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 a b s t r a c t

The rapid growth in global energy consumption highlights the urgency of doubling energy efficiency improve-
ments by 2030. Heating, ventilation, and air-conditioning (HVAC) systems, which account for nearly half of 
building energy use, represent a critical target for optimization. Conventional HVAC control strategies, however, 
often suffer from inefficient power allocation, high peak demand, and compromised thermal comfort, especially 
under dynamic occupancy and environmental conditions. Existing multi-zone control methods often overlook 
peak power constraints and are not designed to optimize energy use under variable occupancy conditions, re-
sulting in suboptimal energy performance. This study proposes a symbolic regression-based model predictive 
control (MPC) framework to address these challenges. The framework optimizes energy consumption and ther-
mal comfort for multi-zone variable refrigerant flow (VRF) systems while addressing peak power constraints to 
reduce energy costs and improve thermal comfort. The method is evaluated under three operating priorities, 𝜔
= 0.1, 0.5, and 0.9, across varying power constraints. Simulation results demonstrate that the proposed method 
consistently outperforms a decentralized MPC state-of-the-art (SOTA) baseline, achieving up to 16% energy sav-
ings under a 30% power constraint, with average temperature deviations (ATD) remaining within comfortable 
bounds (< 2◦𝐶). Even under tight energy constraints, the framework maintains stable control performance, out-
performing existing methods that fail to adequately manage peak loads. Compared to rule-based and model-based 
MPC approaches, the proposed method is more flexible and robust, as it does not require detailed system identifi-
cation or extensive training data. These results highlight the method’s potential as a scalable and energy-efficient 
solution for contributing to global energy efficiency goals.

1.  Introduction

Doubling global energy efficiency by 2030 is critical to achieving en-
vironmental and economic sustainability targets [1]. Buildings, which 
account for nearly 40% of global energy consumption, play a pivotal 
role in this effort [2]. Within buildings, heating, ventilation, and air 
conditioning (HVAC) systems are the largest energy consumers [3,4]. 
According to the International Energy Agency (IEA), HVAC systems ac-
count for a significant portion of total energy consumption in build-
ings, underscoring their critical role in improving energy efficiency 
(Fig. 1). This highlights the urgent need for more efficient HVAC so-
lutions. Among advanced technologies, variable refrigerant flow (VRF) 
systems have emerged as a promising solution due to their flexibility and 
energy efficiency [5,6]. VRF systems enable precise temperature control 
in individual zones, improving occupant comfort while reducing energy 
consumption compared to traditional HVAC systems [7,8]. Furthermore, 
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their compatibility with smart control strategies makes them well-suited 
for sustainable building operations [9,10].

However, managing multi-zone VRF systems remains challenging. 
Lack of coordinated control among VRF systems can lead to energy in-
efficiencies, higher operational costs, and thermal comfort inconsistent 
across zones [11]. Without considering the interactions between differ-
ent units and zones, systems may overcool or overheat in certain areas, 
which negatively impacts overall system performance [12]. Moreover, 
uncoordinated operation of VRF systems can easily increase peak load 
during peak hours, causing higher utility costs and reduced reliability 
of the power grid [13]. Conventional control approaches, such as bang-
bang control and rule-based methods, often fail to handle the complex-
ities of multi-zone VRF systems, where thermal loads and occupancy 
patterns vary over time [14,15].

Advanced control strategies have been widely explored to ad-
dress these challenges, including fuzzy logic control [16], heuristic
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Fig. 1. Global energy consumption by sector and the contribution of HVAC systems to building energy use. Source: International Energy Agency (IEA), 2022 [2,4].

optimization [17], reinforcement learning  [18], and model predictive 
control (MPC) [19,20]. Among them, MPC is notable for its ability to 
predict future states and optimize HVAC operations in real time [21] 
and [22] demonstrated MPC’s effectiveness in minimizing HVAC energy 
use. Recent works such as [23] and [24] further highlight MPC’s poten-
tial for real-time coordination under operational constraints. Moreover, 
MPC can adjust in real-time to these changes, providing a more efficient 
and precise solution to manage multiple VRF systems.

While MPC can handle power constraints theoretically, its applica-
tion to multi-zone VRF systems under lower peak power limits remains 
largely unexplored. Achieving the trade-off between energy efficiency 
and thermal comfort under power constraints is crucial in real-world 
applications. In particular, the dynamic and interdependent power con-
sumption patterns of VRF units under such constraints require accurate 
modeling and control strategies.

To address these issues, this paper proposes an operation scheduling 
method for VRF systems that integrates symbolic regression (SR) with 
MPC for multi-zone VRF systems. The proposed method tackles two ma-
jor issues: (1) accurate thermal modeling and (2) coordinated power al-
location across zones under peak power constraints. SR is used to derive 
mathematical models of indoor thermal dynamics directly from data. 
Unlike traditional regression methods, SR automatically discovers non-
linear, interpretable mathematical expressions, offering a flexible and 
data-driven way to capture room thermal dynamics [25]. This capability 
is particularly valuable for modeling complex interactions between in-
door temperature, outdoor conditions, occupancy, and HVAC operation. 
By enhancing predictive accuracy through SR, the proposed framework 
enables MPC to schedule energy use more efficiently while maintain-
ing occupant comfort. The novelty of the approach lies in its ability to 
manage power allocation flexibility and improve energy efficiency. The 
main contributions of this paper are as follows:
1. Development of an operational scheduling approach that integrates 
symbolic regression with MPC to optimize energy consumption in 
multi-zone VRF systems under peak power constraints.

2. Comprehensive analysis of the impact of power constraints on energy 
consumption, peak power demand, and thermal comfort through 
simulations reflecting real-world VRF system scheduling.

The remainder of this paper is organized as follows: Section 2 introduces 
the proposed data-driven multi-zone VRF system management frame-
work and formulation of the energy optimization problem for multi-
zone VRF systems. Section 3 presents the simulation evaluation, and 
Section 4 presents the simulation results. Section 5 discusses the main 
findings, and finally, Section 6 concludes with suggestions for future 
research.

1.1.  Related work

Optimizing HVAC systems has been a significant focus of research, 
driven by the need to balance energy efficiency and occupant comfort. 

Early approaches mainly used rule-based or heuristic methods, which 
are simple to implement but lack flexibility and scalability. These meth-
ods often rely on fixed schedules or historical trends and struggle to 
adapt to real-time changes in occupancy or weather [26]. For example, 
setpoint controls based on average conditions may work in stable envi-
ronments but perform poorly in dynamic, multi-zone settings. Paulo et 
al. addressed energy consumption during peak periods by designing a 
time-of-use pricing model for residential thermostats, showing the ben-
efit of incorporating electricity pricing into HVAC control [27]. How-
ever, their method did not adapt to real-time variations in occupancy 
or indoor climate conditions. While effective for incorporating network 
constraints and pricing, their method did not explicitly model HVAC 
dynamics or support real-time operational control, limiting its respon-
siveness in practical HVAC applications.

Model predictive control (MPC) has emerged as a prominent solution 
for HVAC systems due to its ability to forecast future conditions and op-
timize control strategies accordingly. Drgoňa et al. provided a compre-
hensive review on MPC applications in buildings, highlighting its ben-
efits for balancing comfort and energy efficiency [28]. However, MPC 
can face scalability and computational issues, particularly in large sys-
tems [29]. To address these issues, researchers have proposed hierarchi-
cal and distributed MPC frameworks that divide buildings into smaller, 
manageable subsystems [30], improving scalability and coordination. 
Xie et al. implemented such a distributed MPC approach across uni-
versity campus buildings, achieving notable reductions in energy con-
sumption while maintaining thermal comfort [31]. Hybrid methods that 
combine MPC with simpler control rules have also been introduced to 
reduce computational burden while keeping good performance.

Recently, data-driven techniques including supervised learning and 
reinforcement learning (RL), have gained significant attention in HVAC 
optimization. Zhang et al. reviewed machine learning and reinforce-
ment learning approaches integrated with MPC, highlighting the grow-
ing use of learning-based control in complex environments [32]. Yang 
et al. developed a learning-based adaptive MPC method to deal with 
uncertainty in building dynamics [33], while Kathirgamanathan et al. 
showed that predictive control can improve energy flexibility and man-
age peak loads [34]. However, these methods require extensive training 
data and frequent model updates, leading to implementation challenges 
in dynamic environments.

