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Time-to-build of an investment project induces a difference between the timing of investment and that of
revenue generation. Jeon (2024b) showed that uncertainty in the time-to-build always accelerates investment
and enhances pre-investment firm value, regardless of its distribution. This study examines the extent to
which the uncertainty advances the timing of investment and improves firm value. Specifically, we show
that there always exists a unique certainty equivalent of an uncertain time-to-build and derive it in an analytic
form. This enables us to derive the investment strategy with an uncertain time-to-build in the form of the
one that would have been adopted in the absence of such uncertainty. Even without full knowledge of the
uncertainty, the firm can approximate the optimal investment strategy using only the mean and variance
of time-to-build. Furthermore, we show that there always exists an uncertainty equivalent of fixed time-
to-build. This enables firms to evaluate the level of risk implicitly assumed by their investment strategies
established without accounting for uncertainty in time-to-build. Lastly, we illustrate the practical application
of our findings using some representative probability distributions and analyze the effects of the variance
of time-to-build. In particular, we contrast the effects of uncertainty in demand with those of uncertainty
in time-to-build, deriving the level of variance in time-to-build that offsets the negative impact of increased

demand volatility on investment.

1. Introduction

In 2015, Elon Musk made a bold promise that Tesla’s vehicles would
drive themselves in two years. In 2019, he made another promise,
claiming that there would be a million robotaxis on the road in a
year. After nearly a decade, neither have we seen fully self-driving
technology from Tesla, nor do we see any of their robotaxis on the
road.? At an event in October 2024, which had been postponed several
times, Tesla revealed some prototypes of their robotaxis. Elon claimed
that they would be available before 2027, which seems highly unlikely,
given his notorious record of unmet promises regarding timelines, as
well as the complex regulatory requirements the technology must meet.

Elon and his company are not the only ones. Olkiluoto 3 in Finland
is one of the largest nuclear reactors in Europe. Its construction began
in 2005 with an estimated completion date in 2009, but finalized in

2022, resulting in a 13-year delay. Flamanville 3 in France is another
example of a significant delay in constructing a power plant. It started
in 2007 with the aim of completing by 2012; however, it still has not
been finished yet (White, 2024). As seen from these examples, time-to-
build is prevalent in real-world investment projects, and uncertainty is
one of its inherent attributes.® Time-to-build has a significant impact
on firm value because it introduces a difference between the timing
of investment and that of revenue generation. When its duration is
uncertain, the firm’s investment strategy must be established even more
meticulously. Nevertheless, the effects of uncertainty in time-to-build
on corporate investment are underexplored.

To the best of our knowledge, Nishihara (2018) is the first study that
shed light on the effects of uncertainty in time-to-build on investment.
The paper analyzed a firm’s research and development (R&D) invest-
ment decision, assuming that duration follows a uniform distribution,
and numerically showed that uncertainty in the duration, compared to
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2 Although Tesla has provided a driver-assistance system called Full Self-Driving, the name is misleading, as it remains at Level 2 automation, with Level 5
being fully autonomous driving according to the standards of the Society of Automotive Engineers International.

3 Examples are abundant. Recent issues include sluggish capacity expansion in the semiconductor industry, where demand surged during the COVID-19
pandemic, and significant production delays by new automakers following the rise of the electric vehicle market.

4 Jeon (2024b) considered not only time-to-build but also regulation as internal and external factors that hinder immediate revenue generation after the
investment, respectively. This study excludes the latter to simplify the model and its solution.
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a fixed equivalent, leads to earlier investment. Jeon (2024b) investi-
gated the effects of uncertainty in time-to-build without any assumption
on its distribution and analytically showed that uncertainty in time-
to-build always accelerates investment and increases pre-investment
firm value.* Jeon (2024a) extended this framework by incorporating
the firm’s investment size decision in addition to the timing decision,
confirming that the positive impacts of uncertainty in time-to-build on
investment remain intact. However, these studies did not demonstrate
the extent to which the uncertainty advances the timing of invest-
ment and improves firm value. This study addresses this unanswered
yet significant problem by clarifying the impacts of uncertainty in
time-to-build on firm value in more detail.

First, we show that there always exists a unique certainty equivalent
for uncertain time-to-build, regardless of its distribution. That is, there
is a fixed time-to-build whose duration is shorter than the uncertain
counterpart but yields the same firm value. Furthermore, we derive the
certainty equivalent in an analytic form. This enables us to determine
the optimal investment strategy with uncertain time-to-build in the
form of the investment strategy that would have been adopted without
such uncertainty. Even without the full knowledge of the uncertainty
in time-to-build (i.e., probability distribution), the certainty equivalent
can be approximated with only a few moments, such as mean and vari-
ance, which significantly enhances practicality. Moreover, we derive
the tight upper and lower bounds of the certainty equivalent for given
mean and variance of time-to-build. We also show that the extent of
investment acceleration due to uncertainty in time-to-build decreases
with the expected growth rate of revenue and is independent of its
volatility.

Second, we show that there always exists an uncertainty equivalent
for fixed time-to-build. That is, there is an uncertain time-to-build
whose expected duration is longer than the fixed counterpart but
induces the identical firm value. Unlike the certainty equivalent, there
can be many uncertainty equivalents for a given fixed time-to-build.
This enables firms to evaluate the level of risk implicitly assumed by
their investment strategies established without accounting for uncer-
tainty in time-to-build. We also show that for a given fixed time-to-
build, there always exists an uncertain counterpart whose expected
duration is longer yet yields higher firm value, which verifies the
positive impacts of uncertainty in time-to-build.

Lastly, we apply the above arguments to representative probability
distributions to demonstrate their practicality. Specifically, we applied
the main results to positively skewed and unimodal distributions with
nonzero mode, which is consistent with empirical evidence, and we
find that the mean and variance of time-to-build are often sufficient
to approximate its certainty equivalent. Furthermore, we contrast the
effects of demand uncertainty with those of uncertainty in time-to-
build. The former delays investment because it increases the value of
waiting, whereas the latter accelerates investment because it increases
the expected profits from the investment by the convexity of the
discount factor with respect to the revenue generation timing. With
these arguments, we derive the variance of time-to-build that offsets
the negative impacts of increased demand volatility on investment.

The remainder of this study is organized as follows. Section 2
reviews the literature on uncertainty-investment relationship and time-
to-build. Section 3 introduces the model setup and Section 4 derives
its solution. Specifically, Section 4.1 presents the preliminary results
based on a standard real options model, and Section 4.2 contrasts
the effects of uncertainty in time-to-build with those of uncertainty
in demand. Section 4.3 derives the certainty equivalent of uncertain
time-to-build and analyzes its sensitivity, while Section 4.4 derives the
uncertainty equivalent of a fixed time-to-build. Section 5 applies the
arguments discussed in Section 4 to representative probability distri-
butions. Specifically, Sections 5.1-5.4 correspond, respectively, to the
following distributions: triangular distribution, log-normal distribution,
gamma distribution, and scaled beta distribution. Section 5.5 focuses
on the mean and variance of time-to-build and compares the effects
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of uncertainty in time-to-build and those of uncertainty in demand.
Section 6 summarizes the main findings and suggests possible future
work, and Appendix A presents all proofs. In the Online Appendix,
we discuss the certainty equivalent from the perspective of entropic
risk measure and consider different cost structures and alternative
probability distributions for time-to-build. It also provides a summary
of the characteristics of the distributions discussed in the paper.

2. Literature review

Majd and Pindyck (1987) was one of the first studies to examine
the impact of time-to-build on corporate investment. They assumed a
maximum rate at which a firm can invest and showed that such friction
results in delays in investment. Bar-Ilan and Strange (1996a, 1996b)
supposed that a certain period of time must elapse before revenue from
investment can be generated, showing that uncertainty in demand can
hasten investment in the presence of lags. They assumed a fixed time-
to-build, and it is uncertainty in demand, not that in time-to-build, that
accelerates investment. Furthermore, they assumed the firm’s option
to abandon the ongoing project, which truncates the downside risk
of the project and yields a stronger incentive for investment. Bar-
Ilan and Strange (1998) extended their previous work to a two-stage
investment project and found that the investment can be sequential
when the firm has an option to suspend the ongoing project. Pacheco-
de Almeida and Zemsky (2003) also studied a multi-stage investment in
the presence of time-to-build and duopoly. They found that the firm’s
investment behavior can be either incremental or lumpy depending on
the duration of time-to-build. However, these studies only considered
a fixed time-to-build, leaving the effects of the uncertain counterpart
unaddressed.

