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 A B S T R A C T

Time-to-build of an investment project induces a difference between the timing of investment and that of 
revenue generation. Jeon (2024b) showed that uncertainty in the time-to-build always accelerates investment 
and enhances pre-investment firm value, regardless of its distribution. This study examines the extent to 
which the uncertainty advances the timing of investment and improves firm value. Specifically, we show 
that there always exists a unique certainty equivalent of an uncertain time-to-build and derive it in an analytic 
form. This enables us to derive the investment strategy with an uncertain time-to-build in the form of the 
one that would have been adopted in the absence of such uncertainty. Even without full knowledge of the 
uncertainty, the firm can approximate the optimal investment strategy using only the mean and variance 
of time-to-build. Furthermore, we show that there always exists an uncertainty equivalent of fixed time-
to-build. This enables firms to evaluate the level of risk implicitly assumed by their investment strategies 
established without accounting for uncertainty in time-to-build. Lastly, we illustrate the practical application 
of our findings using some representative probability distributions and analyze the effects of the variance 
of time-to-build. In particular, we contrast the effects of uncertainty in demand with those of uncertainty 
in time-to-build, deriving the level of variance in time-to-build that offsets the negative impact of increased 
demand volatility on investment.
1. Introduction

In 2015, Elon Musk made a bold promise that Tesla’s vehicles would 
drive themselves in two years. In 2019, he made another promise, 
claiming that there would be a million robotaxis on the road in a 
year. After nearly a decade, neither have we seen fully self-driving 
technology from Tesla, nor do we see any of their robotaxis on the 
road.2 At an event in October 2024, which had been postponed several 
times, Tesla revealed some prototypes of their robotaxis. Elon claimed 
that they would be available before 2027, which seems highly unlikely, 
given his notorious record of unmet promises regarding timelines, as 
well as the complex regulatory requirements the technology must meet.

Elon and his company are not the only ones. Olkiluoto 3 in Finland 
is one of the largest nuclear reactors in Europe. Its construction began 
in 2005 with an estimated completion date in 2009, but finalized in 

∗ Corresponding author.Correspondence to: Graduate School of Economics, The University of Osaka, 1-7 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
E-mail address: jeon@econ.osaka-u.ac.jp (H. Jeon).

1 This study was supported by the JSPS KAKENHI (grant numbers 22K13434, 23K20613, and 24K00272) and Tokyo University of Science Research Grants. 
The authors would like to express their gratitude to Masaaki Fukasawa for his constructive comments on this paper.

2 Although Tesla has provided a driver-assistance system called Full Self-Driving, the name is misleading, as it remains at Level 2 automation, with Level 5 
being fully autonomous driving according to the standards of the Society of Automotive Engineers International.

3 Examples are abundant. Recent issues include sluggish capacity expansion in the semiconductor industry, where demand surged during the COVID-19 
pandemic, and significant production delays by new automakers following the rise of the electric vehicle market.

4 Jeon (2024b) considered not only time-to-build but also regulation as internal and external factors that hinder immediate revenue generation after the 
investment, respectively. This study excludes the latter to simplify the model and its solution.

2022, resulting in a 13-year delay. Flamanville 3 in France is another 
example of a significant delay in constructing a power plant. It started 
in 2007 with the aim of completing by 2012; however, it still has not 
been finished yet (White, 2024). As seen from these examples, time-to-
build is prevalent in real-world investment projects, and uncertainty is 
one of its inherent attributes.3 Time-to-build has a significant impact 
on firm value because it introduces a difference between the timing 
of investment and that of revenue generation. When its duration is 
uncertain, the firm’s investment strategy must be established even more 
meticulously. Nevertheless, the effects of uncertainty in time-to-build 
on corporate investment are underexplored.

To the best of our knowledge, Nishihara (2018) is the first study that 
shed light on the effects of uncertainty in time-to-build on investment. 
The paper analyzed a firm’s research and development (R&D) invest-
ment decision, assuming that duration follows a uniform distribution, 
and numerically showed that uncertainty in the duration, compared to 
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a fixed equivalent, leads to earlier investment. Jeon (2024b) investi-
gated the effects of uncertainty in time-to-build without any assumption 
on its distribution and analytically showed that uncertainty in time-
to-build always accelerates investment and increases pre-investment 
firm value.4 Jeon (2024a) extended this framework by incorporating 
the firm’s investment size decision in addition to the timing decision, 
confirming that the positive impacts of uncertainty in time-to-build on 
investment remain intact. However, these studies did not demonstrate 
the extent to which the uncertainty advances the timing of invest-
ment and improves firm value. This study addresses this unanswered 
yet significant problem by clarifying the impacts of uncertainty in 
time-to-build on firm value in more detail.

First, we show that there always exists a unique certainty equivalent
for uncertain time-to-build, regardless of its distribution. That is, there 
is a fixed time-to-build whose duration is shorter than the uncertain 
counterpart but yields the same firm value. Furthermore, we derive the 
certainty equivalent in an analytic form. This enables us to determine 
the optimal investment strategy with uncertain time-to-build in the 
form of the investment strategy that would have been adopted without 
such uncertainty. Even without the full knowledge of the uncertainty 
in time-to-build (i.e., probability distribution), the certainty equivalent 
can be approximated with only a few moments, such as mean and vari-
ance, which significantly enhances practicality. Moreover, we derive 
the tight upper and lower bounds of the certainty equivalent for given 
mean and variance of time-to-build. We also show that the extent of 
investment acceleration due to uncertainty in time-to-build decreases 
with the expected growth rate of revenue and is independent of its 
volatility.

Second, we show that there always exists an uncertainty equivalent
for fixed time-to-build. That is, there is an uncertain time-to-build 
whose expected duration is longer than the fixed counterpart but 
induces the identical firm value. Unlike the certainty equivalent, there 
can be many uncertainty equivalents for a given fixed time-to-build. 
This enables firms to evaluate the level of risk implicitly assumed by 
their investment strategies established without accounting for uncer-
tainty in time-to-build. We also show that for a given fixed time-to-
build, there always exists an uncertain counterpart whose expected 
duration is longer yet yields higher firm value, which verifies the 
positive impacts of uncertainty in time-to-build.

Lastly, we apply the above arguments to representative probability 
distributions to demonstrate their practicality. Specifically, we applied 
the main results to positively skewed and unimodal distributions with 
nonzero mode, which is consistent with empirical evidence, and we 
find that the mean and variance of time-to-build are often sufficient 
to approximate its certainty equivalent. Furthermore, we contrast the 
effects of demand uncertainty with those of uncertainty in time-to-
build. The former delays investment because it increases the value of 
waiting, whereas the latter accelerates investment because it increases 
the expected profits from the investment by the convexity of the 
discount factor with respect to the revenue generation timing. With 
these arguments, we derive the variance of time-to-build that offsets 
the negative impacts of increased demand volatility on investment.

The remainder of this study is organized as follows. Section 2 
reviews the literature on uncertainty-investment relationship and time-
to-build. Section 3 introduces the model setup and Section 4 derives 
its solution. Specifically, Section 4.1 presents the preliminary results 
based on a standard real options model, and Section 4.2 contrasts 
the effects of uncertainty in time-to-build with those of uncertainty 
in demand. Section 4.3 derives the certainty equivalent of uncertain 
time-to-build and analyzes its sensitivity, while Section 4.4 derives the 
uncertainty equivalent of a fixed time-to-build. Section 5 applies the 
arguments discussed in Section 4 to representative probability distri-
butions. Specifically, Sections 5.1–5.4 correspond, respectively, to the 
following distributions: triangular distribution, log-normal distribution, 
gamma distribution, and scaled beta distribution. Section 5.5 focuses 
on the mean and variance of time-to-build and compares the effects 
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of uncertainty in time-to-build and those of uncertainty in demand. 
Section 6 summarizes the main findings and suggests possible future 
work, and Appendix  A presents all proofs. In the Online Appendix, 
we discuss the certainty equivalent from the perspective of entropic 
risk measure and consider different cost structures and alternative 
probability distributions for time-to-build. It also provides a summary 
of the characteristics of the distributions discussed in the paper.

2. Literature review

Majd and Pindyck (1987) was one of the first studies to examine 
the impact of time-to-build on corporate investment. They assumed a 
maximum rate at which a firm can invest and showed that such friction 
results in delays in investment. Bar-Ilan and Strange (1996a, 1996b) 
supposed that a certain period of time must elapse before revenue from 
investment can be generated, showing that uncertainty in demand can 
hasten investment in the presence of lags. They assumed a fixed time-
to-build, and it is uncertainty in demand, not that in time-to-build, that 
accelerates investment. Furthermore, they assumed the firm’s option 
to abandon the ongoing project, which truncates the downside risk 
of the project and yields a stronger incentive for investment. Bar-
Ilan and Strange (1998) extended their previous work to a two-stage 
investment project and found that the investment can be sequential 
when the firm has an option to suspend the ongoing project. Pacheco-
de Almeida and Zemsky (2003) also studied a multi-stage investment in 
the presence of time-to-build and duopoly. They found that the firm’s 
investment behavior can be either incremental or lumpy depending on 
the duration of time-to-build. However, these studies only considered 
a fixed time-to-build, leaving the effects of the uncertain counterpart 
unaddressed.

Some studies adopted uncertain time-to-build in the discussion of 
corporate investment decisions. Weeds (2002) examined R&D com-
petition in a duopoly market, assuming random discovery time for 
new technologies, and found negative impacts of uncertain lags on 
investment decisions. Alvarez and Keppo (2002) examined a firm’s 
irreversible investment with delivery lags in a generalized setup in 
which they are interdependent. Specifically, they assumed that the lags 
increase with the level of demand shock and showed that the invest-
ment might be suboptimal depending on the level of demand shock, 
primarily because higher demands imply longer delivery lags. Jeon 
(2021a) investigated the effects of uncertain time-to-build on a levered 
firm’s investment and financing decision and showed that the default 
probability can be lower than the case without time-to-build. Jeon 
(2021b) studied a duopolistic market with asymmetric uncertain time-
to-build and found the equilibrium in which the dominated firm with 
a longer expected time-to-build becomes a leader. Jeon (2023) took 
account of learning effects in the discussion of capacity expansion with 
uncertain time-to-build.