To address these challenges, recent studies have focused on incor-
porating real-time data and online learning techniques to reduce the 
need for manual model retraining. Zhao et al. demonstrated signifi-
cant energy cost reductions and peak shaving through the integration of 
symbolic regression into MPC-based energy management frameworks 
in on-site experiments [35]. Symbolic regression is useful for captur-
ing HVAC behavior as it discovers interpretable models directly from 
data. While previous studies have explored various optimization strate-
gies, few studies have explicitly addressed peak power constraints. High 
peak power demand contributes to increased operational costs and grid 
instability, emphasizing the need for constraint-aware control strategies. 
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Table 1 
Comparison of existing approaches and the proposed method.
Approach  Ref. Control Objective(s) Pros Cons Gap Filled by Proposed Method
Rule-based / Heuristic  [16,17,27] Energy efficiency, peak 

demand reduction
Simple implementation, fast 
response, low computational cost

Static logic, lacks real-time 
adaptability to 
occupancy/weather

Introduces dynamic, responsive 
control for real-time multi-zone 
VRF coordination

Model-based MPC  [19–24,28] Energy and thermal 
comfort optimization

Predictive, constraint handling, 
suitable for multi-zone control

High model complexity, 
computational burden, 
scalability issues

Uses SR to reduce model 
complexity and enable 
real-time scalability

Data-driven MPC  [33,34] Peak power reduction, 
energy flexibility

Adaptive to system behavior, 
learns from data, flexible

Requires large datasets, 
retraining, generalizability 
issues

Symbolic models reduce need 
for retraining and work with 
limited data

Reinforcement Learning 
(RL)

 [18,32], Energy efficiency, thermal 
comfort optimization

Learns optimal policies, adaptive 
to uncertainty, no explicit model 
needed

Requires extensive training 
and exploration; may lack 
interpretability

Proposed method offers 
interpretable, reliable 
alternative with lower data 
dependency

SR + MPC (Single-zone)  [35] Energy cost reduction, 
peak shaving

Interpretable, accurate nonlinear 
models, adaptable

Single-zone only; lacks 
coordination, increases 
energy cost in multi-zone 
systems

Extends symbolic MPC to 
multi-zone VRF with 
coordinated control under 
power limits

Our Method (SR + MPC 
for Multi-zone VRF)

 - Peak power optimization, 
real-time response

Accurate, interpretable, flexible 
control of shared VRF systems

Symbolic models require 
careful selection and tuning

First scalable SR + MPC 
method with coordinated 
real-time multi-zone VRF 
scheduling under power 
constraints

Incorporating peak power constraints into HVAC control is becoming in-
creasingly important for reducing energy costs and strain on the grid. 
Existing methods often fail to manage peak loads effectively and tend 
to overlook the impacts of peak demand on electricity costs, peak de-
mand, and grid stability in multi-zone buildings. A detailed compari-
son of related approaches and the proposed method is summarized in
Table 1.

Our method integrates symbolic regression with MPC in a multi-
zone VRF system, incorporating peak power constraints to enable 
interpretable, scalable, and efficient control. Symbolic Regression (SR) 
is chosen in this study because it generates interpretable and compact 
equations that can be directly applied in model predictive control 
(MPC). Theoretically, SR represents a data-driven technique that does 
not require prior domain knowledge to construct an accurate thermal 
dynamics model. Practically, SR requires only readily available building 
operational data such as indoor temperature, outdoor temperature, and 
HVAC status, enabling fast deployment without the need for a detailed 
physics-based model. This makes it highly scalable across zones with 
diverse occupancy patterns and usage behaviors. Leprince et al. [36] 
revealed the effectiveness of SR in building energy modeling by accu-
rately predicting temperature variations under diverse environmental 
conditions. Further research has applied SR to predict energy usage and 
thermal dynamics in various HVAC optimization scenarios [37,38].

Traditional regression techniques, such as linear and polynomial re-
gression, are commonly used in MPC frameworks due to their simplicity 
and interpretability. However, these methods assume fixed functional 
forms and struggle to model the complex, nonlinear, and dynamic be-
havior typical of HVAC systems. In contrast, symbolic regression (SR) 
offers a data-driven approach that simultaneously discovers both the 
structure and parameters of governing equations without assuming a 
predefined model form. This flexibility allows SR to capture complex 
thermal dynamics and interactions within multi-zone systems more ef-
fectively than traditional regression. Moreover, compared to black-box 
models, SR provides clear expressions that describe how indoor temper-
ature changes with inputs like outdoor temperature and power usage. 
There are three main reasons why SR fits our setting: 

• Easy integration into MPC: SR produces mathematical expressions 
that are continuous and differentiable, making them suitable for use 
in optimization solvers. This is a key advantage over models like 
LSTM, which often require additional steps such as numerical dif-
ferentiation or surrogate modeling to be incorporated into control 
frameworks [39].

• Interpretability: The output of SR provides clear and interpretable 
relationships between variables such as power usage, outdoor tem-
perature, and indoor conditions. This transparency aids in both sys-
tem understanding and model validation. In contrast, models like 
Random Forests, while potentially accurate, lack this level of inter-
pretability [40].

• Computational efficiency: SR models are lightweight and quick 
to evaluate, which is crucial for real-time applications. In compar-
ison, models like Random Forests or deep neural networks involve 
complex architectures that are computationally intensive and less 
straightforward to apply in optimization problems [41].
In this study, we prioritize generating low-complexity SR models to 

balance prediction accuracy with optimization compatibility. While this 
may slightly reduce predictive performance, previous work [42] has 
shown SR remains competitive with other ML models, while offering 
significant advantages in transparency and control integration.

2.  Data-driven multi-zone VRF system management

This study employs a coordinated, data-driven multi-zone optimiza-
tion framework for variable refrigerant flow (VRF) systems based on 
[43]. The main objective is to minimize the total energy consumption 
without compromising the desired comfort levels. The proposed method 
leverages model predictive control (MPC) to optimize the multi-zone 
VRF systems scheduling, as illustrated in Fig. 2. The process begins by 
collecting real-time environmental data, such as outdoor and indoor 
temperatures, from sensors. The collected data is combined with thermal 
comfort and a symbolic regression model, which are integrated into the 
MPC framework to improve prediction accuracy. During scheduling pe-
riods, the MPC controller calculates optimal temperature set points for 
each room, ensuring consistent and efficient operation. To improve en-
ergy efficiency, this study simply incorporates overall peak power con-
straints into the VRF scheduling process. This ensures that the system 
operates within specified peak power limits while maintaining thermal 
comfort. We formulated a mixed-integer linear programming (MILP) 
problem integrated with MPC for coordinated load scheduling.

2.1.  Symbolic regression-based temperature prediction model

Symbolic Regression (SR) employs a tree-like structure, where nodes 
represent mathematical operations (e.g., addition, multiplication) and 
leaves correspond to input variables. The tree structure is optimized 
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Fig. 2. Overview of the coordinated VRF scheduling approach utilizing model predictive control (MPC) and symbolic regression-based temperature prediction.

Fig. 3. Binary tree representation in the symbolic regression (SR) model.

through an iterative process that minimizes the error between predicted 
and actual temperatures, ensuring the model adapts dynamically to en-
vironmental and operational changes. As shown in Fig. 3, SR constructs 
predictive equations by combining variables, coefficients, and operators 
to define the function 𝑓𝑆𝑅. The function maps the explanatory variables 
𝑋 to the target variable 𝑌 , represented as:

𝑌 = 𝑓𝑆𝑅(𝑋). (1)

In the context of multi-zone VRF systems, the input variables 𝑋𝑖,𝑡
are selected to capture the key factors influencing temperature dynam-
ics. These include room temperature (𝑇 𝑖𝑛

𝑖,𝑡 ), which reflects the current 
thermal state; outdoor temperature (𝑇 𝑜𝑢𝑡

𝑡 ), which which represents the 
external condition driving heat exchange with the indoor space; VRF 
power consumption (𝐷𝑖,𝑡), which indicates system load; and VRF capac-
ity (𝑄𝑖,𝑡), which determines the system’s cooling or heating capability. 
Altogether, these variables enable SR to model the complex relations 
that derive temperature variations in VRF systems. The variable 𝑋𝑖,𝑡 can 
therefore be expressed as:

𝑋𝑖,𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇 𝑖𝑛
𝑖,𝑡

𝑇 𝑜𝑢𝑡
𝑡
𝐷𝑖,𝑡
𝑄𝑖,𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (2)

Fig. 4. Overview of the symbolic regression (SR) training process for tempera-
ture prediction.