Some studies adopted uncertain time-to-build in the discussion of
corporate investment decisions. Weeds (2002) examined R&D com-
petition in a duopoly market, assuming random discovery time for
new technologies, and found negative impacts of uncertain lags on
investment decisions. Alvarez and Keppo (2002) examined a firm’s
irreversible investment with delivery lags in a generalized setup in
which they are interdependent. Specifically, they assumed that the lags
increase with the level of demand shock and showed that the invest-
ment might be suboptimal depending on the level of demand shock,
primarily because higher demands imply longer delivery lags. Jeon
(2021a) investigated the effects of uncertain time-to-build on a levered
firm’s investment and financing decision and showed that the default
probability can be lower than the case without time-to-build. Jeon
(2021b) studied a duopolistic market with asymmetric uncertain time-
to-build and found the equilibrium in which the dominated firm with
a longer expected time-to-build becomes a leader. Jeon (2023) took
account of learning effects in the discussion of capacity expansion with
uncertain time-to-build.

Although these studies considered uncertain time-to-build in their
discussion, the sheer effects of uncertainty in time-to-build were not
addressed. To our knowledge, Nishihara (2018) is the first to discuss
this issue. This study investigated a firm’s R&D investment decision
with uncertainty in market demands, competition, and R&D duration,
and numerically showed that uncertainty in the duration, described
by a uniform distribution, leads to earlier investment than in the
case of fixed duration. Jeon (2024b) compared the optimal investment
strategy and firm value with fixed time-to-build and those with uncer-
tain time-to-build whose expected duration is identical with the fixed
counterpart, without any assumption on the distribution of time-to-
build. The comparison showed that uncertainty in time-to-build always
accelerates investment and improves pre-investment firm value, regard-
less of its distribution. Jeon (2024a) found that the positive impact of
uncertainty in time-to-build remains robust even when the investment
size decision is taken into account in addition to the timing decision.

Despite the difficulties of collecting data, some studies have empiri-
cally analyzed the effects and determinants of time-to-build. Jorgenson
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and Stephenson (1967) investigated investment behavior in U.S. man-
ufacturing and found that the average lag between the determinants
of investment and actual investment expenditures ranges from 1.5 to 3
years. Montgomery (1995) examined the construction duration of U.S.
nonresidential structures and found that the value-weighted construc-
tion period is approximately 1.5 years, with significant variation over
time. Koeva (2000) analyzed plant investment from various industries
and found that time-to-build, averaging two years, is not sensitive to
business cycles. Zhou (2000) empirically showed that time-to-build can
explain the positive correlation of investment. Salomon and Martin
(2008) reported that in the semiconductor industry, the duration of
time-to-build is associated with market competition, firm ownership,
and firm/industry experience. Tsoukalas (2011) showed that in the
presence of time-to-build, a firm’s investment decision is significantly
affected by the firm’s cash flows. Kalouptsidi (2014) found that time-
varying time-to-build decreases the level and volatility of investment
in the bulk shipping industry. Oh and Yoon (2020) showed that in
the 2002-2011 U.S. housing boom-bust cycle, the increase of time-
to-build during the boom is due to construction bottlenecks whereas
that during the bust is due to an increase of uncertainty. Oh et al.
(2024) utilized data on U.S. residential land development and showed
that time-to-build introduces a significant difference between short-run
and long-run housing supply elasticities. Glancy et al. (2024) analyzed
data on U.S. commercial construction projects and found that roughly
one-third of projects are abandoned during the planning phase, while
over 99% of those that reach the construction phase are completed.
They also found that property price appreciation reduces the likelihood
of abandonment. Charoenwong et al. (2024) utilized Japanese dataset
to show that information acquisition and investment flexibility can
reduce the negative impacts of time-to-build significantly. Fernandes
and Rigato (2025) utilized Indian project-level data to measure time-
to-build and found that firms accelerate ongoing projects rather than
start new ones when credit dries up.

3. Setup

Suppose that a risk-neutral firm is considering an investment project
with demand shocks that follows a geometric Brownian motion:

dX (1) = uX(O)dt + o X (AW (1), @
where u and ¢ are positive constants and (W(t)),5, is a standard
Brownian motion on a filtered space (2,F7.F := (F,)».P) satisfying

the usual conditions. For simplicity, we assume that the demand is
price-inelastic such that the monopolistic firm’s revenue flow from
this project coincides with (1).° The investment incurs lump-sum costs
I and the variable costs of production are normalized to zero.® The
discount rate is r( > p) to ensure a finite value function, which is a
standard assumption in real options literature.

The investment project does not yield revenue immediately after the
investment because of the project’s time-to-build. This can arise from
R&D for new technologies or large-scale construction of manufacturing
facilities. Due to its inherent uncertainty, the size of time-to-build is a
nonnegative random variable 7, which is assumed to be independent of
X (1) for simplicity.

4. Models and solutions
4.1. Preliminary results

The pre-investment firm value is evaluated as the expected present

5 This simplification can also be found from Jeon (2024b), among many
others.

6 We assume that the lump-sum investment costs are incurred at the
investment timing, but the main results of this paper remain intact even when
running costs are incurred throughout the period of time-to-build. See the
Online Appendix for this discussion.
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value of revenue from the investment project less its costs. Thus, the
firm value with an option to invest in a project having a time-to-build
of 7 is expressed as follows:

V.(X) = maxE[ / X (@t — e T1]X(0) = X]. @
T>0 7

It is optimal for the firm to invest in the project as the demand
shock reaches an upper threshold.” Thus, the investment timing can be
characterized by the level of demand shock at which the firm invests
in the project, and T := inf{t > 0|X(r) > X,} and T := T + ¢ denote
the timing of investment and revenue generation, respectively, where
X, represents the corresponding investment threshold.

Due to the Markov property, the firm value at the investment timing
for given demand shock X is

IE[/oo e X ()dt — I|X(0) - X] = ):5_(;) -1

3

where 6(z) := E[e~"~#7] represents the discount factor for the timing
of revenue generation, which plays a pivotal role in the following
discussion. Note that it is the Laplace transform of the time-to-build.
Following the standard argument of real options, the firm value in (2)
can be calculated as follows®:

(S22 -1)(5). X <X,

Vi(X) = 4
’i‘s_—‘;) -1, if X > X,
where the optimal investment threshold is
y(r— i
ool ®)
(r — Dé(z)
and
S L_opyp, 2
e (2 62) +5 D (6)

4.2. Effects of uncertainty on investment

The effects of uncertainty in time-to-build on investment and firm
value can be described as follows:

Lemma 1. If 7, is a mean-preserving spread of 7, for n > 0 with a
constant t, = 7, the following always holds:
X, <X, and V., (X)>V,(X) foralnx0. )

Proof. See Appendix A.1.

Lemma 1 implies that uncertainty in time-to-build always acceler-
ates investment and improves pre-investment firm value, which was
first shown by Jeon (2024b). This is essentially due to the convexity of
the discount factor with respect to the timing of revenue generation.
Specifically, the gain from earlier revenue generation (i.e., r < E[z]) is
discounted over a relatively short period of time, while the loss from
delayed revenue generation (i.e., > E[r]) is discounted over a longer
period of time, resulting in the asymmetric effects of uncertainty in
time-to-build on firm value. Note that this argument is independent of
the distribution of time-to-build z.°

7 See Dixit and Pindyck (1994, Chapter 4) and Peskir and Shiryaev (2006,
Chapter 4) for the discussion regarding the optimality of threshold policy.

8 The derivation of the optimal investment threshold based on the real
options framework can be found in Dixit and Pindyck (1994, Section 5), among
many others.

