|

) <

The University of Osaka
Institutional Knowledge Archive

Title On simply knotted spheres in R4

Author(s) |Yajima, Takeshi

, , Osaka Journal of Mathematics. 1964, 1(2), p.
Citation 133150

Version Type|VoR

URL https://doi.org/10.18910/10284

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Yajima, T.
Osaka J. Math.
1 (1964), 133-152

ON SIMPLY KNOTTED SPHERES IN R*

Dedicated to Professor H. Terasaka on his 60-th birthday

TakesHl YAJIMA

(Received September 30, 1964)

1. Introduction

Let S be a 2-sphere in the 4-dimensional Euclidean space R* and
let S* be the projection of S on a 3-dimensional subspace. It is obvious
that the singularity of S* consists of several closed curves under appro-
priate conditions. A simplest case of the projection may be such a case
that the singularity of S* consists of several disjoint simple closed curves.
We call such a projection a simple projection. Now, is it possible to
give a projection of every 2-sphere in R* as a simple projection on some
3-subspace ?

It is the purpose of this paper to prove that there exist some kinds
of locally flat 2-spheres, each sphere of which can not be deformed so
that it has a simple projection. For this purpose we consider two kinds
of spheres, simply knotted spheres and symmetric ribbon sheres, and
prove that these kinds of spheres coincide. Spheres of the former are
defined as equivalent classes of spheres, each of which contains a sphere
S such that its projection S* on some 3-subspace is a simple projection,
and spheres of the latter are known" as a simple case of knotted
2-spheres in R

The sphere used in the proof is the one discovered by R. H. Fox?,
and a slight modification of H. Terasaka’s result [8] enable us to prove
that the Fox’s sphere is distinct from a symmetric ribbon sphere.

2. Preliminaries

In this section we shall state some fundamental concepts and termi-
nologies, most of which were explained in [10], concerning the projection
method for the knot theory in the 4-space. Throughout this paper
terminologies are used in the semi-linear point of view.

1) [7], p. 135, Example 10, 11 and [10], p. 70, Example 1, 2.
2) [7], p. 136, Example 12.
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Let R* be the 4-dimensional Euclidean space with a coordinate system
(x, 3, 2, w). The 3-dimensional subspace of R* defined by #=0 is denoted
by R®. The half spaces of R* defined by #=0 or #<<0 are denoted
by H* or H* respectively. With every point P=(x, y, 2, u) of R‘, we
associate the point P*=(x, y, 2, 0) and the coordinate #=u(P). We call P*
the trace or the projection of P, and u the height of P respectively. The
mapping = : P— P* is called the projection as usual.

Let M be a 2-dimensional manifold in R* with or without boundaries.
There is no loss of generality to assume the following condition :

2.1) If P,,-+,P,, are vertices of M, then the system of points
(P¥, -+, Pk) is in general position in R°.

It is natural to denote the set of traces of points of M by M*. In
virtue of (2.1), we can suppose that the set of cutting points of M*,
that is, the set of points of intersections of different 2-simplexes of M%*,
constitutes a 1-dimensional complex. We denote the set of cutting points
of M* by I'(M*). '

We can also assume the following conditions :

(2.2) A segment of I'(M*)is the intersection of just two 2-simplexes.

(2.3) There exist just three 2-simplexes through a double point of
(M*).

From the same argument as in Fig. 1 of [10], we can suppose that:

(2.4) I'(M¥*) consists of the following three kinds of polygons,

(1) closed polygons, ' ‘ '

(2) polygonal arcs, whose endpoints belong to the projection of bounda-
ries of M,

(3) polygonal arcs, whose endpoints contain some singular cutting
points. .

The definition of singular cutting points was stated in [10], but we do
not need the definition in this paper.

Let o* be a cutting of /'(M*), namely a polygon of a kind of (1) or (2),
and v,, 7. be inverse images of ¥* on S by the projection. If w(P,) >u(P,)
for some points P,€v,, P,€v, such that P¥=P¥, then it is obvious that
w(Q,) >u(Q,) for every pair of points Q,€v,, @,€ 1, such that QF=Q%.
We denote this situation simply by u(y,) >u(7,). |

The terminology of cutting is used sometimes for a continuous image
of a 2-manifold under the same conditions as (2.1), (2.2) and (2. 3).

The presentation of the knot group F(M) in the projection method
is as follows. Let 3%, -.-,2¥ be components of M*—I'(M¥*), where M
is an arbitrary 2-dimensional closed manifold in R*‘ Let o* be the
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intersection of two surfaces A¥=J3F(JY ¥ and A¥=3F(J2 % (Fig. 1)
and v;, v; be the inverse images of o* on A; and A; respectively. If
u(y;)<u(v;) then we call A; the under surface and A; the over surface
respectively.

