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The rapid growth in global energy consumption highlights the urgency of doubling energy efficiency improve-
ments by 2030. Heating, ventilation, and air-conditioning (HVAC) systems, which account for nearly half of
building energy use, represent a critical target for optimization. Conventional HVAC control strategies, however,
often suffer from inefficient power allocation, high peak demand, and compromised thermal comfort, especially
under dynamic occupancy and environmental conditions. Existing multi-zone control methods often overlook
peak power constraints and are not designed to optimize energy use under variable occupancy conditions, re-
sulting in suboptimal energy performance. This study proposes a symbolic regression-based model predictive
control (MPC) framework to address these challenges. The framework optimizes energy consumption and ther-
mal comfort for multi-zone variable refrigerant flow (VRF) systems while addressing peak power constraints to
reduce energy costs and improve thermal comfort. The method is evaluated under three operating priorities, @
= 0.1, 0.5, and 0.9, across varying power constraints. Simulation results demonstrate that the proposed method
consistently outperforms a decentralized MPC state-of-the-art (SOTA) baseline, achieving up to 16 % energy sav-
ings under a 30 % power constraint, with average temperature deviations (ATD) remaining within comfortable
bounds (< 2°C). Even under tight energy constraints, the framework maintains stable control performance, out-
performing existing methods that fail to adequately manage peak loads. Compared to rule-based and model-based
MPC approaches, the proposed method is more flexible and robust, as it does not require detailed system identifi-
cation or extensive training data. These results highlight the method’s potential as a scalable and energy-efficient
solution for contributing to global energy efficiency goals.

1. Introduction their compatibility with smart control strategies makes them well-suited

for sustainable building operations [9,10].

Doubling global energy efficiency by 2030 is critical to achieving en-
vironmental and economic sustainability targets [1]. Buildings, which
account for nearly 40% of global energy consumption, play a pivotal
role in this effort [2]. Within buildings, heating, ventilation, and air
conditioning (HVAC) systems are the largest energy consumers [3,4].
According to the International Energy Agency (IEA), HVAC systems ac-
count for a significant portion of total energy consumption in build-
ings, underscoring their critical role in improving energy efficiency
(Fig. 1). This highlights the urgent need for more efficient HVAC so-
lutions. Among advanced technologies, variable refrigerant flow (VRF)
systems have emerged as a promising solution due to their flexibility and
energy efficiency [5,6]. VRF systems enable precise temperature control
in individual zones, improving occupant comfort while reducing energy
consumption compared to traditional HVAC systems [7,8]. Furthermore,
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However, managing multi-zone VRF systems remains challenging.
Lack of coordinated control among VRF systems can lead to energy in-
efficiencies, higher operational costs, and thermal comfort inconsistent
across zones [11]. Without considering the interactions between differ-
ent units and zones, systems may overcool or overheat in certain areas,
which negatively impacts overall system performance [12]. Moreover,
uncoordinated operation of VRF systems can easily increase peak load
during peak hours, causing higher utility costs and reduced reliability
of the power grid [13]. Conventional control approaches, such as bang-
bang control and rule-based methods, often fail to handle the complex-
ities of multi-zone VRF systems, where thermal loads and occupancy
patterns vary over time [14,15].

Advanced control strategies have been widely explored to ad-
dress these challenges, including fuzzy logic control [16], heuristic

Received 18 February 2025; Received in revised form 29 July 2025; Accepted 6 August 2025

Available online 14 August 2025

0378-7788/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/enbuild
https://www.elsevier.com/locate/enbuild
https://orcid.org/0009-0006-7339-0769

$f^{SR}$


$X$


$Y$


\begin {equation}Y = f^{SR}(X). \label {Xeqn1-1}\end {equation}


$X_{i,t}$


$T^{in}_{i,t}$


$T^{out}_{t}$


$D_{i,t}$


$Q_{i,t}$


$X_{i,t}$


\begin {equation}X_{i,t} = \left \{ \begin {array}{c} T^{in}_{i,t} \\ T^{out}_{t} \\ D_{i,t} \\ Q_{i,t} \end {array} \right \}. \label {Xeqn2-2}\end {equation}


$t$


$t-1$


$t-1 \cdot a$


$t-2 \cdot a$


$n \cdot a$


$t-n \cdot a$


$a$


$n$


$t + 1$


\begin {equation}\hat {T}^{in}_{i,t+1} = f(X_{i,t},X_{i,t-1},X_{i,t-1 \cdot a} ,...,X_{i,t-n \cdot a}) , \label {Xeqn3-3}\end {equation}


$\hat {T}^{in}_{i,t+1}$


$X_{i,t}$


$t$


$N$


$N$


$X_{i,t}$


$X_{i,t + 1}$


$X_{i,t+N-1}$


$T^{in}_{i,t+1}$


$f^{SR}(X)$


\begin {equation}T^{in}_{i,t+1} = f^{SR}(X_{i,t},\ldots ,X_{i,t - N}), \forall t. \label {Xeqn4-4}\end {equation}


$T^{in}_{i,t+1}$


$t+1$


$X_{i,t}$


$X_{i,t - N}$


$z_{i,t}$
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Fig. 1. Global energy consumption by sector and the contribution of HVAC systems to building energy use. Source: International Energy Agency (IEA), 2022 [2,4].

optimization [17], reinforcement learning [18], and model predictive
control (MPC) [19,20]. Among them, MPC is notable for its ability to
predict future states and optimize HVAC operations in real time [21]
and [22] demonstrated MPC’s effectiveness in minimizing HVAC energy
use. Recent works such as [23] and [24] further highlight MPC’s poten-
tial for real-time coordination under operational constraints. Moreover,
MPC can adjust in real-time to these changes, providing a more efficient
and precise solution to manage multiple VRF systems.

While MPC can handle power constraints theoretically, its applica-
tion to multi-zone VRF systems under lower peak power limits remains
largely unexplored. Achieving the trade-off between energy efficiency
and thermal comfort under power constraints is crucial in real-world
applications. In particular, the dynamic and interdependent power con-
sumption patterns of VRF units under such constraints require accurate
modeling and control strategies.

To address these issues, this paper proposes an operation scheduling
method for VRF systems that integrates symbolic regression (SR) with
MPC for multi-zone VRF systems. The proposed method tackles two ma-
jor issues: (1) accurate thermal modeling and (2) coordinated power al-
location across zones under peak power constraints. SR is used to derive
mathematical models of indoor thermal dynamics directly from data.
Unlike traditional regression methods, SR automatically discovers non-
linear, interpretable mathematical expressions, offering a flexible and
data-driven way to capture room thermal dynamics [25]. This capability
is particularly valuable for modeling complex interactions between in-
door temperature, outdoor conditions, occupancy, and HVAC operation.
By enhancing predictive accuracy through SR, the proposed framework
enables MPC to schedule energy use more efficiently while maintain-
ing occupant comfort. The novelty of the approach lies in its ability to
manage power allocation flexibility and improve energy efficiency. The
main contributions of this paper are as follows:

1. Development of an operational scheduling approach that integrates
symbolic regression with MPC to optimize energy consumption in
multi-zone VRF systems under peak power constraints.

2. Comprehensive analysis of the impact of power constraints on energy
consumption, peak power demand, and thermal comfort through
simulations reflecting real-world VRF system scheduling.

The remainder of this paper is organized as follows: Section 2 introduces
the proposed data-driven multi-zone VRF system management frame-
work and formulation of the energy optimization problem for multi-
zone VRF systems. Section 3 presents the simulation evaluation, and
Section 4 presents the simulation results. Section 5 discusses the main
findings, and finally, Section 6 concludes with suggestions for future
research.

1.1. Related work

Optimizing HVAC systems has been a significant focus of research,
driven by the need to balance energy efficiency and occupant comfort.

