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 a b s t r a c t

In this paper, two intersection-based architectures, named the normal-state-estimator-intersection-
based architecture (N-SEI architecture) and the failure-state-estimator-intersection-based architecture 
(F-SEI architecture), are examined for decentralized diagnosis of discrete event systems. For each of 
these architectures, the corresponding notion of codiagnosability is defined. These defined notions of 
codiagnosability are incomparable with inference diagnosability for the inference-based architecture. In 
addition, codiagnosability for the N-SEI architecture is weaker than the existing notion of intersection-
based codiagnosability, while codiagnosability for the F-SEI architecture is incomparable with it. 
For each of the N-SEI and F-SEI architectures, a method for verifying the corresponding notion of 
codiagnosability is developed.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For discrete event systems (DESs), the failure diagnosis frame-
work introduced by Sampath et al. (1995) has been extended to 
the decentralized setting, where multiple local diagnosers jointly 
diagnose the system so that the occurrence of any failure is 
correctly detected within a certain number of steps. Several archi-
tectures have been developed for decentralized diagnosis. In the 
disjunctive architecture (Debouk et al., 2000; Qiu & Kumar, 2006), 
the global failure decision is issued if at least one local diagnoser 
issues a local failure decision. On the other hand, in the conjunc-
tive architecture (Wang et al., 2007), if all local diagnosers issue 
local failure decisions, then the global failure decision is issued. 
The notions of disjunctive codiagnosability (Qiu & Kumar, 2006) 
and conjunctive codiagnosability (Wang et al., 2007) were defined 
as the diagnosability properties for the disjunctive and conjunc-
tive architectures, respectively. Later, inference-based approaches 
have been developed (Kumar & Takai, 2009; Takai & Kumar, 2017; 
Wang et al., 2007). In the inference-based approaches, each local 
diagnoser issues a local diagnosis decision by inferring diagnosis 
decisions of other local diagnosers. The notion of N-inference 
diagnosability, where N is a nonnegative integer that represents 
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the level of inference, characterizes the class of diagnosable sys-
tems in the inference-based architecture of Takai and Kumar 
(2017), which is more general than the conditional disjunctive 
and conjunctive architectures of Wang et al. (2007). However, for 
a system that is not N-inference diagnosable, another architecture 
has to be employed to diagnose it.

In the decentralized architectures mentioned above, each local 
diagnoser issues a local diagnosis decision. In Debouk et al. 
(2000), a decentralized architecture was proposed, where each 
local diagnoser sends a certain local state estimate to the coor-
dinator and the coordinator makes the global diagnosis decision 
based on the intersection of the received local state estimates, 
as shown in Fig.  1. More precisely, each local diagnoser com-
putes the set of all possible states regardless whether they are 
reached after the occurrence of a failure, as its local state es-
timate, and if these intersection only includes states reached 
after the occurrence of a failure, then the coordinator decides 
that a failure has occurred. For this intersection-based architec-
ture, the codiagnosability property, which we call intersection-
based codiagnosability in this paper, was defined and a ver-
ification method was developed for it (Panteli & Hadjicostis, 
2013). As shown in this paper, however, intersection-based co-
diagnosability of Panteli and Hadjicostis (2013) should be weak-
ened to characterize diagnosable systems in this intersection-
based architecture. The intersection-based architecture is also 
employed for distributed diagnosis by Keroglou and Hadjicostis 
(2018). Besides, the intersection-based architecture was devel-
oped for decentralized supervisory control and the correspond-
ing notion of intersection-based coobservability was introduced 
by Yin and Lafortune (2016). Interestingly, intersection-based 
coobservability is incomparable with N-inference observability 
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Intersection-based architecture.

for the inference-based decentralized supervisory control archi-
tecture of Kumar and Takai (2007).

In this paper, we examine two intersection-based architec-
tures, named the normal-state-estimator-intersection-based ar-
chitecture (N-SEI architecture) and the failure-state-estimator-
intersection-based architecture (F-SEI architecture). The main 
purpose of examining these two architectures is identifying new 
notions of codiagnosability that are different from the existing 
ones. In the N-SEI architecture (respectively, F-SEI architecture), 
each local diagnoser computes the set of possible states that are 
reached by executing normal strings (respectively, executing at 
least m events, where m is a given nonnegative integer, after 
the occurrence of a failure), as its local state estimate, and if 
the intersection of these local state estimates is empty, then the 
coordinator decides that a failure has occurred (respectively, a 
normal string has occurred or, after the occurrence of a failure, 
at most m − 1 events have occurred). The N-SEI architecture 
is equivalent to the existing intersection-based architecture in 
the sense that the occurrence of a failure is detected in the 
N-SEI architecture if and only if it is detected in the existing 
intersection-based architecture. However, the state set explored 
by local diagnosers to compute their local state estimates in the 
N-SEI architecture is smaller than the state set explored by them 
in the existing intersection-based architecture. For each of these 
architectures, we define the corresponding notion of codiagnos-
ability to characterize diagnosable systems. Codiagnosability for 
the N-SEI architecture and that for the F-SEI architecture are in-
comparable, which implies that the N-SEI and F-SEI architectures 
complement each other. In addition, they are compared with 
the existing notions of codiagnosability. Codiagnosability for the 
N-SEI architecture is weaker than intersection-based codiagnos-
ability of Panteli and Hadjicostis (2013), while codiagnosability 
for the F-SEI architecture is incomparable with it. An example of 
a system that is codiagnosable in the N-SEI architecture but not 
characterized by intersection-based codiagnosability of Panteli 
and Hadjicostis (2013) is presented. Moreover, codiagnosability 
for the N-SEI architecture and that for the F-SEI architecture 
are weaker than disjunctive codiagnosability and conjunctive co-
diagnosability, respectively, and incomparable with N-inference 
diagnosability for any N ≥ 1. This means that there exists a 
system that is diagnosable in the N-SEI or F-SEI architecture 
but not diagnosable in the inference-based architecture of Takai 
and Kumar (2017). To diagnose such a system, the N-SEI or F-
SEI architecture should be employed. These comparisons justify 
developing the N-SEI and F-SEI architectures for decentralized 
diagnosis. Then, for each of the N-SEI and F-SEI architectures, 
we present a method for verifying the corresponding notion of 
codiagnosability.

