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An Improved ISUM Rectangular Plate Element!
—Taking Account of Post-Ultimate Strength Behavior —

Yukio UEDA*, Sherif M.H. RASHED** and Yehia ABDEL-NASSER***

Abstract

In the framework of the Idealized Structural Unit Method (ISUM), a rectangular plate element has been
developed. This element takes accout of bukling, post-buckling behavior and ultimate strength of the plate. After
ultimate strength, the element predicts a constant carrying capacity in contrast with the decreasing carrying
capacity of actual plates after they reach their ultimate strength.

In the ultimate strength analysis of redundant structures, such as ships, highly loaded plate panels may
reach their ultimate strength and exhibit considerable plastic deformation, thus losing a portion of their carrying

capacity, before the whole structure reaches its ultimate strength.
' In this paper, an improved .element is presented in which the effectiveness of the plate after buckling is
expressed as a function of the total strain, and a new concept of strain hardening is introduced in evaluating
the post-ultimate strength elastic-plastic stiffness matrix. In this way, afler the element reaches its ultimate
strength the reduction of plate strength with the increase of inplane displacement can be evaluated. Comparison
of results of analysis by this improved element with those by the Finite Element Method indicates good

(93)

accuracy of the new element in practical use.

KEY WORDS:
Rigidity)

1. Introduction

In the late ninteen sixties to early seventies. Ueda and
Rashed? developed an effective method of analysis of
non-linear behavior of large structures. In 19752, the
called “The Idealized Structural Unit
Method”. In this method, the structure is divided into the
biggest possible structural units(components), whose geo-
metric and material nonlinear behavior are idealized.

method was

These structural units are regarded as elements in the
framework of the matrix displacement method of stractural
analysis.

In the middle eighties®*, a rectangular plate element and
a rectangular stiffened plate element have been developed.
The developed elements predict the behavior until their
ultimate strength with an accuracy simillar to those of
other accepted theoretical methods. These elements, how-
ever, predict a constant post-ultimate strength. The reason
for this is that the effectiveness of the plate panels is
expressed in terms of maximum stress in the elastic as well
as the elastic-plastic ranges. After yielding, the maximum
stress does not change leading to a constant effectiveness
and a constant carrying capcity.

(Rectangular Plate) (ISUM) (Buckling) (Ultimate Strenbth) (Post-Ultimate Strength) (In-Plane

Actual plate panels exhibit post-yield reduction of effec-
tiveness with the increase of inplane displacements, that is
with increasing strain.

In this paper a further development of the ISUM rectan-
gular plate element has been carried out to include this
effect. An improved element is presented in which the
post-buckling stiffness matrix is expressed as a function of
the total strain and a new concept of strain hardening is
introduced in evaluating the post-ultimate strength elastic-
plastic stiffness matrix.

In this way, the reduction of plate strength with in-
creased in-plane displacement after yielding may be
evaluated.

Several examples of rectangular plates with different
thicnesses subjected to in-plane uniaxial compression,
biaxial compression and shearing loads are presented and
compared with results of analysis by the Finite Element
Method.

2. Perfect Rectangular Plate Element

Each ship plate panel, unavoidably, has a certain
amount of initial deflection and residual stresses caused by
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94

fabrication processes. First a perfect flat rectangular plate
element free from initial deflection and residual stresses is
considered. The effect of these initial imperfections is
considered in the next section.

Following procedures presented by Ueda et. el®, the
plate element has only four nodal points with two degrees
of freedom at each nodal point as shown in Fig. 1. The
nodal displacement and the nodal force vectors are present-
ed as follows.
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Fig. 2 ISUM element and applied loads
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Fig. 3 Behavior of the rectangular plate element
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U= [U U, U; U7, U= [u,v]T" (1)
R= [Rx R, R,y R4] 7, R,= [in' Ryt'] T (2)

where, a suffix T indicates the transposed matrix.

The plate is simply supported at its edges. In-plane
biaxial compressive force, in-plane bending moments and
in-plane shearing forces are applied as shown in Fig. 2.

2.1 General behavior of the rectangular plate element

The behavior of the rectangular plate element when
subjected to an increasing load is illustrated in Fig. 3 and
may be summarized as follows:

The relation between the nodal force vector R and the
nodal displacement vector U may be conveniently expres-
sed in the incremental form. Before any failures have taken
place, the relation between an increment AR of the nodal
force vector R and an increment AU of the nodal displace-
ment vector U may be expressed in terms of an elastic
stiffness matrix K # as follows.

AR= K*AU 3)

As the nodal forces increase, the plate may buckle when
a buckling condition is satisfied.

F[g =0 (4)

where, T'; is a buckling function.

After buckling, the relation between AR and AU may
be expressed in terms of a tangential stiffness matrix K %,
taking account of post-buckling effects, as follows.

AR = K% AU (5

The element may continue to carry further load until
yielding starts and spreads over a sufficient area of the
element. This causes the element to reach its ultimate
strangth. A condition for yielding. T",, at any point / may
be written as follows.

Ly=0 (6)

After yielding starts, the relation between AR and AU
may be expressed in terms of an elastic-plastic stiffness
matrix K7 with the aid of the plastic node method as
follows.

AR = K" AU (N

K *# Ty and I",, appearing in Eqgs. (3) to (6) are similar
to those in Ref. 3) and are summarized in the following
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sections for completion of presentation. K # will rewritten
in terms of strain, ¢ and KF is newly derived on the base
of a new concept to account for post-ultimate strength
behavior.

If the properties of the element are such that buckling
does not occur until the element reaches its fully plastic
strength, the yield condition and AR-AU relationship in
the the post-fully-plastic strength state may be expressed
similarly by Egs. (6) and (7).

Expressions for ', and K © in this case may be found in
Ref. 3).

2.2 Failure-free stiffness matrix

Before any local failure, such as buckling, of the plate
element occurs displacement functions satisfying the condi-
tions of linearly varying boundary displacement and con-
stant shear strain along the plate sides are assumed as

follows.
u=al+a2x+aay+a4xy+b4(b2—y2)/2] @®)
v=>b,+b,x+by+b,xy+a,(a*—x?)/2

where,
u and v are the displacements in x and y directions at a
point (x.y),

i, and i, are coefficients, and,
a and b are the length and breadth of the element.

