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ABSTRACT

This research offers an innovative advancement in bottom-up building energy end-use modeling, vital for resi-
dential energy system analysis and planning. Conventional models rely on extensive demographic, behavioral,
and equipment data from various sources, but these methods often compromise accuracy. To address this, our
study introduces a novel methodology for parameter calibration using half-hourly smart meter data, despite its
lower resolution due to capacity, management, and privacy constraints. Incorporating these data enhances the
precision of energy demand estimations and accurately reproduces occupant behavior (OB). This method refines
model accuracy and identifies of OB across various household types, providing valuable insights for planning
targeted energy conservation measures crucial for achieving climate goals. Moreover, it enables the tracking of
behavioral changes over time, which traditional statistical methods cannot achieve, amplifying its utility.
However, this study recognizes the need for further enhancement through the integration of additional data
sources, such as movement data from smartphone applications and sensor-based household measurements. These
improvements have the potential to revolutionize energy system analysis, contributing to a more sustainable,

carbon-free society.

1. Introduction

Bottom-up building energy end-use models are powerful tools for
energy system analysis, allowing examination of current energy use,
prediction of future energy use under various energy-efficiency sce-
narios, and evaluation of power generation and distribution system
stability using electricity load curves. To achieve climate goals and
create a carbon-free society, energy consumption across all sectors,
including residential, industrial, and transportation sectors, must be
reduced. A bottom-up model called TREES [1-3] (Total Residential End-
use Energy Simulation) was developed to estimate the final energy de-
mand in the residential sector. However, the accuracy of this model may
be compromised due to the requirement of extensive questionnaire- and
literature-survey-driven information on household demographics,
occupant behavior (OB), and equipment in each region. Therefore, po-
tential deviations from reality can be encountered in the generated
annual schedule of residents’ activities.

In recent years, smart meters have gained popularity worldwide
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because they provide detailed data on electricity consumption. Despite
the low data resolution resulting from capacity, management, and pri-
vacy concerns, bottom-up modeling systems can be significantly
improved through inverse problem optimization of the OB model. This
approach allows for more reproducible OB estimations by calibrating
the parameters of OB. In response to the Japanese government’s plan to
reduce greenhouse gas emissions by 46 % from the fiscal 2013 level by
fiscal 2030, this study proposes an efficient parameter calibration
method using the mean and standard deviation of half-hourly smart
meter data for electricity consumption by household type. This cali-
bration enhanced the accuracy of the model and offered detailed esti-
mates of trends in OB, which were previously unattainable through
statistical approaches. Additionally, by interpreting the calibration re-
sults, trends in the behavior of residents in each household category
were estimated, providing valuable information for planning targeted
countermeasures. Overall, this study presents a promising low-rate en-
ergy data utilization method that enables more effective planning of
energy-reduction measures.
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2. Literature review

This section provides an overview of the related studies that used
smart meter data in building simulation research. Amasyali et al. [4]
reviewed several studies forecasting data-driven energy demand esti-
mates, with 12 of the 63 studies focusing on the residential sector and
approximately half of them (36 studies) using hourly time granularity.
Most studies have applied machine learning methods such as artificial
neural network (ANN) and support vector machine (SVM). Wang et al.
[5] provided a comprehensive review of research trends in smart meter
data utilization, excluding non-intrusive load monitoring (NILM), which
is the primary method. Most smart meter data considered 15-min to
hourly electricity consumption data, and most load forecasting studies
used machine learning methods along with individual smart meter data
as the subject of analysis. Multiple regression analyses have been per-
formed when individual data were unavailable. Chalmers et al. [6]
focused on utilizing smart meter load disaggregation to detect activities
of daily living (ADLs) and routine behaviors in dementia patients living
alone. This study aimed to improve the monitoring and support of pa-
tients with dementia, enabling them to live independently for longer
periods. By applying NILM techniques to smart meter data, the authors
disaggregated the total energy consumption into individual appliance
usage patterns. These patterns were then used to identify ADLs and
routine behaviors in them. This study highlighted the potential of using
smart meter data for unobtrusive and cost-effective monitoring of pa-
tients with dementia, ultimately providing valuable insights for
healthcare providers, caregivers, and families. Zhao et al. [7] proposed a
machineless learning method that decomposes the hourly smart meter
data of each household into power consumption data for each individual
device considered in the survey. By inferring equipment’s operation
from changes in the smart meter data with the base component
removed, the accuracy of their method was compared with that of other
supervised learning methods. Liu et al. [8] constructed a model to pre-
dict the operating state of cooling systems based on the measured
electricity consumption of air conditioners and room environmental
data, such as room temperature, relative humidity, and COy concen-
tration. They used ANN and gradient boosting decision tree (GBDT) to
obtain a certain level of accuracy while reducing the number of input
parameters. However, obtaining input data such as CO, concentration
remains a challenge because indoor measurement data are difficult to
acquire.