Fig. 1.

We use the notation in Fig. 1 to represent the relation between the
heights of two surfaces, where the small vector on the under surface
indicates the orientation of the over surface.

According to the results of [10] we have the presentation of F(M),
with generators o; corresponding to each 2¥ (i=1, .-, k), as follows:

Generators : (o) ** 5 0%)

Defining relations : ¢;,=0;, 0iy,=0j0i0%"
for each * where 2,(J2;,, is the over surface and the
orientation vector points from X¥ to X,%,.

3. Symmetric ribbon spheres

First of all we shall state the definition of ribbons. Let D, be the
unit disk x*+3*<1, and let f be a continuous mapping of D, into R
Put D*=f(D,). Let v* be a simple arc of /(D*), which is of the kind of
(2.4), (2), and is separated from the rest of /(D*). Then there happen
following two cases (Fig. 2):

(@) fY(v*) consists of two arcs on D, such that the endpoints of
one of them belong to the boundary of D,, and those of the other do not.

(b) f(v*) consists of two arcs on D, such that one of the endpoints
of each arcs belongs to the boundary of D,, and the others do not.
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A 7ribbon t is defined as a continuous image of D, in R*® such that
I'(x) consists of several disjoint simple arcs which are of the kind (a).

(3.1) Let t be a ribbon. There exist disks D.(x)“H% and D_(x)
—H?* such that their boundaries are contained in R* and D*(x)=D*(x)=1.

Proof. First of all we shall construct D.(x). Let o¥F, ---, y* be cut-
tings of I'(r) and let &5, v2 (v=1, - ,%) be the inverse image of «F
where the endpoints of vl’s are on the boundary of D,. Suppose Pleql,
P2592 be the inverse image of the variable point P¥ on ¥. Let u be
a continuous function defined on > v! (/> v2|)Bd D, such that

(i) if P¥ is an endpoint of v}, then w(P)=0, u(P%) >0,

(ii) if P¥ € ¥ is not an endpoint of v¥, then 0< u(P})< u(P?),

(iii) if P*€ Bdt—Y)v¥, then u(P)=0.

We can extend the function # onto D, such that « is continuous on D,.

It is obvious that the correspondence

h: P—(P* wP), PeD,

forms a homeomorphic mapping of D, into R‘. Hence D.(x)=HD,) is a
required disk.

For the construction of D_(r) it is sufficient to replace the conditions
(i), (ii) by the following conditions :
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(i’) if P¥ is an endpoint of ¥, then u(P:)=0, u(P2)<0,

(ii’) if P¥€vy¥ is not an endpoint of ¥}, then 0_>u(Pl) >u(P3).

It is obvious that :

(3.2) There exists a unique equivalent class of spheres which contains
the sphere S(x)=D.(x)|D-(x) for a given ribbon 1.

We call this equivalent class of spheres the symmetric ribbon sphere
of 1.

It is easy to get the projection S* from an arbitrarily given ribbon
r. Let v¥ be a cutting of 1, and let A*, B* be parts of t which contain
v¥, where B* runs through A*. Thicken r to a singular cube K*, so
that the ribbon knot %2 of t separates the surface S* of K* into two
singular disks, one of which corresponds to D*(r) and the other to D*(x).
Let A¥*, B* be the corresponding parts of A*, B* in D*(r) and let A*, B*
be the parts in D*(x). Then the cutting ¥ becomes to closed cuttings
vh=A%*(B*|JB¥*) and v%=A¥)(B*¥*{UB*). By these cuttings the tube
B*|JB* splits into three parts of tubes T¥, T§&, T¥, and new disks C¥
and C* appear on A* and A* respectively (Fig. 3).

B*

k
A~~~ Q
x| BX

k -
A4x T /
& N 15 7
3 S é ‘%—““""‘“—# ,

Fig. 3.

It is easily seen that T§|JT¥ is the over surface at v¥ and that
T#|)T# is the under surface at v¥. Hereafter we say that A and B
have the opposite relations in heights at v¥% and v%. If we suppose that
the orientation of D*(t) coincides with that of %, then we have essential
generators o4, op,, 0, and the relation op =oa05,0%', Where o4, o5, and
o, correspond to the surfaces A¥ UA*, T¥|UT¥ and T¥ respectively.