To accurately determine the prediction function, the SR model lever-
ages both current and lagged explanatory variables. These variables in-
clude the current time step 𝑡, one-step behind 𝑡 − 1, further lagged steps 
𝑡 − 1 ⋅ 𝑎, 𝑡 − 2 ⋅ 𝑎, …, 𝑛 ⋅ 𝑎-step behind 𝑡 − 𝑛 ⋅ 𝑎 , where 𝑎 is the lag interval 
and 𝑛 is the number of lagged steps considered. By incorporating these 
lagged terms, the SR model can better capture the dynamics of VRF sys-
tem behavior, leading to more accurate temperature predictions. Fig. 4 
provides an overview of the SR training process for temperature predic-
tion. The prediction function for the indoor temperature at time 𝑡 + 1 is 
thus expressed as:
𝑇̂ 𝑖𝑛
𝑖,𝑡+1 = 𝑓 (𝑋𝑖,𝑡, 𝑋𝑖,𝑡−1, 𝑋𝑖,𝑡−1⋅𝑎, ..., 𝑋𝑖,𝑡−𝑛⋅𝑎), (3)

where 𝑇̂ 𝑖𝑛
𝑖,𝑡+1 represents the predicted indoor temperature, and 𝑋𝑖,𝑡 in-

cludes the explanatory variables at time 𝑡.
To train the SR model, a dataset containing 𝑁 samples of explanatory 

and objective variables is constructed. Each sample is generated by shift-
ing the time-series data step by step, ensuring that the model captures 
temporal dependencies. For each sample, the current time step is defined 
by the most recent explanatory variables for each room, where the cur-
rent time steps for Sample 1, Sample 2, ..., Sample 𝑁 correspond to 𝑋𝑖,𝑡, 
𝑋𝑖,𝑡+1, 𝑋𝑖,𝑡+𝑁−1, respectively. The objective variable for each sample is 
the one-step-ahead indoor temperature, 𝑇 𝑖𝑛

𝑖,𝑡+1. During training, the SR 
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Table 2 
List of variables used in the model.
 Variable  Description  Unit
𝑇 𝑖𝑛
𝑖,𝑡  Indoor temperature in room 𝑖 at time 𝑡 ◦C

𝑇 𝑜𝑢𝑡
𝑡  Outdoor temperature at time 𝑡 ◦C

𝐷𝑖,𝑡  Power consumption of VRF system in room 𝑖  kW
𝑄𝑖,𝑡  Cooling/heating capacity of VRF system in room 𝑖  kW
𝑂𝑖,𝑡  Occupancy status of room 𝑖 at time 𝑡  Binary (0 or 1)
𝑆𝑡  Total energy consumption at time 𝑡  kWh
𝜀𝑡  Electricity price at time 𝑡  currency/kWh
𝑆𝑡𝑐𝑖,𝑡  Slack variable for comfort constraint ◦C
𝐽 𝑐𝑜𝑠𝑡  Electricity cost function  currency unit
𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡  Thermal comfort cost function ◦C2

model iteratively optimizes its tree structure to minimize the error be-
tween predicted and actual temperatures, ensuring robust performance 
across diverse operating conditions.

2.2.  Formulation of multi-zoom VRF system optimization problem

The VRF optimization problem includes temperature prediction and 
energy cost calculation under power constraints. For indoor thermal dy-
namics, the SR-derived building thermal model denoted as 𝑓𝑆𝑅(𝑋), pre-
dicts future indoor temperatures as:
𝑇 𝑖𝑛
𝑖,𝑡+1 = 𝑓𝑆𝑅(𝑋𝑖,𝑡,… , 𝑋𝑖,𝑡−𝑁 ),∀𝑡. (4)

where 𝑇 𝑖𝑛
𝑖,𝑡+1 represents the predicted indoor temperature at time 𝑡 + 1, 

and 𝑋𝑖,𝑡,..., 𝑋𝑖,𝑡−𝑁  are explanatory variables capturing current and past 
environmental and operational conditions. The variables used in the 
equations, along with their units and descriptions are shown in Table 2. 
This approach enables reliable temperature prediction based on data, 
without requiring physical parameter estimation.

To compute the energy cost, the operational status of the VRF system 
is represented by the binary variable 𝑧𝑖,𝑡:

𝑧𝑖,𝑡 =

{

1, if the VRF system is ON at time 𝑡,
0, if the VRF system is OFF at time 𝑡. (5)

A binary variable 𝑧𝑖,𝑡 is introduced to represent the ON/OFF operational 
status of the VRF unit, enabling discrete operation control. The power 
consumption constraint for room 𝑖 at time 𝑡 is:
𝑧𝑖,𝑡 ⋅𝐷

𝑙𝑜𝑤𝑒𝑠𝑡
𝑖 ≤ 𝐷𝑖,𝑡 ≤ 𝑧𝑖,𝑡 ⋅𝐷

𝑟𝑎𝑡𝑒𝑑
𝑖 , (6)

where 𝐷𝑙𝑜𝑤𝑒𝑠𝑡
𝑖  and 𝐷𝑟𝑎𝑡𝑒𝑑

𝑖  denote the minimum and rated power con-
sumption of the VRF system, respectively. This constraint ensures that 
the power consumption remains within the valid operating range only 
when the system is ON.

The total energy consumption 𝑆𝑡 over a time slot is computed as:

𝑆𝑡 =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝐷𝑖,𝑡 ⋅

Δ𝑡
3600

,∀𝑡, (7)

where 𝐷𝑖,𝑡 is the power consumption [kW] of room 𝑖 at time 𝑡, and Δ𝑡
is the duration of each time step in seconds. The total energy usage is 
accumulated across all rooms and time steps to track the system’s overall 
consumption profile. The associated electricity cost, 𝐽 𝑐𝑜𝑠𝑡 is:

𝐽 𝑐𝑜𝑠𝑡 =
𝑇
∑

𝑡=1
𝜀𝑡 ⋅ 𝑆𝑡, (8)

where 𝜀𝑡 is the electricity unit price at time 𝑡. This cost term is incor-
porated with time-varying electricity price to represent the energy con-
sumption during the scheduling period.

To limit total energy demand, a peak power constraint is imposed:
𝑁
∑

𝑖=1
𝐷𝑖,𝑡 ≤ 𝐷𝑚𝑎𝑥,∀𝑡, (9)

ensuring that the combined power consumption of all VRF units does 
not exceed the maximum allowable demand 𝐷𝑚𝑎𝑥. The peak power con-
straint limits total peak power demand to avoid peak demand penalties.

To enhance occupant comfort, the thermal comfort term 𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 is 
defined as the squared error between the actual 𝑇 𝑖𝑛

𝑖,𝑡  and the target tem-
perature 𝑇 𝑟𝑒𝑓

𝑖,𝑡 :

𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝑂𝑖,𝑡 ⋅

(

𝑇 𝑖𝑛
𝑖,𝑡 − 𝑇 𝑟𝑒𝑓

𝑖,𝑡

)2
, (10)

where 𝑂𝑖,𝑡 is a binary variable indicating room occupancy, which equals 
one when the room is occupied and zero when the room is unoccupied. 
The thermal comfort penalty is defined as the squared error between the 
actual and reference temperatures, activated only during occupancy to 
reflect realistic usage.

𝑇 lower𝑖,𝑡 − 𝑆𝑡𝑐𝑖,𝑡 ≤ 𝑇 in𝑖,𝑡 ≤ 𝑇 upper𝑖,𝑡 + 𝑆𝑡𝑐𝑖,𝑡, 𝑆𝑡𝑐𝑖,𝑡 ≥ 0 (11)

where 𝑇 𝑙𝑜𝑤𝑒𝑟
𝑖,𝑡  and 𝑇 𝑢𝑝𝑝𝑒𝑟

𝑖,𝑡  are the lower and upper bounds for indoor tem-
peratures, and 𝑆𝑡𝑐𝑖,𝑡 are the slack variables to accommodate temperature 
deviations. This allows the indoor temperature 𝑇 𝑖𝑛

𝑖,𝑡  to slightly deviate 
from its bounds when necessary. The slack ensures that a solution always 
exists, avoiding infeasibility in the optimization problem. In this multi-
zone VRF scheduling framework, the objective function is designed to 
jointly minimize the total energy cost, occupant discomfort, and con-
straint violation penalties. To ensure each term contributes fairly to the 
optimization, the energy cost and thermal discomfort values are normal-
ized based on their respective maximum and minimum values across the 
scheduling horizon.

The energy cost term 𝐽 𝑐𝑜𝑠𝑡 is normalized using rated power limits, 
ensuring fairness in contribution. Here, 𝐷𝑖,𝑡 denotes the power consump-
tion of zone 𝑖 at time 𝑡, while 𝐷𝑟𝑎𝑡𝑒𝑑

𝑖,𝑡  and 𝐷𝑙𝑜𝑤𝑒𝑠𝑡
𝑖,𝑡  represent the maximum 

and minimum power thresholds, respectively.