The present paper is an extended version of the authors’ 
conference papers (Takai & Yamamoto, 2023, 2024). It contains 
2

the proofs of the technical results, which were omitted in Takai 
and Yamamoto (2023) and Takai and Yamamoto (2024), two mo-
tivating examples, and additional explanations on the presented 
results.

2. Preliminaries

A DES to be diagnosed is modeled as a finite automaton G =
(Q , Σ, δ, q0), where Q  is the finite set of states, Σ is the finite 
set of events, a partial function δ : Q ×Σ → Q  is the transition 
function, and q0 ∈ Q  is the initial state. A sequence q(0) σ (0)

−−→

q(1)
σ (1)
−−→ · · · q(l−1)

σ (l−1)
−−−→ q(l) (l ≥ 1) of transitions such that 

δ(q(h), σ (h)) = q(h+1) for each h ∈ {0, 1, . . . , l−1} is called a path of 
G, and it is also called a cycle if q(0) = q(l). A finite automaton G′ =
(Q ′, Σ, δ′, q′0) is called a subautomaton of G if Q ′ ⊆ Q , q′0 = q0, 
and, for any q ∈ Q ′ and any σ ∈ Σ , δ′(q, σ )! ⇒ δ′(q, σ ) = δ(q, σ ). 
Let Σ∗ be the set of all finite strings of elements of Σ , including 
the empty string ε. The transition function δ can be generalized 
to δ : Q ×Σ∗ → Q  in the usual manner. For any q ∈ Q  and any 
s ∈ Σ∗, δ(q, s)! means that δ(q, s) is defined, that is, δ(q, s) ∈ Q
and ¬δ(q, s)! denotes the negation of δ(q, s)!. Let N be the set of 
all nonnegative integers. For any s ∈ Σ∗, |s| ∈ N denotes its 
length, and sm represents m concatenations of s, where m ∈ N. 
Besides, for any m ∈ N, we let Σ≥m = {s ∈ Σ∗ | |s| ≥ m}. 
A subset of Σ∗ is called a language. The generated language of 
G, denoted by L(G), is defined as L(G) = {s ∈ Σ∗ | δ(q0, s)!}. Let 
Reach(G) be the set of all reachable states of G, that is, Reach(G) =
{q ∈ Q | (∃s ∈ L(G))q = δ(q0, s)}. For a language K ⊆ Σ∗, 
the set of all prefixes of strings in K  is denoted by pr(K ), that 
is, pr(K ) = {s ∈ Σ∗ | (∃t ∈ Σ∗)st ∈ K }. If K = pr(K ), then K  is 
said to be (prefix-)closed. Clearly, the generated language L(G) of 
G is nonempty and closed.

In the setting of decentralized diagnosis, n local diagnosers lo-
cally observe the occurrence of an event in G. Let I = {1, 2, . . . , n}
be the index set of local diagnosers. For the ith local diagnoser 
(i ∈ I), Σo,i ⊆ Σ is the set of locally observable events, and 
Pi : Σ∗ → Σ∗o,i is the natural projection from Σ∗ to Σ∗o,i, which 
is inductively defined as Pi(ε) = ε and, for any s ∈ Σ∗ and any 
σ ∈ Σ , if σ ∈ Σo,i then Pi(sσ ) = Pi(s)σ ; otherwise Pi(sσ ) = Pi(s). 
If a string s ∈ L(G) is executed in G, then the locally observable 
event string Pi(s) ∈ Σ∗o,i is observed by the ith local diagnoser. 
Two strings s, s′ ∈ L(G) are said to be indistinguishable (under 
Pi) if Pi(s) = Pi(s′). The inverse projection P−1i : Σ∗o,i → 2Σ∗  is 
defined by P−1i (ti) = {s ∈ Σ∗ | Pi(s) = ti} for any ti ∈ Σ∗o,i. That is, 
P−1i (ti) is the set of strings that are observed as ti by the ith local 
diagnoser. For any languages K ⊆ Σ∗ and Ki ⊆ Σ∗o,i, let Pi(K ) =
{Pi(s) ∈ Σ∗o,i | s ∈ K } and P−1i (Ki) = {s ∈ Σ∗ | Pi(s) ∈ Ki}. For any 
s ∈ L(G), the estimate of the current state of G with respect to Pi is 
obtained as EG,i(Pi(s)) = {q ∈ Q | (∃si ∈ L(G) ∩ P−1i Pi(s))δ(q0, si) =
q}.