ExampLE 1. Let 1, be a ribbon in Fig. 4, (a). The ribbon knot &,
of 1, is known as the square knot. The corresponding symmetric ribbon
sphere S¥ is shown in (b).
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Fig. 4.

ExaMmpLE 2. Let 1, be a ribbon in Fig. 5, (a). The ribbon knot k, of
1, is known as the stevedore’s knot.

s

(a)
Fig. 5.

Since the stripe connecting two disks in (a) is twisted, we have the
sphere in (b) exchanging the relations of heights between % and v% in
Fig. 4, (b).

4. Simply knotted spheres

Let S be a sphere in R* such that I'(S*) consists of several disjoint
simple closed curves &%, ---,v¥. We call such a projection S* a simple
projection. An equivalent class of spheres which contains the sphere S
is called a simply knotted sphere. It is obvious that a symmetric ribbon
sphere is a simply knotted sphere. We shall prove in this section that
every simply knotted sphere is equivalent to a symmetric ribbon sphere.

4.1) o¥ (v=1, - ,n) is a trivial knot in R®

Proof. Let & be the unit sphere x*+3°+2°=1, and let % be a
homeomorphism of & onto S. Put f==h. Then f(v¥) consists of two
disjoint circles ¢! and ¢Z on &. The circles ¢! and ¢ bound disks D}
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and D? respectively on & such that c¢l() D?=c2()D1=0. Therefore, v¥ is
the boundary of the singular disk D1*=f(D}), where singularities of D*
do not exist on y¥. Hence we can suppose that v} is the boundary of
some non-singular disk by Deh’s Lemma®. Therefore y¥ is trivial. We
call D (k=1, 2) the interior of ct.

(4.2) ¥ and v¥ do not link homotopically for v=F m.

Proof. Let f'(v¥)=ciUct and f(v¥)=cicZ. Let ¢l be an inner-
most one in these circles. Suppose that v¥ links homotopically with ¥
Then we have f(D})(]v¥==0. Therefore v is not a simple closed curve.
This contradicts the assumption.

Let d, be a parallel curve to ¢! sufficiently near to ¢! on &. We
can prove easily as above that f(d,) and ¥¥=f(c!) do not link homo-
topically. Therefore, we have the following statement.

(4.3) A ring-neighbourhood of ci, which does not contain another
inverse image of ['(S*), is mapped by f onto a topological non-twisted ring
surface in R°.

Now 7¥s are classified as follows:

(1) Both ¢t (k=1, 2) are innermost in the circles of the inverse image
of I'(S*).

(2) One of ¢t (k=1, 2) is innermost and the other is not.

(3) Both ¢} are not innermost.

If v* is a sort of (2), we call it a canonical cutting.

(4.4) If both ct (k=1, 2) are innermost, then v¥ can be cancelled by
a deformation of S in R*.

Proof. Since D; and D} do not contain the other circles of f~*(I(S*)),
they are mapped onto non-singular disks D}* = f(D}) and D* = f(D?)
respectively such that D}*(|D¥*=«¥. Let vi=n(cl) and yZ=h(c?. Sup-
pose that u(v2)<u(y;). In the first step, we deform a neighbourhood of
n(D?), so that the height of every point of A(D?3) is less than those of
points of f(D}). During this deformation, S* is fixed. In the second step,
we deform A(D?) parallel to R so that vf may be cancelled. During the
deformation of the second step #(D2) does not meet A(D?).

(4.5) Let S be a simply knotted sphere. We can deform S into S,
so that I'(S™) consists of canonmical cuttings.

Proof. In virtue of (4.4) we can suppose that 7°(S*) consists of
cuttings of (2) and (3). We shall prove by induction that non-canonical
cuttings (3) can be replaced by a finite number of canonical cuttings (2).

3) [4], p. 1 or [5], p. 223, theorem 1.
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Let 9%, - ¥, be non-canonical cuttings of S* in the kind of (3),
and let ¢}, ¢} ; -+ ; i, €3, bE the circles of f7'(v¥) (i=1, -, m). Suppose
that ¢} is an innermost one of these circles. We shall construct, in the
first step, a deformation of S* in R’ so that v¥ may be replaced by
canonical cuttings.

Let E,, E, be ring-neighbourhoods of ¢}, ¢} respectively, such that
each E, (k=1, 2) contains only the circle ¢t. In virtue of (4.3) we can
suppose that E¥=f(E)) is a ring surface on (x, y)-plane and E¥= f(E,)
is a cylinder which is perpendicular to E¥. Suppose that D}* continues
to the inside of the ring surface E¥.