Following the procedures of the Finite Element Method,
the relation between Ag, an increment of the the strain
vector ¢ to AU, an increment of the nodal displacement
vector U may be derived as follows.

Ae=BAU 9

where, Ae=[Ae, Ag, Agy,| 7 and
B is the strain-displacement matrix

The relation between Ao, an increment of the stress
vector o and Ae may be written as follows.
Ac=DFE Ag (10)

where, Ac=[Aoc, Aoy, A7yy] " and,
D £ is the stress-strain matrix in the elastic range.

1 v 0
v 1 0 ]
0

0 (1—v)/2

The elastic failure free stiffness matrix K £ may then be
derived as follows.

95

K#=(, BT Df B dv (11)
where v is the volume of the element.
The stress in the element may be expressed as

oc=D%¢g=D* B U

2.3 Buckling Condition T,

In ship structures, considerable
moments may act on large stiffened plate structures such as
decks, sides or bottom plating. Considering only one plate
panel out of such a large construction, in-plane bending

in-plane bending

moment acting on such a plate panel is small and may be
neglected when checking buckling in terms of average
stresses.

Based on an analytical-numerical solution®, the buck-
ling condition. T'y, of the rectangular plate element may
then be written in terms of average normal stresses oyq, in
x direction and o6y, in y direction and a uniform shearing
stress 7y, as follows,

1- when 0yq, is tension and oy, is compression (gyq,
<Oadyav>0)

— (m2+ﬁ2)2 Gxav

Oyay Txy \2
Ty = —1
" = (4 B e T

(12.a)

Oycr Txycr
2- when 0y, is compression and oy, is tension (oygs
>0,dyau<0)

:(1+ﬂ2)2 Oyay 0'xav+( Txy )2_1

s (12.b)

Oxcr Txycr

3- when oy, is compression and o4, iS compression
(Oxav>0,0500>0)

(6yav/ Gyer)
1— (1'xy/ Txycr)z

(Oxav/ Oxer)
1—( Txy/ 'z"x;w:r)2

Ty =]

1+ -1

(12.c)

where, Gxer, Oyer aNd Tyye, are the buckling stresses when
each stress acts alone on the plate, m is the number of half
waves of buckling when the plate buckles under the action
of oyqy alone.

B=a/b: aspect ratio of the plate,
a=a,=1 For 1/4/ 2<8<4 2, and,
a, =0.02934°—0.336432+1.5848 —1.0596 ]

a,=0.00493°—0.118382+0.51584-0.8522
Forg>+4 2

When I'; is smaller than zero, it indicates that the plate
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Fig. 4 Stress distribution in a buckled plate.

has not buckled. When Ty is greater than or equal to zero,
it indicates that the plate has buckled.

2.4 Post-buckling behavior and stiffness matrix

After the plate element has buckled, out-of-plane deflec-
tion is induced and the stress distribution in the middle
plane of the element (membrane stress) becomes non-
linear. In order to continue to use the same displacement
functions as Eq. (8) in the post buckling range, an imagi-
nary flat plate with linear stress distribution is considered.
The material properties of this imaginary plate are deter-
mined such that it shows overall deformation equal to that
of the buckled plate under the same load (same stiffness).
First let us consider a plate element which has buckled
under in-plane biaxial compressive and shearing forces.
The stress distribution in the middle plane of the plate is as
shown in Fig. 4 . The shortenings J, and ¢, in x and y
directions and the shear strain y,,,, of the buckled plate
may be evaluated as follows,

0x= AExar= fon Ex)y=0dX = foa[o'x/E)y=o —v0y/E)y=p] dx
=a(Oxmax—V0ya)/ E

8y=beya= [, &m0 dy= [, [0/ E)seo—v0x/ E)xa]dy
=b(0'yma"x" V0ras)/ E

Yavar= Txy/ Ge

(13)

where Gymaxr and Gymar are the maximum stresses in x and
y directions. They may be expressed as follows®.

Oxmax =Si+f2 Cravt+ (fa+v)0yant 1

(14)
Oymax=81+ (82 V) Orav+8s0yan+ &

where,
fi =1.6205,v%*

f; = (f;;+ l)gz— v
g =1.620,,v%*
&=(g+1)&(a*/m*b*)+1

and,

L=(f+D&+1
fi=—(fo+D&n*m?D/1a®
&=(g+D&—v

g8 =—(g+1)&n2D/1b*

2m*b*

2m?a?h?
= a‘—{—m‘*b“’ =

T at+ mtht’

2(02+ mZbZ)Z
8= a4+m4b4

1 2
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D=Er3)12/(1— v?)

v="| oy | /Txyer

fy=0.62v Axmax* =0
fo=13v15 Axmaxt >0, V=11
fo=1.3y Axmaxt >0, v>1
g,=0.62v Aymax* =0
g,=1.3v'5 Aymax* >0, V1
g,=1.3v Aymax™ >0, V1

and,

Axmax” = &+ &2(Oyav/ Oxan) — (n*m*D/a?) & /(Oxant)
a'ymax* = gzdxav/ 0’yau+ (a4/m4b4) §'1 - (”ZD/bZ)/(Gyavt)

and,
G.=the effective shear modulus

G Oxav Cyay

=—(G = +G) (G s +G)
CZ O-XCT ycr
12915 5.166 8.4

= ———+1.6482, C,=———04

Ty 15 v4S + 275

G=E/2/(1+v)

From Eq. (13), the relation between the average strain
and the average stress may be written as follows.

&xar=(Oxmax— VOyan)/ E
Eyap = (— VOxav+ O'ymax)/E

(15)
Vxy = Tuy/ Ge

Substituting the maximum stresses Oyxmax and Gymex Of
Eq. (14) into Eq. (15), the relation between the average
stress and the average strain may be rewritten as follows.

o [( g+f5;(gl+g4)—g3(fl.+ﬁ)
e f;ga_ngé ? Exav

&h+A)-h& +£)

Eyay

)Exav_ Ef:; Eyay J

)syau]
(16)

I
p :——[
L8 &fs

Txy = Ge Yy

— Egoeant (Efy+

Now, the buckled plate is replaced by an imaginary flat
plate of a homogeneous material. Then, the stress-strain
relationship of Eq. (16) may be considered to be that of the
material of the imaginary plate and written in the follow-
ing form.