As the present study is designed to use statistically processed smart
meter data and does not assume the existence of individual data, it is not
possible to detect the operation of devices in individual households from
changes in the data, as in Zhao et al. and Liu et al. Analyzing OB based on
very low-rate data with coarse temporal resolution is generally chal-
lenging, and only a small number of studies have attempted this,
including decomposition by NILM. Therefore, an inverse problem
analysis using a bottom-up energy demand estimation model was
employed to estimate the average appliance operation for the entire
region. In this study, the standard deviation in the smart meter data,
which has not been considered in existing studies, and the Wasserstein
distance between the measured and estimated electricity consumption
distributions as an error measure to achieve high-dimensional optimi-
zation based on the optimal transport theory were utilized. For opti-
mization, Bayesian optimization was applied, which is suitable for
objective functions with high evaluation costs, such as bottom-up
models.

Furthermore, the concept of OB was reviewed in the context of
building simulation research. The energy use of a building can be viewed
as originating from a combination of physical and social conditions. The
influence of building occupants, a primary component of social condi-
tions, can be categorized into their presence (or occupancy) and the
impact of their actions, as described by Yu et al. [9]. These social con-
ditions interact with physical conditions and shape energy demand [10].
They are closely associated with heating, ventilation, air-conditioning,
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lighting, and household appliances [11]. Divergence between
measured and simulated energy use has been reported [12]. Subsequent
studies confirmed that occupant-behaviour mismatches are a dominant
source of error [13]. A broader review came to the same conclusion
[14]. Various studies have concluded that in models incorporating OB,
probabilistic approaches consistently surpass traditional deterministic
methods [15]. They also outperform agent-based simulations in repli-
cating day-to-day variability [16]. This confirms the recommendation of
utilizing a probabilistic model in building simulation research for OB
and calibrating its parameters using a data-driven method.

From existing reviews on OB models, it is evident that these models
are predominantly analyzed at the individual building level. However,
several studies pioneered frameworks for considering OB at the com-
munity scale [17-20]. While regional-scale OB data might be sourced
from diverse channels encompassing individual users and institutions
operating within the built environment, the absence of a structured data
collection approach often results in the acquisition of sparse and
inconsistent data. Such conditions complicate the task of modeling
residents’ behavior at the community level.

Recent advances in this field have led to novel methodologies for
parameter estimation and model calibration. Lim et al. [21] employed a
combined stochastic and deterministic approach to identify unknown
parameters in urban building energy modeling while addressing un-
certainties. Tardioli et al. [22] presented a method for calibrating
building energy models at the district level using clustering algorithms
and surrogate models. Both studies share common ground with the
present research in that they utilized an inverse problem approach to
calibrate the parameters. However, they are different from the present
research in two key aspects: they did not handle time-series data, and
they did not directly address OB. The present study aimed to incorporate
time-series data analysis and integrate an OB model, further enhancing
the accuracy and applicability of building energy simulations in policy
evaluation, energy efficiency, and urban planning.

