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A B S T R A C T

This research offers an innovative advancement in bottom-up building energy end-use modeling, vital for resi
dential energy system analysis and planning. Conventional models rely on extensive demographic, behavioral, 
and equipment data from various sources, but these methods often compromise accuracy. To address this, our 
study introduces a novel methodology for parameter calibration using half-hourly smart meter data, despite its 
lower resolution due to capacity, management, and privacy constraints. Incorporating these data enhances the 
precision of energy demand estimations and accurately reproduces occupant behavior (OB). This method refines 
model accuracy and identifies of OB across various household types, providing valuable insights for planning 
targeted energy conservation measures crucial for achieving climate goals. Moreover, it enables the tracking of 
behavioral changes over time, which traditional statistical methods cannot achieve, amplifying its utility. 
However, this study recognizes the need for further enhancement through the integration of additional data 
sources, such as movement data from smartphone applications and sensor-based household measurements. These 
improvements have the potential to revolutionize energy system analysis, contributing to a more sustainable, 
carbon-free society.

1. Introduction

Bottom-up building energy end-use models are powerful tools for 
energy system analysis, allowing examination of current energy use, 
prediction of future energy use under various energy-efficiency sce
narios, and evaluation of power generation and distribution system 
stability using electricity load curves. To achieve climate goals and 
create a carbon-free society, energy consumption across all sectors, 
including residential, industrial, and transportation sectors, must be 
reduced. A bottom-up model called TREES [1–3] (Total Residential End- 
use Energy Simulation) was developed to estimate the final energy de
mand in the residential sector. However, the accuracy of this model may 
be compromised due to the requirement of extensive questionnaire- and 
literature-survey-driven information on household demographics, 
occupant behavior (OB), and equipment in each region. Therefore, po
tential deviations from reality can be encountered in the generated 
annual schedule of residents’ activities.

In recent years, smart meters have gained popularity worldwide 

because they provide detailed data on electricity consumption. Despite 
the low data resolution resulting from capacity, management, and pri
vacy concerns, bottom-up modeling systems can be significantly 
improved through inverse problem optimization of the OB model. This 
approach allows for more reproducible OB estimations by calibrating 
the parameters of OB. In response to the Japanese government’s plan to 
reduce greenhouse gas emissions by 46 % from the fiscal 2013 level by 
fiscal 2030, this study proposes an efficient parameter calibration 
method using the mean and standard deviation of half-hourly smart 
meter data for electricity consumption by household type. This cali
bration enhanced the accuracy of the model and offered detailed esti
mates of trends in OB, which were previously unattainable through 
statistical approaches. Additionally, by interpreting the calibration re
sults, trends in the behavior of residents in each household category 
were estimated, providing valuable information for planning targeted 
countermeasures. Overall, this study presents a promising low-rate en
ergy data utilization method that enables more effective planning of 
energy-reduction measures.

* Corresponding author.
E-mail address: uchida@see.eng.osaka-u.ac.jp (H. Uchida). 

Contents lists available at ScienceDirect

Energy & Buildings

journal homepage: www.elsevier.com/locate/enb

https://doi.org/10.1016/j.enbuild.2025.116074
Received 16 October 2023; Received in revised form 16 May 2025; Accepted 26 June 2025  

Energy & Buildings 345 (2025) 116074 

Available online 27 June 2025 
0378-7788/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0009-0004-1515-9062
https://orcid.org/0009-0004-1515-9062
https://orcid.org/0000-0002-4487-0089
https://orcid.org/0000-0002-4487-0089
https://orcid.org/0000-0001-6794-5939
https://orcid.org/0000-0001-6794-5939
mailto:uchida@see.eng.osaka-u.ac.jp
www.sciencedirect.com/science/journal/03787788
https://www.elsevier.com/locate/enb
https://doi.org/10.1016/j.enbuild.2025.116074
https://doi.org/10.1016/j.enbuild.2025.116074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2025.116074&domain=pdf
http://creativecommons.org/licenses/by/4.0/