Oim=D"g;m 17
where, D™ is the stress-strain (o¢;,— &;n) matrix of the
imaginary plate and is give by

96
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Fa +f§(g.+g‘)—gs(f1+f.) _E, 0

1 Exim
Dim=— &h+A)-fa+8)

—~Eg, Ef+
Eyim

0 0 EG,

where, E\=f,8:—&:f;

It is to be noted here that D" is derived for a combined
load of biaxial compression and shear. This matrix can be
applied, however, for combined loads of biaxial compres-
sion, biaxial in-plane bending and shear, since in-plane
bending moments are small in plate panels and assumed to
have small effect on the post-buckling stiffness.

Expressing Eq. (17) in an incremental form, Ag;,, an
increment of the stress o¢;,, is expressed as follows.

ACin=D"Agim+AD™g;n (18)
. d im
= DzmAEim +— AGimeim
dgim
, aDim aD™  dg,
ACim =D Agim+ — eimleint+—— Eim—m Aéim
Eim OCim deim
from which
AO’{m:DB AE,‘m (19)

where, D? = the relation between an increment of stress
and an increment of strain of the imaginary plate, and is
expressed as

aDim . aDim
&im) "N (D"

im Eim

Df=(1— &im) (20)

where, I =the unit matrix.

aDim aDim aDim aDzm
Eim=— Eim Eim Eim],
OEim OExim aEyz‘m asxyz’m
aDim aDim aDz'm aDim ]
Em= &; LoF €
ACim " OCxim ™ 9Cyim " OTxyim "

The stiffness matrix K, of the imaginary plate may be
written as follows. ‘

K'=[ BTD"B dv 1)

where, B is the strain-displacement matrix derived from
Eq. (8).

Recalling that the original buckled plate and the imagi-
nary plate exhibit the same stiffness, the post buckling
stiffness matrix K # is given as follows.

K?=K?,={ BTD®B dv (22)
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2.5 Plate behavior after yielding

For simplicity of presentation, let a rectangular plate
simply supported along its four edges and subjected to
uniaxial compression in the longitudinal direction be
considered. After buckling, a stress distribution as shown
in Fig. 5 is developed in the middle plane of the plate. As
the load increases yielding may start at points 4 and B
where the membrane stress is maximam in compression
(minimum) in x direction and maximum in tension (maxi-
mum) in y direction, or at the concave surface of the plate
at center. The latter causes a decrease of bending stiffness
leading to a higher rate of increase of deflection, and
finally yielding at points 4 and B. As the plastic zone
spreads around points 4 and B, the plate reaches its
ultimate strength. As the plate continues to be compressed
{imposed displacement), deflection increases causing a
decrease of plate effective width. Meanwhile, shortening of
edges /-2 and 3-4 produces plastic strain sround points 4
and B. If the material is elastic perfectly plastic, the
magnitude of oxmax (at the edges) does not show appre-
ciable change. A decreasing effective breadth with constant
Oxmax leads to decrease the compressive force.

In this work, surface yielding is ignored and plasticity is
assumed to be concentrated at points where yielding has
started at the edges, according to the plastic node method.

2.6 Ultimate strength condition

As mentioned in the preceding sections, in the case of a
simply supported rectangular plate element which has
buckled under in-plane biaxial compression, in-plane ben-
ding and shear, the maximum membrane stresses are devel-
oped along the edges. Yielding starts at any one or combi-
nation of locations at the four corners or in the middle of
each half buckling wave at the edges, see Fig. 5. Then,
Yielding will be examined at these points which are called
here checking points of plasticity.

ox at y=0, b, o, at x=0, a and 7,, may be expressed in
terms of nodal forces as follows.

oc=3S,R

S, =D?BK~! @)

In the above equation, D! defines the relationship of the
maximum stresses to the average strains.

1 wva,/a 0
DP=FE, | vb,/b 1 0
0 0 G./G,

where, E,=E/[1—(bea./ba)v?] and, b, and a, are the
effective widths of the plate element in x and y directions,
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Fig. 5§ Stress distribution after buckling under uniaxial com-
pression

respectively.

be/ b= 0'0v/ Oxmax= 1/[1 +f1/‘7xav)+ (fo+ 1)0’xmax*]
(24.a)

ae/a: 6yav/ Oymax = 1/ [ 1+ (gl/o—yav) + (gu‘JF‘ l)a’ymax*]
(24.b)

oy at x=0 and @, y=>,/2 may be evaluated as follows,

Ox= o’va(l“a’;n.’min)zl)l "B KR(1— a’xmin) (25)
where,
Axmin= 1~3(0'xcr/0'xav)v2’1+ @xmin*(0.3v+ l),
Oyay m>m2D 1
Axmin® = G+& > & s
Oxav a, Oxavl

and, D™ is the first row of the matrix D™,

oy at =0, b in the middle of half buckling waves (x =
[/2 where [ is the length of one half buckling wave) may
be evaluated as follows.

0y = Oyao(l — @ymin) =Dy'™B K'R(1— aym:n)
where,
@ymin=1.3(0ycr/ Oyan) V*' + @ymin™ (0.3v+ 1),
at z’D 1

o‘xav
* !
Xymin = Cz T & 3
Oyay M*b* b? Oyapt

(26)

’

and, D,'™ is the second row of the matrix D™
Yielding is assumed to start at any of the checking points
where the Mises yield condition is satisfied, that is
Iy=0x"— 0x0y+ 632+ 315, — 0,°=0 27)
Expressing stresses in terms of nodal forces, the yield
condition may be written as follows.
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Py:Fy(R):O (28)
Ultimate strength will be reached after yielding has
occurred at a sufficient number of locations.