Bayesian inverse calibration has recently emerged as a robust means
of reducing parameter uncertainty in bottom-up demand models. Kris-
tensen et al. demonstrated that assimilating half-hourly and hourly
smart-meter data via Bayesian updating consistently improved predic-
tive accuracy, with finer temporal aggregation yielding tighter poste-
riors [23]. Building on this idea, the MARTINI framework proposed by
Nweye et al. estimates HVAC start-up and set-back schedules directly
from aggregated meter traces, eliminating the need for intrusive sensors
[24]. At the community scale, Yu et al. implemented a multi-agent
occupant model that synthesizes realistic schedules for hundreds of
dwellings and markedly enhances district-level load forecasts [25].
Quantifying goodness-of-fit remains critical: Shin et al. introduced an
auto-encoder residual metric based on the Wasserstein distance,
showing superior sensitivity to distributional shape compared with KLD
and CVRMSE, and motivating the present study’s use of that metric [26].
Complementarily, Jeong et al. applied bias-corrected Bayesian inference
to daytime load discrepancies, achieving a 15 % RMSE reduction after
accounting for systematic bias [27]. Ensemble machine-learning
benchmarks by Ramnath et al. further reveal that fusing survey vari-
ables with smart-meter features yields up to 12 % MAE gains over single-
source models [28]. Recent representation-learning work by Zhang et al.
shows that embedding optimized occupant-behavior vectors into pre-
diction pipelines improves hourly forecasts across multiple horizons,
reinforcing the value of calibrated behavior modules [29]. A compre-
hensive 2024 review by Guyixin et al. highlights the paucity of proba-
bilistic, data-calibrated frameworks at urban scale and explicitly calls for
community-level validation—precisely the gap addressed by our TREES
extension [30]. Earlier evidence from Liisberg et al. confirms that
Hidden-Markov inference can recover latent occupancy states even from
30-minute data, validating behavior detection at coarse resolutions
[31].

In summary, conventional OB calibration studies lack coherent
integration with urban-scale bottom-up frameworks. No study to date
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combines probabilistic OB calibration with the urban building energy
model while explicitly quantifying distributional fit via distance func-
tion defined between probability distributions.

3. Methodology

This section provides an overview of the household sector energy
end-use model and the detailed specifications of the OB model. In this
study, the household energy consumption was estimated using TREES
model. Household energy consumption is determined by various factors,
including the number of residents, their attributes, differences in
behavioral habits, housing specifications, and types of appliances
owned. Therefore, when assessing household energy conservation,
estimating the energy demands of diverse households by considering
these factors is necessary. Therefore, a a model was developed that can
estimate household energy demand by reproducing the variation among
households considering all the influential factors.

3.1. Overview of the residential energy end-use model

An overview of the household energy end-use model is shown in
Fig. 1. Prior to executing the calculations of this model, data related to
household attributes, such as family composition, house type, and
specifications of home appliances and water heaters, were determined.
Furthermore, OB was considered to have patterns based on the attri-
butes of household members, such as their gender and occupation. Ul-
timately, the energy end-use model projected the energy consumption
for appliances, air conditioning, and water heating supplies based on
this behavior.

Fig. 1 provides a more detailed and systematic explanation of the
study procedure. Initially, in the “Household Attributes” section, attri-
butes such as household personnel, residence location, house type,
family size, and household income were sampled and established based
on statistical data. Within the “Data Preparation Models” section, the
status of appliance ownership and temporal changes in the housing stock
were considered based on the sampled individual household attributes,
and an OB schedule was established. The results of these processes were
then input into “Data for an Individual Household.” In addition to in-
formation on room occupancy, the model can project occupant equip-
ment usage by linking the contents of their activities to equipment
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usage. The "Energy Demand Model by Final Demand“ estimated the
energy demand of each sampled representative household. The model
calculated the energy demand for appliances, lighting, kitchens, hot
water, etc. in five-minute increments throughout the year based on the
on-and-off status of appliances. The heating and cooling energy con-
sumptions were calculated through heat load calculations, considering
the internal heat generated by the operation of the equipment besides
weather conditions. Finally, the total energy consumption was
computed by summing the estimated results for all sampled, represen-
tative households.