𝐽 𝑐𝑜𝑠𝑡
𝑛𝑜𝑟𝑚 =

∑𝑇
𝑡=1

∑𝑁
𝑖=1 𝐷𝑖,𝑡

∑𝑇
𝑡=1

∑𝑁
𝑖=1 max(𝐷𝑟𝑎𝑡𝑒𝑑

𝑖,𝑡 −𝐷𝑖,𝑡, 𝐷𝑖,𝑡 −𝐷𝑙𝑜𝑤𝑒𝑠𝑡
𝑖,𝑡 )

, (12)

The thermal comfort term 𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 quantifies temperature deviation 
from the desired setpoint 𝑇 𝑟𝑒𝑓

𝑖,𝑡 , weighted by the occupancy indicator 𝑂𝑖,𝑡. 
Here, 𝑇 𝑖𝑛

𝑖,𝑡  is the indoor temperature of zone 𝑖 at time 𝑡, and 𝑇
𝑢𝑝𝑝𝑒𝑟
𝑖,𝑡 , 𝑇 𝑙𝑜𝑤𝑒𝑟

𝑖,𝑡
are the comfort bounds.

𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡
𝑛𝑜𝑟𝑚 =

∑𝑇
𝑡=1

∑𝑁
𝑖=1 𝑂𝑖,𝑡 ⋅ (𝑇 𝑖𝑛

𝑖,𝑡 − 𝑇 𝑟𝑒𝑓
𝑖,𝑡 )2

∑𝑇
𝑡=1

∑𝑁
𝑖=1 𝑂𝑖,𝑡 ⋅

(

max(𝑇 𝑢𝑝𝑝𝑒𝑟
𝑖,𝑡 − 𝑇 𝑟𝑒𝑓

𝑖,𝑡 , 𝑇 𝑟𝑒𝑓
𝑖,𝑡 − 𝑇 𝑙𝑜𝑤𝑒𝑟

𝑖,𝑡 )
)2

, (13)

This normalization process ensures that both terms contribute com-
parably to the objective function, avoiding disproportionate influence 
from one metric over the other due to differences in magnitude or mea-
surement units. 
The objective is to minimize both energy cost and thermal comfort de-
viations, expressed as:

minimize: 𝜔 ⋅
𝑇
∑

𝑡=1
𝐽 𝑐𝑜𝑠𝑡
𝑡 + (1 − 𝜔) ⋅

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡
𝑖,𝑡

+ 𝑃𝑒 ⋅
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝑆𝑡𝑐𝑖,𝑡

subject to (4) − (7), (9), (11)

given 𝑂𝑖,𝑡, ∀𝑖, 𝑡,

decision variables: 𝐷𝑖,𝑡, ∀𝑖, 𝑡,

slack variables: 𝑆𝑡𝑐𝑖,𝑡, ∀𝑖, 𝑡,

The overall objective minimizes a weighted sum of electricity cost, 
thermal comfort violations, and slack penalties. The cost term 𝐽 𝑐𝑜𝑠𝑡 is 
subject to Eqs. (6) and (9), while the comfort term 𝐽 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 is subject 
to Eq. (11). The weight 𝜔 allows the trade-off between cost efficiency 
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and occupant satisfaction. To determine appropriate trade-off weights 
𝜔, we analyzed system performance by simulating under various 𝜔 val-
ues ranging from 0 to 1. This allowed us to observe how the system’s 
energy consumption, average temperature deviation, and peak power 
demand varied with different priority settings. Based on this analysis, 
we selected three representative values of 𝜔 = 0.1, 0.5, and 0.9, which 
reflect distinct operational priorities: comfort-oriented, balanced, and 
cost-oriented. In this optimization, the decision variables include power 
consumption 𝐷𝑖,𝑡 for each room 𝑖 and each time step 𝑡. To address po-
tential infeasibility caused by strict temperature bounds under power 
constraints, we introduce slack variables 𝑆𝑡𝑐𝑖,𝑡. These variables allow 
for the relaxation of thermal comfort constraints and are penalized in 
the objective function to limit excessive violations. In contrast, power 
operation and peak power constraints are modeled as hard constraints 
to strictly enforce system limitations. 

The system dynamics are parameterized using a symbolic regression 
model, which predicts indoor temperature, outdoor temperature, and 
power consumption based on historical data. These predictions are then 
used in the MPC optimization, where power constraints (Eq. (6)) are 
enforced and thermal comfort constraints are relaxed through the slack 
variable (Eq. (11)). These variables interact with the constraints to bal-
ance energy efficiency and occupant comfort while maintaining feasi-
bility. Moreover, the operation of the VRF system involves several key 
variables. The ON/OFF status and rated power are treated as manipu-
lated variables within the MPC framework. Indoor temperature, energy 
consumption, and thermal comfort deviations are considered controlled 
variables. External factors such as outdoor temperature, occupancy, and 
electricity prices serve as disturbance variables that influence system 
behavior. Real-time sensor data, along with the predicted indoor tem-
peratures from symbolic regression, provide feedback inputs, enabling 
dynamic control actions.

For symbolic regression training, we used Optuna [44], an open-
source framework for hyperparameter optimization, to enhance model 
accuracy. For the MPC optimization, the CPLEX solver [45] was em-
ployed, relying on its internal parameter tuning.

3.  Simulation evaluation

3.1.  Simulation setup

We conducted simulations to compare the performance of the pro-
posed (coordinated VRF) approach with the baseline (state-of-the-art, 
uncoordinated VRF) approach. We evaluate the impact of peak power 
constraints on total energy consumption, peak power demand, and ther-
mal comfort. These approaches are referred to as “SOTA” and “Ours” 
throughout this section. The simulation is based on a real-world sce-
nario, including office rooms in an educational building at the Univer-
sity of Osaka, Japan. Fig. 5 illustrates the room layout for four rooms 
with different cooling capacities, varying sizes, and occupancy patterns. 

Fig. 5. Floor plan representing the room layout for the multi-zone VRF simula-
tion.

Table 3 
VRF indoor unit capacities and occupancy schedules for each room.

 Room 1  Room 2  Room 3  Room 4
 Capacity [kW]  5.6  2.8  5.6  9.0
 Area [m2]  32  22  27  178
 Occupied [hrs]  10:00-11:00  9:00-16:00  9:30-20:30  8:00-18:00

In the VRF system setup, summarized in Table 3, all rooms are con-
nected to a central outdoor unit with a rated power of 8.93 kW. During 
occupied hours, we set a target temperature of 26 ◦C, with an acceptable 
fluctuation range between 24 ◦C and 28 ◦C to ensure occupant comfort 
while allowing flexibility for energy optimization.

In this study, the prediction and control horizon are set to 24h with 
a time step of 15min. This setting ensures that temperature set points 
for all rooms are updated frequently, allowing the system to respond dy-
namically to changes in room occupancy and outdoor temperature. Key 
metrics in this study are total energy consumption (kWh), peak power 
demand (kW), and thermal comfort (◦C, measured as the average devi-
ation from the target temperature across the rooms).

To evaluate the impact of peak power constraints, we defined the 
peak power constraint settings for SOTA and Ours methods as follows:

• Peak Power Constraint (SOTA): Each VRF system operates indepen-
dently, and applies individual power constraints to each indoor unit, 
as illustrated in Fig. 6(a).

• Peak Power Constraint (Ours): Our approach applies a global con-
straint to coordinate power consumption across all units, as shown 
in Fig. 6(b).

Moreover, we introduced weight coefficients 𝜔 to adjust the trade-
off between energy cost and thermal comfort. In this simulation, we 
employed three different 𝜔 values to represent different operational pri-
orities:

1. 𝜔 = 0.1: which prioritizes thermal comfort to minimize temperature 
deviation from the target.

2. 𝜔 = 0.5: which balances energy cost and thermal comfort equally.
3. 𝜔 = 0.9: which prioritizes cost reduction, allowing larger tempera-
ture deviations to minimize energy consumption.