2.7 Stress strain relationship after yielding
After yielding has started at one or more locations, the
following assumptions are made

1. the material is elastic-perfectly-plastic.

2. the total relative axial displacement, u along an edge
where yielding has started may be divided into elastic
component «¢ and plastic component u?
u=u+u? (29)
Dividing Eq. (29) by the length of an appropriate edge
(a or b) the following expressions for average strains &g,

and &y4,
Exav= & exau+ prav aty =0orb (30)
eyauzeeyav+€pyav atx=0ora

where superscripts ¢ and p indicate elastic and plastic
respectively. ‘

3. The average shear strain y,, may be divided into
elastic component y?,, and plastic component y¢,,

Var =Y+ ¥Px» 31

Equation (30) and (31) may be assumed as follows.

{ean} ={e%o} +{em} (32)
Now let the imaginary plate appeared before be consid-

ered again. The strain {&,,} is equal to {&,,} and may be

divided into elastic component &%, and plastic component

Epim

Eim=E%m+eh (33)
Taking,

cém=¢%, and

epz'm = Spalh

The following two assumptions are made.

4. The average stress oy, is related to the elastic compo-
nent of the average strain &%, by Eq. (16). That is ¢;y, the



An Improved ISUM Rectangular Plate Element

stress of the imaginary plate, is related to £¢,, the elastic
component of the strain of the imaginary plate by the
secant stress-strain matrix D" of Eq. (17)
Oim=D"" &%y (35)
5. The secant stress-strain matrix, D™ is assumed to be a
function of the total strain, &;,.
Now stress increment Aoc;, caused by strain increment
Ae;n may be calculated as follows.
A strain increment Ag,, causes stress increment Ac;, and
an increment of D™ AD?™ Taking account of these incre-
ments, Eq. (35) may be written as follows.
(Gim+Adz'm):(Dim+ADim)+(seim+A€eim) (36)
Subtracting Eq. (35) from Eq. (36) and neglecting small
terms of second order
Agim:DimAEeim+ADimA5 m (37)
Considering assumption 5 and Eq. (33), AD' may be
expressed as follows.

where,

dDz‘m
Agim=——(Aem+Ae"n)
deim

Substituting, AD*™ in Eq. (37),

im im
&%mAem+

Acimn=D"Ae%,+
Eim deim

EeimAlfPim

D (dD*™/de;m)e%n is D” of Eq. (19). Therefore

im
Aoim=D" Aelmt—7— e%im Defin
im

(38)
In the above equation, Ae%, is responsible for the
change of average stress ( 0,, = 6;r,) due to the change of the
stress at yielded points at the edges. Ae?,, is responsible for
the change of average stress due to the change of the
effective width of the plate (implicitly expressed in Di™).

2.8 Elastic-plastic stiffness matrix

Plastic nodes® are inserted at the checking points where
the yield condition is satisfied. Using Eq. (38) and follow-
ing the procedures of the plastic node method, an elastic-
plastic stiffness matrix may be derived which is capable of
representing the decrease of the carrying capacity at the
post-ultimate strength state. This matrix is, however, un-
symmetric. A symmetric stiffness matrix is preferred for the

99
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efficiency of computation. A symmetric elstic-plastic stiff-
ness matrix may be developed by introducing the concept
of strain hardening rate and to represent the change of
plate effectiveness caused actually by large deflection not
by the material since it is assumed elastic perfectly-plastic.
A virtual strain hardening (softening) is assumed such as
that, Ag;, which is actually caused by the change of plate
effectiveness due to Ae?, is treated as an increment of
stress caused by this virtual strain hardening due to Ae?,,.

2.8.1 Virtual equivalent strain hardening rate H,;),

In the following a virtual equivalent strain hardening
rate H,,), is evaluated.

As mentioned before Ae?,(=Ae%,) in Eq. (38) corre-
sponds to the change of the stress in the yielded checking
points whose the yield conditions are still satisfied, while
Aet(=Ae%,,) causes a change Aoy, (=Aocy,,) due to the
change of the plate effectiveness. The change of plate
effectiveness is replaced by a virtual strain hardening.

Therefore in evaluating H,,), only the last term of Eq.
(38) needs to be considered. Ao;, may be written as

Dz’m
Aoim=—— &%m Aspim (39)
dez’m
Aoim=D, Aspzm (40)
where,
Do dDim . _ aDzm do.im e aDzm aeim

= Eim— Em T
d€im O0in d5im O&im

In Fig. 6. Eq. (38) is illustrated in the case of one
dimensional stress state for simplicity. According to the
conventional treatment of strain hardening, an increment
of stress is expressed as follows

Aoc= E Aeb
= ETA g ] (41)

= HAg?,
where, Aeg,=Ae%+Acb, (41.2)

Here Ac® and Ae?, are defined as increments of virtual
elastic and plastic strains and are different from Ae¢,, and
Ag?, as shown in Fig. 6. Comparing Eq. (40) with the
second of Eq. (41) and considering Fig. 6 A &,, E and E*
may be expressed as follows. '

Aey, = A epz‘m’
E = D?, and, } (42)
ET =D,

H may be calculated as
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Ae® A eP
e}
J» —— /‘\ ET
0 V4
> s Ao
S~ ’
el P
(%]
aeP
A€ =0
E
0 Strain €, €

Fig. 6 One-dimensional stress strain relationship

H=([D,]'—[D*]™H? (43)

The above relationships are expressed in terms of stress
and strain. Similarly, the relation between the increments
of nodal forces and nodal virtual plastic displacement
(corresponding to virtual plastic strain) after yielding may
be evaluated as follows.

AR=K, AU?%, (44)

where, Ko=f B7 H B dv (45)
AU?%, is an increment of virtual plastic displacement
resulting from Ag?®,, the increment of virtual plastic strain.
As mentioned before, a plastic node is inserted at a
checking point where yielding has started. The general
expression of the plasticity condition at checking point i is
given by the following equation®.
F;=T,:(0)—06,;=0 (46)
where, T',,(o) is the yield function. o,; is a function of the
equivalent plastic strain &’,; and indicates the size of the
yield surface at point i under yielding. The above equation
may be written in terms of nodal force R as follows.

