bg B,
where 6 = (C log g)_l.
Proof of Lemma 5.2. Leti, j =1,2,...,n, and define g/ (x, 1) as follows:
g (x, 1) =8;j. (5.9

By”setting {g"j(x,z‘)}?’j=1 = §;; in Proposition 5.1.,. we can prove Lemma 5.2. Indeed,
{g" (x, t)}f’j:l forms the identity matrix, making {g"/ (x, t)}l’.l’j:l it a real symmetric n X n
matrix. Thus, (5.3) holds with A = 1 since g/ (x, t) satisfies the following equality:

Z g (x, &g = Z Sijkikj = Zs = [¢]*.

i,j=1 i,j=1
Additionally, we observe from (5.9):
n 1/2 n 1/2
( > (gt =gy, r))2> = < > G- 5ij)2> =0.
i,j=1 i,j=1

Therefore, for every positive constant A, inequality (5.4) in Proposition 5.1 holds.
We verify that (5.5) in Proposition 5.1 is satisfied. Using (5.9) in (5.2) from Proposition 5.1,
P can be expressed as:

n n
a a 0 d d a
P (i)t p= 3 (g )b a=as g 510
2 g \eleng) g =20 58 ox,) T T ©-10)
i,j=1 i,j=1
By applying the definition of V, and (5.1), we obtain:
Vew(x,t) = g_l(x, HVw(x,t) =Vw(x,t).

Thus, from the definition of | - |, we have:

Jw dw

IVewl3(x, 1) = |[Vwl3(x,1) = Z iy D

i,j=1
n n
ow dw w2
_ S — <_> =|Vw(x,t)|2. (5.11)
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By utilizing (5.10) and (5.11) on the left-hand side and right-hand side of (5.5) in Proposition 5.1,
we deduce (5.7). Thus, the conclusion of Proposition 5.1, namely (5.6), ensures the conclusion
of Lemma 5.2, specifically (5.8). Therefore, Lemma 5.2 is established. This completes the proof
of Lemma 5.2. 0O

We introduce the following lemma, known as the Unique Continuation Theorem in bounded
domains. Specifically, this lemma states that if a function u with sufficient regularity vanishes in
a ball of radius r at time T, then it also vanishes in the ball of radius 2r centered at the same
point.

Lemma 5.3 (Unique Continuation Theorem in bounded domains). Let T be a positive number,
aeR"andletu € sz’l (Bﬁ(a) x (0, T))NC(0, T]; LZ(Bﬁ(a))). We assume that there exists
a positive constant A such that u satisfies the following inequality:

ou(x,t)
ot

Au(x,t) — <A

<|Vu\;);t)| + |u();, t)|> forae. (x,t) € Bﬁ(a) x (0, T).
(5.12)

Then, for r satisfying 0 <r < %nﬁ ifu(-,T) =0 in B.(a), it follows that u(-,T) =0 in
By (a).

Proof of Lemma 5.3. We define w, (x, t) := u(x+a, T —t). From this definition of w,, together

with the fact that u € W;"' (B _s7(a) x (0, 7)), it follows that w € W;"' (B _7(0) x (0,7)). In
addition, from (5.12), we derive the following:

0
Awg(x, 1) + %(m

= ‘(Au)(x+a, T—1)— (%)(x+a, T—1)

|(Vu)(x +a, T —1)| (W) (x +a, T —1)|
5A< T * T >
[Vwg(x, 1) |we(x,1)]
=A
( N )

forae. (x,1) € Bﬁ(O) x (0, T). From this, we see that (5.7) in Lemma 5.2 holds with R = /7.
Therefore, by applying Lemma 5.2, there exist constants 0 < n < 1 and C > 1, which depend
only on A, such that for all » and p withO <r < p < nﬁ, we have:

T
/wg(x,O)dxf%ﬁ(T*/ / wi(x,t)dxdt)l_e(/ wg(x,())dx)e, (5.13)

By(a) 0 B s7(a) By (a)

where 6 := (C log @)’1.
LetO<r < %nﬁ Then, since 0 < r < 2r < n/T, taking p = 2r in (5.13), we obtain the
following inequality:
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f w2, 0)dx<c‘/_< / f wi(x,t)dxdt)l_e(/wﬁ(x,O)dx)g,