Although these studies considered uncertain time-to-build in their 
discussion, the sheer effects of uncertainty in time-to-build were not 
addressed. To our knowledge, Nishihara (2018) is the first to discuss 
this issue. This study investigated a firm’s R&D investment decision 
with uncertainty in market demands, competition, and R&D duration, 
and numerically showed that uncertainty in the duration, described 
by a uniform distribution, leads to earlier investment than in the 
case of fixed duration. Jeon (2024b) compared the optimal investment 
strategy and firm value with fixed time-to-build and those with uncer-
tain time-to-build whose expected duration is identical with the fixed 
counterpart, without any assumption on the distribution of time-to-
build. The comparison showed that uncertainty in time-to-build always 
accelerates investment and improves pre-investment firm value, regard-
less of its distribution. Jeon (2024a) found that the positive impact of 
uncertainty in time-to-build remains robust even when the investment 
size decision is taken into account in addition to the timing decision.

Despite the difficulties of collecting data, some studies have empiri-
cally analyzed the effects and determinants of time-to-build. Jorgenson 
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and Stephenson (1967) investigated investment behavior in U.S. man-
ufacturing and found that the average lag between the determinants 
of investment and actual investment expenditures ranges from 1.5 to 3 
years. Montgomery (1995) examined the construction duration of U.S. 
nonresidential structures and found that the value-weighted construc-
tion period is approximately 1.5 years, with significant variation over 
time. Koeva (2000) analyzed plant investment from various industries 
and found that time-to-build, averaging two years, is not sensitive to 
business cycles. Zhou (2000) empirically showed that time-to-build can 
explain the positive correlation of investment. Salomon and Martin 
(2008) reported that in the semiconductor industry, the duration of 
time-to-build is associated with market competition, firm ownership, 
and firm/industry experience. Tsoukalas (2011) showed that in the 
presence of time-to-build, a firm’s investment decision is significantly 
affected by the firm’s cash flows. Kalouptsidi (2014) found that time-
varying time-to-build decreases the level and volatility of investment 
in the bulk shipping industry. Oh and Yoon (2020) showed that in 
the 2002–2011 U.S. housing boom-bust cycle, the increase of time-
to-build during the boom is due to construction bottlenecks whereas 
that during the bust is due to an increase of uncertainty. Oh et al. 
(2024) utilized data on U.S. residential land development and showed 
that time-to-build introduces a significant difference between short-run 
and long-run housing supply elasticities. Glancy et al. (2024) analyzed 
data on U.S. commercial construction projects and found that roughly 
one-third of projects are abandoned during the planning phase, while 
over 99% of those that reach the construction phase are completed. 
They also found that property price appreciation reduces the likelihood 
of abandonment. Charoenwong et al. (2024) utilized Japanese dataset 
to show that information acquisition and investment flexibility can 
reduce the negative impacts of time-to-build significantly. Fernandes 
and Rigato (2025) utilized Indian project-level data to measure time-
to-build and found that firms accelerate ongoing projects rather than 
start new ones when credit dries up.

3. Setup

Suppose that a risk-neutral firm is considering an investment project 
with demand shocks that follows a geometric Brownian motion: 
d𝑋(𝑡) = 𝜇𝑋(𝑡)d𝑡 + 𝜎𝑋(𝑡)d𝑊 (𝑡), (1)

where 𝜇 and 𝜎 are positive constants and (𝑊 (𝑡))𝑡≥0 is a standard 
Brownian motion on a filtered space (𝛺, ,F ∶= (𝑡)𝑡≥0,P) satisfying 
the usual conditions. For simplicity, we assume that the demand is 
price-inelastic such that the monopolistic firm’s revenue flow from 
this project coincides with (1).5 The investment incurs lump-sum costs 
𝐼 and the variable costs of production are normalized to zero.6 The 
discount rate is 𝑟( > 𝜇) to ensure a finite value function, which is a 
standard assumption in real options literature.

The investment project does not yield revenue immediately after the 
investment because of the project’s time-to-build. This can arise from 
R&D for new technologies or large-scale construction of manufacturing 
facilities. Due to its inherent uncertainty, the size of time-to-build is a 
nonnegative random variable 𝜏, which is assumed to be independent of 
𝑋(𝑡) for simplicity.

4. Models and solutions

4.1. Preliminary results

The pre-investment firm value is evaluated as the expected present 

5 This simplification can also be found from Jeon (2024b), among many 
others.

6 We assume that the lump-sum investment costs are incurred at the 
investment timing, but the main results of this paper remain intact even when 
running costs are incurred throughout the period of time-to-build. See the 
Online Appendix for this discussion.
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value of revenue from the investment project less its costs. Thus, the 
firm value with an option to invest in a project having a time-to-build 
of 𝜏 is expressed as follows: 

𝑉𝜏 (𝑋) = max
𝑇≥0

E
[

∫

∞

𝑇̂
𝑒−𝑟𝑡𝑋(𝑡)d𝑡 − 𝑒−𝑟𝑇 𝐼||

|

𝑋(0) = 𝑋
]

. (2)

It is optimal for the firm to invest in the project as the demand 
shock reaches an upper threshold.7 Thus, the investment timing can be 
characterized by the level of demand shock at which the firm invests 
in the project, and 𝑇 ∶= inf{𝑡 > 0|𝑋(𝑡) ≥ 𝑋𝜏} and 𝑇̂ ∶= 𝑇 + 𝜏 denote 
the timing of investment and revenue generation, respectively, where 
𝑋𝜏 represents the corresponding investment threshold.

Due to the Markov property, the firm value at the investment timing 
for given demand shock 𝑋 is 

E
[

∫

∞

𝜏
𝑒−𝑟𝑡𝑋(𝑡)d𝑡 − 𝐼||

|

𝑋(0) = 𝑋
]

=
𝑋𝛿(𝜏)
𝑟 − 𝜇

− 𝐼, (3)

where 𝛿(𝜏) ∶= E[𝑒−(𝑟−𝜇)𝜏 ] represents the discount factor for the timing 
of revenue generation, which plays a pivotal role in the following 
discussion. Note that it is the Laplace transform of the time-to-build. 
Following the standard argument of real options, the firm value in (2) 
can be calculated as follows8: 

𝑉𝜏 (𝑋) =

⎧

⎪

⎨

⎪

⎩

[𝑋𝜏 𝛿(𝜏)
𝑟−𝜇 − 𝐼

]( 𝑋
𝑋𝜏

)𝛾 , if 𝑋 < 𝑋𝜏 ,

𝑋𝛿(𝜏)
𝑟−𝜇 − 𝐼, if 𝑋 ≥ 𝑋𝜏 ,

(4)

where the optimal investment threshold is 

𝑋𝜏 =
𝛾(𝑟 − 𝜇)𝐼
(𝛾 − 1)𝛿(𝜏)

, (5)

and 

𝛾 ∶= 1
2
−

𝜇
𝜎2

+
√

(1
2
−

𝜇
𝜎2

)2 + 2𝑟
𝜎2

(> 1). (6)

4.2. Effects of uncertainty on investment

The effects of uncertainty in time-to-build on investment and firm 
value can be described as follows: 

Lemma 1.  If 𝜏𝑛+1 is a mean-preserving spread of 𝜏𝑛 for 𝑛 ≥ 0 with a 
constant 𝜏0 = 𝜏, the following always holds: 
𝑋𝜏𝑛+1 < 𝑋𝜏𝑛 and 𝑉𝜏𝑛+1 (𝑋) > 𝑉𝜏𝑛 (𝑋) for all 𝑛 ≥ 0. (7)

Proof.  See Appendix  A.1.
Lemma  1 implies that uncertainty in time-to-build always acceler-

ates investment and improves pre-investment firm value, which was 
first shown by Jeon (2024b). This is essentially due to the convexity of 
the discount factor with respect to the timing of revenue generation. 
Specifically, the gain from earlier revenue generation (i.e., 𝜏 < E[𝜏]) is 
discounted over a relatively short period of time, while the loss from 
delayed revenue generation (i.e., 𝜏 > E[𝜏]) is discounted over a longer 
period of time, resulting in the asymmetric effects of uncertainty in 
time-to-build on firm value. Note that this argument is independent of 
the distribution of time-to-build 𝜏.9

7 See Dixit and Pindyck (1994, Chapter 4) and Peskir and Shiryaev (2006, 
Chapter 4) for the discussion regarding the optimality of threshold policy.

8 The derivation of the optimal investment threshold based on the real 
options framework can be found in Dixit and Pindyck (1994, Section 5), among 
many others.

9 Jeon (2024b) verified the robustness of this result, showing that it still 
holds even when there are running costs during the phase of time-to-build and 
the firm has an option to abandon the ongoing project. Jeon (2024a) showed 
that the positive impacts of uncertainty in time-to-build persist even when the 
firm’s investment size decision is considered in addition to the timing decision.
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Hartman (1972, 1973) and Abel (1983) demonstrated that un-
certainty can accelerate investment, focusing on uncertainties in the
state space, such as market demands and output prices. In their stud-
ies, the convexity of marginal profitability of capital, resulting from 
the optimal labor adjustment, leads to the positive impacts of uncer-
tainty in demands. Jeon (2024a, 2024b) and this study shed light 
on the uncertainty in the time dimension, showing that uncertainty 
in revenue generation timing always accelerates investment, and it is 
also the convexity that drives the positive impacts of uncertainty in 
time-to-build.

In the standard real options literature in which the investment 
timing decision is mainly discussed, it is well-known that an increase 
in demand volatility (i.e., 𝜎) delays investment. This negative impact of 
demand uncertainty on investment is in sharp contrast with the positive 
impact of uncertainty in time-to-build, and the economic intuition be-
hind these opposing effects is as follows. When demand is uncertain, the 
firm obtains more information and resolves the uncertainty by waiting 
to invest. In other words, the value of the option to wait increases 
with demand uncertainty, and therefore, the firm delays investment 
as the market becomes more volatile. This can be seen from the fact 
that 𝜕𝛾∕𝜕𝜎 < 0, and thereby 𝛾∕(𝛾 − 1) in (5), which represents the 
option value, increases with 𝜎. Note that the expected profits from the 
investment in (3) are independent of 𝜎. This implies that the option 
value is the sole channel through which demand uncertainty negatively 
affects the investment decision.

By contrast, the firm can acquire more information regarding the 
timing of revenue generation and resolve the uncertainty only after 
the investment, but the amount and quality of this information is 
independent of the investment timing. Thus, earlier investment due to 
the uncertainty in time-to-build is not associated with the value of the 
option to wait. This can be seen from the fact that 𝛾 in (6) is indepen-
dent of 𝜏. Note that the expected profits at the investment timing in (3) 
depends on 𝜏. This implies that the expected profits from the invest-
ment, which depend on the convexity of the discount factor regarding 
the revenue generation timing, are the sole channel through which 
uncertainty in time-to-build positively impacts the investment decision. 
This argument is illustrated with numerical examples in Section 5.5.