For each i ∈ I , the unobservable reach is defined as a function 
URG,i : 2Q

→ 2Q  such that URG,i(Q ′) = {q ∈ Q | (∃q′ ∈ Q ′)(∃s ∈
(Σ − Σo,i)∗)δ(q′, s) = q} for each Q ′ ∈ 2Q . Then, the observer 
automaton Obsi(G) = (Qobsi , Σo,i, δobsi , qobsi,0) of G is defined, 
where the state set is Qobsi = 2Q , the initial state is qobsi,0 =
URG,i({q0}), and the transition function δobsi : Qobsi ×Σo,i → Qobsi
is given as

δobsi (qobsi , σo,i) =
{

q′obsi , if (∃q ∈ qobsi )δ(q, σo,i)!
undefined, otherwise,

where q′obsi = URG,i({q′ ∈ Q | (∃q ∈ qobs,i)δ(q, σo,i) = q′}), 
for each qobsi ∈ Qobsi  and each σo,i ∈ Σo,i. It follows that 
L(Obsi(G)) = Pi(L(G)) and, for any ti ∈ Pi(L(G)), δobsi (qobsi,0, ti) =
E (t ) (Cassandras & Lafortune, 2021).
G,i i
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3. Existing intersection-based architecture

In this section, we review an existing intersection-based ar-
chitecture proposed by Debouk et al. (2000) for decentralized 
diagnosis and the corresponding notion of intersection-based co-
diagnosability introduced by Panteli and Hadjicostis (2013).

Let the normal behavior of the system G = (Q , Σ, δ, q0) be 
described by a nonempty closed regular sublanguage K ⊆ L(G). 
The occurrence of an event σ ∈ Σ such that sσ ∈ L(G) − K  for 
some s ∈ K  models a failure. A string in K  (respectively, L(G)−K ) 
is called a normal (respectively, failure) string. For the sake of 
simplicity, we assume in the remainder of the paper that the 
system G is deadlock free, that is, for any s ∈ L(G), there exists 
σ ∈ Σ such that sσ ∈ L(G). In addition, we assume without 
loss of generality that a nonempty closed regular sublanguage 
K ⊆ L(G) that models the normal behavior of the system G is 
generated by a subautomaton GN = (QN , Σ, δN , q0) of G. Then, it 
holds that L(GN ) = K . To characterize failure strings in L(G) − K , 
GN  is augmented by adding a dump state qd /∈ QN . The augmented 
automaton is defined as G̃N = (Q̃N , Σ, δ̃N , q0), where the state set 
is Q̃N = QN ∪ {qd}, and the transition function δ̃N : Q̃N ×Σ → Q̃N
is given as

δ̃N (q̃N , σ ) =
{

δN (q̃N , σ ), if q̃N ∈ QN ∧ δN (q̃N , σ )!
qd, otherwise

for each q̃N ∈ Q̃N  and each σ ∈ Σ (Qiu & Kumar, 2006). It follows 
from the definition of the transition function δ̃N  that L(G̃N ) = Σ∗. 
Then, we construct the synchronous composition G ∥ G̃N =

(Q×Q̃N , Σ, α, (q0, q0)) of G and G̃N , where the transition function 
α : (Q × Q̃N )×Σ → (Q × Q̃N ) is given as

α((q, q̃N ), σ ) =
{

(δ(q, σ ), δ̃N (q̃N , σ )), if δ(q, σ )!
undefined, otherwise

for each (q, q̃N ) ∈ Q × Q̃N  and each σ ∈ Σ . Since L(G ∥ G̃N ) =
L(G) ∩ L(G̃N ) = L(G) ∩ Σ∗ = L(G), G ∥ G̃N  can be considered as a 
refined model of the system. In the refined model G ∥ G̃N , a string 
s ∈ L(G) is a failure one with s ∈ L(G)−K  if and only if the second 
element of the state reached by the execution of s ∈ L(G) is the 
dump state qd.

A certain intersection-based architecture shown in Fig.  1 was 
proposed by Debouk et al. (2000) for decentralized diagnosis1. 
When s ∈ L(G) is executed in the system G, the ith local diagnoser 
observes Pi(s), computes the set EG∥G̃N ,i(Pi(s)) of possible states in 
the refined model G ∥ G̃N , as its local state estimate, and sends it 
to the coordinator. Then, the global diagnosis decision is issued 
by the coordinator based on the intersection 

⋂
i∈I EG∥G̃N ,i(Pi(s)). 

If 
⋂

i∈I EG∥G̃N ,i(Pi(s)) ⊆ Q × {qd}, then the intersection-based 
diagnoser decides that a failure has occurred. Note that, since GN
is a subautomaton of G, a reachable state of G ∥ G̃N  is of the 
form (q, q) or (q, qd), where q ∈ Q . For this intersection-based 
architecture, the notion of intersection-based codiagnosability 
introduced by Panteli and Hadjicostis (2013) can be described by 
the following condition:
(∃m ∈ N)
(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)(∀q, q′ ∈ Q )

{(q, q), (q′, qd)} ̸⊆
⋂
i∈I

EG∥G̃N ,i(Pi(s)). (1)

The condition (1) is weaker than disjunctive codiagnosability (Pan-
teli & Hadjicostis, 2013).