3.2. Occupant behavior model

The TREES model computes the energy consumption of operating
equipment based on the behavior of household members and simulates
actual equipment usage. On the other hand, the OB model, a component
of the “Data Preparation Models,” generates a one-year lifestyle
behavior at five-minute time intervals according to the occupant attri-
butes. The OB model represents the behavior of household members
using the results of the survey on time use and leisure activities as input
data for 26 types of behavior, including sleeping, eating, cleaning,
bathing, commuting, and explicitly encodes differences attributable to
employment status and age category. A comprehensive description of
the activity taxonomy and demographic segmentation is provided in [3].

In the OB model, the cumulative frequency distributions for each
attribute were established using information acquired from the survey
on time use and leisure activities, specifically for the commencement (or
termination) and duration of each major routine activity. Based on these
cumulative frequency distributions, the action schedule for each
household member was determined. For other nonroutine activities, the
occurrence probability was defined, and these activities were probabi-
listically scheduled during time slots when nonroutine activities were
not planned. The smallest unit of action was a five-minute time interval.

For home appliances, such as televisions (TVs) and refrigerators,
power consumption was determined by the size and year of device
manufacturing. For lighting, the power consumption was determined by
the room size, and for other home appliances, the average power con-
sumption was established based on energy-saving performance catalogs.
All these appliances operate based on OB, which allows power con-
sumption to be estimated in five-minute time steps.

Data

prep.

* Residential place

models  Data for an individual household Energy end-use model
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Fig. 1. TREES Model flowchart.
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3.3. Dataset outline

The smart meter dataset used in this study was a sample of approx-
imately 2,600 randomly selected two-person households living in
apartment complexes supplied with electricity by the Kansai Electric
Power Company (KEPCO). The samples were classified by household
category and aggregated into averages and standard deviations every
half hour for each category. The measurement period was from April 1,
2017 to April 30, 2019, and all-electrified houses were excluded.

3.4. Energy consumption distribution

In this study, optimization was performed using the mean value of
the smart meter data and standard deviation information. In this pro-
cess, assuming an appropriate frequency distribution of the electricity
consumption of households in the smart meter data based on the mean
and standard deviation enabled high-quality optimization. Since elec-
tricity consumption is non-negative and uniquely determined from the
mean and standard deviation, a gamma distribution, which is also
applied to the income distribution, was assumed. The probability den-
sity function of the gamma distribution can be expressed using the shape
parameter k and scale parameter 0 as in Equation (1). The shape and
scale parameters are expressed in Equation (2) using mean and variance.

1 -1 _,—(x/0
flx) :WXk e ™9 (x > 0) @
CEX)? ) V(X)
k_m’g_ﬁ 2

where I'(k) is Gamma function; E(X) is mean electricity consumption of
all households; and V(X) is variance in electricity consumption for all
households.

To examine the validity of the gamma distribution assumptions, it
was evaluated whether the distribution of monthly electricity con-
sumption in this dataset follows a gamma distribution, using maximum
likelihood estimation. Fig. 2 presents the result of comparing the
maximum-likelihood fits for two-person households living in apartment
complexes using the gamma distribution and the normal distribution. At
every time step the gamma distribution achieved lower Akaike infor-
mation criteria (AIC) values, indicating a superior fit; the same tendency
was observed for all other household categories. Because the empirical
energy consumption distributions are typically skewed toward lower
consumption, the gamma specification provides a more realistic repre-
sentation than the normal distribution.

3.5. Inverse problem formulation

(1) Parameters for Optimization

1000
0
M
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< |
-2000 [ AREHEIEER L - -2 SERRRR CRl- - RLRRRER - - Gamma
Normal
3000 f-----TTER RN - - - - - - o - - - 11
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Fig. 2. AIC comparison of maximum likelihood estimation results for two-
person households.
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The parameters of the major behaviors that predominantly influ-
enced household energy consumption patterns were calibrated. For
routine activities, the median and variance of the cumulative frequency
distribution were targeted. By varying the variance besides the median,
it is possible to consider not only the start times and duration lengths but
also the diversity of daily activities. For nonroutine activities, normal
probability was targeted.