The synopsis of the required deformation is illustrated in Fig. 6.

(e -

- ~.

-

Fig. 6.

The shadowed part indicates that there exist some other parts of S*. If
was can prove that the intersection of the deformed cylinder E4* with
the shadowed part consists of canonical cuttings, then the proof is com-
plete. The detailed proof in the question is as follows (Fig. 7).

Let C be a component of D} —f(I(S*)) such that ¢} may be a
member of boundaries of C. Let c;,-,cs,; ¢i,,ci, be the rest of
boundaries of C, where ¢;;/s are innermost circles of f~'(/(S*)) and ci’s
are not. For each ¢}, we take a parallel curve d;, to c;, on C. If we
replace all cfj’s by dZ’s, then we have a domain C, contained in C. Since
v¥ is canonical, there exists a non-singular disk A¥, which is parallel to
D:¥=f(D:,) and Bd A¥,=f(d%). Thus we have a disk B}=C¥ ()X} Di*
U A¥, such that B¥[)(S—B,)* consists of innermost circles on B}.

Let Bj* and B}¥ be two parallel surfaces to B} illustrated as
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Fig. 7.

broken lines in Fig. 7. The disks B}* and B}* divide the cylinder E¥
into three subcylinders E3*, EY* and E3*, where BJ¥* and B3¥ are bounding
disks of E3* and E3* respectively. Perforate the subcylinders E}* and
E%* into E}* and E% respectively, and connect these holes by a tube T*.
Then we have the required cylinder E3*=(EL* UB%;“)U(E%* UB3HU T*.
Thus the question is solved.

In the last step of the proof, we shall show that the deformation in
R?® defined above is admissible as the projection of a deformation of S
in R*. It will be done very simply. Suppse that #(E,) >u(E;). Deform
WE,), so that the height of every point of Ej is less than that of the
points of S—A(E?). Then we can deform A(EY) parallel to R® freely
from the other part of S. Thus, we have completed the proof.

Let S be a simply knotted sphere such that 7°(S*) consists of ca-
nonical cuttings «¥, ---,v¥. Suppose that ci,---,ck;c3, .-, c2 are circles
of £~(I(S*)) on &, where f(v¥)=ci e} (v=1, ---, #) and ¢}’s are innermost
on &. Hereafter we call c¢i’s circles of the first kind, and c¥s are
those of the second kind. Let C,, -, C, be the components of &—3" c2.
Then each C, (¢=0, 1, ---, n) is mapped homeomorphically in R? but it
may happen that C, is mapped not homeomorphically for some o. A
cutting v¥, such that ¢} and ¢? are contained in some C,, is called a self-
cutting of C¥.

Let ¢3, -+, ci, be the bonding circles of C,. If C* contains no self-
cutting, then it is obvious that M‘,=C,UD$1U ---|J D3, is mapped into a
sphere in R® where D)’s are the same as (4.1). Therefore, the sphere
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M#* separates R® into two parts. However, even in the case when C*
contains some self-cuttings, it is valid that M¥* separates R® into the
exterior and the interior of it.

(4.6) Every simply knotted sphere S can be deformed into a sphere
S, so that if the interior of M¥ of S’ contains some C¥'s, then these C¥'s
are mutually disjoint tubes and the relation of heights at two terminal
cuttings of a tube are mutually opposite for each .

Proof. In virtue of (4.5), we can suppose that /(S*) consists of
canonical cuttings. Let C,, M, be as above. Let N* be a component of
S*—M#* contained in the interior of M¥*. If all the vectors indicating
the relations of heights at the cuttings of N*(|M¥* are either on N* or on
M?*, then it is obvious that N* can be pulled out to the exterior of M¥* and
the cuttings of N*[)M#¥ are cancelled. If N*()M¥* consists of more than
two cuttings, and vectors of the relation of heights exist both on N*
and M?¥, then take a sphere Sy inside of M} such that the interior of S
contains only the cuttings on N*, and pull out the interior of S¥ to the
exterior of M*. The deformation in R*‘ corresponding to the pulling
out of N* may take place over or under %(C,). In consequence of this
deformation the remaining part of N* in the interior of M¥ splits into
the same number of tubes as the number of cuttings of N*[|M¥*,
Moreover, some of these tubes, each of which has the same relations of
heights at the terminal cuttings, can be pulled out cancelling these cuttings.
By repeating the above processes, we can get a spheres S’ which satisfies
the required conditions. Thus we have completed the proof.

Each C¥* has the orientation induced from that of S. According as
the vector indicating the orientation of C* points to the inside or to the
outside of M¥, we say that C¥ is in the positive or in the negative situation
respectively.