Early approaches mainly used rule-based or heuristic methods, which
are simple to implement but lack flexibility and scalability. These meth-
ods often rely on fixed schedules or historical trends and struggle to
adapt to real-time changes in occupancy or weather [26]. For example,
setpoint controls based on average conditions may work in stable envi-
ronments but perform poorly in dynamic, multi-zone settings. Paulo et
al. addressed energy consumption during peak periods by designing a
time-of-use pricing model for residential thermostats, showing the ben-
efit of incorporating electricity pricing into HVAC control [27]. How-
ever, their method did not adapt to real-time variations in occupancy
or indoor climate conditions. While effective for incorporating network
constraints and pricing, their method did not explicitly model HVAC
dynamics or support real-time operational control, limiting its respon-
siveness in practical HVAC applications.

Model predictive control (MPC) has emerged as a prominent solution
for HVAC systems due to its ability to forecast future conditions and op-
timize control strategies accordingly. Drgona et al. provided a compre-
hensive review on MPC applications in buildings, highlighting its ben-
efits for balancing comfort and energy efficiency [28]. However, MPC
can face scalability and computational issues, particularly in large sys-
tems [29]. To address these issues, researchers have proposed hierarchi-
cal and distributed MPC frameworks that divide buildings into smaller,
manageable subsystems [30], improving scalability and coordination.
Xie et al. implemented such a distributed MPC approach across uni-
versity campus buildings, achieving notable reductions in energy con-
sumption while maintaining thermal comfort [31]. Hybrid methods that
combine MPC with simpler control rules have also been introduced to
reduce computational burden while keeping good performance.

Recently, data-driven techniques including supervised learning and
reinforcement learning (RL), have gained significant attention in HVAC
optimization. Zhang et al. reviewed machine learning and reinforce-
ment learning approaches integrated with MPC, highlighting the grow-
ing use of learning-based control in complex environments [32]. Yang
et al. developed a learning-based adaptive MPC method to deal with
uncertainty in building dynamics [33], while Kathirgamanathan et al.
showed that predictive control can improve energy flexibility and man-
age peak loads [34]. However, these methods require extensive training
data and frequent model updates, leading to implementation challenges
in dynamic environments.

To address these challenges, recent studies have focused on incor-
porating real-time data and online learning techniques to reduce the
need for manual model retraining. Zhao et al. demonstrated signifi-
cant energy cost reductions and peak shaving through the integration of
symbolic regression into MPC-based energy management frameworks
in on-site experiments [35]. Symbolic regression is useful for captur-
ing HVAC behavior as it discovers interpretable models directly from
data. While previous studies have explored various optimization strate-
gies, few studies have explicitly addressed peak power constraints. High
peak power demand contributes to increased operational costs and grid
instability, emphasizing the need for constraint-aware control strategies.
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Table 1

Comparison of existing approaches and the proposed method.
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Approach Ref. Control Objective(s) Pros Cons Gap Filled by Proposed Method
Rule-based / Heuristic [16,17,27] Energy efficiency, peak Simple implementation, fast Static logic, lacks real-time Introduces dynamic, responsive
demand reduction response, low computational cost adaptability to control for real-time multi-zone
occupancy/weather VRF coordination
Model-based MPC [19-24,28] Energy and thermal Predictive, constraint handling, High model complexity, Uses SR to reduce model
comfort optimization suitable for multi-zone control computational burden, complexity and enable
scalability issues real-time scalability
Data-driven MPC [33,34] Peak power reduction, Adaptive to system behavior, Requires large datasets, Symbolic models reduce need
energy flexibility learns from data, flexible retraining, generalizability for retraining and work with
issues limited data
Reinforcement Learning [18,32], Energy efficiency, thermal Learns optimal policies, adaptive Requires extensive training Proposed method offers
(RL) comfort optimization to uncertainty, no explicit model and exploration; may lack interpretable, reliable
needed interpretability alternative with lower data
dependency
SR + MPC (Single-zone) [35] Energy cost reduction, Interpretable, accurate nonlinear Single-zone only; lacks Extends symbolic MPC to

Our Method (SR + MPC
for Multi-zone VRF)

peak shaving

Peak power optimization,
real-time response

models, adaptable

Accurate, interpretable, flexible
control of shared VRF systems

coordination, increases
energy cost in multi-zone
systems

Symbolic models require
careful selection and tuning

multi-zone VRF with
coordinated control under
power limits

First scalable SR + MPC
method with coordinated

real-time multi-zone VRF
scheduling under power
constraints

Incorporating peak power constraints into HVAC control is becoming in-
creasingly important for reducing energy costs and strain on the grid.
Existing methods often fail to manage peak loads effectively and tend
to overlook the impacts of peak demand on electricity costs, peak de-
mand, and grid stability in multi-zone buildings. A detailed compari-
son of related approaches and the proposed method is summarized in
Table 1.

Our method integrates symbolic regression with MPC in a multi-
zone VRF system, incorporating peak power constraints to enable
interpretable, scalable, and efficient control. Symbolic Regression (SR)
is chosen in this study because it generates interpretable and compact
equations that can be directly applied in model predictive control
(MPC). Theoretically, SR represents a data-driven technique that does
not require prior domain knowledge to construct an accurate thermal
dynamics model. Practically, SR requires only readily available building
operational data such as indoor temperature, outdoor temperature, and
HVAC status, enabling fast deployment without the need for a detailed
physics-based model. This makes it highly scalable across zones with
diverse occupancy patterns and usage behaviors. Leprince et al. [36]
revealed the effectiveness of SR in building energy modeling by accu-
rately predicting temperature variations under diverse environmental
conditions. Further research has applied SR to predict energy usage and
thermal dynamics in various HVAC optimization scenarios [37,38].

Traditional regression techniques, such as linear and polynomial re-
gression, are commonly used in MPC frameworks due to their simplicity
and interpretability. However, these methods assume fixed functional
forms and struggle to model the complex, nonlinear, and dynamic be-
havior typical of HVAC systems. In contrast, symbolic regression (SR)
offers a data-driven approach that simultaneously discovers both the
structure and parameters of governing equations without assuming a
predefined model form. This flexibility allows SR to capture complex
thermal dynamics and interactions within multi-zone systems more ef-
fectively than traditional regression. Moreover, compared to black-box
models, SR provides clear expressions that describe how indoor temper-
ature changes with inputs like outdoor temperature and power usage.
There are three main reasons why SR fits our setting:

e Easy integration into MPC: SR produces mathematical expressions
that are continuous and differentiable, making them suitable for use
in optimization solvers. This is a key advantage over models like
LSTM, which often require additional steps such as numerical dif-
ferentiation or surrogate modeling to be incorporated into control
frameworks [39].

o Interpretability: The output of SR provides clear and interpretable
relationships between variables such as power usage, outdoor tem-
perature, and indoor conditions. This transparency aids in both sys-
tem understanding and model validation. In contrast, models like
Random Forests, while potentially accurate, lack this level of inter-
pretability [40].

¢ Computational efficiency: SR models are lightweight and quick
to evaluate, which is crucial for real-time applications. In compar-
ison, models like Random Forests or deep neural networks involve
complex architectures that are computationally intensive and less
straightforward to apply in optimization problems [41].

In this study, we prioritize generating low-complexity SR models to
balance prediction accuracy with optimization compatibility. While this
may slightly reduce predictive performance, previous work [42] has
shown SR remains competitive with other ML models, while offering
significant advantages in transparency and control integration.