Most empirical studies on the uncertainty-investment relationship 
indicate a negative link between them (e.g., Guiso and Parigi (1999), 
Leahy and Whited (1996) and Meinen and Roehe (2017)), but there 
are a few exceptions. For instance, Driver et al. (2008) used panel 
data from the British survey to test the effects of uncertainty on 
investment and found positive impacts in industries with high R&D and 
advertising intensities. Marmer and Slade (2018) analyzed U.S. copper 
mining industry and reported a positive impact of uncertainty on 
investment when the project involved time-to-build. These studies sug-
gest that time-to-build might drive the positive impacts of uncertainty 
on investment, although this hypothesis requires further empirical 
testing.

4.3. Certainty equivalent of uncertain time-to-build

Now we examine the extent to which uncertainty in time-to-build 
advances the investment timing and improves the firm value. 

Proposition 1 (Certainty Equivalent).  For any uncertain time-to-build 𝜏, 
there always exists a unique constant 𝜏𝑐 ( < E[𝜏]) such that 𝛿(𝜏) = 𝛿(𝜏𝑐 ), 
or equivalently, 𝑋𝜏 = 𝑋𝜏𝑐  and 𝑉𝜏 (𝑋) = 𝑉𝜏𝑐 (𝑋). The certainty equivalent is 
derived as 

𝜏𝑐 = −
𝐾𝜏 (−(𝑟 − 𝜇))

, (8)

𝑟 − 𝜇
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where 𝐾𝜏 (𝑡) is the cumulant-generating function of 𝜏10: 

𝐾𝜏 (𝑡) = lnE[𝑒𝑡𝜏 ] =
∞
∑

𝑛=1

𝑡𝑛𝜅𝑛
𝑛!

, (9)

with 𝜅𝑛 denoting the 𝑛th cumulant of 𝜏.

Proof.  See Appendix  A.2.
Proposition  1 offers a practical framework for deriving the optimal 

investment strategy in the presence of uncertain time-to-build in a 
straightforward manner. Given the prior knowledge of the uncertainty 
in time-to-build 𝜏, the firm can derive the corresponding certainty 
equivalent 𝜏𝑐 in (8) and apply it to the optimal investment strategy 
that would have been adopted in the absence of such uncertainty 
(i.e., 𝑋𝜏 = 𝑋𝜏𝑐 ). This tractable framework is applicable to any 𝜏 that 
has its probability density function.

Proposition  1 implies that the firm value with longer and uncertain
time-to-build (i.e., 𝜏) is same as that with shorter and fixed time-to-
build (i.e., 𝜏𝑐) and that the unique correspondence (i.e., 𝑋𝜏 = 𝑋𝜏𝑐
and 𝑉𝜏 (𝑋) = 𝑉𝜏𝑐 (𝑋)) always exists, regardless of the distribution of 
stochastic time-to-build. The degree to which uncertainty in time-to-
build accelerates investment and thus improves firm value is measured 
by E[𝜏] − 𝜏𝑐 (> 0), which is referred to as uncertainty premium of 
time-to-build.

Fig.  1 graphically illustrates the positive impacts of uncertainty in 
time-to-build and the existence of the certainty equivalent. To facilitate 
understanding, Fig.  1(a) reviews the well-known negative impacts of 
uncertainty in consumption on utility. For a risk-averse investor, her 
utility function 𝑈 (𝑥) is a function of consumption level 𝑥 with 𝑈 ′ ≥ 0
and 𝑈 ′′ ≤ 0.11 Given possible outcomes of 𝑥1 and 𝑥2, the concavity of 
the utility function ensures E[𝑈 (𝑥)] ≤ 𝑈 (E[𝑥]) always holds, and there 
exists the certainty equivalent 𝑥̄𝑐 such that E[𝑈 (𝑥)] = 𝑈 (𝑥̄𝑐 ) and 𝑥̄𝑐 ≤
E[𝑥]. Fig.  1(b) follows similar arguments. Firm value 𝑉 (𝜏) is a function 
of time-to-build 𝜏 with 𝑉 ′ < 0 and 𝑉 ′′ > 0, and given possible outcomes 
of 𝜏1 and 𝜏2, the convexity ensures E[𝑉 (𝜏)] > 𝑉 (E[𝜏]); there exists the 
certainty equivalent 𝜏𝑐 such that E[𝑉 (𝜏)] = 𝑉 (𝜏𝑐 ) and 𝜏𝑐 > E[𝜏].

The sensitivity of the certainty equivalent of uncertain time-to-build 
with respect to market demands is addressed as follows: 

Corollary 1.  The certainty equivalent of time-to-build increases with the 
expected growth rate of demand (i.e., 𝜇). In other words, the uncertainty 
premium of time-to-build decreases with it. Both are independent of demand 
volatility (i.e., 𝜎).

Proof.  See Appendix  A.3.
This result implies that uncertainty in time-to-build accelerates in-

vestment significantly when market demand is expected to grow slowly. 
Technically speaking, this is because the convexity of the discount 
factor with respect to the timing of revenue generation — the main 
driver of the positive effects of uncertainty in time-to-build — decreases 
with the expected growth rate of demand (i.e., 𝜇).12 That is, when 𝜇 is 
low, the firm heavily discounts the future cash flow, and thus, earlier 
completion of the project is more appreciated, and losses from the delay 
are significantly discounted when 𝜇 is low. In summary, the adjustment 

10 The cumulant-generating function is the natural logarithm of the moment-
generating function 𝑀𝜏 (𝑡) = E[𝑒𝑡𝜏 ] =

∑∞
𝑛=0

𝑡𝑛E[𝜏𝑛]
𝑛!

. Since 𝑟 > 𝜇, 𝑀𝜏 (−(𝑟−𝜇))(< 1)
always exists and so does 𝐾𝜏 (−(𝑟 − 𝜇))( < 0), provided that the probability 
density function exists.
11 This includes a broad class of utility functions, including those with 
constant absolute risk aversion and constant relative risk aversion (i.e., 𝑈 (𝑥) =
−𝑒−𝛾𝑥 and 𝑈 (𝑥) = (𝑥1−𝛾−1)∕(1−𝛾), respectively, where 𝛾 > 0 denotes the degree 
of risk aversion).
12 For 𝑓 (𝜏) = exp(−(𝑟 − 𝜇)𝜏), the degree of convexity, measured by 1

𝑓
𝜕2𝑓
𝜕𝜏2

=
(𝑟 − 𝜇)2, decreases with 𝜇.
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Fig. 1. Positive impacts of uncertainty in time-to-build on firm value.
in the investment strategy due to the uncertainty of revenue generation 
timing needs to consider how much the demand is expected to grow 
over time but it should not reflect how volatile the demand is.

Proposition  1 allows us to summarize the direct relationship be-
tween time-to-build and firm value as follows: 

Corollary 2.  Suppose the initial demand 𝑋 is sufficiently low such that 
the investment is not triggered instantly. The firm value 𝑉𝜏 (𝑋) being greater 
than 𝑋̄ is equivalent to 

𝜏𝑐 ≤
ln(𝐴(𝑋)∕𝑋̄)
(𝑟 − 𝜇)𝛾

, (10)

where 

𝐴(𝑋) =
( 𝛾 − 1

𝐼

)𝛾−1( 𝑋
𝛾(𝑟 − 𝜇)

)𝛾
. (11)

Proof.  See Appendix  A.4.

It is obvious that the right-hand side of (10) decreases with 𝑋̄. 
This implies that the certainty equivalent of time-to-build must be 
smaller, or equivalently, the uncertainty premium of time-to-build must 
be greater to achieve a higher firm value.

Proposition  1 implies that the firm needs perfect prior information 
regarding time-to-build (i.e., probability distribution) to derive the op-
timal investment strategy based on the certainty equivalent. However, 
in practice, firms rarely have such perfect prior information regarding 
the uncertainty in time-to-build. Nevertheless, even without the full 
knowledge regarding such uncertainty, the firm can approximate the 
certainty equivalent using only a few moments of the time-to-build as 
follows: 

Corollary 3.  Given the mean and variance of time-to-build 𝜏, denoted 
by 𝑚 and 𝑣, respectively, the certainty equivalent of 𝜏 is approximated as 
follows: 

𝜏𝑐,2 ∶= 𝑚 −
(𝑟 − 𝜇)𝑣

2
. (12)

With the addition of skewness and excess kurtosis, denoted by 𝑠 and 𝑒, 
respectively, it can be approximated more precisely as follows:

𝜏𝑐,3 ∶= 𝑚 −
(𝑟 − 𝜇)𝑣

2

(

1 −
(𝑟 − 𝜇)𝑠

√

𝑣
3

)

, (13)

𝜏𝑐,4 ∶= 𝑚 −
(𝑟 − 𝜇)𝑣

2

(

1 −
(𝑟 − 𝜇)𝑠

√

𝑣
3

+
(𝑟 − 𝜇)2𝑒𝑣

12

)

, (14)

where the approximation error is 𝜏𝑐,𝑖 − 𝜏𝑐 for 𝑖 ∈ {2, 3, 4}.

Proof.  See Appendix  A.5.
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Corollary  3 implies that if the firm has estimates of the mean and 
variance of time-to-build from prior investment experiences in similar 
fields, it can derive the optimal investment strategy that considers 
the uncertainty in time-to-build without any additional information 
(i.e., exact distribution). As shown in Section 5, the mean and variance 
are often sufficient to approximate the certainty equivalent of uncertain 
time-to-build.

Based on Proposition  1 and Corollary  3, we can easily obtain the 
following result: 

Corollary 4.  The certainty equivalent of time-to-build decreases with 
its dispersion. In other words, the uncertainty premium of time-to-build 
increases with its dispersion. Specifically, with the approximation up to the 
third moment in (13), the uncertainty premium of time-to-build increases 
with the variance 𝑣 if 𝑠 < 3∕((𝑟 − 𝜇)

√

𝑣). With the approximation up 
to the fourth moment in (14), it increases with the variance 𝑣 if 𝑠 <
3∕((𝑟 − 𝜇)

√

𝑣) + (𝑟 − 𝜇)𝑒
√

𝑣∕4.