Now let us observe self-cuttings. Let ¢? be an innermost one between
the circles of the second kind, and let C,, C, be the components of
&—3¢2, such that C,()C,=c?, Bd C,=c?. Suppose that c} is contained
in C,. Obviously C,—D} is mapped onto a torus in R® According to
the situation of ¥¥ on the torus, there exist two cases («) and (8), where
v¥ in (@) is homotopic to a longitude of the torus and that in (8)
is homotopic to a meridian. Obviously C§ and C§f in («) are in mutually
opposite situations and those of (8) are the same.

For a general case, let ¢! be the common boundary of C, and C,.,
and let v¥ be a self-cutting of C¥=f(C,). In this case, there also exist
two cases as above. If C¥ and C}¥ are in the same situations, then we
call v¥ an admissible self-cuttig. If they are in opposite situations, then
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we call y¥ a non-admissible self-cutting. It is easily proved that if ¥
is an admissible self-cutting of C¥, then C} is contained in the interior
of M¥, and that if ¥ is non-admissible, then C¥ is contained in the
exterior of M¥. Therefore, combining this with (4.6), we have the
following statement :

(4.7) If v¥ is an admissible self-cutting of C¥, then there exists a
circle ¢}, on C, such that v¥, and v are connected by a tube in the interior
of M¥.

Now we are going to prove that non-admissible self-cuttings can be
cancelled by a deformation of S in R*. We shall begin with a special
case.

(4.8) Let v¥ be a non-admissible self-cutting of C¥, where c} is an
innermost one between the circles of the second kind, and Bd C,=c3. Then
v¥ can be cancelled by a deformation of S in R*.

Proof. Let C, be the component of &—3)¢? such that C,(|C,=c%
Suppose that w(h(cl)) >u(h(c})) in Fig. 8 (a,). Let S, be a sphere in R*
such that S¥ contains C¥ as the inside of it, and «(S,)>u(#(C,)). Take
a small circle ¢ on A(C,) and a circle b on S, respectively, and connect
these circles by a tube T in R*. Let A* and B* be disks on S$* and on
S¥ respectively such that they are contained in 7%, and Bd A=a, Bd B=b.
Take a concentric circle @’ of ¢ on the disk A. Deform the inside A’ of
@', so that u(A) >u(S— A). Since S, is trivial in R*—S, we can deform A
into the disk S, () T—B, so that (A— A")— T and A’—(S,—B).

%
7

(@) (az) (as)

By this deformation, a new cutting parallel to each cutting of C¥
arises. But, in virtue of the definition of the height of S,, the pair of
cuttings ¥, yi* are cancelled as shown in Fig. 8 («,), where o{* is the
new cutting corresponding to y¥. Moreover, a pair of cuttings coorres-
ponding to one of the terminal cuttings of every tube contained in C¥
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is cancelled by the same reason as y¥. Therefore, the cuttings on C¥
are not changed as a whole except v¥, and C,[JC, becomes a single
component C;. We call the deformation above the reversing of C¥.
Each circle ¢ of the second kind separates the sphere & into two
disks. We shall distinguish one of these disks by A, in the following
manner : Fix an arbitrary innermost circle ¢} and put AH:C%, where
BdC, =c; . Let C, be the neighbouring component of C,. Let ¢y, be
one of the bounding circles of C,, which is distinct from c?,l. Let A,,
be the disk, such that Bd A,,=c}, and A,, DA, . For each circle ¢,
contained in A,,, let A,, be the disk such that Bd A, ,=c,, and A, CA,,.
In such a manner we can define a disk A, for every ¢, such that the
collection of disks {A,} forms a directed set by the relation of inclusion.

(4.9) Let c2;ct,-,c2 ;¢ ,c2 be the bounding circles of C,.

ey Ham 1 ” g p

Suppose that sz(ﬁ Ap) U(nE A,) and that v¥, 7§, «-, ¥4, are non-admis-
i=1 j=1

sible self-cuttings of C¥. If A%, ,A%, ;A% -, A% does not contain
any non-admissible self-cutting, then the sphere S can be deformed in R
So that these non-admissible self-cuttings are cancelled.