2. Data-driven multi-zone VRF system management

This study employs a coordinated, data-driven multi-zone optimiza-
tion framework for variable refrigerant flow (VRF) systems based on
[43]. The main objective is to minimize the total energy consumption
without compromising the desired comfort levels. The proposed method
leverages model predictive control (MPC) to optimize the multi-zone
VRF systems scheduling, as illustrated in Fig. 2. The process begins by
collecting real-time environmental data, such as outdoor and indoor
temperatures, from sensors. The collected data is combined with thermal
comfort and a symbolic regression model, which are integrated into the
MPC framework to improve prediction accuracy. During scheduling pe-
riods, the MPC controller calculates optimal temperature set points for
each room, ensuring consistent and efficient operation. To improve en-
ergy efficiency, this study simply incorporates overall peak power con-
straints into the VRF scheduling process. This ensures that the system
operates within specified peak power limits while maintaining thermal
comfort. We formulated a mixed-integer linear programming (MILP)
problem integrated with MPC for coordinated load scheduling.

2.1. Symbolic regression-based temperature prediction model
Symbolic Regression (SR) employs a tree-like structure, where nodes

represent mathematical operations (e.g., addition, multiplication) and
leaves correspond to input variables. The tree structure is optimized
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through an iterative process that minimizes the error between predicted
and actual temperatures, ensuring the model adapts dynamically to en-
vironmental and operational changes. As shown in Fig. 3, SR constructs
predictive equations by combining variables, coefficients, and operators
to define the function fR. The function maps the explanatory variables
X to the target variable Y, represented as:

Y = fSRX). €))

In the context of multi-zone VRF systems, the input variables X,
are selected to capture the key factors influencing temperature dynam-
ics. These include room temperature (T;;;'), which reflects the current
thermal state; outdoor temperature (T,""’ ), which which represents the
external condition driving heat exchange with the indoor space; VRF
power consumption (D; ), which indicates system load; and VRF capac-
ity (Q;,), which determines the system’s cooling or heating capability.
Altogether, these variables enable SR to model the complex relations
that derive temperature variations in VRF systems. The variable X;, can
therefore be expressed as:

T

out
T @
Oy
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Fig. 4. Overview of the symbolic regression (SR) training process for tempera-
ture prediction.

To accurately determine the prediction function, the SR model lever-
ages both current and lagged explanatory variables. These variables in-
clude the current time step ¢, one-step behind ¢ — 1, further lagged steps
t—1-a,t—2-a,...,n-a-stepbehindt — n - a, where a is the lag interval
and n is the number of lagged steps considered. By incorporating these
lagged terms, the SR model can better capture the dynamics of VRF sys-
tem behavior, leading to more accurate temperature predictions. Fig. 4
provides an overview of the SR training process for temperature predic-
tion. The prediction function for the indoor temperature at time 7 + 1 is
thus expressed as:

t{:’+1 = f(Xi,thi,r—l’ X

X g @)

ijt—=l-a>

where f’f+1 represents the predicted indoor temperature, and X;, in-
cludes the explanatory variables at time 7.

To train the SR model, a dataset containing N samples of explanatory
and objective variables is constructed. Each sample is generated by shift-
ing the time-series data step by step, ensuring that the model captures
temporal dependencies. For each sample, the current time step is defined
by the most recent explanatory variables for each room, where the cur-
rent time steps for Sample 1, Sample 2, ..., Sample N correspond to X; ,,
X1, X; 1 N_1, respectively. The objective variable for each sample is
the one-step-ahead indoor temperature, Tl’:’H During training, the SR
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Table 2

List of variables used in the model.
Variable  Description Unit
T, f;‘ Indoor temperature in room i at time ¢ °C
" Outdoor temperature at time ¢ °C
D,, Power consumption of VRF system in room i kw
0, Cooling/heating capacity of VRF system in room i kw
0, Occupancy status of room i at time ¢ Binary (0 or 1)
S, Total energy consumption at time ¢ kWh
£, Electricity price at time ¢ currency/kWh
Ste;, Slack variable for comfort constraint °C
Jeost Electricity cost function currency unit
Jeomfort Thermal comfort cost function °C?

model iteratively optimizes its tree structure to minimize the error be-
tween predicted and actual temperatures, ensuring robust performance
across diverse operating conditions.

2.2. Formulation of multi-zoom VRF system optimization problem

The VRF optimization problem includes temperature prediction and
energy cost calculation under power constraints. For indoor thermal dy-
namics, the SR-derived building thermal model denoted as fSR(X), pre-
dicts future indoor temperatures as:

lt+1 fs 1t!~~~7X,";,N),VI. )

where T.i" ', Tepresents the predicted indoor temperature at time 7 + 1,
and X, ,,..., X;,_y are explanatory variables capturing current and past
envrronmental and operational conditions. The variables used in the
equations, along with their units and descriptions are shown in Table 2.
This approach enables reliable temperature prediction based on data,
without requiring physical parameter estimation.

To compute the energy cost, the operational status of the VRF system
is represented by the binary variable z; :

1,
Zip = 0.

A binary variable z;, is introduced to represent the ON/OFF operational
status of the VRF unit, enabling discrete operation control. The power
consumption constraint for room i at time 7 is:

if the VRF system is ON at time ¢,

. . . %)
if the VRF system is OFF at time 7.

lowest rated
- Dlwet < Dy <z, - DI, ®)

Zig
where D!°“*" and D'“** denote the minimum and rated power con-
sumption of the VRF system, respectively. This constraint ensures that
the power consumption remains within the valid operating range only
when the system is ON.

The total energy consumption .S, over a time slot is computed as:

= ; ; Dy 3600 ve @

where D, is the power consumption [kW] of room i at time ¢, and At
is the duration of each time step in seconds. The total energy usage is
accumulated across all rooms and time steps to track the system’s overall
consumption profile. The associated electricity cost, J is:

T
T =N, S, )
=1
where ¢, is the electricity unit price at time . This cost term is incor-
porated with time-varying electricity price to represent the energy con-
sumption during the scheduling period.
To limit total energy demand, a peak power constraint is imposed:

N
Y D, < D", ©)

i=
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ensuring that the combined power consumption of all VRF units does
not exceed the maximum allowable demand D™%~. The peak power con-
straint limits total peak power demand to avoid peak demand penalties.

To enhance occupant comfort, the thermal comfort term J¢"/°" is
defined as the squared error between the actual Tl’;’ and the target tem-

perature T’“/ :

2
Jeomfort — Z Z o, (TIIJI _ T}f:‘f ) , (10)
i=1 1=

where O, , is a binary variable indicating room occupancy, which equals
one when the room is occupied and zero when the room is unoccupied.
The thermal comfort penalty is defined as the squared error between the
actual and reference temperatures, activated only during occupancy to
reflect realistic usage.

T/OWr — Stc,, <T/T < T PP + Ste,,,  Ste;; >0 an

where T’ ower and T“‘” ¢’ are the lower and upper bounds for indoor tem-
peratures and S'c;, are the slack variables to accommodate temperature
deviations. This allows the indoor temperature T"‘ to slightly deviate
from its bounds when necessary. The slack ensures that a solution always
exists, avoiding infeasibility in the optimization problem. In this multi-
zone VRF scheduling framework, the objective function is designed to
jointly minimize the total energy cost, occupant discomfort, and con-
straint violation penalties. To ensure each term contributes fairly to the
optimization, the energy cost and thermal discomfort values are normal-
ized based on their respective maximum and minimum values across the
scheduling horizon.

The energy cost term J¢*' is normalized using rated power limits,
ensuring fairness in contribution. Here, D;, denotes the power consump-
tion of zone i at time ¢, while D"”Ed and D"’w"s’ represent the maximum
and minimum power thresholds respectlvely

cost __ Zt:l Zi:l Di,t

norm T N P rated lowesty
2oy Limy max(Diee = Dy, Dy, = D)

12

The thermal comfort term J¢°"/°"" quantifies temperature deviation
from the desired setpoint T“’f , weighted by the occupancy indicator O, ,.
Here, T;" is the indoor temperature of zone i at time ¢, and T“ppe’ T"’""”
are the comfort bounds.