9 Jeon (2024b) verified the robustness of this result, showing that it still
holds even when there are running costs during the phase of time-to-build and
the firm has an option to abandon the ongoing project. Jeon (2024a) showed
that the positive impacts of uncertainty in time-to-build persist even when the
firm’s investment size decision is considered in addition to the timing decision.
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Hartman (1972, 1973) and Abel (1983) demonstrated that un-
certainty can accelerate investment, focusing on uncertainties in the
state space, such as market demands and output prices. In their stud-
ies, the convexity of marginal profitability of capital, resulting from
the optimal labor adjustment, leads to the positive impacts of uncer-
tainty in demands. Jeon (2024a, 2024b) and this study shed light
on the uncertainty in the time dimension, showing that uncertainty
in revenue generation timing always accelerates investment, and it is
also the convexity that drives the positive impacts of uncertainty in
time-to-build.

In the standard real options literature in which the investment
timing decision is mainly discussed, it is well-known that an increase
in demand volatility (i.e., o) delays investment. This negative impact of
demand uncertainty on investment is in sharp contrast with the positive
impact of uncertainty in time-to-build, and the economic intuition be-
hind these opposing effects is as follows. When demand is uncertain, the
firm obtains more information and resolves the uncertainty by waiting
to invest. In other words, the value of the option to wait increases
with demand uncertainty, and therefore, the firm delays investment
as the market becomes more volatile. This can be seen from the fact
that dy/de < 0, and thereby y/(y — 1) in (5), which represents the
option value, increases with o. Note that the expected profits from the
investment in (3) are independent of o. This implies that the option
value is the sole channel through which demand uncertainty negatively
affects the investment decision.

By contrast, the firm can acquire more information regarding the
timing of revenue generation and resolve the uncertainty only after
the investment, but the amount and quality of this information is
independent of the investment timing. Thus, earlier investment due to
the uncertainty in time-to-build is not associated with the value of the
option to wait. This can be seen from the fact that y in (6) is indepen-
dent of 7. Note that the expected profits at the investment timing in (3)
depends on 7. This implies that the expected profits from the invest-
ment, which depend on the convexity of the discount factor regarding
the revenue generation timing, are the sole channel through which
uncertainty in time-to-build positively impacts the investment decision.
This argument is illustrated with numerical examples in Section 5.5.

Most empirical studies on the uncertainty-investment relationship
indicate a negative link between them (e.g., Guiso and Parigi (1999),
Leahy and Whited (1996) and Meinen and Roehe (2017)), but there
are a few exceptions. For instance, Driver et al. (2008) used panel
data from the British survey to test the effects of uncertainty on
investment and found positive impacts in industries with high R&D and
advertising intensities. Marmer and Slade (2018) analyzed U.S. copper
mining industry and reported a positive impact of uncertainty on
investment when the project involved time-to-build. These studies sug-
gest that time-to-build might drive the positive impacts of uncertainty
on investment, although this hypothesis requires further empirical
testing.

4.3. Certainty equivalent of uncertain time-to-build

Now we examine the extent to which uncertainty in time-to-build
advances the investment timing and improves the firm value.

Proposition 1 (Certainty Equivalent). For any uncertain time-to-build r,
there always exists a unique constant 7,( < E[z]) such that 6(r) = 6(%,),
or equivalently, X, = X; and V,(X) = V; (X). The certainty equivalent is
derived as

K (=)
T, =——,

r—pu

(8)
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where K_(t) is the cumulant-generating function of 7'°:

)

K,(t) = InE[e'] = Z

n=1

n
'k,
n!’

)
with k, denoting the nth cumulant of .

Proof. See Appendix A.2.

Proposition 1 offers a practical framework for deriving the optimal
investment strategy in the presence of uncertain time-to-build in a
straightforward manner. Given the prior knowledge of the uncertainty
in time-to-build 7, the firm can derive the corresponding certainty
equivalent 7, in (8) and apply it to the optimal investment strategy
that would have been adopted in the absence of such uncertainty
(i-e., X, = X; ). This tractable framework is applicable to any 7 that
has its probability density function.

Proposition 1 implies that the firm value with longer and uncertain
time-to-build (i.e., 7) is same as that with shorter and fixed time-to-
build (i.e., 7,) and that the unique correspondence (i.e., X, = Xz,
and V,(X) = Vi, (X )) always exists, regardless of the distribution of
stochastic time-to-build. The degree to which uncertainty in time-to-
build accelerates investment and thus improves firm value is measured
by E[z] — 7, (> 0), which is referred to as uncertainty premium of
time-to-build.

Fig. 1 graphically illustrates the positive impacts of uncertainty in
time-to-build and the existence of the certainty equivalent. To facilitate
understanding, Fig. 1(a) reviews the well-known negative impacts of
uncertainty in consumption on utility. For a risk-averse investor, her
utility function U(x) is a function of consumption level x with U’ > 0
and U” < 0." Given possible outcomes of x; and x,, the concavity of
the utility function ensures E[U(x)] < U(E[x]) always holds, and there
exists the certainty equivalent x, such that E[U(x)] = U(x,) and %, <
E[x]. Fig. 1(b) follows similar arguments. Firm value V() is a function
of time-to-build = with ¥/ < 0 and V" > 0, and given possible outcomes
of 7, and r,, the convexity ensures E[V ()] > V (E[r]); there exists the
certainty equivalent 7, such that E[V(7)] = V(7,) and 7, > E[].

The sensitivity of the certainty equivalent of uncertain time-to-build
with respect to market demands is addressed as follows:

Corollary 1. The certainty equivalent of time-to-build increases with the
expected growth rate of demand (i.e., u). In other words, the uncertainty
premium of time-to-build decreases with it. Both are independent of demand
volatility (i.e., ).

Proof. See Appendix A.3.

This result implies that uncertainty in time-to-build accelerates in-
vestment significantly when market demand is expected to grow slowly.
Technically speaking, this is because the convexity of the discount
factor with respect to the timing of revenue generation — the main
driver of the positive effects of uncertainty in time-to-build — decreases
with the expected growth rate of demand (i.e., ).'? That is, when u is
low, the firm heavily discounts the future cash flow, and thus, earlier
completion of the project is more appreciated, and losses from the delay
are significantly discounted when y is low. In summary, the adjustment

10 The cumulant-generating function is the natural logarithm of the moment-
generating function M_(1) = E[¢"] = Z?:o ”E# Since r > u, M (—(r—pu))(< 1)
always exists and so does K (—(r — u))( < 0), provided that the probability
density function exists.

11 This includes a broad class of utility functions, including those with
constant absolute risk aversion and constant relative risk aversion (i.e., U(x) =
—e7* and U (x) = (x'7—1)/(1-y), respectively, where y > 0 denotes the degree
of risk aversion).

12 For f(r) = exp(—(r — u)7), the degree of convexity, measured by

Lof
7 o
(r — p)?, decreases with .
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U(xs) = 1
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(b) Uncertain time-to-build and firm value

Fig. 1. Positive impacts of uncertainty in time-to-build on firm value.

in the investment strategy due to the uncertainty of revenue generation
timing needs to consider how much the demand is expected to grow
over time but it should not reflect how volatile the demand is.

Proposition 1 allows us to summarize the direct relationship be-
tween time-to-build and firm value as follows:

Corollary 2. Suppose the initial demand X is sufficiently low such that
the investment is not triggered instantly. The firm value V,_(X) being greater
than X is equivalent to

¢ IAX/X) 10)
r—py

where
_ y—1\r-1 X 14

a0=() (55=5) an

Proof. See Appendix A.4.

It is obvious that the right-hand side of (10) decreases with X.
This implies that the certainty equivalent of time-to-build must be
smaller, or equivalently, the uncertainty premium of time-to-build must
be greater to achieve a higher firm value.

Proposition 1 implies that the firm needs perfect prior information
regarding time-to-build (i.e., probability distribution) to derive the op-
timal investment strategy based on the certainty equivalent. However,
in practice, firms rarely have such perfect prior information regarding
the uncertainty in time-to-build. Nevertheless, even without the full
knowledge regarding such uncertainty, the firm can approximate the
certainty equivalent using only a few moments of the time-to-build as
follows:

Corollary 3. Given the mean and variance of time-to-build =, denoted
by m and v, respectively, the certainty equivalent of t is approximated as
follows:

N Ul OLY

Topi=m > 12)

With the addition of skewness and excess kurtosis, denoted by s and e,
respectively, it can be approximated more precisely as follows:

(1 B (r—ﬂ)sﬁ)
3 >
(1 _ ("—ﬂ)sﬁ+ (r = u)’ev
3

12 )’

where the approximation error is 7. ; — 7, for i € {2,3,4}.