In this study, we analyzed ten distinct power constraint settings, 
ranging from 10% to 100% of the maximum peak power. These settings 
represent the effect of varying peak power on energy consumption, ther-
mal comfort, and the system’s performance under both restricted and 
relaxed peak power. The peak power constraint that applies to SOTA
approach is defined by the following equation:
𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥

𝑖 ⋅ 𝑅, (14)

where 𝐷𝑖 and 𝐷𝑚𝑎𝑥
𝑖  denote the individual power demand and the maxi-

mum rated power of the 𝑖th indoor unit. 𝑅 is the percentage rate of the 
power constraint (10%–100%) in this setting. In this simulation, the 
rated power of each indoor unit is unknown, and the individual maxi-
mum rated power is determined by its capacity ratio relative to the total 
rated power:

𝐷𝑚𝑎𝑥
𝑖 = 𝐷𝑚𝑎𝑥 ⋅ (𝑄𝑖∕

𝑁
∑

𝑖=1
𝑄𝑖), (15)

where 𝑄𝑖 and 
∑𝑁

𝑖=1 𝑄𝑖 are the individual and total capacity of the 𝑖th 
indoor unit. This allocation method ensures that the power constraint for 
each unit reflects its proportional share of the outdoor unit’s capacity, 
enabling effective power distribution across the system.

In contrast, the peak power constraint for the proposed approach is 
defined by the following equation:
𝑁
∑

𝑖=1
𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥 ⋅ 𝑅, (16)
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Fig. 6. Comparison of (a) baseline approach and (b) proposed approach for VRF system optimization.

Fig. 7. Measured and predicted temperature dynamics from SR training for each room: (a) Room 1, (b) Room 2, (c) Room 3, and (d) Room 4.

where ∑𝑁
𝑖=1 𝐷𝑖 represents the total power demand of all VRF units, 𝐷𝑚𝑎𝑥

is the total allowable peak power. This constraint allows the VRF system 
to manage power demand collectively across rooms.

3.2.  Results of data training using the SR model

The Symbolic Regression (SR) model was trained using actual data 
collected from the operation of four office rooms in an educational build-

ing at the University of Osaka, Japan. The data, including outdoor tem-
perature, indoor temperature (measured by sensors), and power con-
sumption, was gathered over the period from July 13 to August 15, 
2024. The dataset was divided into three phases: training (July 13–17), 
validation (August 1–5), and testing (August 6–10), with each phase 
consisting of 5 days of data. This real-world dataset serves as the foun-
dation for the simulation conducted in this study. We implemented this 
model using the PySR library [46] and to control model complexity and 
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Table 4 
Parameters of symbolic regression using PySR.
 Parameter Description  Value
 Loss Loss function used during 

regression
 L2Distance()

 Niterations Number of iterations of the 
algorithm to run

 120

 Populations Number of populations running 
in parallel

 100

 Population_size Number of individuals in each 
population

 100

 Complexity_of_variables Complexity assigned to each 
variable

 2

 Constraints Max size constraints on 
arguments of operators

 ‘‘*’’: (2, 1)

preserve physical interpretability, we limited the allowed operator set 
to subtraction and multiplication ([‘-’, ‘*’]). Key hyperparameters 
for training, including the number of iterations, population size, and 
complexity constraints, are summarized in Table 4. These parameters 
were selected based on empirical testing to ensure a balance between 
model accuracy and interpretability. The temperature prediction func-
tions based on three key values: the indoor temperature (𝑇 𝑖𝑛

𝑖,𝑡 ), outdoor 
temperature (𝑇 𝑜𝑢𝑡

𝑡 ), and power consumption (𝐷𝑖,𝑡) over the 15min inter-
vals.

We evaluate the accuracy of the generated equations by comparing 
the actual indoor temperatures with the predicted values, using mean 
squared error (MSE), the coefficient of determination 𝑅2, mean abso-
lute error (MAE) and mean absolute percentage error (MAPE) as per-
formance metrics. The testing results for each room are summarized in 
Table 5. The symbolic regression (SR) models demonstrated strong pre-
dictive performance across Rooms 1–3, with high 𝑅2 values exceeding 
0.99 and low error metrics (MSE, MAE, and MAPE) across training, val-
idation, and testing datasets (shown in Table 5). These results indicate 
that the SR models effectively captured the thermal dynamics in these 
rooms, likely due to their relatively stable occupancy patterns and less 
variable environmental conditions.

However, the model performance for Room 4 was notably lower, 
with a significant drop in 𝑅2 (e.g., 0.0922 in validation) and increased 
prediction errors (shown in Fig. 7). This discrepancy can be attributed 
to several factors. First, Room 4 is a large common space (178m2) char-
acterized by irregular and diverse usage patterns, which introduce non-
linear and unpredictable thermal behavior. Second, as a walking and 
gathering area, the room is subject to frequent disturbances such as door 
openings, variable ventilation, and unmeasured internal heat gains fac-
tors not explicitly captured in the current modeling framework. Lastly, 
while SR offers compact and interpretable equations, its ability to cap-
ture the complexity of highly dynamic environments is limited. Future 
work will focus on enhancing model accuracy for such spaces by incor-
porating additional contextual variables and exploring hybrid modeling 
approaches that can better accommodate complex, high-variance con-
ditions.

The model’s prediction functions for Rooms 1–4 are represented by 
Eqs. (17)–(20), respectively.
𝑇 in𝑡+1 = 0.9622545 ⋅ 𝑇 in𝑡 + 0.018169424 ⋅ 𝑇 out𝑡

+0.67211 − 0.28949875 ⋅𝐷𝑡. (17)

𝑇 in𝑡+1 = 0.94959116 ⋅ 𝑇 in𝑡 + 0.0127858445 ⋅ 𝑇 out𝑡

+1.1754573 − 0.25755432 ⋅𝐷𝑡. (18)

𝑇 in𝑡+1 = 0.9294086 ⋅ 𝑇 in𝑡 + 9.4946474 × 10−5 ⋅ 𝑇 out𝑡

+2.058031 − 0.36269522 ⋅𝐷𝑡. (19)

𝑇 in𝑡+1 = 0.92937356 ⋅ 𝑇 in𝑡 + 7.00316 × 10−5 ⋅ 𝑇 out𝑡

+2.0596 − 0.36220685 ⋅𝐷𝑡. (20)

Table 5 
Model performance metrics for each room across training, validation, and 
testing datasets.
 Room  Phase  MSE  R2  MAE  MAPE
 Room 1  Training  0.0044  0.9937  0.0488  0.1631

 Validation  0.0051  0.9936  0.0488  0.1899
 Testing  0.0058  0.9951  0.0488  0.2021

 Room 2  Training  0.0095  0.9888  0.0769  0.2738
 Validation  0.0056  0.9957  0.0769  0.1910
 Testing  0.0065  0.9950  0.0769  0.2020

 Room 3  Training  0.0134  0.9745  0.1062  0.3913
 Validation  0.0068  0.9963  0.1062  0.2404
 Testing  0.0059  0.9933  0.1062  0.2030

 Room 4  Training  0.0435  0.8490  0.0866  0.3086
 Validation  0.1678  0.0922  0.0866  1.0485
 Testing  0.0736  0.5211  0.0866  0.6708

Fig. 8. Power consumption in each room on July 13, 2024.

The maximum rated power of the outdoor unit in this simulation is 
8.93 kW. However, the actual rated power during the winter reaches ap-
proximately 30% of the maximum power, which is 2.43 kW, as shown 
in the data from July 13, 2024 (Fig. 8). Although the proposed method 
could theoretically be proven to consume up to 100% of the rated 
power, it practically operates at only 30% under normal conditions. 
To reflect real-world power settings, we set 30% of the rated power 
(2.68 kW) as the maximum peak power constraint in our simulation. 
To evaluate the effectiveness of the power constraint on temperature 
dynamics and energy costs, we varied the power constraint from 10% 
(0.27 kW) to 100% (2.68 kW) of the maximum rated power and adjusted 
the 𝜔 settings. This setting ensured that the system maintained the tar-
get temperature of 26 ◦C while minimizing energy consumption under 
varying power constraints.

4.  Simulation result

This section presents comparison results of the proposed coordinated 
VRF system (Ours) with the baseline uncoordinated VRF system (SOTA) 
across ten power constraint levels of 2.68 kW. We implemented the sim-
ulation by three operation scenarios: 𝜔 = 0.1, 𝜔 = 0.5, and 𝜔 = 0.9, 
representing thermal comfort priority, a balanced approach between 
cost and comfort, and cost priority, respectively and the results are dis-
cussed in different sections. Then, we evaluated the performance by 
three key metrics: (1) total energy consumption, (2) peak power de-
mand, and (3) average temperature deviation(ATD) from the target tem-
perature of 26 ◦C.