T N i ref\2
comfort _ Z’:] Zi:l Ois - (T!L,:, -1, )

norm 2°

T N i g
S ZY, 0y (maxarr — 1 T~ o))

13)

This normalization process ensures that both terms contribute com-
parably to the objective function, avoiding disproportionate influence
from one metric over the other due to differences in magnitude or mea-
surement units.

The objective is to minimize both energy cost and thermal comfort de-
viations, expressed as:

minimize: - Z T 4 (1 - w)- 2 Z e fort

i=1 t=1

+P,- Z Z Ste;,
i=1 =1
subject to  (4) — (7),(9),(11)
Vi, t,

given O,

decision variables: D, ,, Vi,t,

slack variables: Stc;,, Vi.t,

The overall objective minimizes a weighted sum of electricity cost,
thermal comfort violations, and slack penalties. The cost term J¢%* is
subject to Eqgs. (6) and (9), while the comfort term J¢"/°'" is subject
to Eq. (11). The weight w allows the trade-off between cost efficiency
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and occupant satisfaction. To determine appropriate trade-off weights
, we analyzed system performance by simulating under various o val-
ues ranging from O to 1. This allowed us to observe how the system’s
energy consumption, average temperature deviation, and peak power
demand varied with different priority settings. Based on this analysis,
we selected three representative values of ® = 0.1, 0.5, and 0.9, which
reflect distinct operational priorities: comfort-oriented, balanced, and
cost-oriented. In this optimization, the decision variables include power
consumption D;, for each room i and each time step ¢. To address po-
tential infeasibility caused by strict temperature bounds under power
constraints, we introduce slack variables Stc;,. These variables allow
for the relaxation of thermal comfort constraints and are penalized in
the objective function to limit excessive violations. In contrast, power
operation and peak power constraints are modeled as hard constraints
to strictly enforce system limitations.

The system dynamics are parameterized using a symbolic regression
model, which predicts indoor temperature, outdoor temperature, and
power consumption based on historical data. These predictions are then
used in the MPC optimization, where power constraints (Eq. (6)) are
enforced and thermal comfort constraints are relaxed through the slack
variable (Eq. (11)). These variables interact with the constraints to bal-
ance energy efficiency and occupant comfort while maintaining feasi-
bility. Moreover, the operation of the VRF system involves several key
variables. The ON/OFF status and rated power are treated as manipu-
lated variables within the MPC framework. Indoor temperature, energy
consumption, and thermal comfort deviations are considered controlled
variables. External factors such as outdoor temperature, occupancy, and
electricity prices serve as disturbance variables that influence system
behavior. Real-time sensor data, along with the predicted indoor tem-
peratures from symbolic regression, provide feedback inputs, enabling
dynamic control actions.

For symbolic regression training, we used Optuna [44], an open-
source framework for hyperparameter optimization, to enhance model
accuracy. For the MPC optimization, the CPLEX solver [45] was em-
ployed, relying on its internal parameter tuning.

3. Simulation evaluation
3.1. Simulation setup

We conducted simulations to compare the performance of the pro-
posed (coordinated VRF) approach with the baseline (state-of-the-art,
uncoordinated VRF) approach. We evaluate the impact of peak power
constraints on total energy consumption, peak power demand, and ther-
mal comfort. These approaches are referred to as “SOTA” and “Ours”
throughout this section. The simulation is based on a real-world sce-
nario, including office rooms in an educational building at the Univer-
sity of Osaka, Japan. Fig. 5 illustrates the room layout for four rooms
with different cooling capacities, varying sizes, and occupancy patterns.

5.6kW 2.8kW 5.6 kW

Room I Room2 Room3

V|V L4
e .. @ VRF Indoor Units
32 |22 27 == Target Room
m? | m? | m? 9.0 kW
Hall (Room 4) 22 31

‘ I ~| @ gm?
L.

Fig. 5. Floor plan representing the room layout for the multi-zone VRF simula-
tion.
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Table 3
VRF indoor unit capacities and occupancy schedules for each room.
Room 1 Room 2 Room 3 Room 4
Capacity [kW] 5.6 2.8 5.6 9.0
Area [m?] 32 22 27 178
Occupied [hrs] 10:00-11:00 9:00-16:00 9:30-20:30 8:00-18:00

In the VRF system setup, summarized in Table 3, all rooms are con-
nected to a central outdoor unit with a rated power of 8.93kW. During
occupied hours, we set a target temperature of 26 °C, with an acceptable
fluctuation range between 24 °C and 28 °C to ensure occupant comfort
while allowing flexibility for energy optimization.

In this study, the prediction and control horizon are set to 24 h with
a time step of 15min. This setting ensures that temperature set points
for all rooms are updated frequently, allowing the system to respond dy-
namically to changes in room occupancy and outdoor temperature. Key
metrics in this study are total energy consumption (kWh), peak power
demand (kW), and thermal comfort (°C, measured as the average devi-
ation from the target temperature across the rooms).

To evaluate the impact of peak power constraints, we defined the
peak power constraint settings for SOTA and Ours methods as follows:

e Peak Power Constraint (SOTA): Each VRF system operates indepen-
dently, and applies individual power constraints to each indoor unit,
as illustrated in Fig. 6(a).

e Peak Power Constraint (Ours): Our approach applies a global con-
straint to coordinate power consumption across all units, as shown
in Fig. 6(b).

Moreover, we introduced weight coefficients ® to adjust the trade-
off between energy cost and thermal comfort. In this simulation, we
employed three different w values to represent different operational pri-
orities:

1. @ = 0.1: which prioritizes thermal comfort to minimize temperature
deviation from the target.

2. o = 0.5: which balances energy cost and thermal comfort equally.

3. w = 0.9: which prioritizes cost reduction, allowing larger tempera-
ture deviations to minimize energy consumption.

In this study, we analyzed ten distinct power constraint settings,
ranging from 10 % to 100 % of the maximum peak power. These settings
represent the effect of varying peak power on energy consumption, ther-
mal comfort, and the system’s performance under both restricted and
relaxed peak power. The peak power constraint that applies to SOTA
approach is defined by the following equation:

D, < D" . R, 14)

where D; and D!"** denote the individual power demand and the maxi-
mum rated power of the ith indoor unit. R is the percentage rate of the
power constraint (10 %-100%) in this setting. In this simulation, the
rated power of each indoor unit is unknown, and the individual maxi-
mum rated power is determined by its capacity ratio relative to the total
rated power:

N
DI = D" (Q;/ ) 0 (15)
i=1

where Q; and ZIA:' L Q; are the individual and total capacity of the ith
indoor unit. This allocation method ensures that the power constraint for
each unit reflects its proportional share of the outdoor unit’s capacity,
enabling effective power distribution across the system.

In contrast, the peak power constraint for the proposed approach is
defined by the following equation:

N

Y D, < D" R, 16)

i=1
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Outdoor Unit 1) (Outdoor Unit 2 } - - {Outdoor Unit N
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Room 1 Room 2 Room N

(a) Baseline approach
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Multi-zone
Outdoor Unit VRF System
v v v
Indoor Unit 1 | | Indoor Unit 2 |- - - {Indoor Unit N
)
Y Y Y
Room 1 Room 2 Room N
(b) Proposed approach

Fig. 6. Comparison of (a) baseline approach and (b) proposed approach for VRF system optimization.
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(a) Room 1 (measured vs. predicted temperature dynamics)
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(c) Room 3 (measured vs. predicted temperature dynamics)
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Fig. 7. Measured and predicted temperature dynamics from SR training for each room: (a) Room 1, (b) Room 2, (c) Room 3, and (d) Room 4.

where ), ,'i | D; represents the total power demand of all VRF units, D"
is the total allowable peak power. This constraint allows the VRF system
to manage power demand collectively across rooms.