By (a) 0 Bﬁ(a) By (a)

which is equivalent to the following, based on the definition of w,:

/ W2 (x, T)dx<— / / W2 (x, t)dxdt)l_e(/ uz(x,T)dx>0,

By (a) 0 Bf(a) By (a)

where 0 := (Clog @)’1. Thus, assuming u(-, T) = 0 in B,(a), it follows that u(-, T) =0 in
By, (a). This completes the proof of Lemma 5.3. O

We extend Lemma 5.3, which guarantees the Unique Continuation Theorem in bounded do-
mains, to cases where the function u vanishes in the whole space R”. The following lemma
demonstrates that if u satisfies certain conditions and vanishes in an open subset of R" at a
specific time T, then u must also vanish throughout the whole space R” at the same time.

Lemma 5.4 (Unique Continuation Theorem in R"). Let T be a positive number, and let u €
22100(QT) NC(o0, T]; LIOC (R™)). We assume that there exists a positive constant A such that u
sansﬁes the following inequality:

ou(x,t)
ot

Au(x,t) —

VuG | ute o)
SA( N

Then, if there exists an open set Dy C R" such that u(-,T) =0 in Dy, we conclude that u is
identically zero in the whole space R" att =T, i.e., u(-,T) =0 in R".

) forae. (x,t) € Qr.

Proof of Lemma 5.4. Let 7 > 0 and a € R". Lemma 5.3 guarantees the existence of a constant
0 < n < 1, depending only on A, such that for every 0 < r < %nﬁ the following holds: if
u(-,T)=01n B,(a), it follows that u(-, T) =0 in By, (a).

Assume now that u(-, 7) = 0 on a non-empty open set Dy C R". Applying Lemma 5.3, we
obtain a point a, € Do and aradius 0 < r, < %nﬁ such that B, _(a.) C Dy. Consequently,

u(-,T)y=0 in By, (as).
Next, we define the enlarged set:
D; =Dy U {x cR"” | dist(x, Dg) < r*}.
Since the choice of a, is arbitrary in Dy, the same argument applied to every point of Dy yields:
u(-,Ty=0 in Dj.
We now repeat this enlargement procedure countably many times. For each k € N, we set:
Dyt1 =Dy U{x e R" | dist(x, Dp) <ry}.

45



Y. Imaida, K. Shibata and Y. Sugiyama Journal of Differential Equations 448 (2025) 113670

The sets Dy are increasing, and by construction u(-, T) =0 in every Dy. Moreover, it holds:

oo
U Dy =R",
k=0
so passing to the union we conclude
u(-,T)=0 inR".
This completes the proof of Lemma 5.4. O

5.2. Proof of Theorem 2.2

We now introduce the backward uniqueness property. Although Vessella [26] established this
property in more general function spaces, we present it here under the assumptions specific to
our main theorems.

Let H denote the set of functions w defined on Q7, such that for every positive number R, its
restriction w| g, x(0,7) belongs to W22 )1 (Br x (0, T)). Furthermore, for a given positive constant
K, we define:

Hi = {w e H | w(x,0)=0, we K’ ¢ L°°(QT)}.

In Vessella [26, Theorem 3.0.2], the time endpoint is set to 1. By changing the time endpoint to 7',
the theorem remains valid with minor modifications, as the method used in the proof iteratively
extends the vanishing region, as stated in the following lemma.

Lemma 5.5 (Vessella [26]). Let T be a positive number, and let w € Hg 7. We assume that there
exists a positive constant A such that w satisfies the following inequality:

Aw(x,t)+

% < A(|Vw(x,t)| + Iw(x,l)l) forae (x.1) € Qr.