Proof.  See Appendix  A.6.
The positive impact of the variance of time-to-build on its uncer-

tainty premium is straightforward; as noted in Lemma  1, the more 
dispersed time-to-build, the stronger incentive the firm’s investment 
incentive. The result in (13) shows that, all else being equal, the 
skewness of time-to-build negatively impacts its uncertainty premium. 
This is because the positively-skewed time-to-build implies that the 
distribution has a longer tail for the likelihood of longer time-to-
build, which reduces the firm’s incentive to invest. The result in (14) 
implies that, all else being equal, the excess kurtosis of time-to-build 
positively affects its uncertainty premium. This is because a greater 
excess kurtosis implies fatter tails, which increases the firm’s incentive 
to invest due to the convexity effect described in Lemma  1.

Furthermore, for given mean and variance of time-to-build, we can 
derive the distribution-free upper and lower bounds of the certainty 
equivalent as follows: 

Proposition 2.  For given mean 𝑚 and variance 𝑣 of time-to-build, the 
certainty equivalent of time-to-build is bounded as follows: 

− 1
𝑟 − 𝜇

ln
( 𝑒−(𝑟−𝜇)(𝑚+𝑣∕𝑚)𝑚2 + 𝑣

𝑚2 + 𝑣

)

≤ 𝜏𝑐 ≤ 𝑚. (15)

In particular, both the upper and lower bounds are tight, and the lower 
bound strictly decreases with 𝑣.

Proof.  See Appendix  A.7.
Corollary  4 suggests that the uncertainty premium of time-to-build 

might not increase with its variance. In fact, the following result can 
be obtained:



H. Jeon and M. Nishihara European Journal of Operational Research 330 (2026) 279–297 
Fig. 2. Examples of multiple uncertainty equivalents for a fixed time-to-build.
Proposition 3.  The certainty equivalent of time-to-build does not strictly 
decrease with variance of time-to-build. In other words, the uncertainty 
premium of time-to-build does not strictly increase with its variance.

Proof.  See Appendix  A.8.
At first glance, the result of Proposition  3 might seem to contradict 

Lemma  1, but that is not the case. A mean-preserving spread of a given 
time-to-build always accelerates investment, as addressed in Lemma  1, 
and it has a greater variance than the given time-to-build.13 However, 
this does not imply that time-to-build with a greater variance always 
accelerates investment. This is because a random variable with the 
same mean but greater variance is not necessarily a mean-preserving 
spread of the counterpart.14

4.4. Uncertainty equivalent of fixed time-to-build

Proposition  1 presents the firm’s optimal investment decision, as-
suming precise knowledge of the uncertainty in time-to-build (i.e.,
probability distribution), in the form of the investment strategy that 
would have been implemented without such uncertainty. However, 
in practice, the opposite scenario is more likely; the firm establishes 
its investment strategy without considering uncertainty in time-to-
build and remains unaware of the level of uncertainty that such an 
investment strategy implicitly assumes.

From this perspective, we can derive the following result: 

Proposition 4 (Uncertainty Equivalent).  For any fixed time-to-build 𝜏 (>
0), there always exists a nonnegative random variable 𝜏𝑢 with E[𝜏𝑢] > 𝜏
such that 𝛿(𝜏) = 𝛿(𝜏𝑢), or equivalently, 𝑋𝜏 = 𝑋𝜏𝑢  and 𝑉𝜏 (𝑋) = 𝑉𝜏𝑢 (𝑋). 
Specifically, the uncertainty equivalent is derived from 
𝐾𝜏𝑢 (−(𝑟 − 𝜇)) = −(𝑟 − 𝜇)𝜏. (16)

Proof.  See Appendix  A.9.
Essentially, Proposition  4 reexamines the argument of Proposition 

1 from a reversed standpoint, and it can be read in the same context: 
the firm value with longer and uncertain time-to-build (i.e., 𝜏𝑢) is same 

13 As in Lemma  1, suppose 𝜏𝑛+1 = 𝜏𝑛 + 𝜖𝑛+1 where E[𝜖𝑛+1|𝜏𝑛] = 0. By the 
law of iterated expectations, E[𝜖𝑛+1] = E[E[𝜖𝑛+1|𝜏𝑛]] = 0 holds, and it is 
straightforward to show that Var(𝜏𝑛+1) = Var(𝜏𝑛) + Var(𝜖𝑛+1) > Var(𝜏𝑛) since 
Cov(𝜏𝑛, 𝜖𝑛+1) = E[𝜏𝑛𝜖𝑛+1] − E[𝜏𝑛]E[𝜖𝑛+1] = E[𝜏𝑛E[𝜖𝑛+1|𝜏𝑛]] = 0.
14 Namely, 𝜏𝑛+1 is not necessarily a mean-preserving spread of 𝜏𝑛 even if 

E[𝜏𝑛+1] = E[𝜏𝑛] and Var(𝜏𝑛+1) > Var(𝜏𝑛) hold. Refer to Appendix  A.8 for a 
specific example.
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as that with shorter and fixed time-to-build (i.e., 𝜏). While seemingly 
paradoxical, certainty of time-to-build disencourages investment. The 
extent to which it does so — relative to the case of uncertain time-
to-build 𝜏𝑢 — is measured by 𝜏 − E[𝜏𝑢]( < 0); its magnitude, E[𝜏𝑢] −
𝜏 ( > 0), is referred to as certainty discount of time-to-build. This result 
provides firms with a structured framework to evaluate the implicit 
risks embedded in investment strategies developed without accounting 
for uncertainty in time-to-build, thereby clarifying the equivalent level 
of risk such policies entail.

Note that Proposition  4 proves the existence of the uncertainty 
equivalent, but unlike Proposition  1, its uniqueness is not guaranteed. 
Namely, there can be multiple uncertainty equivalents that satisfy 
(16) for a given fixed time-to-build, and they need not follow the 
same distribution. Fig.  2 graphically illustrates the multiplicity of the 
uncertainty equivalent for a fixed time-to-build. We can see that the 
uncertainty equivalent in Fig.  2(a) is more dispersed and has a longer 
expected duration than the one in Fig.  2(b), even though both yield 
the same pre-investment firm value. In fact, this relationship can be 
formalized as follows: 

Corollary 5.  The expected value of the uncertainty equivalent 𝜏𝑢 for a 
fixed time-to-build 𝜏 increases with the dispersion of 𝜏𝑢. In other words, the 
certainty discount of the fixed time-to-build increases with the dispersion of 
𝜏𝑢.

Proof.  See Appendix  A.10.
Meanwhile, following similar arguments from Proposition  4, we can 

also obtain the following result: 

Corollary 6.  For any fixed time-to-build 𝜏 (> 0), there always exists a 
nonnegative random variable 𝜏𝑤 with E[𝜏𝑤] > 𝜏 such that 𝛿(𝜏) < 𝛿(𝜏𝑤), or 
equivalently, 𝑋𝜏 > 𝑋𝜏𝑤  and 𝑉𝜏 (𝑋) < 𝑉𝜏𝑤 (𝑋).

Proof.  See Appendix  A.11.
This implies that for any fixed time-to-build, there always exists an

uncertain time-to-build with a longer expected duration that nonetheless 
yields a higher firm value. This can be easily extended to comparisons 
between uncertain time-to-builds with different degrees of dispersion. 
Specifically, a more dispersed time-to-build with a longer expected 
duration can yield a higher firm value than a less dispersed one with 
a shorter expected duration. This argument offers insight into how in-
vestment projects might be evaluated in the real world. Fernandes and 
Rigato (2025) provides ample evidence on time-to-build using Indian 
project-level data, showing that the distribution of time-to-build varies 
across sectors. For instance, time-to-build in logistics is more dispersed 
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Fig. 3. When time-to-build follows a triangular distribution with minimum 𝑎, maximum 𝑏, and mode 𝑐.
and has a longer expected duration than in construction. However, 
investment in the former may have been more incentivized by time-
to-build than in the latter due to its wider dispersion. Glancy et al. 
(2024) presents empirical evidence on time-to-build in U.S. commercial 
construction, showing that the construction lags for hotels are, on 
average, longer and more dispersed than those for office buildings. 
Following the same reasoning, investment in the former may have been 
strongly driven by these lags than in the latter, although this hypothesis 
requires further empirical testing.
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5. Probability distributions of time-to-build

This section shows the practical application of the results from 
Section 4 using representative probability distributions. Many empirical 
evidence shows that the distribution of time-to-build is unimodal with
nonzero mode and positively skewed; the evidence includes U.S. data from 
manufacturing industry (Jorgenson & Stephenson, 1967), nonresiden-
tial structures (Montgomery, 1995), residential investment (Oh et al., 
2024; Oh & Yoon, 2020), commercial construction projects (Glancy 
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Fig. 4. When time-to-build follows a log-normal distribution with parameters 𝜇𝜏 and 𝜎𝜏 .
et al., 2024), and project-level data from India (Fernandes & Rigato, 
2025).15 For this reason, we discuss the distributions that can exhibit 

15 It is obvious that the investment lags are positively associated with 
the size of investment projects. However, Oh and Yoon (2020) measured 
economic time-to-build of residential investment that cannot be captured by 
the characteristics of the projects including their square footage, location, 
and building methods, and it is found unimodal with nonzero mode and 
positively skewed. Specifically, the distribution of economic time-to-build in 
their manuscript is symmetric because it is based on the log of time-to-build; 
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the aforementioned properties: triangular distribution, log-normal dis-
tribution, gamma distribution, and scaled beta distribution. The cases 
in which time-to-build follows uniform distribution, which is neither 
unimodal nor skewed, and exponential distribution, of which mode is 
0, are discussed in the Online Appendix. Throughout this section, we 
adopt the parameters in Table  1 for describing the investment project. 

the one based on the level of time-to-build, which is positively skewed, can be 
found in their Online Appendix.
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Table 1
Benchmark parameters for numerical calculation.
 Notation Value Description  
 𝑟 0.08 Risk-free rate  
 𝜇 0.02 Expected growth rate of demand shock 
 𝜎 0.2 Volatility of demand shock  
 𝐼 3 Lump-sum investment costs  
 𝑋 0.1 Initial demand shock  

They are in a moderate range that can be easily found in the real 
options literature.16