Fi=T,/(R)—06,,=0 (47)
The consistency condition may be written as
dF;=0, that is {dT",;/dR}" [dR] —do,;=0  (48)

Equating the external and the internal plastic works during
a load increment.

(R} T{AU®} = [,0,:de’ pudv

Transactions of JWRI
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Assuming that the plastic behaviour is the same over the
whole plastic region ie. de’,; is the same over the whole
plastic region®, then

{RY{AURY=de pi [400:dY (49)
According to the plastic node method,
{AUpv}:{dFyi/dR}dli (50)

Combining Egs. (49) and (50), the following equation is
obtained

dE’piz C,'dli (51)

where, ¢;={R}” {dT,,/dR}/ [ ,0,:dv

Substituting Egs. (44), (50) and (51) into Eq. (48), the
following quation may be obtained

(dooi/de’pi)cidA;={dTy;/dR} "[K,] {dTy;/dR}dA,;
(52)

(dooi/dee’s;)c; is equal to H,,),;, the virtual equivalent
strain hardening rate for the plate element at the yielded
checking point i.

Therefore,

H.)p:={dTy;/dR}" [K,] {dT,:;/dR}

When the plasticity condition is satisfied at 7 nodes, the
virtual equivalent strain hardening H,,), may similarly be
derived as follows

Heq)u: [dr‘y/dR] T [K0] [dFy/dR] (53)
where, [dT',/dR]=[dT,1/dR dT,,/dR .... dTyn/dR]

2.8.2 Elastic-plastic stiffness matrix
When yielding occurs at node £, substitution of Eq. (51)
into Eq. (48) produces

{dT,:/dR} " {AR}=(do,:/de’ p;)C1dA;
or, {dFyi/dR} r {AR}:Heq)vidfli

(54)

Putting {dT',;,/dR}"=®,7, and H,,),;=®; " K,®, into
the above equation, it may be rewritten as
@f TAR:®,~ 7‘Ko®idl,' (55)

Now AU, an increment of the total nodal displacement,
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may be written as follows,
AU=AU*+AU? (56)
Here AU, AU® and AU? correspond to Ag;m, €%, and

e, respectively.
Considering the first of Egs. (42) and (41.a),

AUP=AU%+AU?, (57)
where AU, AU¢% and AU?, corespond to Ae,, €% and &5,
respectively.
Substituting Eq. (57) into Eq. (56), AU may be written
as follows,
AU=AU4+AU%+AU?,
The increment of nodal forces may now be written as,
AR=K?(AU%+AU9)=K*(AU—-AU?%)
Substitutin Eq. (50) for A U¥, then
AR=KZ(AU—®.dL;) (58)

Substituting the above equation into Eq. (55), d1; may
be evaluated as,

dr,=®,"K*% AU/S; (59)
where, §;=®,"(K?+ K,)®; (59)

Substitution of Eq. (59) into (58) gives the increment
AR of nodal force after yielding as follows,

AR=K?AU

where K? is the elastic-plastic stiffness matrix and is
expressed as:

KP=K?—K50,0,"K*/S,;

When yielding occurs at m nodes, K? may similarly be
derived as follows,
KP=K?_K?®pS'®TK?* (60)

where, @=[®,,®,, ..... , @], S=0 (K, + Kp)®

3. Effect of initial deflection and residual stresses

As mentioned before, usually ship plates have initial
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deflection and residual stresses. These initial imperfections
are produced at the fabrication processes, in particular due
to welding. In this section, the effect of initial deflection
and residual stresses on the behavior of plates is consid-
ered.

First, initial deflection is dealt. Initial deflection may be
expressed in a fourier series as follows”.
w":;[ W ,n(sin m zx/a) sin(zy/b) (61)

A plate with initial deflection and subjected to biaxial
compression exhibits an increase of deflection from the
beginning of the loading process. At the beginning, the
magnitudes of all fourier components of the initial deflec-
tion increase. Close to the critical buckling load, unless
some other component has an extremely large magnitude,
the magnitude of the component similar to the buckling
mode of the corresponding perfect plate continue to
increase at a higher rate, while the magnitudes of other
components start to decrease. Strictly speaking, bifurcation
at the critical load is not observed. The behavior is ac-
companied with the effect of large deflection from the
beginning of loading. Yielding starts at a load lower than
that for a perfectly flat plate (without initial deflection)
and ultimate strength is also reduced. Only one component
of initial deflection similar to the buckling mode has an
appreciable effect on plate behavior and needs to be taken
into account. Initial deflection may then be expressed as
follows.

Wo =W omsin(mznx/a) sin(zy/b) (62)
where, W,,=the amplitude of a component of initial
deflection similar to the buckling mode,

m=the number of half buckling waves of the buckling
mode.

The value of W,,, to be used in design is given in Ref.
4) when average measured values are not available. The
value of m depends on the plate aspect ratio and the ratio
of 0yau/ Oxan- It is the smallest integer satisfying the follow-
ing equation.

(m2b2/ a2+ 1) ((m4-1)2b2/a?+1)?
mzbz/a2+(0'yav/6xav) o (m+1)2b2/a2+(6yav/axav)

Initial deflection does not have a large effect on plate
behavior in shear and in the case where the plate is subject-
ed to shear stress together with biaxial compression, initial
deflection may still be represented by Eq. (62).

Additional deflection due to the applied load may be
assumed in the same form as follows.

w=W sin(mzx/a) sin(zy/b) (63)
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where, W is the amplitude of the additional deflection

Next, welding residual stresses are dealt. These usually
take the distribution as in Fig. 7-a and may be idealized as
in Fig. 7-b. This distribution is characterized by two ten-
sion bands near the edges where the stress reaches the yield
stress, and a compressive region in the middle portion of
the breadth of the plate. This stress distribution is in
self-equilibrium. The effect of residual stress is directly
related to the magnitude ¢, of the compressive region.

The effect of these residual stresses is to reduce the
buckling load, the load at which first yielding occurs, as
well as the ultimate strength and post-ultimate strength
carrying capacity.