2. Literature review

This section provides an overview of the related studies that used 
smart meter data in building simulation research. Amasyali et al. [4] 
reviewed several studies forecasting data-driven energy demand esti
mates, with 12 of the 63 studies focusing on the residential sector and 
approximately half of them (36 studies) using hourly time granularity. 
Most studies have applied machine learning methods such as artificial 
neural network (ANN) and support vector machine (SVM). Wang et al. 
[5] provided a comprehensive review of research trends in smart meter 
data utilization, excluding non-intrusive load monitoring (NILM), which 
is the primary method. Most smart meter data considered 15-min to 
hourly electricity consumption data, and most load forecasting studies 
used machine learning methods along with individual smart meter data 
as the subject of analysis. Multiple regression analyses have been per
formed when individual data were unavailable. Chalmers et al. [6] 
focused on utilizing smart meter load disaggregation to detect activities 
of daily living (ADLs) and routine behaviors in dementia patients living 
alone. This study aimed to improve the monitoring and support of pa
tients with dementia, enabling them to live independently for longer 
periods. By applying NILM techniques to smart meter data, the authors 
disaggregated the total energy consumption into individual appliance 
usage patterns. These patterns were then used to identify ADLs and 
routine behaviors in them. This study highlighted the potential of using 
smart meter data for unobtrusive and cost-effective monitoring of pa
tients with dementia, ultimately providing valuable insights for 
healthcare providers, caregivers, and families. Zhao et al. [7] proposed a 
machineless learning method that decomposes the hourly smart meter 
data of each household into power consumption data for each individual 
device considered in the survey. By inferring equipment’s operation 
from changes in the smart meter data with the base component 
removed, the accuracy of their method was compared with that of other 
supervised learning methods. Liu et al. [8] constructed a model to pre
dict the operating state of cooling systems based on the measured 
electricity consumption of air conditioners and room environmental 
data, such as room temperature, relative humidity, and CO2 concen
tration. They used ANN and gradient boosting decision tree (GBDT) to 
obtain a certain level of accuracy while reducing the number of input 
parameters. However, obtaining input data such as CO2 concentration 
remains a challenge because indoor measurement data are difficult to 
acquire.

As the present study is designed to use statistically processed smart 
meter data and does not assume the existence of individual data, it is not 
possible to detect the operation of devices in individual households from 
changes in the data, as in Zhao et al. and Liu et al. Analyzing OB based on 
very low-rate data with coarse temporal resolution is generally chal
lenging, and only a small number of studies have attempted this, 
including decomposition by NILM. Therefore, an inverse problem 
analysis using a bottom-up energy demand estimation model was 
employed to estimate the average appliance operation for the entire 
region. In this study, the standard deviation in the smart meter data, 
which has not been considered in existing studies, and the Wasserstein 
distance between the measured and estimated electricity consumption 
distributions as an error measure to achieve high-dimensional optimi
zation based on the optimal transport theory were utilized. For opti
mization, Bayesian optimization was applied, which is suitable for 
objective functions with high evaluation costs, such as bottom-up 
models.

Furthermore, the concept of OB was reviewed in the context of 
building simulation research. The energy use of a building can be viewed 
as originating from a combination of physical and social conditions. The 
influence of building occupants, a primary component of social condi
tions, can be categorized into their presence (or occupancy) and the 
impact of their actions, as described by Yu et al. [9]. These social con
ditions interact with physical conditions and shape energy demand [10]. 
They are closely associated with heating, ventilation, air-conditioning, 

lighting, and household appliances [11]. Divergence between 
measured and simulated energy use has been reported [12]. Subsequent 
studies confirmed that occupant-behaviour mismatches are a dominant 
source of error [13]. A broader review came to the same conclusion 
[14]. Various studies have concluded that in models incorporating OB, 
probabilistic approaches consistently surpass traditional deterministic 
methods [15]. They also outperform agent-based simulations in repli
cating day-to-day variability [16]. This confirms the recommendation of 
utilizing a probabilistic model in building simulation research for OB 
and calibrating its parameters using a data-driven method.

From existing reviews on OB models, it is evident that these models 
are predominantly analyzed at the individual building level. However, 
several studies pioneered frameworks for considering OB at the com
munity scale [17–20]. While regional-scale OB data might be sourced 
from diverse channels encompassing individual users and institutions 
operating within the built environment, the absence of a structured data 
collection approach often results in the acquisition of sparse and 
inconsistent data. Such conditions complicate the task of modeling 
residents’ behavior at the community level.