. (r=myuv
Tc4,3 = - )

(13)

_ (r—po
=m—

4 5 (14)

Proof. See Appendix A.5.
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Corollary 3 implies that if the firm has estimates of the mean and
variance of time-to-build from prior investment experiences in similar
fields, it can derive the optimal investment strategy that considers
the uncertainty in time-to-build without any additional information
(i.e., exact distribution). As shown in Section 5, the mean and variance
are often sufficient to approximate the certainty equivalent of uncertain
time-to-build.

Based on Proposition 1 and Corollary 3, we can easily obtain the
following result:

Corollary 4. The certainty equivalent of time-to-build decreases with
its dispersion. In other words, the uncertainty premium of time-to-build
increases with its dispersion. Specifically, with the approximation up to the
third moment in (13), the uncertainty premium of time-to-build increases
with the variance v if s < 3/((r — /4)\/5). With the approximation up
to the fourth moment in (14), it increases with the variance v if s <

3/((r = A0 + (r — wer/v/4.

Proof. See Appendix A.6.

The positive impact of the variance of time-to-build on its uncer-
tainty premium is straightforward; as noted in Lemma 1, the more
dispersed time-to-build, the stronger incentive the firm’s investment
incentive. The result in (13) shows that, all else being equal, the
skewness of time-to-build negatively impacts its uncertainty premium.
This is because the positively-skewed time-to-build implies that the
distribution has a longer tail for the likelihood of longer time-to-
build, which reduces the firm’s incentive to invest. The result in (14)
implies that, all else being equal, the excess kurtosis of time-to-build
positively affects its uncertainty premium. This is because a greater
excess kurtosis implies fatter tails, which increases the firm’s incentive
to invest due to the convexity effect described in Lemma 1.

Furthermore, for given mean and variance of time-to-build, we can
derive the distribution-free upper and lower bounds of the certainty
equivalent as follows:

Proposition 2. For given mean m and variance v of time-to-build, the
certainty equivalent of time-to-build is bounded as follows:

1
1 <7z
r—u n( m2+v ) St
In particular, both the upper and lower bounds are tight, and the lower
bound strictly decreases with v.

—(r=p)(m+v/m) .2
e m-+v as)

- < m.

Proof. See Appendix A.7.

Corollary 4 suggests that the uncertainty premium of time-to-build
might not increase with its variance. In fact, the following result can
be obtained:
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Fig. 2. Examples of multiple uncertainty equivalents for a fixed time-to-build.

Proposition 3. The certainty equivalent of time-to-build does not strictly
decrease with variance of time-to-build. In other words, the uncertainty
premium of time-to-build does not strictly increase with its variance.

Proof. See Appendix A.8.

At first glance, the result of Proposition 3 might seem to contradict
Lemma 1, but that is not the case. A mean-preserving spread of a given
time-to-build always accelerates investment, as addressed in Lemma 1,
and it has a greater variance than the given time-to-build.'®> However,
this does not imply that time-to-build with a greater variance always
accelerates investment. This is because a random variable with the
same mean but greater variance is not necessarily a mean-preserving
spread of the counterpart.'

4.4. Uncertainty equivalent of fixed time-to-build

Proposition 1 presents the firm’s optimal investment decision, as-
suming precise knowledge of the uncertainty in time-to-build (i.e.,
probability distribution), in the form of the investment strategy that
would have been implemented without such uncertainty. However,
in practice, the opposite scenario is more likely; the firm establishes
its investment strategy without considering uncertainty in time-to-
build and remains unaware of the level of uncertainty that such an
investment strategy implicitly assumes.

From this perspective, we can derive the following result:

Proposition 4 (Uncertainty Equivalent). For any fixed time-to-build 7 (>
0), there always exists a nonnegative random variable z, with E[r,] > 7
such that 6(7) = 6(z,), or equivalently, X; = X, and Vi(X) = V;, (X).
Specifically, the uncertainty equivalent is derived from

K, (~(r— ) = ~(r = 7. 16)

Proof. See Appendix A.9.

Essentially, Proposition 4 reexamines the argument of Proposition
1 from a reversed standpoint, and it can be read in the same context:
the firm value with longer and uncertain time-to-build (i.e., 7,) is same

13 As in Lemma 1, suppose 7,,, = 7, + ¢,,, where E[e,,|7,] = 0. By the
law of iterated expectations, Ele,,;] = E[E[e,,,|z,]] 0 holds, and it is
straightforward to show that Var(r,,,) = Var(z,) + Var(e,,;) > Var(z,) since
Cov(z,,€,,1) = Elr,¢€,,,]1 — E[7,]E[¢,,,] = E[r,E[e,,, 17,11 = 0.

14 Namely, ,,, is not necessarily a mean-preserving spread of z, even if
Elz,,,] = E[z,] and Var(r,,,;) > Var(z,) hold. Refer to Appendix A.8 for a

specific example.
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as that with shorter and fixed time-to-build (i.e., 7). While seemingly
paradoxical, certainty of time-to-build disencourages investment. The
extent to which it does so — relative to the case of uncertain time-
to-build 7, — is measured by 7 — E[z,]( < 0); its magnitude, E[r,] —
7 (> 0), is referred to as certainty discount of time-to-build. This result
provides firms with a structured framework to evaluate the implicit
risks embedded in investment strategies developed without accounting
for uncertainty in time-to-build, thereby clarifying the equivalent level
of risk such policies entail.

Note that Proposition 4 proves the existence of the uncertainty
equivalent, but unlike Proposition 1, its uniqueness is not guaranteed.
Namely, there can be multiple uncertainty equivalents that satisfy
(16) for a given fixed time-to-build, and they need not follow the
same distribution. Fig. 2 graphically illustrates the multiplicity of the
uncertainty equivalent for a fixed time-to-build. We can see that the
uncertainty equivalent in Fig. 2(a) is more dispersed and has a longer
expected duration than the one in Fig. 2(b), even though both yield
the same pre-investment firm value. In fact, this relationship can be
formalized as follows:

Corollary 5. The expected value of the uncertainty equivalent t, for a
fixed time-to-build 7 increases with the dispersion of z,. In other words, the
certainty discount of the fixed time-to-build increases with the dispersion of
T,

Proof. See Appendix A.10.

Meanwhile, following similar arguments from Proposition 4, we can
also obtain the following result:

Corollary 6. For any fixed time-to-build 7 (> 0), there always exists a
nonnegative random variable t,, with E[z,,] > 7 such that §(%) < é(r,,), or
equivalently, X; > Xe, and Vi(X) < V., (X).

Proof. See Appendix A.11.