In the present formulation, when evaluating the large
deflection behavior of the plate, effective compressive resid-
ual stresses distributed uniformly in x and y directions are
assumed as follows®.

Orex— o-rx(l_'s G'rx/( Orxt+ O ))
’ (64)
Orey=Ory(1—.5 07y /(074 05))

where, o, and o, are magnitudes of the compressive
residual stresses in x and y directions, respectively.

As mentioned above, the deflection of a plate with such
imperfections, when subjected to external loads, starts to
increase from the beginning of the loading process and the
bifurcation at buckling is unclear. The behavior of such a
plate may be treated in the same way as the post-buckling
behavior of perfectly flat plates. In the following, the elastic
stiffness matrix, ultimate strength condition and the post-
strength elastic-plastic stiffness matrix

ultimate are

evaluated.

3.1 Elastic stiffness matrix

As being introduced in the evaluation of the post buck-
ling stiffness matrix of a perfectly flat plate, a similar
imaginary flat plate is employed, using the linear displace-
ment functions of Eq. (8). Stress distributions are linear in
this imaginary plate and the material properties are deter-
mined so that the plate exhibits similar stiffness to that of
the deformed plate. Under loading, shortening in x and y
directions and shear strain of the deflected plate may be
evaluated, and the relation between average strain and
average stress may be written as follows.

Exar ™= (Cxmax’ — Vo—yav)/E
Eyau:(o'ymax*““ VO'xtzv)/E (65)

Vevar= Txy/ Ge
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Fig. 7 Longitudinal stress distribution in a welded plate sub-
jected to uniaxial compression

where, 0,4, and o,,, are the average stresses and oymax*
and oymq,* are the maximum membrane stresses caused by
the external load. In order to determine the maximum
membrane stresses, Oxmaxt aNd Gymax'> Galerkins method is
applied to solve the equilibrium and compatibility equa-
tions of the plate?. Oyma® and o,.* are obtained as
follows.

Oxmax’ = Oxay+ 1.626xc V24 04t (ﬁ)"i‘ 1)

(66)
Oymax' = Oyay+ 1.620ycr V4o, (g+ D

where, stress due to large deflection, ¢x, and o,,, are
given by.

Orr =(0.125ma?/a®) EW (W +2W ,)
0, =(0.12522/ D2 EW (W +2W )

and W can be calculated from the following equation,

CW 3+ CW 4 CGW + C, =0

mh? o’
where, C; = E( " +F)’ Co=3W,nC
. 4z°Et m? | ) m? 1
C3:2Wom Cl+m(71_z_ +Ez‘) —]6{;;(0'an+ Urex)'i'ﬁ(dyau‘*‘ O'rey)}

m? |
C,=—16{ ”a—z(O'xav‘i" Orex) +7)_2(0'yav+ Urey)}Wom
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Substituting maximum StIesses Gymaert and Oymer* in Eq.
(66) into Eq. (65) the relation between the average stress
and the average strain may be obtained as follows.

!

[—p?

F+H+y(F*+H*)

Oxan™= [ (E )Exav+ v Egyav }

)Syau}

Exav

v(F+H)+F*+H* (67)

| .
o'y,w::; [ v Eeygpt+(E

Evay

Txy = Ge'}’xy

where, F = gy (1.62v*%)

H=0 (f,+1)

F*=g,0r(1.629%4)
H*=0, (8&+1)
Now, replacing {o,,} and {es} in Eq. (67) by {oin}

and {&;n} respectively. The stress-strain relationship of the
imaginary plate may be written as follows.

O'iszimez‘m (68)
where,
F+H+y(F*+H*
(E— +H+u(F*+ )) E 0
1 Exim
Dif= — F+H)+F*+H*
- Ey (E- Y.(_)__.,_)
Eyim
0 0 (1-AG

Similar to the case of the perfectly flat plate, the incre-
ment of Ae;, due to an increment of Ae,, may be expres-
sed by the following equation.

aD™  dg; oD
Ac;m=DAg;n Eim = &Eim+ EimDe&im
im deim im
ie, Aoim=D"% Aein (69)
im a im
where, D# =(] — ° &m)t (D™ &im)
im im

and the post-buckling stiffness matrix is given as follows:

K?=(BTD®B dv (70)

3.2 Ultimate strength condition

In presence of residual stresses, tension bands as shown
in Fig. 7 exist along the edges. The widths of these tension
bnads, &, and &,, may be expressed as follows.

&:=0.50mb/(0,4 0re)
&=0.50,a/(0,+ ory)

Therefore, initial yielding may start just on the inside of
these tension bands rather than outer edges.
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As in the case of the flat plate element, the stresses due
to external load, o, at y=0 and b, ¢, at x=0 and @, and
Txy may be expressed as follows.

oc=5,R
S,=D”BK™!,

1 wva,/a O
and, D" =E, | vb,/b 1 0

0 0 G,/E,

where, E,=E/[1—(b.a./ba) v?], b, and a, are the effec-
tive widths of plate element in the directions of x and y,
respectively,

be/b = Oxav/ Oxmasx

@,/ A= Oyav/ Cymax"

ox at x=0 and a, and y=5/2 may be evaluated as
follows,

0% = Oxav(l = Axmin) = D" BK ' R(1— &xmin)

Axmin=1.3(Oxcr/ Oxav) V2! +(0xs /0xa0)(0.3v+1)

oy at y=~0and b in the middle of half buckling waves
(x=1/2) may be evaluated as follows.