Recent advances in this field have led to novel methodologies for 
parameter estimation and model calibration. Lim et al. [21] employed a 
combined stochastic and deterministic approach to identify unknown 
parameters in urban building energy modeling while addressing un
certainties. Tardioli et al. [22] presented a method for calibrating 
building energy models at the district level using clustering algorithms 
and surrogate models. Both studies share common ground with the 
present research in that they utilized an inverse problem approach to 
calibrate the parameters. However, they are different from the present 
research in two key aspects: they did not handle time-series data, and 
they did not directly address OB. The present study aimed to incorporate 
time-series data analysis and integrate an OB model, further enhancing 
the accuracy and applicability of building energy simulations in policy 
evaluation, energy efficiency, and urban planning.

Bayesian inverse calibration has recently emerged as a robust means 
of reducing parameter uncertainty in bottom-up demand models. Kris
tensen et al. demonstrated that assimilating half-hourly and hourly 
smart-meter data via Bayesian updating consistently improved predic
tive accuracy, with finer temporal aggregation yielding tighter poste
riors [23]. Building on this idea, the MARTINI framework proposed by 
Nweye et al. estimates HVAC start-up and set-back schedules directly 
from aggregated meter traces, eliminating the need for intrusive sensors 
[24]. At the community scale, Yu et al. implemented a multi-agent 
occupant model that synthesizes realistic schedules for hundreds of 
dwellings and markedly enhances district-level load forecasts [25]. 
Quantifying goodness-of-fit remains critical: Shin et al. introduced an 
auto-encoder residual metric based on the Wasserstein distance, 
showing superior sensitivity to distributional shape compared with KLD 
and CVRMSE, and motivating the present study’s use of that metric [26]. 
Complementarily, Jeong et al. applied bias-corrected Bayesian inference 
to daytime load discrepancies, achieving a 15 % RMSE reduction after 
accounting for systematic bias [27]. Ensemble machine-learning 
benchmarks by Ramnath et al. further reveal that fusing survey vari
ables with smart-meter features yields up to 12 % MAE gains over single- 
source models [28]. Recent representation-learning work by Zhang et al. 
shows that embedding optimized occupant-behavior vectors into pre
diction pipelines improves hourly forecasts across multiple horizons, 
reinforcing the value of calibrated behavior modules [29]. A compre
hensive 2024 review by Guyixin et al. highlights the paucity of proba
bilistic, data-calibrated frameworks at urban scale and explicitly calls for 
community-level validation—precisely the gap addressed by our TREES 
extension [30]. Earlier evidence from Liisberg et al. confirms that 
Hidden-Markov inference can recover latent occupancy states even from 
30-minute data, validating behavior detection at coarse resolutions 
[31].

In summary, conventional OB calibration studies lack coherent 
integration with urban-scale bottom-up frameworks. No study to date 

H. Uchida et al.                                                                                                                                                                                                                                 Energy & Buildings 345 (2025) 116074 

2 



combines probabilistic OB calibration with the urban building energy 
model while explicitly quantifying distributional fit via distance func
tion defined between probability distributions.

3. Methodology

This section provides an overview of the household sector energy 
end-use model and the detailed specifications of the OB model. In this 
study, the household energy consumption was estimated using TREES 
model. Household energy consumption is determined by various factors, 
including the number of residents, their attributes, differences in 
behavioral habits, housing specifications, and types of appliances 
owned. Therefore, when assessing household energy conservation, 
estimating the energy demands of diverse households by considering 
these factors is necessary. Therefore, a a model was developed that can 
estimate household energy demand by reproducing the variation among 
households considering all the influential factors.

3.1. Overview of the residential energy end-use model

An overview of the household energy end-use model is shown in 
Fig. 1. Prior to executing the calculations of this model, data related to 
household attributes, such as family composition, house type, and 
specifications of home appliances and water heaters, were determined. 
Furthermore, OB was considered to have patterns based on the attri
butes of household members, such as their gender and occupation. Ul
timately, the energy end-use model projected the energy consumption 
for appliances, air conditioning, and water heating supplies based on 
this behavior.

Fig. 1 provides a more detailed and systematic explanation of the 
study procedure. Initially, in the “Household Attributes” section, attri
butes such as household personnel, residence location, house type, 
family size, and household income were sampled and established based 
on statistical data. Within the “Data Preparation Models” section, the 
status of appliance ownership and temporal changes in the housing stock 
were considered based on the sampled individual household attributes, 
and an OB schedule was established. The results of these processes were 
then input into “Data for an Individual Household.” In addition to in
formation on room occupancy, the model can project occupant equip
ment usage by linking the contents of their activities to equipment 

usage. The ”Energy Demand Model by Final Demand“ estimated the 
energy demand of each sampled representative household. The model 
calculated the energy demand for appliances, lighting, kitchens, hot 
water, etc. in five-minute increments throughout the year based on the 
on-and-off status of appliances. The heating and cooling energy con
sumptions were calculated through heat load calculations, considering 
the internal heat generated by the operation of the equipment besides 
weather conditions. Finally, the total energy consumption was 
computed by summing the estimated results for all sampled, represen
tative households.