1 In Debouk et al. (2000), a failure is modeled by the occurrence of an event 
in the failure event set Σf . In this paper, the intersection-based architecture 
proposed by Debouk et al. (2000) is slightly modified to adapt to the case where 
a failure is modeled by the occurrence of an event σ ∈ Σ such that sσ ∈ L(G)−K
for some s ∈ K .
3

Fig. 2. (a) Finite automaton G that models plant and (b) its subautomaton GN .

Fig. 3. Refined model G ∥ G̃N .

4. Motivating examples

In this section, we first show that intersection-based codiag-
nosability of Panteli and Hadjicostis (2013) should be weakened 
to characterize diagnosable systems in the intersection-based 
architecture presented in Section 3.

Example 1.  We consider the finite automaton G shown in Fig. 
2(a), which models a simple plant that processes a job. The event 
set Σ of G is Σ = {a, d, o1, o2, o3, f , e}, where a and d denote 
arrival and departure of a job, respectively, oj (j = 1, 2, 3) are 
three kinds of operations, f  denotes the occurrence of a failure, 
and e is the fictitious event added to satisfy the deadlock-free 
assumption. A departure after solely o1 (without o2 or o3) is 
considered as a failure. The finite automaton GN  that describes 
the normal behavior of G is shown in Fig.  2(b).

Let I = {1, 2}, Σo,1 = {a, o1, o2, d}, and Σo,2 = {a, o1, o3, d}. In 
the intersection-based architecture presented in Section 3, each 
local diagnoser estimates the current state of the refined model 
G ∥ G̃N  shown in Fig.  3. We consider a failure string afo1 ∈ L(G)−
K . Since EG∥G̃N ,1(P1(afo1)) = EG∥G̃N ,1(ao1) = {(q7, q7), (q5, qd)}
and EG∥G̃N ,2(P2(afo1)) = EG∥G̃N ,2(ao1) = {(q6, q6), (q5, qd)}, we 
have 

⋂
i∈I EG∥G̃N ,i(Pi(afo1)) = {(q5, qd)}. Thus, the occurrence 

of the failure event f  is detected. However, the condition (1) 
of intersection-base codiagnosability of Panteli and Hadjicostis 
(2013) is not satisfied. For any m ∈ N, we consider a failure 
string afo1dem ∈ L(G)∩(L(G)−K )Σ≥m. Since EG∥G̃N ,i(Pi(afo1de

m)) =
{(q8, q8), (q8, qd)} for i = 1, 2, we have 

⋂
i∈I EG∥G̃N ,i(Pi(afo1de

m)) =
{(q8, q8), (q8, qd)}. Therefore, intersection-based codiagnosability 
of Panteli and Hadjicostis (2013) should be weakened to charac-
terize diagnosable systems in the intersection-based architecture.

Next, we show an example of a system that is not diagnosable 
in the inference-based architecture of Takai and Kumar (2017). 
To diagnose such a system, another architecture must be em-
ployed. G is said to be N-inference diagnosable with respect 
to a nonempty closed regular sublanguage K ⊆ L(G) if there 
exists m ∈ N such that FN+1(m) = ∅ or HN+1(m) = ∅ (Takai 
& Kumar, 2017), where a monotonically decreasing sequence 
{(Fk(m),Hk(m))}k≥0 of language pairs is defined as follows:

• Base step:
F (m) = L(G) ∩ (L(G)− K )Σ≥m,
0
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-

Fig. 4. (a) Finite automaton G that models plant and (b) its subautomaton GN .

H0(m) = K .

• Induction step:

Fk+1(m) = Fk(m) ∩

(⋂
i∈I

P−1i Pi(Hk(m))

)
,

Hk+1(m) = Hk(m) ∩

(⋂
i∈I

P−1i Pi(Fk(m))

)
.

Remark 2.  Disjunctive (respectively, conjunctive) codiagnosabil-
ity is equivalent to the existence of m ∈ N such that F1(m) = ∅
(respectively, H1(m) = ∅) (Takai & Kumar, 2017).

The following example shows a system that is not N-inference 
diagnosable for any N ∈ N.

Example 3.  We consider the finite automaton G shown in Fig. 
4(a), which models another simple plant that processes a job. 
The event set Σ of G is Σ = {a, d, o1, o2, o3, f , e}, where the 
meaning of each event is the same as that of Example  1. Normally, 
a departure of a job occurs following one of the operation se-
quences o1, o1o2o3, and o1o3o2. A departure following o1o2 or o1o3
is considered as a failure. The finite automaton GN  that describes 
the normal behavior of G is shown in Fig.  4(b).

Let I = {1, 2}, Σo,1 = {a, o2, d}, and Σo,2 = {a, o3, d}. Then, for 
any m ∈ N with m ≥ 1, we have F0(m) = {ao1o2fdeh, ao1o3fdeh |
h ≥ m − 1} and H0(m) = pr({ao1deh, ao1o2o3deh, ao1o3o2deh |
h ≥ 0}). In addition, for any k ∈ N with k ≥ 1, we have 
Fk(m) = {ao1o2fdeh, ao1o3fdeh | h ≥ m − 1} ̸= ∅ and Hk(m) =
{ao1deh, ao1o2o3deh, ao1o3o2deh | h ≥ 0} ̸= ∅. It follows that, for 
any N ∈ N, G is not N-inference diagnosable with respect to K .

5. N-SEI and F-SEI architectures

In this paper, we examine two intersection-based architec-
tures, which we call the normal-state-estimator-intersection-
based architecture (N-SEI architecture) and failure-state-estimator
intersection-based architecture (F-SEI architecture), and intro-
duce the corresponding notions of codiagnosability.