This implies that for any fixed time-to-build, there always exists an
uncertain time-to-build with a longer expected duration that nonetheless
yields a higher firm value. This can be easily extended to comparisons
between uncertain time-to-builds with different degrees of dispersion.
Specifically, a more dispersed time-to-build with a longer expected
duration can yield a higher firm value than a less dispersed one with
a shorter expected duration. This argument offers insight into how in-
vestment projects might be evaluated in the real world. Fernandes and
Rigato (2025) provides ample evidence on time-to-build using Indian
project-level data, showing that the distribution of time-to-build varies
across sectors. For instance, time-to-build in logistics is more dispersed



H. Jeon and M. Nishihara

0.5

0.4r

f(r)

0.2r

Time-to-build

European Journal of Operational Research 330 (2026) 279-297

0.8

0.6

.10.4

0.2

-0.2

Mean and Variance

-0.4

o
Skewness and Excess Kurtosis

-0.6

-0.8
10

(c) Certainty equivalent of time-to-build for a = 1 (d) Uncertainty equivalent of time-to-build for 7 = 5

and c= (a+b)/3

0.48 T T T T T T T

—X, = X, //’
- Xz, e
X;, pe
0.46 [1--- X , // 4
o 7
] /
S /
30.441 e g
£ e
= /
c d
5} yd
Eo42} e 1
/
Qo /
> d
c rd
IS s
0.4 d 1
P
e
038 . . . . . . .
2 3 4 5 6 7 8 9 10

(e) Investment threshold and its approximation for

a=1land c=(a+10)/3

and a =1
0.2 ‘ ‘ ‘ ‘ ‘ ‘ —
N - Vi
0.19F Vie |
A -V,
0.181 AN i
\\
© AN
3047+ N p
[ N\,
s N\
E L AN i
=016 N
N\,
\,
\\
0.15} ~ i
N\
\.
N
0.141 N i
N
\\
N\,
013 ‘ ‘ ‘ ‘ ‘ ‘ ‘
3 4 5 6 7 8 9 10

(f) Firm value and its approximation for a = 1 and
c =

(a+b)/3

Fig. 3. When time-to-build follows a triangular distribution with minimum a, maximum b, and mode c.

and has a longer expected duration than in construction. However,
investment in the former may have been more incentivized by time-
to-build than in the latter due to its wider dispersion. Glancy et al.
(2024) presents empirical evidence on time-to-build in U.S. commercial
construction, showing that the construction lags for hotels are, on
average, longer and more dispersed than those for office buildings.
Following the same reasoning, investment in the former may have been
strongly driven by these lags than in the latter, although this hypothesis
requires further empirical testing.
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5. Probability distributions of time-to-build

This section shows the practical application of the results from
Section 4 using representative probability distributions. Many empirical
evidence shows that the distribution of time-to-build is unimodal with
nongzero mode and positively skewed; the evidence includes U.S. data from
manufacturing industry (Jorgenson & Stephenson, 1967), nonresiden-
tial structures (Montgomery, 1995), residential investment (Oh et al.,
2024; Oh & Yoon, 2020), commercial construction projects (Glancy
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et al., 2024), and project-level data from India (Fernandes & Rigato, the aforementioned properties: triangular distribution, log-normal dis-
2025).' For this reason, we discuss the distributions that can exhibit tribution, gamma distribution, and scaled beta distribution. The cases

in which time-to-build follows uniform distribution, which is neither
unimodal nor skewed, and exponential distribution, of which mode is
0, are discussed in the Online Appendix. Throughout this section, we

15 1t is obvious that the investment lags are positively associated with adopt the parameters in Table 1 for describing the investment project.

the size of investment projects. However, Oh and Yoon (2020) measured

economic time-to-build of residential investment that cannot be captured by

the characteristics of the projects including their square footage, location,

and building methods, and it is found unimodal with nonzero mode and

positively skewed. Specifically, the distribution of economic time-to-build in the one based on the level of time-to-build, which is positively skewed, can be
their manuscript is symmetric because it is based on the log of time-to-build; found in their Online Appendix.
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Table 1
Benchmark parameters for numerical calculation.
Notation Value Description
r 0.08 Risk-free rate
u 0.02 Expected growth rate of demand shock
c 0.2 Volatility of demand shock
1 3 Lump-sum investment costs
X 0.1 Initial demand shock

They are in a moderate range that can be easily found in the real
options literature.'®

5.1. Triangular distribution

Suppose that the firm knows the minimum, maximum, and mode of
the time-to-build of its project, denoted by a, b, and ¢, respectively, and
that its likelihood is unimodal and piece-wise linear. That is, assume
that = follows a triangular distribution with parameters (a, b, c) with
0 <a <c <band a < b. This corresponds to the case in which an
investment project requires a certain amount of time to be finished
even in its best-case scenario (i.e., nonzero minimum) but the worst-
case scenario is bounded (i.e., finite maximum) with the most likely
scenario between them. Note that the minimum g, and thus, the mode
¢, can be nonzero, and the mode can be chosen such that it is positively
skewed. Its probability density function is

2(r—a)

Py ifa<r<e,
2 .
fw={m e a7
#&QC) ifec<t<b,
0 otherwise,

which is depicted in Fig. 3(a), and its moment-generating function is

2{(b = c)e® — (b — a)e’" + (c — a)e’}
(b—a)(c —a)b—c)?
which amounts to the cumulant-generating function K, (¢) = In M (¢).
Recall that Proposition 3 showed an increase of variance does not
always accelerate investment. However, it always has the positive im-
pacts on investment when time-to-build follows a symmetric triangular
distribution:

M (1) = , 18

Proposition 5. When time-to-build follows a symmetric triangular distri-
bution, the certainty equivalent strictly decreases with its variance. In other
words, the uncertainty premium strictly increases with its variance.

Proof. See Appendix A.12.

The certainty equivalent of time-to-build following a triangular
distribution can be derived by (8) with (18). Fig. 3(c) presents the
certainty equivalent assuming the minimum « = 1 and the mode ¢ =
(a + b)/3, which exhibits a positive skewness. A comparison of Figs.
3(b) and 3(c) shows that the uncertainty premium increases with the
variance of time-to-build (Proposition 5).

The uncertainty equivalent of fixed time-to-build, assumed to follow
a triangular distribution, can be found by determining (a,b,c) that

16 For the demand shocks, similar parameters can be found in seminal works
in real options theory (e.g., Dixit and Pindyck (1994), Huisman and Kort
(2015) and Leland (1994)). For the risk-free rate, Leland (1994, 1998) and
Leland and Toft (1996) chose r = 0.06 and r = 0.075, respectively, while Dixit
and Pindyck (1994, Chapter 5) and Huisman and Kort (2015) adopted r =
0.1. Jeon (2024a, 2024b), which investigated the effects of uncertainty in time-
to-build, were based on the mid-range value r = 0.08. For consistency and
comparability among papers within the same research theme, we adopt the
same value.
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satisfies (16) with (18). If the firm assumes that time-to-build follows
this distribution and is certain of its minimum and mode (i.e., a and
¢), it can instantly deduce the worst-case scenario of the uncertainty
equivalent (i.e., b) corresponding to the fixed time-to-build. As noted
in Section 4.4, there can exist many uncertainty equivalents for a fixed
time-to-build, which is described by the solid line in Fig. 3(d) for 7 = 5.
We can see that the worst-case scenario (i.e, b) decreases with the
most likely scenario (i.e., ¢) for a given best-case scenario (i.e., a = 1)
and fixed time-to-build (i.e., 7 = 5). The shaded area represents the
uncertain time-to-build whose expected duration is longer than the
fixed counterpart yet induces higher firm value (i.e., 7 < E[z] and
V; < V,), supporting Corollary 6.

Figs. 3(e) and 3(f) present the optimal investment threshold and
firm value along with their approximation based on the moments
described in Fig. 3(b), and they indicate that the approximation error is
negligible. That is, the firm can essentially establish the optimal invest-
ment strategy taking account of uncertain time-to-build based solely
on its mean and variance. Note that the approximation described in
Figs. 3(e) and 3(f) is solely based on the moments of the corresponding
distribution without assuming any specific distribution; this applies to
other figures regarding the approximation hereafter.

5.2. Log-normal distribution

Suppose the firm knows that time-to-build = follows a log-normal
distribution with parameters y, and o,(> 0). That is, In = follows a nor-
mal distribution with mean y, and variance ¢2. It is a positively skewed,
unimodal distribution with nonzero mode on (0, o). This corresponds to
the case in which an investment project can generate no revenue in its
worst-case scenario (i.e., 7 = o), such as the failure of an R&D project,
and there is a slight chance that the project is finished instantly in its
best-case scenario (i.e., ¢ — 0), although the most probable scenario is
in between them. Its probability density function is

(Inz—p,)?
20'12_

exp( ) if >0,

1
t0,V21
0,

fo= 19

otherwise,

which is described in Fig. 4(a). Its moment-generating function (i.e.,
M (1) = E[¢'"]) does not exist for ¢ > 0 since the defining integral di-
verges. Although E[¢'"] converges for 7 < 0 due to 7 € (0, ), its closed-
form expression has not been found yet.!” Asmussen et al. (2016) sug-
gested the following approximation of the moment-generating function:

(W (~to2ele))242W (~to2el'r)
exp(— = )
M. ()~

\/1+ Wi(—tc2ets)

where W(x) is the Lambert W function defined as the solution of
W(x)e” ™ = x, and we adopt this approximation to derive the cer-
tainty equivalent and uncertainty premium of time-to-build following
a log-normal distribution.