4.1.  Comfort-oriented , 𝜔 = 0.1

In this scenario, the primary objective is to minimize temperature 
deviation from the target setpoint while maintaining energy efficiency. 
Table 6 and Fig. 9 summarize the performance of the baseline method 
(SOTA) and the proposed optimization strategy across a range of power 
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Table 6 
Comparison of baseline and proposed method at 𝜔 = 0.1 (comfort priority).
 Power constraint (%)  Method  Total peak power [kW]  Energy consumption [kWh]  ATD [◦C]
 10% (0.27 kW)  SOTA  0.25  4.09  3.65
 20% (0.54 kW)  SOTA  0.50  8.19  3.32
 30% (0.80 kW)  SOTA  0.80  9.60  0.32
 40% (1.07 kW)  SOTA  1.07  8.86  0.15
 50% (1.34 kW)  SOTA  1.34  8.44  0.13
 60% (1.61 kW)  SOTA  1.61  8.10  0.13
 70% (1.88 kW)  SOTA  1.88  8.01  0.13
 80% (2.14 kW)  SOTA  2.13  7.95  0.13
 90% (2.41 kW)  SOTA  2.41  7.87  0.13
 100% (2.68 kW)  SOTA  2.65  7.82  0.13
 10% (0.27 kW)  Ours  0.27  5.23  2.31
 20% (0.54 kW)  Ours  0.54  9.33  0.70
 30% (0.80 kW)  Ours  0.80  8.64  0.27
 40% (1.07 kW)  Ours  1.07  8.18  0.21
 50% (1.34 kW)  Ours  1.34  7.96  0.18
 60% (1.61 kW)  Ours  1.61  7.85  0.17
 70% (1.88 kW)  Ours  1.88  7.78  0.16
 80% (2.14 kW)  Ours  2.14  7.76  0.15
 90% (2.41 kW)  Ours  2.41  7.75  0.15
 100% (2.68 kW)  Ours  2.68  7.75  0.14
 Average (SOTA)  1.46  7.89  0.82
 Average (Ours)  1.47  7.82  0.44

constraints. As shown in Table 6, the proposed method consistently 
achieves superior thermal comfort, particularly under more stringent 
power constraints. For example, at a 30% power constraint, Ours at-
tains an average temperature deviation (ATD) of 0.27 ◦C, outperforming 
SOTA, which records an ATD of 0.32 ◦C. Even under more relaxed con-
straints, such as 60% and 100% the proposed method achieves com-
parable performance, with ATDs of 0.17 ◦C and 0.14 ◦C, respectively, 
closely matching the baseline’s 0.13 ◦C in both cases. On average, across 
all constraint levels, the proposed method yields an ATD of 0.44 ◦C, 
nearly half that of SOTA’s 0.82 ◦C, indicating improved thermal com-
fort.

In terms of energy consumption, the proposed method consistently 
uses less energy than the baseline. Under a 30% power constraint, 

Ours consumes 8.64 kWh which is approximately 10% less than SOTA’s 
9.60 kWh. Similar efficiency gains are observed at other levels; at 60%, 
energy use is 7.85 kWh compared to 8.10 kWh under SOTA, and even at 
full power availability (100%), the proposed method consumes slightly 
less energy, 7.75 kWh versus 7.82 kWh. Both methods adhere to their 
respective peak power constraints. At 30%, the peak power reached is 
0.80 kW for both methods. At 100%, the proposed method fully utilizes 
the available capacity (2.68 kW), slightly more than SOTA (2.65 kW), 
while maintaining greater efficiency and comfort.

To enhance the interpretability of temperature control behavior, 
shaded regions were added to the temperature plots (Fig. 9(a) and (b)) 
to indicate room occupancy periods. These regions are color-coded to 
match each room’s temperature trajectory: red for Room 1, orange for 

Fig. 9. Comparison of baseline and proposed methods at weight = 0.1 (comfort priority): (a) baseline temperature, (b) proposed temperature, (c) baseline power, 
and (d) proposed power.
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Table 7 
Comparison of baseline and proposed method at 𝜔 = 0.5 (trade-off between energy cost and comfort).
 Power constraint (%)  Method  Total peak power [kW]  Energy consumption [kWh]  ATD [◦C]
 10% (0.27 kW)  SOTA  0.25  4.09  3.65
 20% (0.54 kW)  SOTA  0.50  8.19  3.32
 30% (0.80 kW)  SOTA  0.80  6.74  0.90
 40% (1.07 kW)  SOTA  1.07  6.43  0.81
 50% (1.34 kW)  SOTA  1.13  6.19  0.81
 60% (1.61 kW)  SOTA  1.61  5.99  0.81
 70% (1.88 kW)  SOTA  1.86  5.94  0.82
 80% (2.14 kW)  SOTA  2.10  5.92  0.82
 90% (2.41 kW)  SOTA  2.26  5.87  0.82
 100% (2.68 kW)  SOTA  2.50  5.83  0.82
 10% (0.27 kW)  Ours  0.27  4.89  2.36
 20% (0.54 kW)  Ours  0.54  5.52  1.39
 30% (0.80 kW)  Ours  0.80  5.69  1.13
 40% (1.07 kW)  Ours  1.07  5.68  1.06
 50% (1.34 kW)  Ours  1.34  5.67  1.03
 60% (1.61 kW)  Ours  1.61  5.70  0.99
 70% (1.88 kW)  Ours  1.88  5.70  0.98
 80% (2.14 kW)  Ours  2.14  5.69  0.98
 90% (2.41 kW)  Ours  2.41  5.69  0.97
 100% (2.68 kW)  Ours  2.68  5.69  0.97
 Avg SOTA  1.41  6.12  1.36
 Avg Ours  1.47  5.59  1.19

Room 2, green for Room 3, and blue for Room 4. A detailed comparison 
under a 30% power constraint further illustrates the benefits of the pro-
posed method. Fig. 9(c) shows the hourly power consumption of Room 
1 to 4 using the baseline method. In this graph, solid lines represent 
power usage during occupied hours, while dotted lines indicate unoc-
cupied periods. Under the baseline strategy, Room 1 initiates cooling 
as early as 00:30 to reach the target temperature by 10:00, resulting in 
considerable energy consumption during unoccupied hours.

Similarly, Room 2 begins cooling well ahead of its occupancy pe-
riod and continues to lower the indoor temperature beyond the set-
point by more than 1◦C after 11:30 due to constrained cooling capacity. 
Rooms 3 and 4, which have longer occupied periods (9:30–20:30 and 
8:00–18:00, respectively), maintain stable indoor temperatures but also 
experience extended cooling durations before occupancy begins. The 
baseline method treats each room independently, without accounting 
for shared power limitations or coordinated occupancy patterns, which 
leads to increased energy usage and reduced efficiency.

In contrast, the proposed method adopts a coordinated, occupancy-
aware control strategy. As shown in Fig. 9(d), Room 1 initiates pre-
cooling at 04:30, Room 2 at 06:15, Room 3 at 08:45, and Room 4 at 
07:15–significantly later than the baseline approach. This scheduling 
aligns closely with each room’s occupancy period, reducing unneces-
sary energy use during unoccupied hours while still ensuring thermal 
comfort. As a result, the proposed method balances comfort and energy 
efficiency, particularly under limited power availability.

4.2.  Trade-off between cost and comfort, 𝜔 = 0.5

The main objective of this simulation is to balance energy consump-
tion and thermal comfort. A performance summary of both the proposed 
and baseline methods under this trade-off is presented in Table 7 and 
Fig. 10. The proposed method demonstrates considerable energy sav-
ings, especially under tighter power constraints. At a 20% power con-
straint, Ours consumed 5.52 kWh, 32.6% less than SOTA’s 8.19 kWh. 
This energy-saving trend persists as the power limit increases, with Ours
consistently using less energy. At full capacity (100%), Ours consumed 
5.69 kWh, compared to SOTA’s 5.83 kWh–an overall reduction of 2.4%.

In addition to improved energy efficiency, the proposed method also 
maintains better thermal comfort, particularly under constrained condi-
tions. For instance, at 20% power, Ours achieved an ATD of 1.39 ◦C, 
significantly lower than SOTA’s 3.32 ◦C, while also consuming less en-

ergy. This suggests better performance in managing indoor temperature 
when power is limited. As the power constraint relaxes, yet Ours consis-
tently sustains comparable comfort levels above the 60% constraint. At 
100%, Ours maintains an ATD of 0.97 ◦C, while SOTA records 0.82 ◦C. 
Both methods respect the specified peak power limits at all constraint 
levels. At 100%, each reaches the maximum allowable peak of 2.68 kW 
without exceeding it. On average, the proposed method uses 5.59 kWh, 
while SOTA consumes 6.12 kWh, an 8.7% overall reduction. Further-
more, the proposed method maintains a lower average ATD of 1.19 ◦C, 
compared to SOTA’s 1.36 ◦C, indicating better thermal management.