5.1. N-SEI architecture

In the N-SEI architecture, each local diagnoser computes the 
set of possible states of the normal behavior model GN , as its local 
state estimate, and the coordinator makes the global diagnosis 
decision based on the intersection of these local state estimates. 
More precisely, when s ∈ L(G) is executed in the system G, the ith 
local diagnoser observes Pi(s) ∈ Pi(L(G)), computes the estimate 
of possible states in the normal behavior model GN  as

EN−SEI
i (Pi(s)) =

{
EGN ,i(Pi(s)), if Pi(s) ∈ Pi(L(GN ))

∅, otherwise

4

and sends it to the coordinator. Based on the intersection of 
EN−SEI
i (Pi(s)) over I , the coordinator issues the global diagnosis 

decision.
The following lemma shows that if the intersection of the 

local state estimates is empty, we can conclude that the executed 
string is a failure string.

Lemma 4.  For a regular sublanguage K ⊆ L(G) generated by a 
subautomaton GN = (QN , Σ, δN , q0) of G, we consider any s ∈ L(G). 
If 
⋂

i∈I E
N−SEI
i (Pi(s)) = ∅ then s ∈ L(G)− K.

Proof.  We prove the contrapositive. If s ∈ K = L(GN ) then Pi(s) ∈
Pi(L(GN )) for any i ∈ I . Since δN (q0, s) ∈ EGN ,i(Pi(s)) = EN−SEI

i (Pi(s))
for any i ∈ I , we have δN (q0, s) ∈

⋂
i∈I E

N−SEI
i (Pi(s)) ̸= ∅. □

The condition 
⋂

i∈I E
N−SEI
i (Pi(s)) = ∅ means that the local state 

estimates EN−SEI
i (Pi(s)) (1 = 1, 2, . . . , n) do not have a common 

element. It does not necessarily imply that there exists i ∈ I
such that EN−SEI

i (Pi(s)) = ∅. It is worth mentioning that disjunc-
tive codiagnosability requires the existence of i ∈ I such that 
EN−SEI
i (Pi(s)) = ∅. By Lemma  4, the intersection-based diagnoser 

is defined as a function DN : L(G)→ {0, 1} such that 

DN (s) =
{

1, if 
⋂

i∈I E
N−SEI
i (Pi(s)) = ∅,

0, otherwise (2)

for each s ∈ L(G).
The following proposition shows that the N-SEI architecture 

is equivalent to the existing intersection-based architecture pre-
sented in Section 3 in the sense that the occurrence of a failure is 
detected in the N-SEI architecture if and only if it is detected in 
the existing intersection-based architecture.

Proposition 5.  For a regular sublanguage K ⊆ L(G) generated by a 
subautomaton GN = (QN , Σ, δN , q0) of G, we consider any s ∈ L(G). 
Then, 

⋂
i∈I E

N−SEI
i (Pi(s)) = ∅ if and only if 

⋂
i∈I EG∥G̃N ,i(Pi(s)) ⊆

Q × {qd}.

Proof.  First, we prove the contrapositive of the sufficiency part. 
We suppose that 

⋂
i∈I E

N−SEI
i (Pi(s)) ̸= ∅. We consider any qN ∈⋂

i∈I E
N−SEI
i (Pi(s)) ̸= ∅. For any i ∈ I , since qN ∈ EGN ,i(Pi(s)), there 

exists si ∈ L(GN ) such that Pi(si) = Pi(s) and δN (q0, si) = qN . Then, 
we have α((q0, q0), si) = (qN , qN ) ∈ EG∥G̃N ,i(Pi(s)). It follows that 
(qN , qN ) ∈

⋂
i∈I EG∥G̃N ,i(Pi(s)) ̸⊆ Q × {qd}.

Next, we prove the contrapositive of the necessity part. We 
suppose that 

⋂
i∈I EG∥G̃N ,i(Pi(s)) ̸⊆ Q × {qd}. Then, there exists 

qN ∈ Q  such that (qN , qN ) ∈
⋂

i∈I EG∥G̃N ,i(Pi(s)). For any i ∈ I , 
there exists si ∈ L(G) such that Pi(si) = Pi(s) and α((q0, q0), si) =
(qN , qN ). Since (qN , qN ) /∈ Q × {qd}, we have si ∈ L(GN ), which 
implies δN (q0, si) = qN  and Pi(s) = Pi(si) ∈ Pi(L(GN )). It follows 
that qN ∈ EGN ,i(Pi(s)) = EN−SEI

i (Pi(s)). Thus, we have qN ∈⋂
i∈I E

N−SEI
i (Pi(s)) ̸= ∅. □

Remark 6.  Although the N-SEI architecture is equivalent to the 
existing intersection-based architecture, the state set QN  explored 
by local diagnosers to compute their local state estimates in the 
N-SEI architecture is smaller than the state set Q × Q̃N  explored 
by them in the existing intersection-based architecture.