The certainty equivalent of time-to-build following a log-normal
distribution can be found by (8) with (20), which is described in
Fig. 4(c) for u, = 1. Its comparison with Fig. 4(b) numerically shows
that the uncertainty premium of time-to-build increases with variance.

The uncertainty equivalent of time-to-build, assumed to follow a
log-normal distribution, can be found by obtaining (u,, s,) that satisfies
(16) with (20). If the firm supposes that the uncertainty equivalent
follows this distribution and is certain of the mean of time-to-build,
it can specify the candidates of the uncertainty equivalent. Fig. 4(d)

; (20)

17 All moments of the log-normal distribution exist (i.e., E[z"] = e +7°0:/2),
but the log-normal distribution is not determined by its moments (e.g., Heyde
(1963)). This implies that it cannot have a defined moment-generating function
in a neighborhood of zero.
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Fig. 5. When time-to-build follows a gamma distribution with shape parameter k and scale parameter 6.

presents the uncertainty equivalent of fixed time-to-build 7 = 5, and
we can see that y, of the uncertainty equivalent decreases with o,. The
shaded area in Fig. 4(d) represents the uncertain time-to-build whose
expected duration is longer than the fixed counterpart yet yields higher

firm value (i.e., 7 < E[r] and V; < V), consistent with Corollary 6.

Figs. 4(e) and 4(f) present the optimal investment threshold and
firm value along with their approximation based on the moments
illustrated in Fig. 4(b), and we can see that the approximation errors

are negligible.
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5.3. Gamma distribution

Suppose the firm knows that the time-to-build r follows a gamma
distribution with parameters (k, ) where k > 0 is a shape parameter
and 0 > 0 is a scale parameter. This versatile two-parameter distribution
encompasses many distributions as its special cases.'® It is a positively
skewed, unimodal distribution with possibly nonzero mode.'® Its sup-
port is (0, o), which, as a log-normal distribution in Section 5.2, allows

18 With k = 1, it becomes the exponential distribution discussed in the Online
Appendix. When k is an integer, it is known as the Erlang distribution. When



H. Jeon and M. Nishihara

us to model the potential for R&D failure (i.e.,  — o). Its probability

density function is
rk=lg=7/0

— ifr>0,

f@y=q 0" @1
0 otherwise,

where I'(-) is gamma function, which is described in Fig. 5(a), and its
moment-generating function is

M, (t)=(1-01%  fort< %. (22)

The certainty equivalent of time-to-build following a gamma distri-
bution can be found from (8) with (22), which is described in Fig. 5(c).
Its comparison with Fig. 5(b) numerically shows that the uncertainty
premium of time-to-build increases with its variance.

The uncertainty equivalent of fixed time-to-build, assumed to follow
this distribution, can be found by determining (k, ) that satisfies (16)
with (22). If the firm supposes that the uncertainty equivalent follows
this distribution without knowing the parameters but is certain of the
mean of time-to-build (i.e., k), it can specify the candidates of the
uncertainty equivalent. Fig. 5(d) presents the combination of k and 0
that yields the uncertainty equivalent of fixed time-to-build 7 = 5, and
the shaded area corresponds to the case discussed in Corollary 6.

Figs. 5(e) and 5(f) illustrate the optimal investment threshold and
firm value taking uncertain time-to-build into account along with their
approximation based on the moments in Fig. 5(b). They show that
the approximation based solely on the mean and variance of time-to-
build yields a nonnegligible error, but it becomes insignificant when
the skewness is considered.

5.4. Scaled beta distribution

Despite its flexibility, the gamma distribution might not be suitable
for describing the time-to-build of some investment projects, primarily
because of its semi-infinite support. That is, an investment project’s
time-to-build might be nonzero in its best-case scenario and yet finite
even in its worst-case scenario. This can be described by a triangular
distribution in Section 5.1, but its piecewise linear density is not be
suitable for describing the gradual change in the likelihood. For this
reason, we consider a scaled beta distribution.?

Suppose v follows a beta distribution with parameters (a, §) where
a,f > 0 are shape parameters. Since v € [0, 1], we can scale it to
7 = (¢ — a)v + a such that v € [a,c] where 0 < a < ¢. The probability
density function of v is

va-l(oyp-l
f(v) _ Tﬁ) if 0 <7< 1, (23)
0 otherwise,

where B(.,-) is a beta function, and that of 7 is f(z) = f(v)/(c—a) on its
support [a, c¢], which is described in Fig. 6(a). The moment-generating
function of r following the scaled beta distribution with parameters
(a, B, a,c) is

M (1) = /C e f(r)dr

1
- 1 / et((c—a)v+a)va—1 (1 _ V)ﬁ—ldv
0

B(a, B)
1 o (ta) < {Hc—a)k [! ath—1 p—1
= B(a,ﬂ)éT;}T/o v 1 -vfldv

k = v/2 and 0 = 2, it corresponds to the chi-squared distribution with a
parameter v.

19 Specifically, the mode is 0 when k < 1; otherwise, it is nonzero.

20 Jung (2013) also adopted a beta distribution to infer the length of
aggregate time-to-build in a dynamic stochastic general equilibrium model,
mainly due to its versability.
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(ta)" < {1(c — @)} Ba+k,p)
2o X 3] B(a, p)

< (ta)" S _ats i —a)
= 1 . 24
E) n! [ +;(ga+ﬂ+s> k! ] @4
The certainty equivalent of time-to-build following the scaled beta

distribution can be found from (8) with (24). Fig. 6(d) presents the cer-
tainty equivalent of time-to-build following this distribution on [1, 10].
Although the skewness and excess kurtosis greatly vary depending on «
and g (Fig. 6(c)), the comparison of Figs. 6(b) and 6(e) reveals that the
uncertainty premium of time-to-build is mainly driven by its variance.
Fig. 6(e) also shows that the uncertainty premium of time-to-build is
highest when both « and g are below 1 so that it becomes bimodal
with peaks at both ends of the support [a, c].

The uncertainty equivalent of fixed time-to-build, assumed to follow
this distribution, can be found by determining (a, f, a, ¢) that satisfies
(16) with (24). Fig. 6(f) presents the uncertainty equivalent of time-
to-build following this distribution on [1,10] for fixed time-to-build
7 = 5. The shaded area in Fig. 6(f) corresponds to the case discussed in
Corollary 6.

Figs. 6(g) and 6(h) present the optimal investment threshold and
firm value with uncertain time-to-build following this distribution
along with their approximation, showing that the approximation error
is insignificant.

PERT distribution, developed for program evaluation and review
technique, is a special case of the scaled beta distribution. Specifically,
if = follows the PERT distribution with parameters (a,b,c) with 0 <
a < b < ¢ < oo where a and ¢ are the minimum and maximum of
time-to-build, respectively, and b is its mode, its probability density
function coincides with that of the scaled beta distribution with a =
1+4(b-a)/(c—a)and p = 1+ 4(c — b)/(c — a), which is described in
Fig. 7(a). Unlike the triangular distribution discussed in Section 5.1, it
is a smooth unimodal distribution, and it can be suitable for describing
time-to-build having gradual changes in likelihoods with a single mode
between a potentially nonzero minimum (i.e., a) and a finite worst-case
scenario (i.e., c).

The certainty equivalent of time-to-build following the PERT dis-
tribution can be found following the same manner as before, which is
illustrated in Fig. 7(c). As can be seen from Fig. 7(b), the variance does
not vary significantly in accordance with the mode b within the fixed
support [a, c]. Consequently, the uncertainty premium (i.e., E[z] — 7,)
in Fig. 7(c) shows insignificant change.