Oy = Oyas(l— Aymin) = D" BK 'R(1— atymin)

where, aymin=1.3(0ycr/ Oyan) V"' +(0x / 03a0)(0.3v+1)

For examination of initial yielding, stresses at the inside
of the tension bands of residual stresses may be obtained as
the sum of the residual stresses and the maximum stresses

O'xmax)y=b—5, =1/2[6x)y=0— 0x)y=tr2]€0822E, /b -+
1/2[0x)y=b+ 0x)y=bi2) -+ Orex
O'xma.r)y= & T 1/2 [ o'x).v=0 - 0‘x)y=b/2} cos2 ”gx/b +
1/2 [dx)y=0 + O'x)y=bl2] ~+ Orex
5ymax)x= a—g, = 1/2 [ Oy)xea— Gy)x:l/z] cos2ngy,/a+
1/2 [ Oy)x=at O'y)x=1/2] + Grex
Cpmade= 2. =1/2[0y)xm0— Oy) x=y2]cOS2&y/ a+
1/2[6y)x=0 + O'y)x=l12] + Orex

(1)

Yielding is assumed to start at any location when Mises
yield condition is satisfied, that is-

I'y=0y2— 0x0y+ 05°+ 0,°+ 3157 — 0,2 =0
pd

Expressing these stresses in terms of the nodal forces, the
yield condition may be rewritten as.
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r,= T, (R)=0

3.3 Elastic-plastic stiffness matrix

In a similar way as in the case of the flat plate element,
plastic nodes are inserted where the yield condition is
satisfied. Having D" and D # of Egs. (68) and (69), the
elastic plastic stiffness matrix K? may be rewritten as
follows.

K*=K”—K"®S' ®"K"

where, K”? and S~ are given by Egs. (70) and (59)
respectively, and @ equal to {dT,/dR}

4, Verification of Accuracy of the Improved Element

The improved ISUM plate element was presented in this
paper to predict the post-ultimate strength of plates under
different olads. In order to check the capability of the
element, a series of analyses have been carried out and
comparisons with results of analyses by the Finite Element
Method are made. Analysis models are simply supported
square plates with typical slenderness ratios of ship struc-
tural plates and different values of initial deflection. In the
new element formulation, the effect of aspect ratio and
residual stress on post-ultimate strength carrying capacity
is assumed to be similar to their effect on ultimate strenght,
which has been checked in Ref. 8). Therefore no checks on
theses effects are performed here.

In the analysis by ISUM, each plate is modeled by one
element . In the Finite Element Method analyses, models
are composed of 10X 10 to 16 X 16 elements (5X 5 to 8 X8
elements for one quarter of the plate) with 6 layers for
evaluation of plasticity.

4.1 Uniaxial compression
Eleven simply supported squared plates as shown in
Table 1 are subjected to uniaxial compression in x-
direction. The load is applied as a uniform displacement of
the edge x = a, while keeping the edge x =0 stationary. The
two edges y=0 and y=> are free to move, however they
are kept straight (ISUM plate element formulation guaran-
tee straight edges). Figures 8, 9 and 10 show results of
analysis using the improved ISUM plate element together
with those by FEM. It may be seen that this ISUM element
predicts the decrease of the carrying capacity at the post-
ultimate strength state. Results are generally in good agree-
ment with results of the analysis by FEM. However, the

following may be observed.
a. Since gradual progress of plasticity is not taken into
account in the ISUM elements, a knuckle on p-A curve
at the ultimate strenght may be observed. This leads to
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Table 1  Geometrical and material properties of rectangu-
lar plates subjected to uniaxial compression loads
Oy aXbxt Fig.
©a5e |y of /m? (mms) A We/t]
1 0.01
2 28 1000 1000 % 16 2.28 0.1 8
3 ’ 0.2
4 0.5
5 0.01 9-a
6 28 500 X 500X 9 2.03 | 025 )
7 05 | 9-b
8 0.01
9 28 1000 x 1000 x 24 1.52 0.1 10
10 ) 0.2
11 0.5
1.0
wolt=0.0’|
Wo/t=0.1
0.5 Uy /t=0.2
Wo/t=D.5
——— ISUM
—=--— FEM
1 L !
[} 0.5 1.0 AX/AO 1.5 2.0

Fig. 8 Load-shortening relationships of uniaxially compressed
square plates (cases 1, 2, 3 and 4, 1 =2.28)

No/t=0.0'l
wo/t=0. 25

wolt=0.5

/8

Fig. 9-a Load-shortening relationships of uniaxially com-
pressed square plates (cases 5, 6,and 7, 1 =2.03)

0.5
Wy/t=0.5

Wo/t=0.25

— ISUM
===~ FEM

1

0 0.5 1.0 1.5
(Ho*u)/t

Fig. 9-b Load-deflection relationships of uniaxially compressed
square plates (cases 5, 6,and 7, A =2.03)
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1.0 o
W,/t=0.01 (e,
. N\ Bt
&
%
L
W /t=0.1
0.5 ’
W/t=0.2
W /£=0.5
—— TSUM
------ FEM
1 . L
0 0.5 1.0 1.5 2.0
a8,

Fig. 10 Load-shortening relationships of uniaxially. compressed
square plates (cases 8, 9, 10 and 11, 1 =1.52)

a slight over-evaluation of the ultimate strength. As
displacement increases, the carrying capacity quickly
approaches that evaluated by the FEM.

With larger values of W,/t, the ISUM element tends to
slightly under-evaluate the ultimate strength, and post-
ultimate strength carrying capacity.

4.2 Biaxial compressions

The analyses are performed on simply supported plates
with W,/t=0.01 under biaxial compressions, as shown in
Table 2. The load is applied as unifor displacements A,
and A, at the edges x=a and y =25 respectively, while
keeping edges x=0 and y =0 stationary. The loads with
different ratios of A,/A, are applied. However, in each
anaylsis, A,/A, is kept constant in the whole course of the
analysis.