To guarantee that the occurrence of any failure is correctly de-
tected within a certain number of steps, we impose the following 
two conditions on DN :

(∃m ∈ N)
(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)(∃t ∈ pr({s}))
D (t) = 1 (3)
N
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and 
(∀s ∈ K )DN (s) = 0. (4)

Remark 7.  The condition (3) requires the existence of m ∈ N
such that, for any s ∈ L(G) ∩ (L(G)− K )Σ≥m, there exists a prefix 
t ∈ pr({s}) such that DN (t) = 1. Even if DN  satisfies (3), 
(∃m ∈ N)(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)DN (s) = 1 (5)

does not necessarily hold. As an example, we consider the system 
G of Example  1. For any m ∈ N, we consider a failure string 
afo1dem ∈ L(G)∩(L(G)−K )Σ≥m. For its prefix afo1 ∈ pr({afo1dem}), 
we have EN−SEI

1 (P1(afo1)) ∩ EN−SEI
2 (P2(afo1)) = {q7} ∩ {q6} = ∅, 

which implies together with (2) that DN (afo1) = 1. However, 
since EN−SEI

1 (P1(afo1dem)) ∩ EN−SEI
2 (P2(afo1dem)) = {q8} ∩ {q8} =

{q8} ̸= ∅, we have DN (afo1dem) = 0. Therefore, DN  only satisfies 
(3).

By Lemma  4, DN  always satisfies (4). As a condition under 
which DN  satisfies (3), normal-state-estimator-intersection-based 
codiagnosability (N-SEI codiagnosability) is defined as follows:

Definition 8.  For a regular sublanguage K ⊆ L(G) generated by 
a subautomaton GN = (QN , Σ, δN , q0) of G, G is said to be N-SEI 
codiagnosable with respect to K  if
(∃m ∈ N)
(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)(∃t ∈ pr({s}))⋂
i∈I

EN−SEI
i (Pi(t)) = ∅.

N-SEI codiagnosability is a necessary and sufficient condi-
tion for DN  to satisfy (3) and (4), as shown in the following 
proposition.

Proposition 9.  For a regular sublanguage K ⊆ L(G) generated by 
a subautomaton GN = (QN , Σ, δN , q0) of G, the intersection-based 
diagnoser DN : L(G) → {0, 1} given by (2) satisfies (3) and (4) if 
and only if G is N-SEI codiagnosable with respect to K.

Proof.  First, we prove the sufficiency part. Since G is N-SEI 
codiagnosable with respect to K , there exists m ∈ N such that
(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)(∃t ∈ pr({s}))⋂
i∈I

EN−SEI
i (Pi(t)) = ∅.

By (2), DN  satisfies (3). In addition, by Lemma  4, DN  satisfies (4).
Next, we prove the necessity part. Since DN  satisfies (3), by (2), 

G is N-SEI codiagnosable with respect to K . □

Introducing N-SEI codiagnosability resolves the issue raised in 
Example  1. N-SEI codiagnosability is weaker than intersection-
based codiagnosability of Panteli and Hadjicostis (2013), as shown 
in the following proposition.

Proposition 10.  For a regular sublanguage K ⊆ L(G) generated 
by a subautomaton GN = (QN , Σ, δN , q0) of G, if the condition (1) 
holds, then G is N-SEI codiagnosable with respect to K.

Proof.  We prove the contrapositive. If G is not N-SEI codiagnos-
able with respect to K , then it holds that
(∀m ∈ N)
(∃s ∈ L(G) ∩ (L(G)− K )Σ≥m)(∀t ∈ pr({s}))⋂

EN−SEI
i (Pi(t)) ̸= ∅.
i∈I

5

Since s ∈ pr({s}), we have 
⋂

i∈I E
N−SEI
i (Pi(s)) ̸= ∅, which implies 

together with Proposition  5 that 
⋂

i∈I EG∥G̃N ,i(Pi(s)) ̸⊆ Q × {qd}. 
Then, there exists qN ∈ Q  such that (qN , qN ) ∈

⋂
i∈I EG∥G̃N ,i(Pi(s)). 

Moreover, since s ∈ L(G) ∩ (L(G) − K )Σ≥m ⊆ L(G) − K , we have 
α((q0, q0), s) = (q, qd) ∈ EG∥G̃N ,i(Pi(s)), where q = δ(q0, s) ∈ Q , for 
each i ∈ I . Thus, we have {(qN , qN ), (q, qd)} ⊆

⋂
i∈I EG∥G̃N ,i(Pi(s)), 

which implies that (1) does not hold. □

As shown in the following example, the reverse implication of 
Proposition  10 does not hold in general.

Example 11.  Again, we consider the system G of Example  1, 
which does not satisfy the condition (1). We consider any s ∈
L(G) ∩ (L(G) − K )Σ≥1. For its prefix afo1 ∈ pr({s}), we have ⋂

i∈I E
N−SEI
i (Pi(afo1)) = ∅, as shown in Remark  7. Thus, G is N-SEI 

codiagnosable with respect to K .
In addition, the issue raised in Example  3 can be resolved by 

employing the N-SEI architecture.

Example 12.  We consider the system G of Example  3, which is 
not N-inference diagnosable with respect to K  for any N ∈ N. 
Any s ∈ L(G) ∩ (L(G)− K )Σ≥1 can be written as s = ao1o2fdeh or 
s = ao1o3fdeh, where h ≥ 0. In the case of s = ao1o2fdeh, we have 
ao1o2fd ∈ pr({s}) and EN−SEI

1 (P1(ao1o2fd)) ∩ EN−SEI
2 (P2(ao1o2fd)) =

EN−SEI
1 (ao2d) ∩ EN−SEI

2 (ad) = {q8, q13} ∩ {q3} = ∅, which im-
plies that the occurrence of the failure event f  is detected after 
ao1o2fd is executed. Also, in the case of s = ao1o3fdeh, we have 
ao1o3fd ∈ pr({s}) and EN−SEI

1 (P1(ao1o3fd)) ∩ EN−SEI
2 (P2(ao1o3fd)) =

EN−SEI
1 (ad) ∩ EN−SEI

2 (ao3d) = {q3} ∩ {q8, q13} = ∅. Thus, G is N-SEI 
codiagnosable with respect to K , so the occurrence of the failure 
event f  can be correctly detected in the N-SEI architecture.