3.2. Occupant behavior model

The TREES model computes the energy consumption of operating 
equipment based on the behavior of household members and simulates 
actual equipment usage. On the other hand, the OB model, a component 
of the “Data Preparation Models,” generates a one-year lifestyle 
behavior at five-minute time intervals according to the occupant attri
butes. The OB model represents the behavior of household members 
using the results of the survey on time use and leisure activities as input 
data for 26 types of behavior, including sleeping, eating, cleaning, 
bathing, commuting, and explicitly encodes differences attributable to 
employment status and age category. A comprehensive description of 
the activity taxonomy and demographic segmentation is provided in [3].

In the OB model, the cumulative frequency distributions for each 
attribute were established using information acquired from the survey 
on time use and leisure activities, specifically for the commencement (or 
termination) and duration of each major routine activity. Based on these 
cumulative frequency distributions, the action schedule for each 
household member was determined. For other nonroutine activities, the 
occurrence probability was defined, and these activities were probabi
listically scheduled during time slots when nonroutine activities were 
not planned. The smallest unit of action was a five-minute time interval.

For home appliances, such as televisions (TVs) and refrigerators, 
power consumption was determined by the size and year of device 
manufacturing. For lighting, the power consumption was determined by 
the room size, and for other home appliances, the average power con
sumption was established based on energy-saving performance catalogs. 
All these appliances operate based on OB, which allows power con
sumption to be estimated in five-minute time steps.

Fig. 1. TREES Model flowchart.
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3.3. Dataset outline

The smart meter dataset used in this study was a sample of approx
imately 2,600 randomly selected two-person households living in 
apartment complexes supplied with electricity by the Kansai Electric 
Power Company (KEPCO). The samples were classified by household 
category and aggregated into averages and standard deviations every 
half hour for each category. The measurement period was from April 1, 
2017 to April 30, 2019, and all-electrified houses were excluded.

3.4. Energy consumption distribution

In this study, optimization was performed using the mean value of 
the smart meter data and standard deviation information. In this pro
cess, assuming an appropriate frequency distribution of the electricity 
consumption of households in the smart meter data based on the mean 
and standard deviation enabled high-quality optimization. Since elec
tricity consumption is non-negative and uniquely determined from the 
mean and standard deviation, a gamma distribution, which is also 
applied to the income distribution, was assumed. The probability den
sity function of the gamma distribution can be expressed using the shape 
parameter k and scale parameter θ as in Equation (1). The shape and 
scale parameters are expressed in Equation (2) using mean and variance. 

f(x) =
1

Γ(k)θkx
k− 1e− (x/θ)(x > 0) (1) 

k =
E(X)2

V(X)
, θ =

V(X)
E(X)

(2) 

where Γ(k) is Gamma function; E(X) is mean electricity consumption of 
all households; and V(X) is variance in electricity consumption for all 
households.

To examine the validity of the gamma distribution assumptions, it 
was evaluated whether the distribution of monthly electricity con
sumption in this dataset follows a gamma distribution, using maximum 
likelihood estimation. Fig. 2 presents the result of comparing the 
maximum-likelihood fits for two-person households living in apartment 
complexes using the gamma distribution and the normal distribution. At 
every time step the gamma distribution achieved lower Akaike infor
mation criteria (AIC) values, indicating a superior fit; the same tendency 
was observed for all other household categories. Because the empirical 
energy consumption distributions are typically skewed toward lower 
consumption, the gamma specification provides a more realistic repre
sentation than the normal distribution.

3.5. Inverse problem formulation

(1) Parameters for Optimization

The parameters of the major behaviors that predominantly influ
enced household energy consumption patterns were calibrated. For 
routine activities, the median and variance of the cumulative frequency 
distribution were targeted. By varying the variance besides the median, 
it is possible to consider not only the start times and duration lengths but 
also the diversity of daily activities. For nonroutine activities, normal 
probability was targeted. 