3.2. Results of data training using the SR model

The Symbolic Regression (SR) model was trained using actual data
collected from the operation of four office rooms in an educational build-

ing at the University of Osaka, Japan. The data, including outdoor tem-
perature, indoor temperature (measured by sensors), and power con-
sumption, was gathered over the period from July 13 to August 15,
2024. The dataset was divided into three phases: training (July 13-17),
validation (August 1-5), and testing (August 6-10), with each phase
consisting of 5 days of data. This real-world dataset serves as the foun-
dation for the simulation conducted in this study. We implemented this
model using the PySR library [46] and to control model complexity and
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Table 4
Parameters of symbolic regression using PySR.
Parameter Description Value
Loss Loss function used during L2Distance()
regression
Niterations Number of iterations of the 120
algorithm to run
Populations Number of populations running 100
in parallel
Population_size Number of individuals in each 100
population
Complexity_of_variables Complexity assigned to each 2
variable
Constraints Max size constraints on k20 (2, 1)

arguments of operators

preserve physical interpretability, we limited the allowed operator set
to subtraction and multiplication ([¢-’>, ¢x’]). Key hyperparameters
for training, including the number of iterations, population size, and
complexity constraints, are summarized in Table 4. These parameters
were selected based on empirical testing to ensure a balance between
model accuracy and interpretability. The temperature prediction func-
tions based on three key values: the indoor temperature (T,';' ), outdoor
temperature (T,"“’ ), and power consumption (D, ,) over the 15min inter-
vals.

We evaluate the accuracy of the generated equations by comparing
the actual indoor temperatures with the predicted values, using mean
squared error (MSE), the coefficient of determination R%, mean abso-
lute error (MAE) and mean absolute percentage error (MAPE) as per-
formance metrics. The testing results for each room are summarized in
Table 5. The symbolic regression (SR) models demonstrated strong pre-
dictive performance across Rooms 1-3, with high R? values exceeding
0.99 and low error metrics (MSE, MAE, and MAPE) across training, val-
idation, and testing datasets (shown in Table 5). These results indicate
that the SR models effectively captured the thermal dynamics in these
rooms, likely due to their relatively stable occupancy patterns and less
variable environmental conditions.

However, the model performance for Room 4 was notably lower,
with a significant drop in R? (e.g., 0.0922 in validation) and increased
prediction errors (shown in Fig. 7). This discrepancy can be attributed
to several factors. First, Room 4 is a large common space (178 m?2) char-
acterized by irregular and diverse usage patterns, which introduce non-
linear and unpredictable thermal behavior. Second, as a walking and
gathering area, the room is subject to frequent disturbances such as door
openings, variable ventilation, and unmeasured internal heat gains fac-
tors not explicitly captured in the current modeling framework. Lastly,
while SR offers compact and interpretable equations, its ability to cap-
ture the complexity of highly dynamic environments is limited. Future
work will focus on enhancing model accuracy for such spaces by incor-
porating additional contextual variables and exploring hybrid modeling
approaches that can better accommodate complex, high-variance con-
ditions.

The model’s prediction functions for Rooms 1-4 are represented by
Egs. (17)-(20), respectively.

T = 09622545 - T +0.018169424 - T°™
+0.67211 — 0.28949875 - D,. a7

T = 094959116 - T + 0.0127858445 - T°1*
+1.1754573 — 0.25755432 - D,. (18)

in
Tis

= 0.9294086 - T +9.4946474 x 1075 - T
+2.058031 — 0.36269522 - D,. (19)

T = 092937356 - T +7.00316 x 107> - T
+2.0596 — 0.36220685 - D,. (20)
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Table 5
Model performance metrics for each room across training, validation, and
testing datasets.

Room Phase MSE R? MAE MAPE
Room 1 Training 0.0044 0.9937 0.0488 0.1631
Validation 0.0051 0.9936 0.0488 0.1899
Testing 0.0058 0.9951 0.0488 0.2021
Room 2 Training 0.0095 0.9888 0.0769 0.2738
Validation 0.0056 0.9957 0.0769 0.1910
Testing 0.0065 0.9950 0.0769 0.2020
Room 3 Training 0.0134 0.9745 0.1062 0.3913
Validation 0.0068 0.9963 0.1062 0.2404
Testing 0.0059 0.9933 0.1062 0.2030
Room 4 Training 0.0435 0.8490 0.0866 0.3086
Validation 0.1678 0.0922 0.0866 1.0485
Testing 0.0736 0.5211 0.0866 0.6708
s Room 1
2.44 Room 2
Room 3
Room 4
S 16/
@
2
o
a
0.8 1
0.0 T e
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Fig. 8. Power consumption in each room on July 13, 2024.

The maximum rated power of the outdoor unit in this simulation is
8.93 kW. However, the actual rated power during the winter reaches ap-
proximately 30 % of the maximum power, which is 2.43kW, as shown
in the data from July 13, 2024 (Fig. 8). Although the proposed method
could theoretically be proven to consume up to 100% of the rated
power, it practically operates at only 30% under normal conditions.
To reflect real-world power settings, we set 30 % of the rated power
(2.68 kW) as the maximum peak power constraint in our simulation.
To evaluate the effectiveness of the power constraint on temperature
dynamics and energy costs, we varied the power constraint from 10 %
(0.27 kW) to 100 % (2.68 kW) of the maximum rated power and adjusted
the w settings. This setting ensured that the system maintained the tar-
get temperature of 26 °C while minimizing energy consumption under
varying power constraints.

4. Simulation result

This section presents comparison results of the proposed coordinated
VRF system (Ours) with the baseline uncoordinated VRF system (SOTA)
across ten power constraint levels of 2.68 kW. We implemented the sim-
ulation by three operation scenarios: ® = 0.1, » = 0.5, and @ = 0.9,
representing thermal comfort priority, a balanced approach between
cost and comfort, and cost priority, respectively and the results are dis-
cussed in different sections. Then, we evaluated the performance by
three key metrics: (1) total energy consumption, (2) peak power de-
mand, and (3) average temperature deviation(ATD) from the target tem-
perature of 26 °C.

4.1. Comfort-oriented , w = 0.1

In this scenario, the primary objective is to minimize temperature
deviation from the target setpoint while maintaining energy efficiency.
Table 6 and Fig. 9 summarize the performance of the baseline method
(SOTA) and the proposed optimization strategy across a range of power
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Table 6
Comparison of baseline and proposed method at w = 0.1 (comfort priority).
Power constraint (%) Method Total peak power [kW] Energy consumption [kWh] ATD [°C]
10% (0.27 kW) SOTA 0.25 4.09 3.65
20% (0.54kW) SOTA 0.50 8.19 3.32
30% (0.80kW) SOTA 0.80 9.60 0.32
40% (1.07 kW) SOTA 1.07 8.86 0.15
50% (1.34kW) SOTA 1.34 8.44 0.13
60% (1.61 kW) SOTA 1.61 8.10 0.13
70% (1.88kW) SOTA 1.88 8.01 0.13
80% (2.14kW) SOTA 2.13 7.95 0.13
90 % (2.41 kW) SOTA 2.41 7.87 0.13
100 % (2.68kW) SOTA 2.65 7.82 0.13
10% (0.27 kW) Ours 0.27 5.23 2.31
20% (0.54 kW) Ours 0.54 9.33 0.70
30% (0.80kW) Ours 0.80 8.64 0.27
40% (1.07 kW) Ours 1.07 8.18 0.21
50% (1.34kW) Ours 1.34 7.96 0.18
60% (1.61 kW) Ours 1.61 7.85 0.17
70% (1.88kW) Ours 1.88 7.78 0.16
80% (2.14kW) Ours 2.14 7.76 0.15
90 % (2.41 kW) Ours 2.41 7.75 0.15
100 % (2.68 kW) Ours 2.68 7.75 0.14
Average (SOTA) 1.46 7.89 0.82
Average (Ours) 1.47 7.82 0.44

constraints. As shown in Table 6, the proposed method consistently
achieves superior thermal comfort, particularly under more stringent
power constraints. For example, at a 30 % power constraint, Ours at-
tains an average temperature deviation (ATD) of 0.27 °C, outperforming
SOTA, which records an ATD of 0.32 °C. Even under more relaxed con-
straints, such as 60% and 100 % the proposed method achieves com-
parable performance, with ATDs of 0.17 °C and 0.14 °C, respectively,
closely matching the baseline’s 0.13 °C in both cases. On average, across
all constraint levels, the proposed method yields an ATD of 0.44°C,
nearly half that of SOTA’s 0.82°C, indicating improved thermal com-
fort.