Figures 11 and 12 show results of the analyses by ISUM
and by FEM. In Figs. ll-a and 12-a the non-
dimensionalized relationship of the total force F, in x-
direction to the shortening A, are plotted for plate thick-
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1.0
—— ISUM
Ll_o . 5
e FEM a8, =0
8,78, 1.0
0.5 A
e 8/, =2.0
LT~ 1
0 0.5 1.0 1.5
a /8,

Fig. 11-a Load-shortening relationships of biaxially com-
pressed square plates (cases 12, 13,and 14, 1 =3.65)

0.75
‘ — ISUM
==== FEM
0.5 7~ A /A =2.0
o y X
= A /A =1.0
> y X
[N
0.25L
A /AX=O.5
1]
l‘
ll
J 1
0 0.25 0.5 0.75
/' Fo

Fig. 11-b Ratio of compressive forces in x and y direction
(cases 12, 13 and 14, 1 =3.65)

Table 2  Geometrical and material properties of rectangular plates
subjected to combined in-plane compression and shear loads.
oy axbxt 1 Ay/Acor| Fig.

case kgf/m? (mms) A Wo/t | load Ae/Ay | No.
12 0.01 0.5 11-a
13 28 1000 x 1000 10 3.65 | 001 |ox+oy| 1.0 11-b
14 0.01 2.0

15 0.01 0.5 12-a
16 28 1000 x 1000 X 16 228 | 001 lox+o,| 1.0 12-b
17 0.01 2.0

18 28 1000 x 1000 x 6.7 545 | 0.0t —

19 25 1000x 1000x8.33 | 4.14 | 0.6 Ty - 13
20 28 | 1000x 1000x 13.5 | 2.7 0.01 —

21 28 1000 x 1000 X 16 2.28 | 0.01 1.0

22 28 1000 x 1000 12 3.04 | 0.01 1.0 14-a
23 28 1000 x 1000 X 10 3.65 | 0.01 |oxt 7| 1.0

24 28 1000 x 1000 12 3.04 | 0.01 0.666

25 28 1000 x 1000 x 6 6.08 | 0.01 0.666 | 15-b
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1.0
Le ——— ISUM A /A =0.5
My FEM s
e 8,/8,1.0
0.5 k >
. 8,/8,72.0
! I
0
0.5 1.0 1.5
X 0

Fig. 12-a Load-shortening relationships of biaxially com-
pressed square plates (cases 15, 16,and 17, 1 =2.28)

0.75

Fy/Fo o
o

0.25

Fig. 12-b Ratio of compressive forces in x and y direction
(cases 15, 16 and 17, 1 =2.28)

1.0 S
t=13.5mm, <
(/22001
o
K
£6.7
% (wclt;o"f'm
.
t=8.33
0.5 (/8208
— ISUM
—
I ]
0 0.5 1.0 1.5
Y/Yo

Fig. 13 Relationships of shear stress to shear strain of square
plates subjected to pure shear (casses 18, 19 and 20)
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nesses 10 and 16 mm. respectively and for different ratios of
A,/Ay. In the loading case where A,/A,=0.5 and 2, some
difference between the results may be observed. This is in
fact due to the loading method. Although the load is
applied as forced displacement A, and A, with a constant
ratio in both analyses, the tangential stiffnesses as evaluat-
ed by ISUM and FEM are different in the vicinity of the
ultimate strength. This causes different ratio of the total
forces F, and F, in x and y directions as shown in Figs.
11-b and 12-b. Loading with constant ratios of F,/F,
would yield better agreement.

4.2 In-plane shear

Under in-plane shear, three simply supported square
plates as shown in Table 2 are analysed. The load is
applied in the form of imposed displacements, keeping all
edges straight. By this loading condition, it is intended to
produce only in-plane shearing forces. However, small
values of in-plane axial forces could not be avoided in the
FEM analyses, Figure 13 shows the stress-strain relation-
ships of these plates. Good agreements between results of
ISUM and FEM may be observed. In all cases, the ultimate
strength is equal or almost equal to the fully plastic
strength. Post-ultimate strength carrying capacity is almost

1.0
Wy /t=0.01 t=16.0 mn
t=12.0 mn
°
& t=10.0 mm
u e = = —_ e
0.5 c =<2
— ISUM
~=—= FEM
1 1 1
0 0.5 1.0 1.5 2.0
I/

Fig. 14-a Load-shortening relationships of square plates sub-
jected to uniaxial compression and shear (cases 21, 22

and 23)
1.0
Wo/t=0.0’|
o t=16.0 mm
£ t=12.0 mm
X t=10.0 mm
W
o5 LR
—— ISUM
——--FEM
L [] 1
0 0.5 1.0 1.5 2.0

Fig. 14-b Relationships of shear stress to shear strain of square
plates subjected to uniaxial compression and shear
(cases 21, 22 and 23)
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1.0
Ho/t=0.01
t=12,0 mm
,_{c’ t=6.0 mm
*
('S
0.5 = e
= — ISUM
..... FEM
1 1 1
0.5 1.0 1.5 2.0
AX/AO

Fig. 15-a Load-shortening relationships of square plates sub-
jected to uniaxial compression and shear (cases 24

and 25)
1.0
Wy/t=0.01
o
£ t=12,0 mm
4
W
0.5
P
Va PP kil i
L
b/
2 t=6.0 mm
7 —— ISUM
----- FEM
L i "
0 0.5 1.0 1.5 2.0
ny/vo

Fig. 15-b Relationships of shear stress to shear strain of square
plates subjected to uniaxial compression and shear
(cases 24 and 25)

constant, because the plate edges are kept straight.

4.4 Combined uniaxial compression and shear

The analyses are performed on simpley supported square
plates with W ,/¢t=0.01 under combined in-plane uniaxial
compression and shear loads, as shown in Table 2. In the
analyses load is applied in each case as imposed displace-
ment increments of a constant average strain ratio Ae,/
A7,y at the edges x=0 and x=a while keeping the edge
y=0 statinary and the edge y=»~ constrained in y-
direction. Figures 14-a and 15-a show load-shortening
relationships of these plates. For the cases with a ratio of
Aey/Ayey=1.0 ISUM predicts carrying capacity in the
post-ultimate strength range lower than that predicted by
the Finite Element Method. In the cases with Ae,/Ayy,
equal to 0.666 good agreement may be observed. Shear
stress-shear strain relationships are shown in Figs. 14-b
and 15-b.
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5. Conclusions

A new improved ISUM plate element is developed with
the purpose of predicting reduction of the carrying capacity
after ultimate strength has been reached. The new element
can be used under in-plane uniaxial and biaxial compres-
sions, bending and shear, and initial deflection and resid-
ual welding stresses can be taken into account.

Comparisons of results of the analysis using this im-
proved element with results of the analysis by the Finite
Element Method show generally good agreement. This new
element would predict of ultimate strength and post-
ultimate strength carrying capacity of redundant plate
structures more accurately than the previous element.
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