(2) Optimization Method

We employed the Bayesian optimization method. It is a technique 
that sequentially searches for the maximum or minimum value of a 
probability distribution when the evaluation function is unknown. 
Generally, Bayesian optimization is applied to problems with high 
execution costs and where high-frequency evaluations are unrealistic, 
making it suitable for calibrating bottom-up models such as TREES. In 
this study, the optimization was conducted using the Tree-structured 
Parzen Estimator (TPE), which is a representative Bayesian optimiza
tion method. 

(3) Objective Functions

In this study, optimization was performed by considering not only 
the mean but also the standard deviation. The Wasserstein distance is a 
measure of the distance between probability distributions in a distance 
space; it defines the minimum transport cost between the probability 
distributions. The optimization problem is expressed in Equation (3). 
The Wasserstein distance is particularly useful in scenarios where other 
distance measures, such as the Kullback–Leibler divergence or total 
variation distance, may not capture the true dissimilarity between the 
two distributions. This is because the Wasserstein distance considers not 
only the mass of the distributions but also the geometric distance be
tween individual points. 

argmin
p

∑T

t=1
W(Ep(t),O(t) ) (3) 

where Ep(t) is the distribution of TREES estimates at time t for parameter 
set p; O(t) is the distribution of smart meter observations at time t; and W 
(A, B) is the Wasserstein distance between distributions A and B.

In this study, the optimization targeted both “routine activities” that 
occur regularly in daily life and “non-routine activities.” Therefore, the 
optimization target parameters include four parameters for “routine 
activities”: the median and variance of the end time and the median and 
variance of the duration. For “non-routine activities,” two coefficients 
were used for the first-order affine transformation of the occurrence 
probability. The target period was set to intermediate seasons, when the 
influence of air conditioning was considered sufficiently small and 
limited to weekdays and non-rainy days. This is because, by ignoring the 
power consumption caused by air conditioning and further limiting it to 
weekdays and non-rainy days, the impact of schedules and weather can 
be eliminated, making it easier to verify the accuracy of optimization. 
The number of optimization iterations was set to 100.

4. Numerical experiment

The inverse problem analysis method, processing of smart meter 
data, and error indices have been discussed. In this section, the proposed 
inverse problem analysis method was used to optimize a two-person 
household and identify their actual OB. As the operation of air- 
conditioning equipment was dominant in the household load curves, 
the intermediate period was targeted to eliminate its influence. The 
results are validated and discussed based on the following surveys:

Fig. 2. AIC comparison of maximum likelihood estimation results for two- 
person households.
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4.1. Determination of target activities to be optimized based on current 
state analysis

Among the TREES model’s input parameters, those with deviations 
from initial settings (actual conditions) were considered targeted for 
optimization. Fig. 3 shows a comparison of the estimates from the TREES 
model (BAU; its breakdown is as shown in the stacked surface graph) 
and the time-averaged values of the smart meter data (SM2017) in the 
interim period.

From Fig. 3, TREES estimates were found to be underestimated 
during the nighttime hours (20:00 to 05:00). The TREES estimates 
showed a decrease in electricity consumption starting at approximately 
20:00, while the smart meter data showed a decrease starting approxi
mately 22:00. These findings indicate that the occupants represented in 
TREES follow unrealistically regular routines. In particular, the model 
predicts that television usage falls to nearly zero at midnight, a pattern 
not supported by empirical data. Accordingly, the model must be reca
librated to temper the excessive reduction in television power demand 
and to account for the gradual decline in activity rates during sleeping 
hours. Furthermore, adjustments for irregular going out, such as 
walking, which excludes commuting to work and school, were also 
considered important in the TREES model. The TREES estimates were 
overestimated for the morning hours between 06:00 and 10:00 because 
of significant electricity consumption by home appliances; vacuum 
cleaners, although used only for short durations, draw exceptionally 
high power and therefore contribute a disproportionately large share of 
the load and adjustments for cleaning activities must also be considered. 
The presence or absence of work has a significant impact on electricity 
consumption during the daytime. As teleworking has become more 
common among workers in recent years, it should be considered to 
reflect the actual situation.

In summary, it was decided that the optimization of the interim 
period should include the calibration of sleeping hours, work avail
ability, TV viewing, going out, and cleaning activities.