5.2. F-SEI architecture

In the F-SEI architecture, for a given nonnegative integer m ∈
N, each local diagnoser computes, as its local state estimate, the 
set of possible states that are reached by executing at least m
events after the occurrence of a failure. A nonnegative integer 
m ∈ N is a parameter of the F-SEI architecture, which represents 
an allowable detection delay.

For a given nonnegative integer m ∈ N, L(G) ∩ (L(G)− K )Σ≥m
is the set of failure strings such that at least m events occur after 
the occurrence of a failure. To characterize such failure strings 
in L(G) ∩ (L(G) − K )Σ≥m, we augment GN  by adding m + 1
dump states qd0, qd1, . . . , qdm /∈ QN . The augmented automaton 
is defined as G̃Nm = (Q̃Nm , Σ, δ̃Nm , q0), where the state set is 
Q̃Nm = QN ∪ {qd0, qd1, . . . , qdm}, and the transition function δ̃Nm :

Q̃Nm ×Σ → Q̃Nm  is given as

δ̃Nm (q̃Nm , σ )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δN (q̃Nm , σ ), if q̃Nm ∈ QN ∧ δN (q̃Nm , σ )!
qd0, if q̃Nm ∈ QN ∧ ¬δN (q̃Nm , σ )!
qd(h+1), if m ≥ 1 ∧ q̃Nm = qdh

(h ∈ {0, 1, . . . ,m− 1})
qdm, otherwise

for each q̃Nm ∈ Q̃Nm  and each σ ∈ Σ (Yamamoto & Takai, 
2015). The augmented automaton G̃N  defined in Section 3 can be 
considered as a special case of G̃Nm  with m = 0. It follows from 
the definition of the transition function δ̃Nm  that L(G̃Nm ) = Σ∗. 
Then, we construct the synchronous composition G ∥ G̃Nm =

(Q × Q̃Nm , Σ, αm, (q0, q0)) of G and G̃Nm , where the transition 
function αm : (Q × Q̃Nm )×Σ → (Q × Q̃Nm ) is defined in a similar 
way to the transition function α : (Q × Q̃N )×Σ → (Q × Q̃N ) of 
G ∥ G̃ . Since L(G ∥ G̃ ) = L(G), G ∥ G̃  can also be regarded 
N Nm Nm
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as a refined model of the system. In the refined model G ∥ G̃Nm , a 
string s ∈ L(G) is a failure one with s ∈ L(G)∩(L(G)−K )Σ≥m if and 
only if the second element of the state reached by the execution 
of s ∈ L(G) is the final dump state qdm.

When s ∈ L(G) is executed in the system G, the ith local di-
agnoser observes Pi(s) ∈ Pi(L(G)) and computes EF−SEI

i (Pi(s),m) =
EG∥G̃Nm ,i(Pi(s)) ∩ (Q × {qdm}), which is the set of states reached 
by indistinguishable failure strings in L(G) ∩ (L(G) − K )Σ≥m in 
the refined model G ∥ G̃Nm . That is, EF−SEI

i (Pi(s),m) is the set of 
possible states that are reached by executing at least m events 
after the occurrence of a failure. Then, the ith local diagnoser 
sends EF−SEI

i (Pi(s),m) to the coordinator, as its local state es-
timate. Based on the intersection of EF−SEI

i (Pi(s),m) over I , the 
coordinator makes the global diagnosis decision.

The following lemma shows that if the intersection of the 
local state estimates is empty, we can conclude that the executed 
string is not an element of (L(G)− K )Σ≥m.

Lemma 13.  For a regular sublanguage K ⊆ L(G) generated by a 
subautomaton GN = (QN , Σ, δN , q0) of G, we consider any m ∈ N
and any s ∈ L(G). If 

⋂
i∈I E

F−SEI
i (Pi(s),m) = ∅ then s /∈ (L(G) −

K )Σ≥m.

Proof.  We prove the contrapositive. If s ∈ L(G) ∩ (L(G) −
K )Σ≥m, then αm((q0, q0), s) ∈ EG∥G̃Nm ,i(Pi(s)) ∩ (Q × {qdm}) =
EF−SEI
i (Pi(s),m) for any i ∈ I . It follows that αm((q0, q0), s) ∈⋂
i∈I E

F−SEI
i (Pi(s),m) ̸= ∅. □

Similar to the N-SEI architecture, the condition 
⋂

i∈I E
F−SEI
i

(Pi(s),m) = ∅ does not necessarily imply that there exists i ∈ I
such that EF−SEI

i (Pi(s),m) = ∅. Note that conjunctive codiagnos-
ability requires the existence of such i ∈ I .