(2) Optimization Method

We employed the Bayesian optimization method. It is a technique
that sequentially searches for the maximum or minimum value of a
probability distribution when the evaluation function is unknown.
Generally, Bayesian optimization is applied to problems with high
execution costs and where high-frequency evaluations are unrealistic,
making it suitable for calibrating bottom-up models such as TREES. In
this study, the optimization was conducted using the Tree-structured
Parzen Estimator (TPE), which is a representative Bayesian optimiza-
tion method.

(3) Objective Functions

In this study, optimization was performed by considering not only
the mean but also the standard deviation. The Wasserstein distance is a
measure of the distance between probability distributions in a distance
space; it defines the minimum transport cost between the probability
distributions. The optimization problem is expressed in Equation (3).
The Wasserstein distance is particularly useful in scenarios where other
distance measures, such as the Kullback-Leibler divergence or total
variation distance, may not capture the true dissimilarity between the
two distributions. This is because the Wasserstein distance considers not
only the mass of the distributions but also the geometric distance be-
tween individual points.

argmin i W(EP(t),0(t)) 3)

p t=1

where FP (t) is the distribution of TREES estimates at time t for parameter
set p; O(t) is the distribution of smart meter observations at time t; and W
(A, B) is the Wasserstein distance between distributions A and B.

In this study, the optimization targeted both “routine activities” that
occur regularly in daily life and “non-routine activities.” Therefore, the
optimization target parameters include four parameters for “routine
activities”: the median and variance of the end time and the median and
variance of the duration. For “non-routine activities,” two coefficients
were used for the first-order affine transformation of the occurrence
probability. The target period was set to intermediate seasons, when the
influence of air conditioning was considered sufficiently small and
limited to weekdays and non-rainy days. This is because, by ignoring the
power consumption caused by air conditioning and further limiting it to
weekdays and non-rainy days, the impact of schedules and weather can
be eliminated, making it easier to verify the accuracy of optimization.
The number of optimization iterations was set to 100.

4. Numerical experiment

The inverse problem analysis method, processing of smart meter
data, and error indices have been discussed. In this section, the proposed
inverse problem analysis method was used to optimize a two-person
household and identify their actual OB. As the operation of air-
conditioning equipment was dominant in the household load curves,
the intermediate period was targeted to eliminate its influence. The
results are validated and discussed based on the following surveys:



H. Uchida et al.

4.1. Determination of target activities to be optimized based on current
state analysis

Among the TREES model’s input parameters, those with deviations
from initial settings (actual conditions) were considered targeted for
optimization. Fig. 3 shows a comparison of the estimates from the TREES
model (BAU; its breakdown is as shown in the stacked surface graph)
and the time-averaged values of the smart meter data (SM2017) in the
interim period.

From Fig. 3, TREES estimates were found to be underestimated
during the nighttime hours (20:00 to 05:00). The TREES estimates
showed a decrease in electricity consumption starting at approximately
20:00, while the smart meter data showed a decrease starting approxi-
mately 22:00. These findings indicate that the occupants represented in
TREES follow unrealistically regular routines. In particular, the model
predicts that television usage falls to nearly zero at midnight, a pattern
not supported by empirical data. Accordingly, the model must be reca-
librated to temper the excessive reduction in television power demand
and to account for the gradual decline in activity rates during sleeping
hours. Furthermore, adjustments for irregular going out, such as
walking, which excludes commuting to work and school, were also
considered important in the TREES model. The TREES estimates were
overestimated for the morning hours between 06:00 and 10:00 because
of significant electricity consumption by home appliances; vacuum
cleaners, although used only for short durations, draw exceptionally
high power and therefore contribute a disproportionately large share of
the load and adjustments for cleaning activities must also be considered.
The presence or absence of work has a significant impact on electricity
consumption during the daytime. As teleworking has become more
common among workers in recent years, it should be considered to
reflect the actual situation.

In summary, it was decided that the optimization of the interim
period should include the calibration of sleeping hours, work avail-
ability, TV viewing, going out, and cleaning activities.