4.2. Modeling of behavior calibration

In this section, the calibration method for OB modeling is described. 
The OB model can be classified into two categories: routine activities, 
which are the main activities habitually performed daily; and nonrou
tine activities, which include all other activities. Among the targeted 
behaviors determined in the previous section, sleeping and working 
were classified as routine behaviors, whereas watching TV, going out, 
and cleaning were classified as non-routine behaviors. 

(1) Calibration of Routine Activities

For routine activities, the occurrence time and duration were 
modeled using ordinal logistic regression. The distribution generated for 
each attribute was fitted to a sigmoid function, and the parameters were 
manipulated by adjusting them. The sigmoid function is shown in 
Equation (4), where a is the parameter corresponding to the variance 
and θ is the mean. Based on the results of the preliminary experiments, 
only sleep and work duration were considered in this study. 

f(x) =
1

1 + e− a(x− θ) (a > 0) (4) 

(2) Calibration of Non-Routine Activities

For nonroutine activities, such as watching TV, going out, and 
cleaning, the behavior was calibrated by applying a one-dimensional 
affine transformation that remains common at all times, as in Equa
tion (5), and has a time-specific activity implementation probability pt 
and parameters b1 and b2. 

pʹ
t = b1 × pt + b2 (5) 

4.3. Result

This section presents the optimization results for the intermediate 
period in a two-person aggregate household. The parameters calibrated 
by optimization are listed in Table 1 under “BEST,” and the probabilities 
of action implementation and load curves are shown in Figs. 4 and 5, 
respectively. In Figs. 4 and 5, BAU represents the estimations obtained 
from the original TREES settings. As shown in the error column of 
Table 1, the Wasserstein distance has been substantially reduced. 
Although RMSE was not explicitly minimized, it also exhibits an 
improvement.

Table 1 and Fig. 4 show that the difference between BAU and opti
mized scenarios for sleep duration is 100 min, and the probability of 
occurrence of the work activities is negligible; furthermore, TV viewing 
activity increased, going out activity decreased, and cleaning activity 
did not change significantly. Fig. 5 shows that the accuracy of the time- 
series electricity consumption estimation improved, with very good 
accuracy in the late-night period (00:00–05:00). The timing of the 
decline in electricity consumption from approximately 22:00 was 
slightly slower, resulting in a smooth load curve similar to that of the 
smart meter data. This was because of the effects of increased electricity 
consumption after 20:00, decreased sleeping hours, and increased TV 

Fig. 3. Comparison of electricity load curves for the interim period.
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viewing activities. Although the load curves agreed well with the smart 
meter data for some time periods, they remain overestimated in the 
morning at approximately 06:00–10:00, exhibiting a slight difference 
from the BAU case. This may be because TV viewing and cleaning ac
tivities have relatively large impacts in the morning.

Fig. 6 shows the change in the distribution of electricity consumption 
at each time point on May 10, 2017, owing to the optimization of sleep 
using the Wasserstein distance. In the optimized case, compared to the 
BAU case, the distribution of TREES electricity consumption at 00:00 
and 03:00 can be observed to be closer to the distribution of electricity 
consumption estimated from the statistics of smart meter data.

4.4. Validation

In the following section, the validity of the calibrated parameters is 
discussed. Among the target behaviors of this optimization, the validity 
of sleep and TV viewing behaviors was examined, for which statistical 
and measured data exist.

For sleep behavior, the average sleep duration θ in the BAU was 
found to be 460, while the optimized average sleep duration was 360 

min. TREES determined these default values for the OB model based on 
the results of survey on time use and leisure activities conducted by the 
Ministry of Internal Affairs and Communications (MIC) in 2006. A 
similar, more recent survey is the 2015 national time use survey con
ducted by NHK, the only national broadcaster in Japan. a 2018 survey 
conducted by C2 Corporation, a provider of smartphone apps for 
measuring sleep time, included 19,451 users, and 2019 survey by Brain 
Sleep Corporation, a seller of wearable devices for measuring sleep time, 
encompassed 10,343 users. These surveys differ from the statistical 
survey based on the aforementioned questionnaire in that they involve 
actual measurements. Table 2 shows the average sleep duration for each 
gender and age group based on different statistical surveys. In the 
questionnaire-based surveys, the average sleep duration was 430–465 
min. These survey results suggest the validity of the BAU case; however, 
as previously indicated, questionnaires may reflect biases based on in
dividual subjectivity and not necessarily reality. Questionnaires may 
reflect respondents’ ideal life patterns and the trends of the past few 
days, which may not be suitable for annual estimates. In contrast, 
smartphone apps and wearable devices’ sleep statistics showed a 
significantly different trend because they were based on actual 

Table 1 
Calibration results of behavioral parameters.