The uncertainty equivalent of fixed time-to-build, assumed to follow
the PERT distribution, can be found by determining (a, b, ¢) that satisfies
(16) and (24) with @ = 1+4(b—a)/(c—a) and f = 1+4(c—b)/(c—a). If the
firm supposes that the uncertainty equivalent follows this distribution
and is certain of the best-case scenario (i.e., @) and its most likely one
(i.e., b), it can specify the worst-case scenario (i.e., ¢) of the uncertainty
equivalent, which is presented in Fig. 7(d). Figs. 7(e) and 7(f) describe
the optimal investment strategy and firm value taking uncertain time-
to-build into account, along with their approximation, and they reveal
that the approximation error is negligible.

5.5. Mean and variance of time-to-build

Now we focus on the two most important moments of time-to-build:
its mean and variance. Proposition 3 showed that without assuming
the distribution of time-to-build, an increase in the variance of time-
to-build does not always accelerate investment. However, as seen from
Sections 5.1-5.4, such an increase leads to earlier investment for the
well-known probability distributions.

Fig. 8 illustrates the tight upper and lower bounds of the certainty
equivalent of time-to-build for given mean and variance, which are
demonstrated in Proposition 2, along with the corresponding certainty
equivalent for representative probability distributions and its approxi-
mation based on the mean and variance (i.e., T.pin (1 2)). Specifically,
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we fix the mean of time-to-build m and vary its variance v, demonstrat-
ing how the bounds change along with the certainty equivalent. Due to
the degree of freedom, we choose distributions that can be character-
ized by two parameters: symmetric triangular distribution, log-normal
distribution, gamma distribution, and symmetric PERT distribution.
Fig. 8(a) shows that the lower bound decreases with the variance
v while the upper bound remains constant. It also clarifies that the
certainty equivalent of time-to-build decreases with variance for these
distributions, although this might not hold in an extreme case as the
counterexample from the proof of Proposition 3. Note that the accuracy
of the approximation of the certainty equivalent based on the mean
and variance is significantly high. Its approximation error is essentially
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zero for the symmetric triangular and PERT distributions, whereas it
is nonnegligible for the log-normal and gamma distributions due to
their semi-infinite supports. Figs. 8(b)-8(e) describe the corresponding
parameters for each distribution that satisfy the mean m and variance
v.

Fig. 9 presents the examples of the uncertainty equivalent discussed
in Proposition 4. Specifically, Fig. 9(a) depicts the level of variance v,
combined with the mean m, that induces the same optimal investment
threshold and firm value as the ones with a fixed time-to-build 7.
This figure, along with Figs. 9(b) and 9(c), clarifies that even if the
expected duration of time-to-build lengthens, the optimal investment
timing and firm value can remain the same if its uncertainty increases
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of certainty equivalent (b) Corresponding parameters for symmetric trian-

gular distribution (a and b)
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Fig. 8. Tight upper and lower bounds of certainty equivalent of time-to-build and the certainty equivalents for representative probability distributions with mean m = 5 and

different levels of variance v.

significantly. It also demonstrates that the variance of the uncertainty
equivalent depends on the distribution of time-to-build. The variance
of the gamma distribution is found to be significantly higher than that
of other distributions, primarily due to its semi-infinite support.

Figs. 9(d)-9(g) present the corresponding parameters for each dis-
tribution. Note that some distributions cannot yield an uncertainty
equivalent for mean m substantially greater than 7 due to parameter
restrictions, such as a nonnegative minimum. Log-normal and gamma
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distributions are relatively flexible for yielding the uncertainty equiv-
alent owing to their versatility. Note that the uncertainty equivalents
need not follow the distributions illustrated in Fig. 9; they are only a
fraction of many alternatives that can result in the same investment
decision and firm value for a given 7.

As discussed in Section 4.2, a higher demand uncertainty (i.e., o)
delays investment but increases firm value. This is because the firm’s
option to wait becomes more valuable when market demands are
uncertain. By contrast, Lemma 1 demonstrates that a higher uncertainty
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in time-to-build advances the investment timing and improves firm
value. That is, the uncertainty of demand and that of time-to-build
induce the opposite effects on investment timing but both yields the
positive impacts on the firm value.

With these arguments, Fig. 10 highlights the contrasting effects of
the two different types of uncertainty. Specifically, Fig. 10(a) describes
the level of variance v that offsets the negative impacts of an increase
in ¢ on investment timing. It shows that the variance of time-to-build
required to offset the impacts of increased demand volatility varies
according to the distribution of time-to-build. A gamma distribution is
found to require significantly higher variance than other distributions,
mainly due to its semi-infinite support. Figs. 10(b) and 10(c) clarify that
the effects of uncertainty on investment timing from the two different
channels are canceled out, while the firm value significantly improves
due to the uncertainty from both channels. Figs. 10(d)-10(g) present
the corresponding parameters for each distribution. Note that some
distributions cannot offset the negative impacts of a significant increase
in demand volatility due to restrictions on the parameters.

6. Conclusion

This study investigated the impacts of uncertainty in time-to-build
on corporate investment, clarifying the extent to which the uncertainty
accelerates investment and improves firm value. We showed that there
always exists a unique certainty equivalent of uncertain time-to-build,
regardless of its distribution, and derived it in an analytic form. This
allows firms to establish the optimal investment strategy with uncertain
time-to-build in the form of the investment strategy that would have
been adopted without such uncertainty. Even without knowing the
exact distribution, the certainty equivalent can be approximated using
only a few moments, such as mean and variance, which significantly
enhances its practicality. Furthermore, we showed that for a given
fixed time-to-build, an uncertainty equivalent always exists. This en-
ables firms to evaluate the level of risk implicitly assumed by their
investment strategies established without accounting for uncertainty
in time-to-build. Lastly, we applied these arguments to representative
probability distributions to demonstrate the practicality and analyzed
the effects of variance of time-to-build on investment. In particular, we
derived the variance of time-to-build that offsets the negative impacts
of demand uncertainty on investment.

Many problems still remain to be explored. For instance, we focused
on a monopolistic firm for simplicity. Preemptive incentive due to
market competition will significantly alter firms’ optimal investment
strategies as well as the impacts of time-to-build on them. However, in-
troducing competition would substantially reduce the model’s tractabil-
ity. This is because an additional layer of decision-making occurs after
the investment but before its completion, which directly depends on
the remaining time-to-build. Thus, an analytic solution, which allows
us to discuss the explicit structure of equilibrium strategies, is unlikely,
unless the underlying distribution exhibits the memoryless property
(i.e., exponential distribution). We also assumed an all-equity firm,
but we need to address the impacts of uncertainty in time-to-build
on financing and default decisions for a levered firm. Jeon (2021a)
investigated the effects of uncertain time-to-build on a firm’s invest-
ment and default decisions, showing that it can lead to a lower default
probability compared to the case without time-to-build, mainly due to
more conservative investment decisions. However, the study did not
clarify the pure effects of uncertainty in time-to-build by comparing
it with the case of a fixed time-to-build. Future research must address
this question, although it will encounter the same technical difficulties
mentioned earlier. More importantly, we assumed the independence
between the demand shock and time-to-build for tractability. Follow-up
research should test if the same results hold without the independence
assumption. Lastly, despite data collection challenges, empirical analy-
sis is necessary to validate the theoretical results discussed in this study.
It is hoped that this study will serve as a platform for investigating these
issues in the future.
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Appendix A. Proofs

A.1. Proof of Lemma 1

By the definition, 7,,; = 7, + ¢,,; where E[¢,,|z,] = 0. Suppose
that 7, has a cumulative distribution function F, for n > 1. Since
f(@) := e~""M7 is a strictly convex function, Jensen’s inequality ensures
the following always holds for all n > 0:

6(t,41) = E[f (7,41
- / e Ey 1 () = / ELS (G + €y [7)10Fy ()

> /f(E[Tn + €uq1 17, DAF,(z,) = / f(@dF,(z,) = E[f (z,)] = 6(z,).
(25)

With é(z,,y) > 6(z,), it is straightforward that X,
V.. (X)>V, (X).

, < X, and

A.2. Proof of Proposition 1

By Lemma 1, f(E[z]) < E[f(z)] = 6(r) always holds, and f(z) strictly
decreases with 7. Thus, there exists a constant 7.( < E[z]) such that
6(7,) = 6(z). The monotonicity of f(r) ensures its uniqueness.