Proof. Put AQ\, »)=C, Ui}Au]-. We shall reverse the perforated

singular sphere A(\, »)*. For this aim, we construct first of all a singular
sphere S¥ which serves the same role as S¥ in (4. 8).
Let &, 22, (i=1, ---, m) be parallel curves to ¢} and ¢Z; respectively

on C,. Let C, be the domain, such that Bd C,=z2|J3] EﬁiUé ci,. Take
i=1 ji=1

parallel disks D!¥ to D¥ and a parallel disk Di* to D}*, so that Bd DL¥

=f(¢c2) and Bd D}*=f(¢?) respectively. Then Si*=(C¥|) D}* Uf‘_, D |J

n

_};‘iZ’fj forms a singular sphere, which does not contain any non-admissible
]self—cutting. Hence C¥s in A¥ (j=1,--,n) and C#* are in the same
situation. If these situations are negative, then deform S?* toward the
direction of the vector of the orientation of S*. If the situations of C¥s
and C¥* are positive, then deform Si{* toward the opposite direction of
the vector. Thus we get a singular sphere S¥, which is similar to SJ*.

There occur three kinds of new cuttings as follows :

(1*) Cuttings which appear as the intersections of S¥ and S*, where
tubes of S* run through S¥.

(2*¥) Cuttings which appear as the intersections of S¥ and S*, where
tubes of S¥ run through S*.

(3%) Cuttings which are intersections of S¥ itself.

Let v¥ be an arbitrary cutting on A¥. Let o¥,, v¥ and ¥ be the
corresponding new cutttings to y¥ of (1*), (2*) and (3*) respectively.
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We shall deﬁne the relations of heights at these cuttings as follows:

(1) Let v.* be the other terminal cutting of the tube of S* in the
interior of S¥. Then we define the height of S,, so that S, is both the
over surface at y¥, and at /¥

(2) The same relation as v¥, that is, if the tube of S, whose pro-
jection is parallel to the tube of S¥, is the over or under surface at ¥,
then the tube of S, runs over or under S respectively.

(3) The same relation as ¥¥, in the meaning of (2).
It is easily proved that S, is trivial in R*—S in virtue of (1), (2) and (3).

We shall reverse A*(A, v), as we did in (4.8). Take a small circle
a on #(C,) and a circle » on S,. Let A be the disk on %(C,), such that
Bd A=a, and let B be the disk on S, such that Bd B=b. Connect the
circles a, b by a tube T. Since S, is trivial in R*—S, we can deform the
disk A, so that A—(S,—B)UT.

Thus we can reverse the perforated singular sphere A*(, v). But
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it happens that ¥ in (2) and v,%s in (3) are not canonical cuttings. If
we replace these non-canonical cuttings with several canonical cuttings by
the method of (4. 5), then some new non-admissible self-cuttings may arise.
Therefore, we shall cancell these non-canonical self-cuttings by another
way. ,
For each C, contained in A*‘Z} Aw;, take a point P, on C,, so that
£

it is not contained in circles of the first kind. Connect P, and P,, by
a segment /,,, if and only if C, and C,, are mutually neighbouring
components, so that /,,, intersects the common boundary at a single
point, and that /,,, does not meet circles of the fiirst kind. The union
of these segments makes a tree. We shall call the image of this tree
on S* a leading curve of the deformation.

The synopsis of the required deformation is explained as an enlar-
gement of the tube 7. We shall consider the most simple case, n=1.
Let C,, be the neighbouring component of C, in A, . Let (7, 6, 2) be a
cylindrical coordinate system of R®. We can suppose that A* and C*— A*
are represented as the disk (<1, z=1) and the cylinder (r=1, 0< 2<1)
respectively. Therefore, C¥ is represented as the negative part of the

| |e ey
\J*/
Py
’ %k
Ry R}

Fig. 10.
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c~ylinder r=1. Moreover, we can suppose that the corresponding part of
C¥—A* in S¥ is represented as the cylinder (»=2, 0< 2< 1) and that
the tube T* is represented as the ring surface (1<<r<2, z=1). Suppose
that [} is represented as the segment (r=1,60=0, —1<2<1), where
P¥=(1,0,1) and Pt =(1,0, —1).

Take points Q¥ =(1, —6,, 1) and Q§=(1, 6,,1) on a* and R¥=(2, —6,, 1)
and R¥=(2, ¢,, 1) on b*, where 6, is a sufficiently small positive number.
Let Q{*, R{*;Qi* R4* be the corresponding points of Q%¥, R¥; Q¥ R¥
respectively on the plane z= —1.

In virtue of (2), it is easily proved that the surface composed of the
disks Q,Q,Q5Q%, Q.Q,R,R, and R{R},R,R, is deformed into the surface com-
posed of the disks Q,QiRiR,, Q.QiRiR{ and Q,Q}R;R,. In consequence
of this deformation, the pair of cuttings v¥ and v¥, becomes a single
canonical cutting.