Sleep duration TV viewing Going out Cleaning Error

a θ[min] b1 b2 b1 b2 b1 b2

BAU 1.00 460 1.00 1.00 1.00 1.00 1.00 1.00 70.6
BEST 0.58 360 1.84 0.08 1.60 − 0.20 1.82 − 0.06 57.1

Fig. 4. Calibration results of action implementation probability for (a) BAU and (b) Optimization.

Fig. 5. Calibration results for electricity load curves for (a) BAU and (b) Optimization.

H. Uchida et al.                                                                                                                                                                                                                                 Energy & Buildings 345 (2025) 116074 

6 



measurements taken by these devices, which were accurate and reliable 
in capturing real sleep behavior. The average sleep time for all genera
tions was 364–387 min, which aligned well with the calibrated pa
rameters, suggesting that this result was valid.

The validity of TV viewing behavior was examined using the people 
meter (PM) audience ratings survey results. The PM system simulta
neously surveys both household and individual audience ratings. Fig. 7
shows a comparison between the household using television (HUT) 
obtained through PM and the household TV viewing rate calibrated by 
optimization. HUT represents the ratio of real-time television viewing. 
Compared with the BAU case, the optimized household TV viewing rate 
closely agreed with HUT, except for a slight overestimation in the 
00:00–03:00 period. This overestimation in the early morning hours 
may be attributed to power consumption by devices like computers and 
others not considered in the model. Possibly, the power consumption 

during sleep, such as smartphone and tablet charging, was inadvertently 
represented as TV power consumption in the TREES model.

5. Conclusions

This study contributes to improving the estimation accuracy of 
bottom-up models through the estimation of macroscopic OB. In this 
study, the TREES model, a bottom-up model for estimating energy 
consumption in the residential sector, was improved by calibrating the 
input parameters through an inverse problem analysis. The bottom-up 
model has many input parameters, the accuracy of which significantly 
affects the estimation accuracy. Therefore, the input parameters must 
accurately reflect the actual situation; however, reproducing the actual 
situation is difficult using only information from the literature, leading 
to uncertainty in the input parameters. The higher the level of detail in 
the input parameters, the greater the uncertainty. Therefore, this study 
improved the accuracy of the time series of electricity consumption 
estimation by calibrating the input parameters of the TREES model 
through inverse problem analysis. The TREES model provided more 
accurate estimations with higher precision. Furthermore, by estimating 
the macro OB for each year, it became possible to accurately monitor 
changes in OB over time, a capability not attainable through statistical 
surveys alone, and to track the impact of changes in lifestyle or behav
iors on energy consumption over time. The Wasserstein distance was 
used as an error indicator to calculate the differences between the fre
quency distributions of household electricity consumption. However, 
the frequency of household electricity consumption was assumed to 
follow a gamma distribution. Although the optimization converged well 
for two-person households in the housing complexes targeted in this 
study, the behavior of other types of households should be thoroughly 
examined. An appropriate design of error indices would further improve 
the accuracy of the optimization, allowing higher-dimensional optimi
zation. The validity of the parameters calibrated by inverse problem 
analysis was evaluated using various statistical surveys on sleep dura
tion and TV viewership data, but not for other activities, such as going 
out or cleaning behaviors. Validating estimates with measured data, not 
self-reported surveys such as questionnaires, is important. However, 
capturing in-home human behavior is challenging due to data limita
tions. To address this, consider using smartphone applications’ move
ment data or household-installed sensors for insights on going out and 
work-related activities.

Fig. 6. Changes in the electricity consumption distribution on a representative day at (a) 0:00, (b) 3:00, (c) 6:00, and (d) 21:00.

Table 2 
Average sleep duration according to different statistical survey.

[min] 2006 MIC 2015 NHK 2018 Apps 2019 Devices

Male Female Male Female Male Female

All 465 455 442 430 364 365 387
20′s 472 473 450 439 344 360 –
40′s 439 424 413 402 352 358 –
60′s 461 437 442 426 380 374 –

Fig. 7. Comparison between Household Using Television (HUT) and televi
sion ratings.
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