To further illustrate the effectiveness of both methods, we focus on 
the scenario with a 30% power constraint. Fig. 10 provides a detailed 
hourly breakdown of energy usage in Rooms 1 through 4. Power con-
sumption for each room is shown in red, orange, green, and blue lines 
(Fig. 10(c)), with solid lines indicating occupied periods, dotted lines in-
dicating unoccupied hours and the shaded areas indicate the occupied 
hours. To meet the target temperature of 26 ◦C, the SOTA method ini-
tiates early pre-cooling: Room 1 at 03:15 and Room 2 at 04:00. Rooms 
3 and 4 start at 08:00 and 06:30, respectively, ensuring comfortable 
conditions at occupancy.

While this approach results in a lower ATD of 0.90 ◦C, slightly bet-
ter than Ours, it also leads to higher energy usage due to extended pre-
conditioning. In contrast, the proposed method adjusts pre-cooling more 
responsively to actual occupancy times. Here, the proposed method dy-
namically updates control decisions at each time step in a coordinated 
manner, based on real-time inputs such as occupancy schedules and 
power constraints. This responsiveness is twofold: (1) it adapts to oc-
cupancy changes by minimizing unnecessary pre-cooling, and (2) it al-
locates limited power efficiently across zones to ensure comfort while 
reducing energy consumption. As depicted in Fig. 10(d), Room 1 begins 
pre-cooling at 07:00, Room 2 at 07:15, Room 3 at 09:00, and Room 
4 at 07:15. This pre-cooling schedule avoids unnecessary conditioning 
during unoccupied hours, resulting in substantial energy savings while 
maintaining acceptable comfort levels.

4.3.  Energy cost priority case, 𝜔 = 0.9

The primary objective of this simulation is to prioritize energy cost 
savings, allowing for greater deviations from the target temperature. 
Both methods are evaluated under various power constraint levels. As 
shown in Table 8 and Fig. 11, the proposed method consistently reduces 
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Fig. 10. Comparison of baseline and proposed methods at weight = 0.5 (trade-off between energy cost and comfort): (a) baseline temperature, (b) proposed 
temperature, (c) baseline power, and (d) proposed power.

Table 8 
Comparison of baseline and proposed method at 𝜔 = 0.9 (energy cost priority).
 Power constraint (%)  Method  Total peak power [kW]  Energy consumption [kWh]  ATD [◦C]
 10% (0.27 kW)  SOTA  0.25  4.09  3.65
 20% (0.54 kW)  SOTA  0.50  8.19  3.32
 30% (0.80 kW)  SOTA  0.80  4.23  1.98
 40% (1.07 kW)  SOTA  1.02  4.10  1.96
 50% (1.34 kW)  SOTA  1.33  4.05  1.95
 60% (1.61 kW)  SOTA  1.61  4.02  1.94
 70% (1.88 kW)  SOTA  1.77  3.98  1.94
 80% (2.14 kW)  SOTA  2.07  3.97  1.94
 90% (2.41 kW)  SOTA  2.29  3.97  1.94
 100% (2.68 kW)  SOTA  2.52  3.97  1.94
 10% (0.27 kW)  Ours  0.27  4.66  2.43
 20% (0.54 kW)  Ours  0.54  4.31  2.00
 30% (0.80 kW)  Ours  0.80  4.08  2.00
 40% (1.07 kW)  Ours  1.07  4.01  1.99
 50% (1.34 kW)  Ours  1.34  3.98  1.99
 60% (1.61 kW)  Ours  1.61  3.97  2.00
 70% (1.88 kW)  Ours  1.88  3.96  2.00
 80% (2.14 kW)  Ours  2.14  3.96  2.00
 90% (2.41 kW)  Ours  2.41  3.96  2.00
 100% (2.68 kW)  Ours  2.52  3.96  2.00
 Avg SOTA  1.42  4.46  2.26
 Avg Ours  1.46  4.09  2.04

energy consumption while maintaining acceptable thermal comfort. At a 
20% power constraint, the proposed method (Ours) consumes 4.31 kWh, 
which is 47.4% lower than the baseline method (SOTA) at 8.19 kWh. As 
the power constraint increases, energy consumption for both methods 
decreases; however, Ours consistently achieves lower consumption. At 
100% power constraint, both methods converge, consuming approxi-
mately the same energy: 3.96 kWh for Ours and 3.97 kWh for SOTA.

While SOTA achieves slightly lower ATD values (from 3.65 ◦C to 
1.94 ◦C), the proposed method maintains deviations within 2 ◦C, which 
is acceptable in cost-prioritized scenarios. Additionally, both methods 
respect the maximum peak power limit of 2.68 kW. On average, the 
proposed method achieves 8.3% lower energy consumption (4.09 kWh 

vs. 4.46 kWh) and a slightly better ATD (2.04 ◦C vs. 2.26 ◦C) than the 
baseline, demonstrating a better trade-off between energy efficiency and 
thermal comfort in cost-sensitive settings.

To further illustrate performance, we highlight the case under a 30% 
power constraint. Fig. 11 displays hourly power usage for Rooms 1–4. 
In SOTA (Fig. 11(c)), early pre-cooling starts at 06:45 for Rooms 1 and 
2, 08:30 for Room 3, and 07:15 for Room 4. These long pre-cooling pe-
riods lead to higher energy use. In contrast, Ours (Fig. 11(d)) schedules 
energy usage, initiating pre-cooling closer to occupancy times: Room 
1 at 07:30, Room 2 at 08:15, Room 3 at 09:15, and Room 4 at 07:45. 
This strategic timing avoids unnecessary energy usage while ensuring 
thermal comfort.
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Fig. 11. Comparison of baseline and proposed methods at weight 0.9 (energy cost priority): (a) baseline temperature, (b) proposed temperature, (c) baseline power, 
and (d) proposed power.

Although Ours results in a slightly higher ATD (2.00 ◦C) compared 
to SOTA (1.98 ◦C) in the 30% constraint case, it achieves 4% greater 
energy savings. This small trade-off in thermal comfort is acceptable in 
cost-focused applications, confirming the effectiveness of the proposed 
method.

4.4.  Comparison with state-of-the-art methods

To evaluate the performance of our proposed Symbolic Regression-
based Model Predictive Control (SR-MPC) approach, we compared it 
with several established HVAC control strategies: rule-based control, 
model-based MPC, data-driven MPC, and reinforcement learning (RL)-
based control. The comparison is summarized in Table 9, which outlines 
key characteristics such as energy savings, computational demands, in-
terpretability, and real-time feasibility.

Rule-based control is one of the simplest control strategies and has 
been widely used in practice. It relies on predefined rules, making it 
highly interpretable and computationally efficient. However, the en-
ergy savings achieved by this method are limited due to its inability 
to adapt to varying building conditions or optimize performance based 
on real-time data. Rule-based control is effective in stable environments 
but struggles to maintain energy efficiency under dynamic conditions, 
which are common in modern HVAC systems [16,17,27].

Model-based MPC, on the other hand, uses mathematical models de-
rived from first principles to optimize control decisions. While it pro-
vides moderate to high energy savings and high interpretability due 
to its reliance on physical models, it has notable limitations. The need 
for manual model calibration and system identification can be time-
consuming and computationally intensive. Moreover, model-based MPC 
methods may not effectively capture the complex, nonlinear dynamics 
of real-world HVAC systems, reducing their effectiveness in some situa-
tions. Although it achieves reasonable real-time feasibility, the method 
typically requires adjustments for each specific system, which can hin-
der its adaptability [19,21,22].

Data-driven MPC, such as those using neural networks, is able to 
capture complex system dynamics and achieve high energy savings by 
learning from large datasets. These models, however, come at the cost 

of high computational demands and low interpretability, as neural net-
works are often viewed as “black boxes.” The requirement for large 
amounts of training data and extensive tuning further increases compu-
tational costs. Additionally, while data-driven MPC can offer high en-
ergy savings, its real-time feasibility is limited by the time required for 
data processing and model updating, which is especially problematic in 
fast-changing environments [33,34].

Reinforcement learning (RL)-based control represents a more flexi-
ble approach that can learn and adapt to changing environments. It has 
the potential to deliver significant energy savings due to its ability to 
optimize actions over time. However, RL-based methods are computa-
tionally expensive and require extensive training, which can make them 
impractical for real-time control, especially in buildings with varying oc-
cupancy and environmental conditions. Moreover, RL approaches often 
lack interpretability, as the decision-making process is not easily under-
stood by humans. These factors lead to lower real-time feasibility and 
generalizability compared to other methods [18,32].