5.1. Triangular distribution

Suppose that the firm knows the minimum, maximum, and mode of 
the time-to-build of its project, denoted by 𝑎, 𝑏, and 𝑐, respectively, and 
that its likelihood is unimodal and piece-wise linear. That is, assume 
that 𝜏 follows a triangular distribution with parameters (𝑎, 𝑏, 𝑐) with 
0 ≤ 𝑎 ≤ 𝑐 ≤ 𝑏 and 𝑎 < 𝑏. This corresponds to the case in which an 
investment project requires a certain amount of time to be finished 
even in its best-case scenario (i.e., nonzero minimum) but the worst-
case scenario is bounded (i.e., finite maximum) with the most likely 
scenario between them. Note that the minimum 𝑎, and thus, the mode 
𝑐, can be nonzero, and the mode can be chosen such that it is positively 
skewed. Its probability density function is 

𝑓 (𝜏) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2(𝜏−𝑎)
(𝑏−𝑎)(𝑐−𝑎) if 𝑎 ≤ 𝜏 < 𝑐,
2

𝑏−𝑎 if 𝜏 = 𝑐,
2(𝑏−𝜏)

(𝑏−𝑎)(𝑏−𝑐) if 𝑐 < 𝜏 ≤ 𝑏,

0 otherwise,

(17)

which is depicted in Fig.  3(a), and its moment-generating function is 

𝑀𝜏 (𝑡) =
2{(𝑏 − 𝑐)𝑒𝑎𝑡 − (𝑏 − 𝑎)𝑒𝑐𝑡 + (𝑐 − 𝑎)𝑒𝑏𝑡}

(𝑏 − 𝑎)(𝑐 − 𝑎)(𝑏 − 𝑐)𝑡2
, (18)

which amounts to the cumulant-generating function 𝐾𝜏 (𝑡) = ln𝑀𝜏 (𝑡).
Recall that Proposition  3 showed an increase of variance does not 

always accelerate investment. However, it always has the positive im-
pacts on investment when time-to-build follows a symmetric triangular 
distribution: 

Proposition 5.  When time-to-build follows a symmetric triangular distri-
bution, the certainty equivalent strictly decreases with its variance. In other 
words, the uncertainty premium strictly increases with its variance.

Proof.  See Appendix  A.12.
The certainty equivalent of time-to-build following a triangular 

distribution can be derived by (8) with (18). Fig.  3(c) presents the 
certainty equivalent assuming the minimum 𝑎 = 1 and the mode 𝑐 =
(𝑎 + 𝑏)∕3, which exhibits a positive skewness. A comparison of Figs. 
3(b) and 3(c) shows that the uncertainty premium increases with the 
variance of time-to-build (Proposition  5).

The uncertainty equivalent of fixed time-to-build, assumed to follow 
a triangular distribution, can be found by determining (𝑎, 𝑏, 𝑐) that 

16 For the demand shocks, similar parameters can be found in seminal works 
in real options theory (e.g., Dixit and Pindyck (1994), Huisman and Kort 
(2015) and Leland (1994)). For the risk-free rate, Leland (1994, 1998) and 
Leland and Toft (1996) chose 𝑟 = 0.06 and 𝑟 = 0.075, respectively, while Dixit 
and Pindyck (1994, Chapter 5) and Huisman and Kort (2015) adopted 𝑟 =
0.1. Jeon (2024a, 2024b), which investigated the effects of uncertainty in time-
to-build, were based on the mid-range value 𝑟 = 0.08. For consistency and 
comparability among papers within the same research theme, we adopt the 
same value.
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satisfies (16) with (18). If the firm assumes that time-to-build follows 
this distribution and is certain of its minimum and mode (i.e., 𝑎 and 
𝑐), it can instantly deduce the worst-case scenario of the uncertainty 
equivalent (i.e., 𝑏) corresponding to the fixed time-to-build. As noted 
in Section 4.4, there can exist many uncertainty equivalents for a fixed 
time-to-build, which is described by the solid line in Fig.  3(d) for 𝜏 = 5. 
We can see that the worst-case scenario (i.e, 𝑏) decreases with the 
most likely scenario (i.e., 𝑐) for a given best-case scenario (i.e., 𝑎 = 1) 
and fixed time-to-build (i.e., 𝜏 = 5). The shaded area represents the 
uncertain time-to-build whose expected duration is longer than the 
fixed counterpart yet induces higher firm value (i.e., 𝜏 < E[𝜏] and 
𝑉𝜏 < 𝑉𝜏 ), supporting Corollary  6.

Figs.  3(e) and 3(f) present the optimal investment threshold and 
firm value along with their approximation based on the moments 
described in Fig.  3(b), and they indicate that the approximation error is 
negligible. That is, the firm can essentially establish the optimal invest-
ment strategy taking account of uncertain time-to-build based solely 
on its mean and variance. Note that the approximation described in 
Figs.  3(e) and 3(f) is solely based on the moments of the corresponding 
distribution without assuming any specific distribution; this applies to 
other figures regarding the approximation hereafter.

5.2. Log-normal distribution

Suppose the firm knows that time-to-build 𝜏 follows a log-normal 
distribution with parameters 𝜇𝜏 and 𝜎𝜏 (> 0). That is, ln 𝜏 follows a nor-
mal distribution with mean 𝜇𝜏 and variance 𝜎2𝜏 . It is a positively skewed, 
unimodal distribution with nonzero mode on (0,∞). This corresponds to 
the case in which an investment project can generate no revenue in its 
worst-case scenario (i.e., 𝜏 → ∞), such as the failure of an R&D project, 
and there is a slight chance that the project is finished instantly in its 
best-case scenario (i.e., 𝜏 → 0), although the most probable scenario is 
in between them. Its probability density function is 

𝑓 (𝜏) =

⎧

⎪

⎨

⎪

⎩

1
𝜏𝜎𝜏

√

2𝜋
exp

(

− (ln 𝜏−𝜇𝜏 )2

2𝜎2𝜏

)

if 𝜏 > 0,

0, otherwise,
(19)

which is described in Fig.  4(a). Its moment-generating function (i.e.,
𝑀𝜏 (𝑡) = E[𝑒𝑡𝜏 ]) does not exist for 𝑡 ≥ 0 since the defining integral di-
verges. Although E[𝑒𝑡𝜏 ] converges for 𝑡 < 0 due to 𝜏 ∈ (0,∞), its closed-
form expression has not been found yet.17 Asmussen et al. (2016) sug-
gested the following approximation of the moment-generating function: 

𝑀𝜏 (𝑡) ≈
exp

(

− {𝑊 (−𝑡𝜎2𝜏 𝑒
𝜇𝜏 )}2+2𝑊 (−𝑡𝜎2𝜏 𝑒

𝜇𝜏 )
2𝜎2𝜏

)

√

1 +𝑊 (−𝑡𝜎2𝜏 𝑒𝜇𝜏 )
, (20)

where 𝑊 (𝑥) is the Lambert W function defined as the solution of 
𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥, and we adopt this approximation to derive the cer-
tainty equivalent and uncertainty premium of time-to-build following 
a log-normal distribution.

The certainty equivalent of time-to-build following a log-normal 
distribution can be found by (8) with (20), which is described in
Fig.  4(c) for 𝜇𝜏 = 1. Its comparison with Fig.  4(b) numerically shows 
that the uncertainty premium of time-to-build increases with variance.

The uncertainty equivalent of time-to-build, assumed to follow a 
log-normal distribution, can be found by obtaining (𝜇𝜏 , 𝜎𝜏 ) that satisfies 
(16) with (20). If the firm supposes that the uncertainty equivalent 
follows this distribution and is certain of the mean of time-to-build, 
it can specify the candidates of the uncertainty equivalent. Fig.  4(d) 

17 All moments of the log-normal distribution exist (i.e., E[𝜏𝑛] = 𝑒𝑛𝜇𝜏+𝑛2𝜎2
𝜏 ∕2), 

but the log-normal distribution is not determined by its moments (e.g., Heyde 
(1963)). This implies that it cannot have a defined moment-generating function 
in a neighborhood of zero.
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Fig. 5. When time-to-build follows a gamma distribution with shape parameter 𝑘 and scale parameter 𝜃.
presents the uncertainty equivalent of fixed time-to-build 𝜏 = 5, and 
we can see that 𝜇𝜏 of the uncertainty equivalent decreases with 𝜎𝜏 . The 
shaded area in Fig.  4(d) represents the uncertain time-to-build whose 
expected duration is longer than the fixed counterpart yet yields higher 
firm value (i.e., 𝜏 < E[𝜏] and 𝑉𝜏 < 𝑉𝜏 ), consistent with Corollary  6.

Figs.  4(e) and 4(f) present the optimal investment threshold and 
firm value along with their approximation based on the moments 
illustrated in Fig.  4(b), and we can see that the approximation errors 
are negligible.
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5.3. Gamma distribution

Suppose the firm knows that the time-to-build 𝜏 follows a gamma 
distribution with parameters (𝑘, 𝜃) where 𝑘 > 0 is a shape parameter 
and 𝜃 > 0 is a scale parameter. This versatile two-parameter distribution 
encompasses many distributions as its special cases.18 It is a positively 
skewed, unimodal distribution with possibly nonzero mode.19 Its sup-
port is (0,∞), which, as a log-normal distribution in Section 5.2, allows 

18 With 𝑘 = 1, it becomes the exponential distribution discussed in the Online 

Appendix. When 𝑘 is an integer, it is known as the Erlang distribution. When 
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us to model the potential for R&D failure (i.e., 𝜏 → ∞). Its probability 
density function is 

𝑓 (𝜏) =

⎧

⎪

⎨

⎪

⎩

𝜏𝑘−1𝑒−𝜏∕𝜃

𝛤 (𝑘)𝜃𝑘 if 𝜏 ≥ 0,

0 otherwise,
(21)

where 𝛤 (⋅) is gamma function, which is described in Fig.  5(a), and its 
moment-generating function is 

𝑀𝜏 (𝑡) = (1 − 𝜃𝑡)−𝑘 for 𝑡 < 1
𝜃
. (22)

The certainty equivalent of time-to-build following a gamma distri-
bution can be found from (8) with (22), which is described in Fig.  5(c). 
Its comparison with Fig.  5(b) numerically shows that the uncertainty 
premium of time-to-build increases with its variance.

The uncertainty equivalent of fixed time-to-build, assumed to follow 
this distribution, can be found by determining (𝑘, 𝜃) that satisfies (16) 
with (22). If the firm supposes that the uncertainty equivalent follows 
this distribution without knowing the parameters but is certain of the 
mean of time-to-build (i.e., 𝑘𝜃), it can specify the candidates of the 
uncertainty equivalent. Fig.  5(d) presents the combination of 𝑘 and 𝜃
that yields the uncertainty equivalent of fixed time-to-build 𝜏 = 5, and 
the shaded area corresponds to the case discussed in Corollary  6.