4.2. Modeling of behavior calibration

In this section, the calibration method for OB modeling is described.
The OB model can be classified into two categories: routine activities,
which are the main activities habitually performed daily; and nonrou-
tine activities, which include all other activities. Among the targeted
behaviors determined in the previous section, sleeping and working
were classified as routine behaviors, whereas watching TV, going out,
and cleaning were classified as non-routine behaviors.
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(1) Calibration of Routine Activities

For routine activities, the occurrence time and duration were
modeled using ordinal logistic regression. The distribution generated for
each attribute was fitted to a sigmoid function, and the parameters were
manipulated by adjusting them. The sigmoid function is shown in
Equation (4), where a is the parameter corresponding to the variance
and @ is the mean. Based on the results of the preliminary experiments,
only sleep and work duration were considered in this study.

fl0) (a>0) Q]

T1feax0

(2) Calibration of Non-Routine Activities

For nonroutine activities, such as watching TV, going out, and
cleaning, the behavior was calibrated by applying a one-dimensional
affine transformation that remains common at all times, as in Equa-
tion (5), and has a time-specific activity implementation probability p;
and parameters b; and b.

P.=bi xp+b, )

4.3. Result

This section presents the optimization results for the intermediate
period in a two-person aggregate household. The parameters calibrated
by optimization are listed in Table 1 under “BEST,” and the probabilities
of action implementation and load curves are shown in Figs. 4 and 5,
respectively. In Figs. 4 and 5, BAU represents the estimations obtained
from the original TREES settings. As shown in the error column of
Table 1, the Wasserstein distance has been substantially reduced.
Although RMSE was not explicitly minimized, it also exhibits an
improvement.

Table 1 and Fig. 4 show that the difference between BAU and opti-
mized scenarios for sleep duration is 100 min, and the probability of
occurrence of the work activities is negligible; furthermore, TV viewing
activity increased, going out activity decreased, and cleaning activity
did not change significantly. Fig. 5 shows that the accuracy of the time-
series electricity consumption estimation improved, with very good
accuracy in the late-night period (00:00-05:00). The timing of the
decline in electricity consumption from approximately 22:00 was
slightly slower, resulting in a smooth load curve similar to that of the
smart meter data. This was because of the effects of increased electricity
consumption after 20:00, decreased sleeping hours, and increased TV
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Table 1
Calibration results of behavioral parameters.
Sleep duration TV viewing Going out Cleaning Error
a 6[min] by by by by by by
BAU 1.00 460 1.00 1.00 1.00 1.00 1.00 1.00 70.6
BEST 0.58 360 1.84 0.08 1.60 —0.20 1.82 —0.06 57.1
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Fig. 5. Calibration results for electricity load curves for (a) BAU and (b) Optimization.

viewing activities. Although the load curves agreed well with the smart
meter data for some time periods, they remain overestimated in the
morning at approximately 06:00-10:00, exhibiting a slight difference
from the BAU case. This may be because TV viewing and cleaning ac-
tivities have relatively large impacts in the morning.

Fig. 6 shows the change in the distribution of electricity consumption
at each time point on May 10, 2017, owing to the optimization of sleep
using the Wasserstein distance. In the optimized case, compared to the
BAU case, the distribution of TREES electricity consumption at 00:00
and 03:00 can be observed to be closer to the distribution of electricity
consumption estimated from the statistics of smart meter data.

4.4. Validation

In the following section, the validity of the calibrated parameters is
discussed. Among the target behaviors of this optimization, the validity
of sleep and TV viewing behaviors was examined, for which statistical
and measured data exist.

For sleep behavior, the average sleep duration 0 in the BAU was
found to be 460, while the optimized average sleep duration was 360

min. TREES determined these default values for the OB model based on
the results of survey on time use and leisure activities conducted by the
Ministry of Internal Affairs and Communications (MIC) in 2006. A
similar, more recent survey is the 2015 national time use survey con-
ducted by NHK, the only national broadcaster in Japan. a 2018 survey
conducted by C2 Corporation, a provider of smartphone apps for
measuring sleep time, included 19,451 users, and 2019 survey by Brain
Sleep Corporation, a seller of wearable devices for measuring sleep time,
encompassed 10,343 users. These surveys differ from the statistical
survey based on the aforementioned questionnaire in that they involve
actual measurements. Table 2 shows the average sleep duration for each
gender and age group based on different statistical surveys. In the
questionnaire-based surveys, the average sleep duration was 430-465
min. These survey results suggest the validity of the BAU case; however,
as previously indicated, questionnaires may reflect biases based on in-
dividual subjectivity and not necessarily reality. Questionnaires may
reflect respondents’ ideal life patterns and the trends of the past few
days, which may not be suitable for annual estimates. In contrast,
smartphone apps and wearable devices’ sleep statistics showed a
significantly different trend because they were based on actual
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Fig. 6. Changes in the electricity consumption distribution on a representative day at (a) 0:00, (b) 3:00, (c) 6:00, and (d) 21:00.