Meanwhile, the definition of §(z) and that of the moment-generating
function in (9) imply 6(z) = M (—(r — u)), from which we obtain (8).

A.3. Proof of Corollary 1

Let us define u(z) := K, (z)/z for z < 0. It is straightforward that
W'(z) = v(z)/z* where v(z) := K!(z)z — K. (). Due to the convexity
of the cumulant-generating function, we have v'(z) = K!(z)z < 0 for
z < 0, which amounts to v(z) > v(0) = 0 for z < 0. Therefore, we obtain
u'(z) > 0. Note that 7, = u(—(r — u)), and thus, 7 increases with u, and
the independence with respect to ¢ is evident.

A.4. Proof of Corollary 2

Plugging (5) into (4), it is straightforward that V,(X) = A(X)(6(z))"
where A(X) is given by (11). Thus, V,(X) > X is equivalent to 6(z) >
(X/AX))V/7. By definition, 5(r) = 8(%,) = exp(—(r — u),) and &(r) =
M (—(r — p)) = exp(K.(—(r — p))), which amounts to (10).

A.5. Proof of Corollary 3

Combining the cumulants x; = E[z], k, El(z — E[z])?], &3
E[(z — E[7])*], and &, = E[(z — E[z])*] — 3(E[(z — E[7])?])> with (8) and
(9), we can easily obtain (12) through (14).
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A.6. Proof of Corollary 4

Suppose 7,,; = 7, + €,,; with E[e,,|z,] = 0. Proposition 1 implies
that for 7, there exists a unique constant 7, , = E[z,] — ¢, where ¢, > 0
such that (7, ) = é(z,). By Lemma 1, 6(z,) < 6(7,,), or equivalently,
fElzr,] —¢,) < fE[zr,41] — c,41). Because f(z) strictly decreases with
7, we have ¢,,; > c,, which implies that the uncertainty premium of
time-to-build increases with its dispersion.

The approximation of the certainty equivalent in (13) and (14)
decrease with v when the terms in the parentheses are positive.

A.7. Proof of Proposition 2

Suppose 7 is a nonnegative random variable with mean m and
variance v. Jensen’s inequality ensures the following holds:

e~ (r=wm < E[e—(r—#)f]_ (26)

The tightness of (26) can be shown as follows. Suppose z follows
a two-point distribution with possible outcomes of m + n and m — I(n)
with probabilities vn=2 and 1—wvn~2, respectively, where n is sufficiently
large and /(n) is chosen such that E[z] = m (i.e., I[(n) = (m+n)v/(n* —v)).
Since lim,_, , /(n) = 0, the following holds:
El(z — m)*] = n? - n% + (l(n))2<l - n_UZ)

n—oo
— A

27)

v ) _.ﬂioi, e=(r=mm (28)
n2

Meanwhile, let us define a quadratic function g(z) := ar? + bt + 1
where

1= e~ =701 + (r — u)zy)

E[e~(—H7] = g~ (rmtn) 12 i e—(r—/x)(m—l("))(l -
n

a , 29
%
2 4 e~ (=W (2 -
b= +e Q2+ (r—wry) ’ (30)
70
o =m+ Z(>0). (31)
n

Then, for f(r) := e~~#7 it is straightforward to show the following:

g(0) - f(0)=0, (32)
g(zp) = f(7) =0, (33)
8'(7) ~ f'(z) = 0. (34

We can also show that g”(7)—f"'(r) = 2a—(r—u)*e"""#)7 is an increasing
function of = and that

2- TN (242r = )y + (r = P17 )
>

g"(w) = f"(z9) = 5 0. (35
%o

The inequality in (35) holds because for = > 0,

h(z) =2 —e N2 4 2(r — T + (r — p)?72} > h(0) =0 (36)

since A'(r) > 0 for ¢ > 0. From (32), (33), (34), and the monotonic
increase of g”’(r) — f"'(r), we can show that g(r) — f(r) for = > 0 takes
the minimum value of 0 at = 0 and 7 = 7, implying that g(z) > f(r)
for = > 0. Thus, we have

E[e™"="7) = E[f(1)]

e—(r—y)(m+L’/m)m2 )

<Elg(t)] = a(m® +v) + bm+ 1 = (37)

m? +v

The tightness of (37) can be shown as follows. Suppose 7 follows a
two-point distribution with possible outcomes of 0 and m + v/m with
probabilities v/(m?> + v) and m?/(m*> + v), respectively. This satisfies
E[z] = m and E[z?] = v + m?, and E[e~"~#7] coincides the right-hand
side of (37).

By combining (26) and (37) and rewriting them in terms of the
certainty equivalent in (8), we can obtain (15). The left-hand side of
(15) is —In(p(v))/(r — u) where p(v) = (e""=Wm+e/mp2 4 1y /(m? + v),
and it is straightforward to show dp/dv = {m*(1 —e~¢(1 + ¢))} /(m* + v)?
where ¢ = (r — u)(m + v/m) > 0. For q(c¢) := e™(1 + ¢), dg/dc < 0 and
q(0) = 1, and thus, g(c) < 1 for ¢ > 0. This implies dp/dv > 0, and thus,
the left-hand side of (15) strictly decreases with v.
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A.8. Proof of Proposition 3

Suppose that = follows a two-point distribution with possible out-
comes of n and m—I(n) with probabilities =1~ and 1—-n~1, respectively,
where n is sufficiently large and /(n) is chosen such that E[z] = m
(i.e., I(n) = (n—m)/(n'> —1)). Since lim,,_, , /(n) = 0, the following holds:

2 n2 2 1 n—oo
E[2] = 2= 4 (m = I(n)) (1-—)ﬁ oo, (38)
nls s
E[e~—17] = —e_(:')" + e_(’_")(’"_’(”))(l - ILS)——»"*“ e~(r=mm (39)
n- n-

That is, as n increases, variance of 7 increases, but its certainty equiva-
lent also increases, converging to m. In other words, it is possible that
uncertainty premium of time-to-build can decrease and converge to 0
as its variance increases.

A.9. Proof of Proposition 4

By Lemma 1, f(%) = f(E[% + €]) < E[f( + €)] where E[e] = 0. Since
f(z) strictly decreases with 7, E[f(7 + € + u)] < E[f(7 + ¢€)] holds for
a constant u > 0. Therefore, there always exists 7, := 7 + ¢ + u such
that f(7) = E[f(z,)], or equivalently, 6(7) = 6(z,). This, combined with
the definitions of §(7) and the moment-generating function, amounts to
(16).

A.10. Proof of Corollary 5

Suppose 7, is the uncertainty equivalent of 7. That is, 6(7) = 6(z,),
or equivalently, f(7) = E[f(z,)] = E[f(% + € + u)] where E[e] = 0 and
u > 0 is a constant.

Meanwhile, suppose 7/ is a mean-preserving spread of z,. That is,
7, = 1, + ¢ where E[¢/|z,] = 0. By Lemma 1, E[f(z,)] < E[f(z])]
always holds. Since f(r) strictly decreases with 7, there always exists a
constant v’ > 0 such that E[f(z,)] = E[f(z] + «')] holds, which implies
8(7) = 6(r,) = 6(%,) where %, := 7/ +u/. Namely, both 7, and %, are
the uncertainty equivalents of 7. By the definition, E[z,] = 7 + u and
E[%,] = T + u+u', which completes the proof.

A.11. Proof of Corollary 6

By Proposition 4, for any 7 > 0, there always exists 7, :=T+¢+u
where E[e] = 0 and 4 > 0 is a constant such that f(7) = E[f(z,)].
Because f(r) strictly decreases with 7, there always exists a constant
w € (0,u) such that E[f(z,)] < E[f(z,,)] where 7, := 7 + € + w, which
implies 6(7) = 6(z,) < 6(z,,) and E[z,,] = T + w.

A.12. Proof of Proposition 5

Suppose 7 follows a symmetric triangular distribution on [a—d, b+d]
with its mode ¢ = (a+b)/2. It is obvious that its variance increases while
its mean remains the same as d increases. With (18), one can easily
show that oM (t)/dd > 0. That is, an increase of d, which increases its
variance, results in a decrease of 7,, and thus, an increase of E[z] — 7Z,.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2025.07.051.
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