Figs.  5(e) and 5(f) illustrate the optimal investment threshold and 
firm value taking uncertain time-to-build into account along with their 
approximation based on the moments in Fig.  5(b). They show that 
the approximation based solely on the mean and variance of time-to-
build yields a nonnegligible error, but it becomes insignificant when 
the skewness is considered.

5.4. Scaled beta distribution

Despite its flexibility, the gamma distribution might not be suitable 
for describing the time-to-build of some investment projects, primarily 
because of its semi-infinite support. That is, an investment project’s 
time-to-build might be nonzero in its best-case scenario and yet finite 
even in its worst-case scenario. This can be described by a triangular 
distribution in Section 5.1, but its piecewise linear density is not be 
suitable for describing the gradual change in the likelihood. For this 
reason, we consider a scaled beta distribution.20

Suppose 𝜈 follows a beta distribution with parameters (𝛼, 𝛽) where 
𝛼, 𝛽 > 0 are shape parameters. Since 𝜈 ∈ [0, 1], we can scale it to 
𝜏 ∶= (𝑐 − 𝑎)𝜈 + 𝑎 such that 𝜏 ∈ [𝑎, 𝑐] where 0 ≤ 𝑎 < 𝑐. The probability 
density function of 𝜈 is 

𝑓 (𝜈) =

⎧

⎪

⎨

⎪

⎩

𝜈𝛼−1(1−𝜈)𝛽−1
𝐵(𝛼,𝛽) if 0 ≤ 𝜏 ≤ 1,

0 otherwise,
(23)

where 𝐵(⋅, ⋅) is a beta function, and that of 𝜏 is 𝑓 (𝜏) = 𝑓 (𝜈)∕(𝑐−𝑎) on its 
support [𝑎, 𝑐], which is described in Fig.  6(a). The moment-generating 
function of 𝜏 following the scaled beta distribution with parameters 
(𝛼, 𝛽, 𝑎, 𝑐) is

𝑀𝜏 (𝑡) = ∫

𝑐

𝑎
𝑒𝑡𝜏𝑓 (𝜏)d𝜏

= 1
𝐵(𝛼, 𝛽) ∫

1

0
𝑒𝑡{(𝑐−𝑎)𝜈+𝑎}𝜈𝛼−1(1 − 𝜈)𝛽−1d𝜈

= 1
𝐵(𝛼, 𝛽)

∞
∑

𝑛=0

(𝑡𝑎)𝑛

𝑛!

∞
∑

𝑘=0

{𝑡(𝑐 − 𝑎)}𝑘

𝑘! ∫

1

0
𝜈𝛼+𝑘−1(1 − 𝜈)𝛽−1d𝜈

𝑘 = 𝜈∕2 and 𝜃 = 2, it corresponds to the chi-squared distribution with a 
parameter 𝜈.
19 Specifically, the mode is 0 when 𝑘 < 1; otherwise, it is nonzero.
20 Jung (2013) also adopted a beta distribution to infer the length of 
aggregate time-to-build in a dynamic stochastic general equilibrium model, 
mainly due to its versability.
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=
∞
∑

𝑛=0

(𝑡𝑎)𝑛

𝑛!

∞
∑

𝑘=0

{𝑡(𝑐 − 𝑎)}𝑘

𝑘!
𝐵(𝛼 + 𝑘, 𝛽)
𝐵(𝛼, 𝛽)

=
∞
∑

𝑛=0

(𝑡𝑎)𝑛

𝑛!

[

1 +
∞
∑

𝑘=1

(

𝑘−1
∏

𝑠=0

𝛼 + 𝑠
𝛼 + 𝛽 + 𝑠

) {𝑡(𝑐 − 𝑎)}𝑘

𝑘!

]

. (24)

The certainty equivalent of time-to-build following the scaled beta 
distribution can be found from (8) with (24). Fig.  6(d) presents the cer-
tainty equivalent of time-to-build following this distribution on [1, 10]. 
Although the skewness and excess kurtosis greatly vary depending on 𝛼
and 𝛽 (Fig.  6(c)), the comparison of Figs.  6(b) and 6(e) reveals that the 
uncertainty premium of time-to-build is mainly driven by its variance. 
Fig.  6(e) also shows that the uncertainty premium of time-to-build is 
highest when both 𝛼 and 𝛽 are below 1 so that it becomes bimodal 
with peaks at both ends of the support [𝑎, 𝑐].

The uncertainty equivalent of fixed time-to-build, assumed to follow 
this distribution, can be found by determining (𝛼, 𝛽, 𝑎, 𝑐) that satisfies 
(16) with (24). Fig.  6(f) presents the uncertainty equivalent of time-
to-build following this distribution on [1, 10] for fixed time-to-build 
𝜏 = 5. The shaded area in Fig.  6(f) corresponds to the case discussed in 
Corollary  6.

Figs.  6(g) and 6(h) present the optimal investment threshold and 
firm value with uncertain time-to-build following this distribution 
along with their approximation, showing that the approximation error 
is insignificant.

PERT distribution, developed for program evaluation and review 
technique, is a special case of the scaled beta distribution. Specifically, 
if 𝜏 follows the PERT distribution with parameters (𝑎, 𝑏, 𝑐) with 0 ≤
𝑎 < 𝑏 < 𝑐 < ∞ where 𝑎 and 𝑐 are the minimum and maximum of 
time-to-build, respectively, and 𝑏 is its mode, its probability density 
function coincides with that of the scaled beta distribution with 𝛼 =
1 + 4(𝑏 − 𝑎)∕(𝑐 − 𝑎) and 𝛽 = 1 + 4(𝑐 − 𝑏)∕(𝑐 − 𝑎), which is described in 
Fig.  7(a). Unlike the triangular distribution discussed in Section 5.1, it 
is a smooth unimodal distribution, and it can be suitable for describing 
time-to-build having gradual changes in likelihoods with a single mode 
between a potentially nonzero minimum (i.e., 𝑎) and a finite worst-case 
scenario (i.e., 𝑐).

The certainty equivalent of time-to-build following the PERT dis-
tribution can be found following the same manner as before, which is 
illustrated in Fig.  7(c). As can be seen from Fig.  7(b), the variance does 
not vary significantly in accordance with the mode 𝑏 within the fixed 
support [𝑎, 𝑐]. Consequently, the uncertainty premium (i.e., E[𝜏] − 𝜏𝑐) 
in Fig.  7(c) shows insignificant change.

The uncertainty equivalent of fixed time-to-build, assumed to follow 
the PERT distribution, can be found by determining (𝑎, 𝑏, 𝑐) that satisfies 
(16) and (24) with 𝛼 = 1+4(𝑏−𝑎)∕(𝑐−𝑎) and 𝛽 = 1+4(𝑐−𝑏)∕(𝑐−𝑎). If the 
firm supposes that the uncertainty equivalent follows this distribution 
and is certain of the best-case scenario (i.e., 𝑎) and its most likely one 
(i.e., 𝑏), it can specify the worst-case scenario (i.e., 𝑐) of the uncertainty 
equivalent, which is presented in Fig.  7(d). Figs.  7(e) and 7(f) describe 
the optimal investment strategy and firm value taking uncertain time-
to-build into account, along with their approximation, and they reveal 
that the approximation error is negligible.

5.5. Mean and variance of time-to-build

Now we focus on the two most important moments of time-to-build: 
its mean and variance. Proposition  3 showed that without assuming 
the distribution of time-to-build, an increase in the variance of time-
to-build does not always accelerate investment. However, as seen from 
Sections 5.1–5.4, such an increase leads to earlier investment for the 
well-known probability distributions.

Fig.  8 illustrates the tight upper and lower bounds of the certainty 
equivalent of time-to-build for given mean and variance, which are 
demonstrated in Proposition  2, along with the corresponding certainty 
equivalent for representative probability distributions and its approxi-
mation based on the mean and variance (i.e., 𝜏  in (12)). Specifically, 
𝑐,2
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Fig. 6. When time-to-build follows a scaled beta distribution with minimum 𝑎, maximum 𝑐, and shape parameters 𝛼 and 𝛽.
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Fig. 7. When time-to-build follows a PERT distribution with minimum 𝑎, mode 𝑏, and maximum 𝑐.
we fix the mean of time-to-build 𝑚 and vary its variance 𝑣, demonstrat-
ing how the bounds change along with the certainty equivalent. Due to 
the degree of freedom, we choose distributions that can be character-
ized by two parameters: symmetric triangular distribution, log-normal 
distribution, gamma distribution, and symmetric PERT distribution.

Fig.  8(a) shows that the lower bound decreases with the variance 
𝑣 while the upper bound remains constant. It also clarifies that the 
certainty equivalent of time-to-build decreases with variance for these 
distributions, although this might not hold in an extreme case as the 
counterexample from the proof of Proposition  3. Note that the accuracy 
of the approximation of the certainty equivalent based on the mean 
and variance is significantly high. Its approximation error is essentially 
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zero for the symmetric triangular and PERT distributions, whereas it 
is nonnegligible for the log-normal and gamma distributions due to 
their semi-infinite supports. Figs.  8(b)–8(e) describe the corresponding 
parameters for each distribution that satisfy the mean 𝑚 and variance 
𝑣.

Fig.  9 presents the examples of the uncertainty equivalent discussed 
in Proposition  4. Specifically, Fig.  9(a) depicts the level of variance 𝑣, 
combined with the mean 𝑚, that induces the same optimal investment 
threshold and firm value as the ones with a fixed time-to-build 𝜏. 
This figure, along with Figs.  9(b) and 9(c), clarifies that even if the 
expected duration of time-to-build lengthens, the optimal investment 
timing and firm value can remain the same if its uncertainty increases 
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Fig. 8. Tight upper and lower bounds of certainty equivalent of time-to-build and the certainty equivalents for representative probability distributions with mean 𝑚 = 5 and 
different levels of variance 𝑣.
significantly. It also demonstrates that the variance of the uncertainty 
equivalent depends on the distribution of time-to-build. The variance 
of the gamma distribution is found to be significantly higher than that 
of other distributions, primarily due to its semi-infinite support.

Figs.  9(d)–9(g) present the corresponding parameters for each dis-
tribution. Note that some distributions cannot yield an uncertainty 
equivalent for mean 𝑚 substantially greater than 𝜏 due to parameter 
restrictions, such as a nonnegative minimum. Log-normal and gamma 
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distributions are relatively flexible for yielding the uncertainty equiv-
alent owing to their versatility. Note that the uncertainty equivalents 
need not follow the distributions illustrated in Fig.  9; they are only a 
fraction of many alternatives that can result in the same investment 
decision and firm value for a given 𝜏.