In the case of #>1, we can also enlarge the tube 7 in the similar
way as above, so that non-canonical cuttings ry;"la, .-, v¥ g are cancelled.
Therefore, even in the case when the leading curve has branched points,
we can continue the deformation as far as all non-canonical cuttings are
not cancelled.

(4.10) Suppose that v¥ in (4.9) is an admissible self-cutting. In this
case, we can also cancel non-admissible self-cuttings in A¥.

Proof. First of all we reverse the parforated singular sphere A*(:, »)
in the same method as (4.9). In consequence of the deformation, there
happen a new non-admissible self-cutting as the intersection of C¥ and
S¥. But this is the case of m=0 in (4, 9). Therefore we can cancel it
by the reversing of the deformed sphere.

In virtue of (4.8), (4.9) and (4.10), we can prove by induction that
non-admissible self-cuttings of S* can be cancelled. Thus we have the
following :

(4.11) Every simply knotted sphere can be deformed, so that the
deformed sphere does not contain any non-admissible self-cutting.

Now we shall prove the following theorm, which is the purpose of

this section.

(4.12) Theorem 1. Every simply knotted sphere is equivalent to a
symmetric ribbon sphere.

Proof. From (4.6), (4.7) and (4.11), we can suppose that the circles
of the first kind on every C, are divided into several pairs, so that the
circles in a pair are mapped into the pair of terminal cuttings of a tube
in M*. Moreover, we can suppose that these terminal cuttings have an
opposite relations in height.
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Renominate the circles of f~(I(S*)), so that (c;, ¢/ i), (i=1, -, /o))
is a couple on C,, where c}; is mapped on the over surface at v%; and
¢, i is mapped on the under surface at v, ¥.

Let P,, (#=0,1, - ,n) be a point on C, which is not contained in
the circles of the first kind, and let P,; be a point on ¢} ; (i=1, -, /o))
Connect P, ; with P,;., by a simple arc s%,;, (:=0, - , {(c)—1), so that
these arcs are mutually disjoint and do not intersect f~'(/"(S*)) except

I(gy)—1 (o) . . .
their boundaries. Put L,=( > s7 ;1,)J(Z2 D2 ;), where D; ; is the interior
i=0 i=1

of the circle ¢!;. Moreover connect P,, and P., by a simple arc /,, if
and only if C, and C, are mutually neighbouring components, so that /.
intersects the common boundary at a single point and does not intersect
L, and L, except its end points.

Fig. 11.

Let N be a sufficiently small neighbourhood of >YL,{J>}/,.. Then
the bounding curve %k of N satisfies the conditions

(1) K separates & into two disks D, and D_, where D, contains
¢;: and D_ contains ¢/; (¢=0, - ,n; i=1, -, lo)),

(2) k intersects each ¢2; at two points.
Put k*=f(k) and deform S, so that u(k(k))=0, without changing the rela-
tion of heights at every cutting. Then D, and D._ satisfies the conditions
of the inverse image of a ribbon. It is obvious that A(D,) and A(D_.) are
symmetric with respect to R°. Thus we have completed the proof.
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5. The Alexander polynomials

We are now in a position to prove the existence of a sphere which
is distinct from simply knotted spheres. But before the discussion we
shall review some history concerning knotted spheres.

After papers concerning spinning spheres by E. Artin [1] and others
[2], [3], R. H. Fox and J. W. Milnor [6] discussed about slice knots or
null-equivalent knots, which appear as an intersection of knotted spheres
with a 3-dimensional subspace. In their paper they proved that the
Alexander polynomials of slice knots are given in the form of f(¢)f(¢™).
Several years later H. Terasaka [8] proved the converse of Fox-Milnor’s
theorem. In his paper, he tried to give an alte-nating proof of Fox-
Milnor’s theorem. But, since he assumed that every null-equivalent knot
is represented as a ribbon knot, there exist some gap” in the proof.
However it is valid that the Alexander polynomial of a ribbon knot is
given in a form f(#)f(¢”") as shown in Terasaka’s paper. Following
Terasaka’s work, S. Kinoshita [9] proved the existence of a knotted
sphere which has the given Alexander polynomial f(f) with f(1)=+1.
For our purpose nothing new is necessary, but only a remark to Terasaka’s
alternating proof of Fox-Milnor’s theorem is sufficient.