In terms of energy consumption, the proposed method consistently
uses less energy than the baseline. Under a 30 % power constraint,

20 T T T T T T
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time(hr)
—— Room1l —— Room4 —— Occupied
——— Room2 —— Qutdoor ==- Unoccupied
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(a) Baseline temperature (weight = 0.1)
s Room 1
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5}
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a
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Time (hr)

(c) Baseline power (weight = 0.1)

Ours consumes 8.64 kWh which is approximately 10 % less than SOTA’s
9.60 kWh. Similar efficiency gains are observed at other levels; at 60 %,
energy use is 7.85kWh compared to 8.10 kWh under SOTA, and even at
full power availability (100 %), the proposed method consumes slightly
less energy, 7.75kWh versus 7.82kWh. Both methods adhere to their
respective peak power constraints. At 30 %, the peak power reached is
0.80 kW for both methods. At 100 %, the proposed method fully utilizes
the available capacity (2.68 kW), slightly more than SOTA (2.65kW),
while maintaining greater efficiency and comfort.

To enhance the interpretability of temperature control behavior,
shaded regions were added to the temperature plots (Fig. 9(a) and (b))
to indicate room occupancy periods. These regions are color-coded to
match each room’s temperature trajectory: red for Room 1, orange for
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(d) Proposed power (weight = 0.1)

Fig. 9. Comparison of baseline and proposed methods at weight = 0.1 (comfort priority): (a) baseline temperature, (b) proposed temperature, (c) baseline power,

and (d) proposed power.
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Table 7
Comparison of baseline and proposed method at w = 0.5 (trade-off between energy cost and comfort).
Power constraint (%) Method Total peak power [kW] Energy consumption [kWh] ATD [°C]
10% (0.27 kW) SOTA 0.25 4.09 3.65
20% (0.54kW) SOTA 0.50 8.19 3.32
30% (0.80kW) SOTA 0.80 6.74 0.90
40% (1.07 kW) SOTA 1.07 6.43 0.81
50% (1.34kW) SOTA 1.13 6.19 0.81
60% (1.61 kW) SOTA 1.61 5.99 0.81
70% (1.88kW) SOTA 1.86 5.94 0.82
80% (2.14kW) SOTA 2.10 5.92 0.82
90 % (2.41 kW) SOTA 2.26 5.87 0.82
100 % (2.68kW) SOTA 2.50 5.83 0.82
10% (0.27 kW) Ours 0.27 4.89 2.36
20% (0.54 kW) Ours 0.54 5.52 1.39
30% (0.80kW) Ours 0.80 5.69 1.13
40% (1.07 kW) Ours 1.07 5.68 1.06
50% (1.34kW) Ours 1.34 5.67 1.03
60% (1.61 kW) Ours 1.61 5.70 0.99
70% (1.88kW) Ours 1.88 5.70 0.98
80% (2.14kW) Ours 2.14 5.69 0.98
90 % (2.41 kW) Ours 2.41 5.69 0.97
100 % (2.68 kW) Ours 2.68 5.69 0.97
Avg SOTA 1.41 6.12 1.36
Avg Ours 1.47 5.59 1.19

Room 2, green for Room 3, and blue for Room 4. A detailed comparison
under a 30 % power constraint further illustrates the benefits of the pro-
posed method. Fig. 9(c) shows the hourly power consumption of Room
1 to 4 using the baseline method. In this graph, solid lines represent
power usage during occupied hours, while dotted lines indicate unoc-
cupied periods. Under the baseline strategy, Room 1 initiates cooling
as early as 00:30 to reach the target temperature by 10:00, resulting in
considerable energy consumption during unoccupied hours.

Similarly, Room 2 begins cooling well ahead of its occupancy pe-
riod and continues to lower the indoor temperature beyond the set-
point by more than 1°C after 11:30 due to constrained cooling capacity.
Rooms 3 and 4, which have longer occupied periods (9:30-20:30 and
8:00-18:00, respectively), maintain stable indoor temperatures but also
experience extended cooling durations before occupancy begins. The
baseline method treats each room independently, without accounting
for shared power limitations or coordinated occupancy patterns, which
leads to increased energy usage and reduced efficiency.

In contrast, the proposed method adopts a coordinated, occupancy-
aware control strategy. As shown in Fig. 9(d), Room 1 initiates pre-
cooling at 04:30, Room 2 at 06:15, Room 3 at 08:45, and Room 4 at
07:15-significantly later than the baseline approach. This scheduling
aligns closely with each room’s occupancy period, reducing unneces-
sary energy use during unoccupied hours while still ensuring thermal
comfort. As a result, the proposed method balances comfort and energy
efficiency, particularly under limited power availability.

4.2. Trade-off between cost and comfort, w = 0.5

The main objective of this simulation is to balance energy consump-
tion and thermal comfort. A performance summary of both the proposed
and baseline methods under this trade-off is presented in Table 7 and
Fig. 10. The proposed method demonstrates considerable energy sav-
ings, especially under tighter power constraints. At a 20 % power con-
straint, Ours consumed 5.52kWh, 32.6 % less than SOTA’s 8.19 kWh.
This energy-saving trend persists as the power limit increases, with Ours
consistently using less energy. At full capacity (100 %), Ours consumed
5.69 kWh, compared to SOTA’s 5.83 kWh-an overall reduction of 2.4 %.

In addition to improved energy efficiency, the proposed method also
maintains better thermal comfort, particularly under constrained condi-
tions. For instance, at 20 % power, Ours achieved an ATD of 1.39°C,
significantly lower than SOTA’s 3.32°C, while also consuming less en-
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ergy. This suggests better performance in managing indoor temperature
when power is limited. As the power constraint relaxes, yet Ours consis-
tently sustains comparable comfort levels above the 60 % constraint. At
100 %, Ours maintains an ATD of 0.97 °C, while SOTA records 0.82°C.
Both methods respect the specified peak power limits at all constraint
levels. At 100 %, each reaches the maximum allowable peak of 2.68 kW
without exceeding it. On average, the proposed method uses 5.59 kWh,
while SOTA consumes 6.12kWh, an 8.7 % overall reduction. Further-
more, the proposed method maintains a lower average ATD of 1.19°C,
compared to SOTA’s 1.36 °C, indicating better thermal management.

To further illustrate the effectiveness of both methods, we focus on
the scenario with a 30 % power constraint. Fig. 10 provides a detailed
hourly breakdown of energy usage in Rooms 1 through 4. Power con-
sumption for each room is shown in red, orange, green, and blue lines
(Fig. 10(c)), with solid lines indicating occupied periods, dotted lines in-
dicating unoccupied hours and the shaded areas indicate the occupied
hours. To meet the target temperature of 26 °C, the SOTA method ini-
tiates early pre-cooling: Room 1 at 03:15 and Room 2 at 04:00. Rooms
3 and 4 start at 08:00 and 06:30, respectively, ensuring comfortable
conditions at occupancy.