As discussed in Section 4.2, a higher demand uncertainty (i.e., 𝜎) 
delays investment but increases firm value. This is because the firm’s 
option to wait becomes more valuable when market demands are 
uncertain. By contrast, Lemma  1 demonstrates that a higher uncertainty 
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Fig. 9. Examples of uncertainty equivalent with mean 𝑚 for 𝜏 = 10.
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Fig. 10. The level of variance 𝑣 that induces the same optimal investment threshold for mean 𝑚 = 10 and different levels of demand volatility 𝜎 with the base line 𝜎 = 0.2.

European Journal of Operational Research 330 (2026) 279–297 

294 



H. Jeon and M. Nishihara European Journal of Operational Research 330 (2026) 279–297 
in time-to-build advances the investment timing and improves firm 
value. That is, the uncertainty of demand and that of time-to-build 
induce the opposite effects on investment timing but both yields the 
positive impacts on the firm value.

With these arguments, Fig.  10 highlights the contrasting effects of 
the two different types of uncertainty. Specifically, Fig.  10(a) describes 
the level of variance 𝑣 that offsets the negative impacts of an increase 
in 𝜎 on investment timing. It shows that the variance of time-to-build 
required to offset the impacts of increased demand volatility varies 
according to the distribution of time-to-build. A gamma distribution is 
found to require significantly higher variance than other distributions, 
mainly due to its semi-infinite support. Figs.  10(b) and 10(c) clarify that 
the effects of uncertainty on investment timing from the two different 
channels are canceled out, while the firm value significantly improves 
due to the uncertainty from both channels. Figs.  10(d)–10(g) present 
the corresponding parameters for each distribution. Note that some 
distributions cannot offset the negative impacts of a significant increase 
in demand volatility due to restrictions on the parameters.

6. Conclusion

This study investigated the impacts of uncertainty in time-to-build 
on corporate investment, clarifying the extent to which the uncertainty 
accelerates investment and improves firm value. We showed that there 
always exists a unique certainty equivalent of uncertain time-to-build, 
regardless of its distribution, and derived it in an analytic form. This 
allows firms to establish the optimal investment strategy with uncertain 
time-to-build in the form of the investment strategy that would have 
been adopted without such uncertainty. Even without knowing the 
exact distribution, the certainty equivalent can be approximated using 
only a few moments, such as mean and variance, which significantly 
enhances its practicality. Furthermore, we showed that for a given 
fixed time-to-build, an uncertainty equivalent always exists. This en-
ables firms to evaluate the level of risk implicitly assumed by their 
investment strategies established without accounting for uncertainty 
in time-to-build. Lastly, we applied these arguments to representative 
probability distributions to demonstrate the practicality and analyzed 
the effects of variance of time-to-build on investment. In particular, we 
derived the variance of time-to-build that offsets the negative impacts 
of demand uncertainty on investment.

Many problems still remain to be explored. For instance, we focused 
on a monopolistic firm for simplicity. Preemptive incentive due to 
market competition will significantly alter firms’ optimal investment 
strategies as well as the impacts of time-to-build on them. However, in-
troducing competition would substantially reduce the model’s tractabil-
ity. This is because an additional layer of decision-making occurs after 
the investment but before its completion, which directly depends on 
the remaining time-to-build. Thus, an analytic solution, which allows 
us to discuss the explicit structure of equilibrium strategies, is unlikely, 
unless the underlying distribution exhibits the memoryless property 
(i.e., exponential distribution). We also assumed an all-equity firm, 
but we need to address the impacts of uncertainty in time-to-build 
on financing and default decisions for a levered firm. Jeon (2021a) 
investigated the effects of uncertain time-to-build on a firm’s invest-
ment and default decisions, showing that it can lead to a lower default 
probability compared to the case without time-to-build, mainly due to 
more conservative investment decisions. However, the study did not 
clarify the pure effects of uncertainty in time-to-build by comparing 
it with the case of a fixed time-to-build. Future research must address 
this question, although it will encounter the same technical difficulties 
mentioned earlier. More importantly, we assumed the independence 
between the demand shock and time-to-build for tractability. Follow-up 
research should test if the same results hold without the independence 
assumption. Lastly, despite data collection challenges, empirical analy-
sis is necessary to validate the theoretical results discussed in this study. 
It is hoped that this study will serve as a platform for investigating these 
issues in the future.
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Appendix A. Proofs

A.1. Proof of Lemma  1

By the definition, 𝜏𝑛+1 = 𝜏𝑛 + 𝜖𝑛+1 where E[𝜖𝑛+1|𝜏𝑛] = 0. Suppose 
that 𝜏𝑛 has a cumulative distribution function 𝐹𝑛 for 𝑛 ≥ 1. Since 
𝑓 (𝜏) ∶= 𝑒−(𝑟−𝜇)𝜏 is a strictly convex function, Jensen’s inequality ensures 
the following always holds for all 𝑛 ≥ 0:

𝛿(𝜏𝑛+1) = E[𝑓 (𝜏𝑛+1)]

= ∫ 𝑓 (𝜏𝑛+1)d𝐹𝑛+1(𝜏𝑛+1) = ∫ E[𝑓 (𝜏𝑛 + 𝜖𝑛+1|𝜏𝑛)]d𝐹𝑛(𝜏𝑛)

> ∫ 𝑓 (E[𝜏𝑛 + 𝜖𝑛+1|𝜏𝑛])d𝐹𝑛(𝜏𝑛) = ∫ 𝑓 (𝜏𝑛)d𝐹𝑛(𝜏𝑛) = E[𝑓 (𝜏𝑛)] = 𝛿(𝜏𝑛).

(25)

With 𝛿(𝜏𝑛+1) > 𝛿(𝜏𝑛), it is straightforward that 𝑋𝜏𝑛+1 < 𝑋𝜏𝑛  and 
𝑉𝜏𝑛+1 (𝑋) > 𝑉𝜏𝑛 (𝑋).

A.2. Proof of Proposition  1

By Lemma  1, 𝑓 (E[𝜏]) < E[𝑓 (𝜏)] = 𝛿(𝜏) always holds, and 𝑓 (𝜏) strictly 
decreases with 𝜏. Thus, there exists a constant 𝜏𝑐 ( < E[𝜏]) such that 
𝛿(𝜏𝑐 ) = 𝛿(𝜏). The monotonicity of 𝑓 (𝜏) ensures its uniqueness.

Meanwhile, the definition of 𝛿(𝜏) and that of the moment-generating 
function in (9) imply 𝛿(𝜏) = 𝑀𝜏 (−(𝑟 − 𝜇)), from which we obtain (8).

A.3. Proof of Corollary  1

Let us define 𝑢(𝑧) ∶= 𝐾𝜏 (𝑧)∕𝑧 for 𝑧 < 0. It is straightforward that 
𝑢′(𝑧) = 𝑣(𝑧)∕𝑧2 where 𝑣(𝑧) ∶= 𝐾 ′

𝜏 (𝑧)𝑧 − 𝐾𝜏 (𝑧). Due to the convexity 
of the cumulant-generating function, we have 𝑣′(𝑧) = 𝐾 ′′

𝜏 (𝑧)𝑧 ≤ 0 for 
𝑧 < 0, which amounts to 𝑣(𝑧) ≥ 𝑣(0) = 0 for 𝑧 < 0. Therefore, we obtain 
𝑢′(𝑧) ≥ 0. Note that 𝜏𝑐 = 𝑢(−(𝑟 − 𝜇)), and thus, 𝜏 increases with 𝜇, and 
the independence with respect to 𝜎 is evident.

A.4. Proof of Corollary  2

Plugging (5) into (4), it is straightforward that 𝑉𝜏 (𝑋) = 𝐴(𝑋)(𝛿(𝜏))𝛾

where 𝐴(𝑋) is given by (11). Thus, 𝑉𝜏 (𝑋) ≥ 𝑋̄ is equivalent to 𝛿(𝜏) ≥
(𝑋̄∕𝐴(𝑋))1∕𝛾 . By definition, 𝛿(𝜏) = 𝛿(𝜏𝑐 ) = exp(−(𝑟 − 𝜇)𝜏𝑐 ) and 𝛿(𝜏) =
𝑀𝜏 (−(𝑟 − 𝜇)) = exp(𝐾𝜏 (−(𝑟 − 𝜇))), which amounts to (10).

A.5. Proof of Corollary  3

Combining the cumulants 𝜅1 = E[𝜏], 𝜅2 = E[(𝜏 − E[𝜏])2], 𝜅3 =
E[(𝜏 − E[𝜏])3], and 𝜅4 = E[(𝜏 − E[𝜏])4] − 3(E[(𝜏 − E[𝜏])2])2 with (8) and 
(9), we can easily obtain (12) through (14).
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A.6. Proof of Corollary  4

Suppose 𝜏𝑛+1 = 𝜏𝑛 + 𝜖𝑛+1 with E[𝜖𝑛+1|𝜏𝑛] = 0. Proposition  1 implies 
that for 𝜏𝑛, there exists a unique constant 𝜏𝑐,𝑛 = E[𝜏𝑛] − 𝑐𝑛 where 𝑐𝑛 > 0
such that 𝛿(𝜏𝑛,𝑐 ) = 𝛿(𝜏𝑛). By Lemma  1, 𝛿(𝜏𝑛) < 𝛿(𝜏𝑛+1), or equivalently, 
𝑓 (E[𝜏𝑛] − 𝑐𝑛) < 𝑓 (E[𝜏𝑛+1] − 𝑐𝑛+1). Because 𝑓 (𝜏) strictly decreases with 
𝜏, we have 𝑐𝑛+1 > 𝑐𝑛, which implies that the uncertainty premium of 
time-to-build increases with its dispersion.

The approximation of the certainty equivalent in (13) and (14) 
decrease with 𝑣 when the terms in the parentheses are positive.