Let A be an arbitrary knot represented by a regular projection on
the ground plane, and let C be a trivial knot represented by a circle
which is disjoint from A on the ground plane. Connect a small arc «
of A to a small arc v of C by a band B which is represented by a pair
of parallel curves, so that (AJBJC)—(a|Jy) forms a knot %, where B
may tangle with A, C or B itself. It is obvious that if A is a ribbon
knot, then & is also a ribbon knot, and that conversely every ribbon knot
is given in such a fashion.

We call the boundary curve of B, whose orientation coincides with
the direction of B, that is from A to C, the positive side of B, and call
the opposite one the negative side. By an under crossing of B with A4
or C, B splits into several parts B,, ---, B, in this order. Let bigy ey bi iy
be the parts of the positive side of B; (i=1, -+, #), which do not contain
under crossing arcs at intersections of B itself, and let 13,-‘,, (k=0, .-+, I(1))
be the corresponding negative side of &;,. A and C are also divided by
B into A,, -, Ay and C,, -, Cy respectively. Moreover 4; (i=1,---, N)
may splits into &; ,, -, @; ., Dy some crossing points of A itself (Fig. 12).

Using the same notation for generating elements of F(k) as arcs of
b, Terasaka did as follows:

4) [7], p. 173, Problem 25.
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Fig. 12.

First of all he remarked that we can set

(5' 1) bi,oét_,lo == bi,l(i)Bi_,}(i) = B;, (t =1, n)

in the computation of the Alexander matrix of k.. However, it should
be noticed that the relations (5.1) are not valid in the group F(k). In
the next step, replacing generators b, -, ;s ; * 0 or v [T
B, ,B,and b,,, - 300> by 1y and eliminating &, ,,--

) bl,l(l) yeer b1,1(1) ’

Oors o 053 = 3 0pys =+ s by icwr-1» he got the following Alexander matrix
M,:
B,B,+B, bio bz, 00 by, o, 1> @1, 0" AN, wCAD Cy-Cy
ligColl ' 0 0 0
* 1 ipiealt * *
* 0 144 0
* 0 0 [[de(®)]|

In the above matrix, the rows which contain the square matrix
[lg(x)l| of order »n correspond to the relations at under crossings of the
band B with A or C, and the rows which contain the square matrix
|| f(x)l] of order n correspond to the relations along the positive side of
B. The minor ||Aa(x)|| is the Alexander matrix for the knot A, and
[lALx)l| is the Alexander matrix for the trivial knot C. In the last step
he proved that g(x)=xx"f(x""). Thus we have
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(5.2) If k is a ribbon knot, then there exists a polynomial f(x), such
that A x)=+x"f(x)f(x7"), where AJx) is the Alexander polynomial of k.
Now we shall prove the following :

(5.3) Theorem 2. Let kand S be the ribbon knot and the symmetric
ribbon sphere of an arbitrary ribbon x. Then, there exists a polynomial
f(b), such that

AL = FOSE),  As(t) = f().

Proof. First of all, we shall prove the most simple case, that is the
case where the knot A in Terasaka’s proof is trivial. In virtue of the
construction of S* in §3, B(S) has the generators:

O'(Bl) = O-(BI,O) = = O'(B1,I(1))
= o(4)) = - = o(4y),

o(B,) = O'(Bz,o) = e = O'(Bz,l(z)),

O-(Bn): O-(Br.,o) = = J(Bn,l(n))
= o(C) = - = o(Ca),

each of which corresponds to the part of % represented by the notation

in parenthesis.
Now we shall define a mapping ¢ of the generator system of F(k)
onto the generator system of $(S), such that

P(b; ) = ¢(5i,k) =o(Bix)".
Then we have easily that
O'(Bi,o) = e = O'(Bi,l(i)), (i=1-,n)
o(A) = - = o{Ay), o(C) =+ =0o(Cy),
and that the mapping ¢ forms a homomorphism of F(k) onto F(S).
Obviously the group F(S) is isomorphic to the group §*(k), which has the

same generators as ¥(k) and has the same relations as that of F(k) plus
the following relations:

(*) BlzB2="'=B”:1.
We add the new relations (*) in M, to compute the Alexander matrix

of *(k). Then we have Ag(t)=f(¢). The general case of the theorem
is proved easily by induction.

(5.4) Corollary. Every symmetric ribbon sphere has the Alexander
polynomial.
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Since the elementary ideal® &, of the Alexander matrix of the Fox’s
sphere is not principal, that is, it has not the Alexander polynomial,
combining (5.4) with Theorem 1, 2, we have the following main theorem
of this paper:

(5.5) Theorem 3. There exist spheres which are distinct from simply
knotted spheres.
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