In contrast, our SR-based MPC offers several advantages over the 
aforementioned methods. It combines the best features of traditional 
model-based MPC with the efficiency of data-driven methods, but with 
significantly lower computational demands. The SR-based approach 
generates closed-form expressions that are highly interpretable, which 
is a key benefit over black-box methods like neural networks. This in-
terpretability makes it easier to diagnose issues and adjust the system 
if needed, offering transparency in decision-making. Additionally, SR-
MPC is computationally efficient, making it ideal for real-time control 
applications where quick decision-making is crucial. Its ability to bal-
ance high energy savings with low computational requirements and 
real-time feasibility positions SR-MPC as a strong candidate for prac-
tical implementation in HVAC systems.

By focusing on the key attributes outlined in Table 9, we demon-
strate that our SR-based MPC approach outperforms many traditional 
and modern methods in terms of interpretability, computational effi-
ciency, and real-time feasibility while maintaining high energy savings. 
The comparison highlights how SR-MPC provides a practical, scalable 
solution that combines the benefits of both traditional and data-driven 
approaches while minimizing their drawbacks.
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Table 9 
Comparison of control methods in terms of key characteristics.
 Method  Energy savings  Computational demand  Interpretability  Real-time feasibility
 Rule-Based Control  Low  Low  High  High
 Model-Based MPC  Medium to High  Medium  High  Medium
 Data-Driven MPC (Neural Networks)  High  High  Low  Medium
 Reinforcement Learning (RL)  High  Very High  Low  Low to Medium
 Proposed SR-Based MPC  High  Low  High  High

5.  Discussion

Different simulation results demonstrate that the proposed coordi-
nated method effectively optimizes energy consumption while main-
taining thermal comfort across various operating priorities. Our method 
consistently outperforms the baseline, achieving significant energy sav-
ings with minimal average temperature deviation (ATD). When 𝜔 = 0.1
(comfort-oriented), Ours achieves a 10% reduction in energy usage and 
improves ATD by 0.05◦C under a 30% power constraint. The first two 
scenarios show slightly higher ATD values with our proposed method 
under tight peak power limitations. This occurs because the decentral-
ized SOTA method independently tracks each room’s setpoint more ag-
gressively, without coordination between rooms. As the power limita-
tion is relaxed (e.g., 40%–100%), SOTA units can follow their temper-
ature setpoints more closely, resulting in marginally lower ATD values.

However, this comes at the expense of higher energy consumption 
and less efficient power distribution, as the decentralized approach does 
not consider interactions between rooms. In contrast, our centralized 
control method balances comfort across all rooms while adhering to the 
overall power constraint. Though this can lead to slightly higher ATD 
values in certain cases (e.g., 0.13 vs. 0.16◦C), the deviations are minimal 
and outweighed by improved coordination and energy distribution. Our 
method consistently results in lower energy consumption across most 
scenarios, demonstrating its advantage in multi-zone VRF scheduling 
with better system-wide control.

When 𝜔 = 0.5 (balancing energy cost and comfort), the results show 
that while the ATD values for Ours are slightly higher than the baseline 
after the 20% power constraint, the difference is minimal (e.g., 1.19◦C 
for Ours vs. 1.36◦C for SOTA on average). This reflects the trade-off 
between maintaining comfort and optimizing energy use. Ours consis-
tently achieves lower energy consumption across all scenarios, saving 
up to 16% in energy use at a 30% power constraint, thus proving its 
efficiency in managing energy while still ensuring acceptable comfort. 
In contrast, the decentralized SOTA method, while maintaining lower 
ATD values in less constrained scenarios, consumes more energy due to 
its lack of coordination between rooms, resulting in inefficient power 
distribution and higher energy costs.

Thus, Ours offers a more energy-efficient solution without significant 
loss of comfort, especially in scenarios where balancing energy costs 
and thermal comfort is critical. The dynamic pre-cooling schedule in 
Ours optimizes power usage, making it a more cost-effective choice for 
multi-zone VRF systems. In the energy cost priority scenario (𝜔 = 0.9), 
Ours experiences a slight increase in ATD values compared to SOTA
after the 20% power constraint, with the ATD rising from 2.00◦C for 
Ours to 1.94◦C for SOTA. However, this increase is minimal and is out-
weighed by significantly lower energy consumption. At a 30% power 
constraint, Ours reduces energy use by approximately 4%, saving en-
ergy while maintaining acceptable comfort levels.

The key advantage of Ours is its ability to maintain stable thermal 
comfort while optimizing energy usage. As power limitations become 
stricter, Ours efficiently allocates energy across the system without pro-
longed pre-cooling, resulting in better overall energy efficiency. In con-
trast, the decentralized SOTA method tends to over-consume energy due 
to its lack of coordination, leading to higher energy usage and less effi-
cient power distribution. Overall, our method provides an efficient so-
lution for applications that prioritize energy savings, particularly when 

facing tight power constraints. It strikes a balance between maintaining 
thermal comfort and reducing energy consumption, outperforming the 
baseline method in terms of energy savings without significant comfort 
compromise.

In comparison, rule-based control methods rely on fixed operational 
logic and lack responsiveness to changing environmental or system con-
ditions. As a result, they tend to cause either discomfort or unnecessary 
energy consumption when operating under constrained scenarios. While 
model-based MPC approaches offer improved flexibility, they are built 
on predefined mathematical models that require accurate system iden-
tification. This dependence limits their robustness and makes them less 
suitable for scenarios where energy availability is highly restricted or 
when building conditions vary.

Data-driven methods based on neural networks can learn complex 
patterns but often lack transparency and are sensitive to noise, which 
makes their performance unreliable when used in situations that dif-
fer from the training data. Controllers based on learning methods, such 
as reinforcement learning, require large amounts of training data, and 
their black-box nature makes them hard to validate or adjust for real-
time control in HVAC systems. In contrast, our approach combines the 
clarity of symbolic models with the flexibility of MPC, providing de-
pendable performance even under strict power constraints and changing 
conditions.

Another advantage of the proposed method lies in its generalizabil-
ity. Unlike rule-based or model-based strategies that are designed for 
specific building setups, our framework can be applied to various build-
ing types including residential, commercial, and industrial buildings, 
without needing major changes to the system structure. Since the frame-
work is based on historical data and does not rely heavily on detailed 
building-specific information, it can be easily adapted to different build-
ing types with only minor adjustments. These results suggest that our 
method not only performs well under strict energy limitations but also 
provides a practical solution for future energy-efficient building control.

6.  Conclusion and future work

The study employs a data-driven method to propose a coordinated 
operation scheduling for multiple-room VRF systems. The primary goal 
is to maximize energy savings while ensuring thermal comfort in all 
rooms. The primary contribution of this research is the development 
and evaluation of the effects of peak power limitations on overall energy 
consumption, peak power demand, and thermal comfort. Using actual 
historical data from an educational facility at the University of Osaka 
in Japan, we conducted simulations in cooling mode during the sum-
mer. Under three priority settings, comfort (𝜔 = 0.1), trade-off (𝜔 = 0.5), 
and cost (𝜔 = 0.9) at different power restrictions, the simulation results 
are assessed by contrasting the proposed coordinated approach with 
the baseline uncoordinated method. The proposed method continuously 
outperformed the baseline approach, resulting in significant improve-
ments in thermal comfort and energy efficiency.

Under a 30% constraint, the proposed method achieves energy sav-
ings of up to 16%, and even under stricter constraints, it maintains ac-
ceptable thermal comfort, with only minor increases in ATD compared 
to the baseline. In most cases, the average temperature deviations (ATD) 
are continuously below 2◦C, ensuring optimum thermal comfort in
every room. Through coordinated control and dynamic adjustments to 
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pre-cooling schedules and power allocation, the proposed method im-
proves power distribution efficiency and reduces energy waste during 
occupied periods.

While the proposed method offers significant advantages, some 
trade-offs were observed, particularly in cost-prioritized scenarios (𝜔 =
0.9), where thermal comfort was somewhat decreased to save more en-
ergy. However, these ATD increases are minimal and acceptable when 
cost reduction is the primary objective, showing the method’s flexibil-
ity across operational priorities. The system’s ability to balance energy 
efficiency and comfort across all scenarios highlights its potential for 
modern building management systems.

To further enhance the proposed method’s performance and applica-
bility, future research should explore the incorporation of renewable en-
ergy sources such as solar or wind power, which could further improve 
the system’s sustainability and reduce reliance on the grid. Addition-
ally, investigating the impact of real-time weather data and occupancy 
predictions on system performance could yield further improvements 
in energy efficiency and comfort. Expanding the scope of simulations 
to include diverse building types (e.g., residential, commercial) and cli-
mates would also help generalize the findings and validate the system’s 
robustness in different settings.
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