While this approach results in a lower ATD of 0.90 °C, slightly bet-
ter than Ours, it also leads to higher energy usage due to extended pre-
conditioning. In contrast, the proposed method adjusts pre-cooling more
responsively to actual occupancy times. Here, the proposed method dy-
namically updates control decisions at each time step in a coordinated
manner, based on real-time inputs such as occupancy schedules and
power constraints. This responsiveness is twofold: (1) it adapts to oc-
cupancy changes by minimizing unnecessary pre-cooling, and (2) it al-
locates limited power efficiently across zones to ensure comfort while
reducing energy consumption. As depicted in Fig. 10(d), Room 1 begins
pre-cooling at 07:00, Room 2 at 07:15, Room 3 at 09:00, and Room
4 at 07:15. This pre-cooling schedule avoids unnecessary conditioning
during unoccupied hours, resulting in substantial energy savings while
maintaining acceptable comfort levels.

4.3. Energy cost priority case, ® = 0.9

The primary objective of this simulation is to prioritize energy cost
savings, allowing for greater deviations from the target temperature.
Both methods are evaluated under various power constraint levels. As
shown in Table 8 and Fig. 11, the proposed method consistently reduces
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Fig. 10. Comparison of baseline and proposed methods at weight = 0.5 (trade-off between energy cost and comfort): (a) baseline temperature, (b) proposed

temperature, (c) baseline power, and (d) proposed power.

Table 8
Comparison of baseline and proposed method at w = 0.9 (energy cost priority).
Power constraint (%) Method Total peak power [kW] Energy consumption [kWh] ATD [°C]
10% (0.27 kW) SOTA 0.25 4.09 3.65
20% (0.54 kW) SOTA 0.50 8.19 3.32
30% (0.80kW) SOTA 0.80 4.23 1.98
40% (1.07 kW) SOTA 1.02 4.10 1.96
50% (1.34kW) SOTA 1.33 4.05 1.95
60% (1.61 kW) SOTA 1.61 4.02 1.94
70% (1.88kW) SOTA 1.77 3.98 1.94
80% (2.14kW) SOTA 2.07 3.97 1.94
90 % (2.41 kW) SOTA 2.29 3.97 1.94
100 % (2.68kW) SOTA 2.52 3.97 1.94
10% (0.27 kW) Ours 0.27 4.66 2.43
20% (0.54kW) Ours 0.54 4.31 2.00
30% (0.80kW) Ours 0.80 4.08 2.00
40% (1.07 kW) Ours 1.07 4.01 1.99
50% (1.34kW) Ours 1.34 3.98 1.99
60% (1.61 kW) Ours 1.61 3.97 2.00
70% (1.88kW) Ours 1.88 3.96 2.00
80% (2.14kW) Ours 2.14 3.96 2.00
90 % (2.41 kW) Ours 2.41 3.96 2.00
100 % (2.68 kW) Ours 2.52 3.96 2.00
Avg SOTA 1.42 4.46 2.26
Avg Ours 1.46 4.09 2.04

energy consumption while maintaining acceptable thermal comfort. Ata
20 % power constraint, the proposed method (Ours) consumes 4.31 kWh,
which is 47.4 % lower than the baseline method (SOTA) at 8.19 kWh. As
the power constraint increases, energy consumption for both methods
decreases; however, Ours consistently achieves lower consumption. At
100 % power constraint, both methods converge, consuming approxi-
mately the same energy: 3.96 kWh for Ours and 3.97 kWh for SOTA.
While SOTA achieves slightly lower ATD values (from 3.65°C to
1.94°C), the proposed method maintains deviations within 2 °C, which
is acceptable in cost-prioritized scenarios. Additionally, both methods
respect the maximum peak power limit of 2.68kW. On average, the
proposed method achieves 8.3 % lower energy consumption (4.09 kWh
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vs. 4.46 kWh) and a slightly better ATD (2.04°C vs. 2.26 °C) than the
baseline, demonstrating a better trade-off between energy efficiency and
thermal comfort in cost-sensitive settings.

To further illustrate performance, we highlight the case under a 30 %
power constraint. Fig. 11 displays hourly power usage for Rooms 1-4.
In SOTA (Fig. 11(c)), early pre-cooling starts at 06:45 for Rooms 1 and
2, 08:30 for Room 3, and 07:15 for Room 4. These long pre-cooling pe-
riods lead to higher energy use. In contrast, Ours (Fig. 11(d)) schedules
energy usage, initiating pre-cooling closer to occupancy times: Room
1 at 07:30, Room 2 at 08:15, Room 3 at 09:15, and Room 4 at 07:45.
This strategic timing avoids unnecessary energy usage while ensuring
thermal comfort.
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Fig. 11. Comparison of baseline and proposed methods at weight 0.9 (energy cost priority): (a) baseline temperature, (b) proposed temperature, (c) baseline power,

and (d) proposed power.

Although Ours results in a slightly higher ATD (2.00 °C) compared
to SOTA (1.98°C) in the 30 % constraint case, it achieves 4% greater
energy savings. This small trade-off in thermal comfort is acceptable in
cost-focused applications, confirming the effectiveness of the proposed
method.

4.4. Comparison with state-of-the-art methods

To evaluate the performance of our proposed Symbolic Regression-
based Model Predictive Control (SR-MPC) approach, we compared it
with several established HVAC control strategies: rule-based control,
model-based MPC, data-driven MPC, and reinforcement learning (RL)-
based control. The comparison is summarized in Table 9, which outlines
key characteristics such as energy savings, computational demands, in-
terpretability, and real-time feasibility.

Rule-based control is one of the simplest control strategies and has
been widely used in practice. It relies on predefined rules, making it
highly interpretable and computationally efficient. However, the en-
ergy savings achieved by this method are limited due to its inability
to adapt to varying building conditions or optimize performance based
on real-time data. Rule-based control is effective in stable environments
but struggles to maintain energy efficiency under dynamic conditions,
which are common in modern HVAC systems [16,17,27].

Model-based MPC, on the other hand, uses mathematical models de-
rived from first principles to optimize control decisions. While it pro-
vides moderate to high energy savings and high interpretability due
to its reliance on physical models, it has notable limitations. The need
for manual model calibration and system identification can be time-
consuming and computationally intensive. Moreover, model-based MPC
methods may not effectively capture the complex, nonlinear dynamics
of real-world HVAC systems, reducing their effectiveness in some situa-
tions. Although it achieves reasonable real-time feasibility, the method
typically requires adjustments for each specific system, which can hin-
der its adaptability [19,21,22].

Data-driven MPC, such as those using neural networks, is able to
capture complex system dynamics and achieve high energy savings by
learning from large datasets. These models, however, come at the cost
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of high computational demands and low interpretability, as neural net-
works are often viewed as “black boxes.” The requirement for large
amounts of training data and extensive tuning further increases compu-
tational costs. Additionally, while data-driven MPC can offer high en-
ergy savings, its real-time feasibility is limited by the time required for
data processing and model updating, which is especially problematic in
fast-changing environments [33,34].

Reinforcement learning (RL)-based control represents a more flexi-
ble approach that can learn and adapt to changing environments. It has
the potential to deliver significant energy savings due to its ability to
optimize actions over time. However, RL-based methods are computa-
tionally expensive and require extensive training, which can make them
impractical for real-time control, especially in buildings with varying oc-
cupancy and environmental conditions. Moreover, RL approaches often
lack interpretability, as the decision-making process is not easily under-
stood by humans. These factors lead to lower real-time feasibility and
generalizability compared to other methods [18,32].

In contrast, our SR-based MPC offers several advantages over the
aforementioned methods. It combines the best features of traditional
model-based MPC with the efficiency of data-driven methods, but with
significantly lower computational demands. The SR-based approach
generates closed-form expressions that are highly interpretable, which
is a key benefit over black-box methods like neural networks. This in-
terpretability makes it easier to diagnose issues and adjust the system
if needed, offering transparency in decision-making. Additionally, SR-
MPC is computationally efficient, making it ideal for real-time control
applications where quick decision-making is crucial. Its ability to bal-
ance high energy savings with low computational requirements and
real-time feasibility positions SR-MPC as a strong candidate for prac-
tical implementation in HVAC systems.