Then, we conclude:
w=0 in Or.
Proof of Theorem 2.2. Let0 < T < Tiax. From (2.4) to (2.6) in Theorem 2.1, in combination

with the second equation of (DD) and by applying the Young inequality, there exists a constant
C such that the following bounds hold:

sup flu()llLommy = C, (5.14)
O0<t<T
supA||Vv(t)||Loo(Rn) + supA||Av(t)||Loo(]Rn) <C. (5.15)
0<t<T O<t<T

Here, the constant C depends as follows:
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(i). Parabolic-elliptic type (A): t =0,y > 0.
The constant C depends only on n, g, ¥, and ||uq || y2.1+ (R7)-
(>ii). Parabolic-elliptic type (B): 7 =0,y =0.
The constant C depends only on n, g, [[uoll 26 r=), and [[uo || yy2.1+4 gny for some 1 <6 <n,
where 6 is introduced in Assumption 2.2.
(iii). Parabolic-parabolic type: t =1,y > 0.
The constant C depends only on n, g, v, l[uoll w2n+arny and [[vo [l y3.n+q Rry-

On the flux term of (DD), since the following identity holds:
V- (lul?2uvVv) = (g — D|u|4™>Vu - Vo + |ul? 2uAv,
from (5.14) and (5.15), together with the first equation of (DD), we derive the following estimate:

du(x,t
Au(x, 1)~ M(Txt) < (g = DIul?™ V|| Vae| + [u 7] Av] ]

=(g—1) sup IIM(I)IILOO(RU) sup_[|Vo(2)[ oo )|Vl
0<t<T 0<t<T

-2
+osup @8Ry sup_ 1AV oo lul
O<t<T O0<t<T

for a.e. (x,1) € Q7. This yields:

< C*<|u(x,t)| + |Vu(x,t)|> (5.16)

ou(x,t)
Au(x,t) — o7 <

for a.e. (x,1) € Q7, where C, is defined as:

Coi= sup_u) i <ipn) max{(q—l) sup_[|Vo(0)|l (o). supAnAv(t)an(Rn)}.
0<t<T O<t<T O<t<T
5.17)

By defining A as A = Cy max {«/77S , ?}, we obtain the following inequality:

du(x,t)
ot

Au(x,t) —

[Vulx, )| | |u(x, 1)
<A + —=
< VT T

In addition, using Theorem 2.1 (II) and (2.7) therein, we observe that u € W; ’ILC(Qf) N
C ([0, T] L10C (R™)). Furthermore, under the assumptions of Theorem 2.2, there exists a non-

empty open set Do C R” such that u(-, T) =0 in Dy. Therefore, (5.18) allows us to apply
Lemma 5.4. Consequently, we conclude:

> forae. (x,1) € Q7. (5.18)

u(-,T)=0 inR". (5.19)

To extend the vanishing property in (5.19) to the time direction, we apply Lemma 5.5. For this
purpose, we define w as follows:
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wx,t) = u(x, T— t).

From ueW,, (Q7)NC ([0, T1; L} (R™), it follows that we W, (Q7) NC([0, T1; L2 (R™)).
Furthermore, we have w € ‘H K. Indeed, from (5.19), we observe that w(-,0) =0 in R”". In

addition, let M > 0. Then, the following inequality holds:

—M|x|?

= ’u(x, T— t)‘ ‘e_Mlx‘z

w(x,t)e < sup_|lu(®)llrom®r

O<t<T

fora.e. (x,1) € Q7. This shows that w € Hy 7. Moreover, since 0 < T—t<Tfor0<t<T,
we deduce from (5.16):

Awe, ) + 22 (x 1)
w(x, —(x,
ot

~ u ~
= )(Au)(x, T—1)— (a)u, -1

< C*(|u(x, T — |+ |Vu(x, T — t)})
— C*(\w(x, Ol + [Vw(x, I)D

for a.e. (x,t) € Q7, where C, is defined in (5.17). Thus, by applying Lemma 5.5, we conclude
that w = 0 in Q7. Consequently, it follows that u = 0 in Q7. This completes the proof of Theo-
rem2.2. O

6. Proof of Theorem 2.3

We assume that there exists 0 < #y < T such that the support of u(-, y) is not the whole space
R"™. We define D¢ := R" \ suppu(-, tp). Then, Dy is a non-empty open set, and u(-, fp) = 0 in
Dy. Combined with Theorem 2.2, this implies that u =0 in R" x (0, tp).

On the other hand, according to (2.8), we have:

/uo(x) dx = / u(x, 1) dx =0,
R~ R~»
which contradicts the assumption (2.10). This completes the proof of Theorem 2.3. O
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