A.7. Proof of Proposition  2

Suppose 𝜏 is a nonnegative random variable with mean 𝑚 and 
variance 𝑣. Jensen’s inequality ensures the following holds: 
𝑒−(𝑟−𝜇)𝑚 ≤ E[𝑒−(𝑟−𝜇)𝜏 ]. (26)

The tightness of (26) can be shown as follows. Suppose 𝜏 follows 
a two-point distribution with possible outcomes of 𝑚 + 𝑛 and 𝑚 − 𝑙(𝑛)
with probabilities 𝑣𝑛−2 and 1−𝑣𝑛−2, respectively, where 𝑛 is sufficiently 
large and 𝑙(𝑛) is chosen such that E[𝜏] = 𝑚 (i.e., 𝑙(𝑛) = (𝑚+𝑛)𝑣∕(𝑛2−𝑣)). 
Since lim𝑛→∞ 𝑙(𝑛) = 0, the following holds:
E[(𝜏 − 𝑚)2] = 𝑛2 ⋅ 𝑣

𝑛2
+ (𝑙(𝑛))2

(

1 − 𝑣
𝑛2

) 𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ 𝑣, (27)

E[𝑒−(𝑟−𝜇)𝜏 ] = 𝑒−(𝑟−𝜇)(𝑚+𝑛) 𝑣
𝑛2

+ 𝑒−(𝑟−𝜇)(𝑚−𝑙(𝑛))
(

1 − 𝑣
𝑛2

) 𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ 𝑒−(𝑟−𝜇)𝑚. (28)

Meanwhile, let us define a quadratic function 𝑔(𝜏) ∶= 𝑎𝜏2 + 𝑏𝜏 + 1
where

𝑎 =
1 − 𝑒−(𝑟−𝜇)𝜏0 (1 + (𝑟 − 𝜇)𝜏0)

𝜏20
, (29)

𝑏 =
−2 + 𝑒−(𝑟−𝜇)𝜏0 (2 + (𝑟 − 𝜇)𝜏0)

𝜏0
, (30)

𝜏0 = 𝑚 + 𝑣
𝑛
(> 0). (31)

Then, for 𝑓 (𝜏) ∶= 𝑒−(𝑟−𝜇)𝜏 , it is straightforward to show the following:
𝑔(0) − 𝑓 (0) = 0, (32)

𝑔(𝜏0) − 𝑓 (𝜏0) = 0, (33)

𝑔′(𝜏0) − 𝑓 ′(𝜏0) = 0. (34)

We can also show that 𝑔′′(𝜏)−𝑓 ′′(𝜏) = 2𝑎−(𝑟−𝜇)2𝑒−(𝑟−𝜇)𝜏 is an increasing 
function of 𝜏 and that 

𝑔′′(𝜏0) − 𝑓 ′′(𝜏0) =
2 − 𝑒−(𝑟−𝜇)𝜏0{2 + 2(𝑟 − 𝜇)𝜏0 + (𝑟 − 𝜇)2𝜏20}

𝜏20
> 0. (35)

The inequality in (35) holds because for 𝜏 > 0, 
ℎ(𝜏) ∶= 2 − 𝑒−(𝑟−𝜇)𝜏{2 + 2(𝑟 − 𝜇)𝜏 + (𝑟 − 𝜇)2𝜏2} > ℎ(0) = 0 (36)

since ℎ′(𝜏) > 0 for 𝜏 > 0. From (32), (33), (34), and the monotonic 
increase of 𝑔′′(𝜏) − 𝑓 ′′(𝜏), we can show that 𝑔(𝜏) − 𝑓 (𝜏) for 𝜏 ≥ 0 takes 
the minimum value of 0 at 𝜏 = 0 and 𝜏 = 𝜏0, implying that 𝑔(𝜏) ≥ 𝑓 (𝜏)
for 𝜏 ≥ 0. Thus, we have
E[𝑒−(𝑟−𝜇)𝜏 ] = E[𝑓 (𝜏)]

≤ E[𝑔(𝜏)] = 𝑎(𝑚2 + 𝑣) + 𝑏𝑚 + 1 = 𝑒−(𝑟−𝜇)(𝑚+𝑣∕𝑚)𝑚2 + 𝑣
𝑚2 + 𝑣

. (37)

The tightness of (37) can be shown as follows. Suppose 𝜏 follows a 
two-point distribution with possible outcomes of 0 and 𝑚 + 𝑣∕𝑚 with 
probabilities 𝑣∕(𝑚2 + 𝑣) and 𝑚2∕(𝑚2 + 𝑣), respectively. This satisfies 
E[𝜏] = 𝑚 and E[𝜏2] = 𝑣 + 𝑚2, and E[𝑒−(𝑟−𝜇)𝜏 ] coincides the right-hand 
side of (37).

By combining (26) and (37) and rewriting them in terms of the 
certainty equivalent in (8), we can obtain (15). The left-hand side of 
(15) is − ln(𝑝(𝑣))∕(𝑟 − 𝜇) where 𝑝(𝑣) = (𝑒−(𝑟−𝜇)(𝑚+𝑣∕𝑚)𝑚2 + 𝑣)∕(𝑚2 + 𝑣), 
and it is straightforward to show 𝜕𝑝∕𝜕𝑣 = {𝑚2(1 − 𝑒−𝑐 (1 + 𝑐))}∕(𝑚2 + 𝑣)2
where 𝑐 = (𝑟 − 𝜇)(𝑚 + 𝑣∕𝑚) > 0. For 𝑞(𝑐) ∶= 𝑒−𝑐 (1 + 𝑐), 𝜕𝑞∕𝜕𝑐 < 0 and 
𝑞(0) = 1, and thus, 𝑞(𝑐) < 1 for 𝑐 > 0. This implies 𝜕𝑝∕𝜕𝑣 > 0, and thus, 
the left-hand side of (15) strictly decreases with 𝑣.
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A.8. Proof of Proposition  3

Suppose that 𝜏 follows a two-point distribution with possible out-
comes of 𝑛 and 𝑚−𝑙(𝑛) with probabilities 𝑛−1.5 and 1−𝑛−1.5, respectively, 
where 𝑛 is sufficiently large and 𝑙(𝑛) is chosen such that E[𝜏] = 𝑚
(i.e., 𝑙(𝑛) = (𝑛−𝑚)∕(𝑛1.5−1)). Since lim𝑛→∞ 𝑙(𝑛) = 0, the following holds:

E[𝜏2] = 𝑛2

𝑛1.5
+ (𝑚 − 𝑙(𝑛))2

(

1 − 1
𝑛1.5

) 𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ ∞, (38)

E[𝑒−(𝑟−𝜇)𝜏 ] = 𝑒−(𝑟−𝜇)𝑛

𝑛1.5
+ 𝑒−(𝑟−𝜇)(𝑚−𝑙(𝑛))

(

1 − 1
𝑛1.5

) 𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ 𝑒−(𝑟−𝜇)𝑚. (39)

That is, as 𝑛 increases, variance of 𝜏 increases, but its certainty equiva-
lent also increases, converging to 𝑚. In other words, it is possible that 
uncertainty premium of time-to-build can decrease and converge to 0 
as its variance increases.

A.9. Proof of Proposition  4

By Lemma  1, 𝑓 (𝜏) = 𝑓 (E[𝜏 + 𝜖]) < E[𝑓 (𝜏 + 𝜖)] where E[𝜖] = 0. Since 
𝑓 (𝜏) strictly decreases with 𝜏, E[𝑓 (𝜏 + 𝜖 + 𝑢)] < E[𝑓 (𝜏 + 𝜖)] holds for 
a constant 𝑢 > 0. Therefore, there always exists 𝜏𝑢 ∶= 𝜏 + 𝜖 + 𝑢 such 
that 𝑓 (𝜏) = E[𝑓 (𝜏𝑢)], or equivalently, 𝛿(𝜏) = 𝛿(𝜏𝑢). This, combined with 
the definitions of 𝛿(𝜏) and the moment-generating function, amounts to 
(16).

A.10. Proof of Corollary  5

Suppose 𝜏𝑢 is the uncertainty equivalent of 𝜏. That is, 𝛿(𝜏) = 𝛿(𝜏𝑢), 
or equivalently, 𝑓 (𝜏) = E[𝑓 (𝜏𝑢)] = E[𝑓 (𝜏 + 𝜖 + 𝑢)] where E[𝜖] = 0 and 
𝑢 > 0 is a constant.

Meanwhile, suppose 𝜏′𝑢 is a mean-preserving spread of 𝜏𝑢. That is, 
𝜏′𝑢 = 𝜏𝑢 + 𝜖′ where E[𝜖′|𝜏𝑢] = 0. By Lemma  1, E[𝑓 (𝜏𝑢)] < E[𝑓 (𝜏′𝑢)]
always holds. Since 𝑓 (𝜏) strictly decreases with 𝜏, there always exists a 
constant 𝑢′ > 0 such that E[𝑓 (𝜏𝑢)] = E[𝑓 (𝜏′𝑢 + 𝑢′)] holds, which implies 
𝛿(𝜏) = 𝛿(𝜏𝑢) = 𝛿(𝜏𝑢) where 𝜏𝑢 ∶= 𝜏′𝑢 + 𝑢′. Namely, both 𝜏𝑢 and 𝜏𝑢 are 
the uncertainty equivalents of 𝜏. By the definition, E[𝜏𝑢] = 𝜏 + 𝑢 and 
E[𝜏𝑢] = 𝜏 + 𝑢 + 𝑢′, which completes the proof.

A.11. Proof of Corollary  6

By Proposition  4, for any 𝜏 ≥ 0, there always exists 𝜏𝑢 ∶= 𝜏 + 𝜖 + 𝑢
where E[𝜖] = 0 and 𝑢 > 0 is a constant such that 𝑓 (𝜏) = E[𝑓 (𝜏𝑢)]. 
Because 𝑓 (𝜏) strictly decreases with 𝜏, there always exists a constant 
𝑤 ∈ (0, 𝑢) such that E[𝑓 (𝜏𝑢)] < E[𝑓 (𝜏𝑤)] where 𝜏𝑤 ∶= 𝜏 + 𝜖 + 𝑤, which 
implies 𝛿(𝜏) = 𝛿(𝜏𝑢) < 𝛿(𝜏𝑤) and E[𝜏𝑤] = 𝜏 +𝑤.

A.12. Proof of Proposition  5

Suppose 𝜏 follows a symmetric triangular distribution on [𝑎−𝑑, 𝑏+𝑑]
with its mode 𝑐 = (𝑎+𝑏)∕2. It is obvious that its variance increases while 
its mean remains the same as 𝑑 increases. With (18), one can easily 
show that 𝜕𝑀𝜏 (𝑡)∕𝜕𝑑 > 0. That is, an increase of 𝑑, which increases its 
variance, results in a decrease of 𝜏𝑐 , and thus, an increase of E[𝜏] − 𝜏𝑐 .

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.ejor.2025.07.051.
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