Average sleep duration according to different statistical survey.

[min] 2006 MIC 2015 NHK 2018 Apps 2019 Devices
Male Female Male Female Male Female

All 465 455 442 430 364 365 387

20's 472 473 450 439 344 360 -

40's 439 424 413 402 352 358 -

60's 461 437 442 426 380 374 -

measurements taken by these devices, which were accurate and reliable
in capturing real sleep behavior. The average sleep time for all genera-
tions was 364-387 min, which aligned well with the calibrated pa-
rameters, suggesting that this result was valid.

The validity of TV viewing behavior was examined using the people
meter (PM) audience ratings survey results. The PM system simulta-
neously surveys both household and individual audience ratings. Fig. 7
shows a comparison between the household using television (HUT)
obtained through PM and the household TV viewing rate calibrated by
optimization. HUT represents the ratio of real-time television viewing.
Compared with the BAU case, the optimized household TV viewing rate
closely agreed with HUT, except for a slight overestimation in the
00:00-03:00 period. This overestimation in the early morning hours
may be attributed to power consumption by devices like computers and
others not considered in the model. Possibly, the power consumption

1.0
— BAU
0.8 H=——BEST b
. —HUT
2 0.6 {------HUT (Kanto area)
+—
Ry
|20.4
0.2
0.0
8 88 8 8 8 8 8 8 8 8 8
SSSES883e¢2ga

Fig. 7. Comparison between Household Using Television (HUT) and televi-
sion ratings.

during sleep, such as smartphone and tablet charging, was inadvertently
represented as TV power consumption in the TREES model.

5. Conclusions

This study contributes to improving the estimation accuracy of
bottom-up models through the estimation of macroscopic OB. In this
study, the TREES model, a bottom-up model for estimating energy
consumption in the residential sector, was improved by calibrating the
input parameters through an inverse problem analysis. The bottom-up
model has many input parameters, the accuracy of which significantly
affects the estimation accuracy. Therefore, the input parameters must
accurately reflect the actual situation; however, reproducing the actual
situation is difficult using only information from the literature, leading
to uncertainty in the input parameters. The higher the level of detail in
the input parameters, the greater the uncertainty. Therefore, this study
improved the accuracy of the time series of electricity consumption
estimation by calibrating the input parameters of the TREES model
through inverse problem analysis. The TREES model provided more
accurate estimations with higher precision. Furthermore, by estimating
the macro OB for each year, it became possible to accurately monitor
changes in OB over time, a capability not attainable through statistical
surveys alone, and to track the impact of changes in lifestyle or behav-
iors on energy consumption over time. The Wasserstein distance was
used as an error indicator to calculate the differences between the fre-
quency distributions of household electricity consumption. However,
the frequency of household electricity consumption was assumed to
follow a gamma distribution. Although the optimization converged well
for two-person households in the housing complexes targeted in this
study, the behavior of other types of households should be thoroughly
examined. An appropriate design of error indices would further improve
the accuracy of the optimization, allowing higher-dimensional optimi-
zation. The validity of the parameters calibrated by inverse problem
analysis was evaluated using various statistical surveys on sleep dura-
tion and TV viewership data, but not for other activities, such as going
out or cleaning behaviors. Validating estimates with measured data, not
self-reported surveys such as questionnaires, is important. However,
capturing in-home human behavior is challenging due to data limita-
tions. To address this, consider using smartphone applications’ move-
ment data or household-installed sensors for insights on going out and
work-related activities.
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