By focusing on the key attributes outlined in Table 9, we demon-
strate that our SR-based MPC approach outperforms many traditional
and modern methods in terms of interpretability, computational effi-
ciency, and real-time feasibility while maintaining high energy savings.
The comparison highlights how SR-MPC provides a practical, scalable
solution that combines the benefits of both traditional and data-driven
approaches while minimizing their drawbacks.
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Table 9
Comparison of control methods in terms of key characteristics.
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Method Energy savings Computational demand Interpretability Real-time feasibility
Rule-Based Control Low Low High High

Model-Based MPC Medium to High Medium High Medium
Data-Driven MPC (Neural Networks) High High Low Medium
Reinforcement Learning (RL) High Very High Low Low to Medium
Proposed SR-Based MPC High Low High High

5. Discussion

Different simulation results demonstrate that the proposed coordi-
nated method effectively optimizes energy consumption while main-
taining thermal comfort across various operating priorities. Our method
consistently outperforms the baseline, achieving significant energy sav-
ings with minimal average temperature deviation (ATD). When « = 0.1
(comfort-oriented), Ours achieves a 10 % reduction in energy usage and
improves ATD by 0.05°C under a 30 % power constraint. The first two
scenarios show slightly higher ATD values with our proposed method
under tight peak power limitations. This occurs because the decentral-
ized SOTA method independently tracks each room’s setpoint more ag-
gressively, without coordination between rooms. As the power limita-
tion is relaxed (e.g., 40 %-100 %), SOTA units can follow their temper-
ature setpoints more closely, resulting in marginally lower ATD values.

However, this comes at the expense of higher energy consumption
and less efficient power distribution, as the decentralized approach does
not consider interactions between rooms. In contrast, our centralized
control method balances comfort across all rooms while adhering to the
overall power constraint. Though this can lead to slightly higher ATD
values in certain cases (e.g., 0.13 vs. 0.16°C), the deviations are minimal
and outweighed by improved coordination and energy distribution. Our
method consistently results in lower energy consumption across most
scenarios, demonstrating its advantage in multi-zone VRF scheduling
with better system-wide control.

When w = 0.5 (balancing energy cost and comfort), the results show
that while the ATD values for Ours are slightly higher than the baseline
after the 20 % power constraint, the difference is minimal (e.g., 1.19°C
for Ours vs. 1.36°C for SOTA on average). This reflects the trade-off
between maintaining comfort and optimizing energy use. Ours consis-
tently achieves lower energy consumption across all scenarios, saving
up to 16 % in energy use at a 30 % power constraint, thus proving its
efficiency in managing energy while still ensuring acceptable comfort.
In contrast, the decentralized SOTA method, while maintaining lower
ATD values in less constrained scenarios, consumes more energy due to
its lack of coordination between rooms, resulting in inefficient power
distribution and higher energy costs.

Thus, Ours offers a more energy-efficient solution without significant
loss of comfort, especially in scenarios where balancing energy costs
and thermal comfort is critical. The dynamic pre-cooling schedule in
Ours optimizes power usage, making it a more cost-effective choice for
multi-zone VRF systems. In the energy cost priority scenario (w = 0.9),
Ours experiences a slight increase in ATD values compared to SOTA
after the 20 % power constraint, with the ATD rising from 2.00°C for
Ours to 1.94°C for SOTA. However, this increase is minimal and is out-
weighed by significantly lower energy consumption. At a 30 % power
constraint, Ours reduces energy use by approximately 4%, saving en-
ergy while maintaining acceptable comfort levels.

The key advantage of Ours is its ability to maintain stable thermal
comfort while optimizing energy usage. As power limitations become
stricter, Ours efficiently allocates energy across the system without pro-
longed pre-cooling, resulting in better overall energy efficiency. In con-
trast, the decentralized SOTA method tends to over-consume energy due
to its lack of coordination, leading to higher energy usage and less effi-
cient power distribution. Overall, our method provides an efficient so-
lution for applications that prioritize energy savings, particularly when
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facing tight power constraints. It strikes a balance between maintaining
thermal comfort and reducing energy consumption, outperforming the
baseline method in terms of energy savings without significant comfort
compromise.

In comparison, rule-based control methods rely on fixed operational
logic and lack responsiveness to changing environmental or system con-
ditions. As a result, they tend to cause either discomfort or unnecessary
energy consumption when operating under constrained scenarios. While
model-based MPC approaches offer improved flexibility, they are built
on predefined mathematical models that require accurate system iden-
tification. This dependence limits their robustness and makes them less
suitable for scenarios where energy availability is highly restricted or
when building conditions vary.

Data-driven methods based on neural networks can learn complex
patterns but often lack transparency and are sensitive to noise, which
makes their performance unreliable when used in situations that dif-
fer from the training data. Controllers based on learning methods, such
as reinforcement learning, require large amounts of training data, and
their black-box nature makes them hard to validate or adjust for real-
time control in HVAC systems. In contrast, our approach combines the
clarity of symbolic models with the flexibility of MPC, providing de-
pendable performance even under strict power constraints and changing
conditions.

Another advantage of the proposed method lies in its generalizabil-
ity. Unlike rule-based or model-based strategies that are designed for
specific building setups, our framework can be applied to various build-
ing types including residential, commercial, and industrial buildings,
without needing major changes to the system structure. Since the frame-
work is based on historical data and does not rely heavily on detailed
building-specific information, it can be easily adapted to different build-
ing types with only minor adjustments. These results suggest that our
method not only performs well under strict energy limitations but also
provides a practical solution for future energy-efficient building control.

6. Conclusion and future work

The study employs a data-driven method to propose a coordinated
operation scheduling for multiple-room VRF systems. The primary goal
is to maximize energy savings while ensuring thermal comfort in all
rooms. The primary contribution of this research is the development
and evaluation of the effects of peak power limitations on overall energy
consumption, peak power demand, and thermal comfort. Using actual
historical data from an educational facility at the University of Osaka
in Japan, we conducted simulations in cooling mode during the sum-
mer. Under three priority settings, comfort (w = 0.1), trade-off (v = 0.5),
and cost (w = 0.9) at different power restrictions, the simulation results
are assessed by contrasting the proposed coordinated approach with
the baseline uncoordinated method. The proposed method continuously
outperformed the baseline approach, resulting in significant improve-
ments in thermal comfort and energy efficiency.

Under a 30 % constraint, the proposed method achieves energy sav-
ings of up to 16 %, and even under stricter constraints, it maintains ac-
ceptable thermal comfort, with only minor increases in ATD compared
to the baseline. In most cases, the average temperature deviations (ATD)
are continuously below 2°C, ensuring optimum thermal comfort in
every room. Through coordinated control and dynamic adjustments to
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pre-cooling schedules and power allocation, the proposed method im-
proves power distribution efficiency and reduces energy waste during
occupied periods.

While the proposed method offers significant advantages, some
trade-offs were observed, particularly in cost-prioritized scenarios (w =
0.9), where thermal comfort was somewhat decreased to save more en-
ergy. However, these ATD increases are minimal and acceptable when
cost reduction is the primary objective, showing the method’s flexibil-
ity across operational priorities. The system’s ability to balance energy
efficiency and comfort across all scenarios highlights its potential for
modern building management systems.

To further enhance the proposed method’s performance and applica-
bility, future research should explore the incorporation of renewable en-
ergy sources such as solar or wind power, which could further improve
the system’s sustainability and reduce reliance on the grid. Addition-
ally, investigating the impact of real-time weather data and occupancy
predictions on system performance could yield further improvements
in energy efficiency and comfort. Expanding the scope of simulations
to include diverse building types (e.g., residential, commercial) and cli-
mates would also help generalize the findings and validate the system’s
robustness in different settings.
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