By Lemma  13, the intersection-based diagnoser is defined as a 
function DFm : L(G)→ {0, 1} such that, for any s ∈ L(G), 

DFm (s) =
{

1, if 
⋂

i∈I E
F−SEI
i (Pi(s),m) ̸= ∅,

0, otherwise. (6)

To correctly detect the occurrence of any failure within m steps, 
we impose the following two conditions on DFm :

(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)(∃t ∈ pr({s}))
DFm (t) = 1 (7)

and 
(∀s ∈ K )DFm (s) = 0. (8)

Since DFm  always satisfies (7) as shown in Lemma  13, failure-
state-estimator-intersection-based codiagnosability (F-SEI codi-
agnosability) is defined, as a condition for the existence of m ∈ N
such that DFm  satisfies (8), as follows:

Definition 14.  For a regular sublanguage K ⊆ L(G) generated by 
a subautomaton GN = (QN , Σ, δN , q0) of G, G is said to be F-SEI 
codiagnosable with respect to K  if

(∃m ∈ N)(∀s ∈ K )
⋂
i∈I

EF−SEI
i (Pi(s),m) = ∅.

F-SEI codiagnosability is a necessary and sufficient condition 
for the existence of a nonnegative integer m ∈ N such that the 
intersection-based diagnoser DFm  satisfies (7) and (8), as shown 
in the following proposition.

Proposition 15.  For a regular sublanguage K ⊆ L(G) generated 
by a subautomaton GN = (QN , Σ, δN , q0) of G, there exists a non-
negative integer m ∈ N such that the intersection-based diagnoser 
DFm : L(G)→ {0, 1} given by (6) satisfies (7) and (8) if and only if 
G is F-SEI codiagnosable with respect to K.
6

Fig. 5. Refined model G ∥ G̃N1 .

Proof.  First, we prove the sufficiency part. Since G is F-SEI 
codiagnosable with respect to K , there exists m ∈ N such that

(∀s ∈ K )
⋂
i∈I

EF−SEI
i (Pi(s),m) = ∅.

For such m ∈ N, by (6), DFm  satisfies (8). In addition, since s ∈
pr({s}), by Lemma  13, DFm  satisfies (7).

Next, we prove the necessity part. Since there exists m ∈ N
such that DFm  satisfies (8), by (6), G is F-SEI codiagnosable with 
respect to K . □

Remark 16.  By the proof of Proposition  15, we need to find a 
nonnegative integer m ∈ N such that

(∀s ∈ K )
⋂
i∈I

EF−SEI
i (Pi(s),m) = ∅

to synthesize the intersection-based diagnoser DFm  that satisfies 
(7) and (8). Due to the page limit, the issue of computing such 
m ∈ N is considered out of scope for this paper.

Remark 17.  Unlike the intersection-based diagnoser DN  in the 
N-SEI architecture, by Lemma  13, DFm  always satisfies
(∀s ∈ L(G) ∩ (L(G)− K )Σ≥m)DFm (s) = 1.

The issue raised in Example  3 can also be resolved using the 
F-SEI architecture.

Example 18.  Again, we consider the system G of Example  3. 
Letting m = 1, the refined model G ∥ G̃N1 , which is isomorphic to 
G, is obtained as shown in Fig.  5. For any s ∈ K , we can show 
that 

⋂
i∈I E

F−SEI
i (Pi(s), 1) = ∅. For example, for s = ao1deh ∈

K , where h ≥ 0, we have EF−SEI
1 (P1(s), 1) ∩ EF−SEI

2 (P2(s), 1) =
EF−SEI
1 (ad, 1) ∩ EF−SEI

2 (ad, 1) = {(q11, qd1)} ∩ {(q6, qd1)} = ∅. Also, 
for s′ = ao1o2o3deh ∈ K  and s′′ = ao1o3o2deh ∈ K , where h ≥ 0, it 
follows that EF−SEI

1 (P1(s′), 1)∩EF−SEI
2 (P2(s′), 1) = EF−SEI

1 (P1(s′′), 1)∩
EF−SEI
2 (P2(s′′), 1) = EF−SEI

1 (ao2d, 1)∩ EF−SEI
2 (ao3d, 1) = {(q6, qd1)} ∩

{(q11, qd1)} = ∅. Thus, G is F-SEI codiagnosable with respect to 
K . The occurrence of the failure event f  can also be correctly 
detected after ao1o2fd and ao1o3fd in L(G) ∩ (L(G) − K )Σ≥1 are 
executed in the F-SEI architecture.

5.3. Relationship between N-SEI and F-SEI architectures

We explore the relationship between the N-SEI and F-SEI 
architectures. First, we show a certain duality between them. In 
the N-SEI (respectively, F-SEI) architecture, the intersection-based 
diagnoser DN  (respectively, DFm  (m ∈ N)) should satisfy (3) and (4) 
(respectively, (7) and (8)). The conditions (3) and (7) are imposed 
to guarantee that there is no missed detection of the occurrence 
of a failure, while (4) and (8) are required to ensure that there 
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is no wrong detection. By Lemmas  4 and 13, DN  and DFm  always 
satisfy (4) and (7). In addition, N-SEI codiagnosability and F-SEI 
codiagnosability guarantee that DN  and DFm  satisfy (3) and (8), 
respectively. These facts indicate a certain duality between the 
N-SEI and F-SEI architectures.

Moreover, the N-SEI and F-SEI architectures complement each 
other in the sense that, as shown in the following example, N-SEI 
codiagnosability and F-SEI codiagnosability are incomparable. It 
is worth to mentioning that F-SEI codiagnosability is also incom-
parable with intersection-based codiagnosability of Panteli and 
Hadjicostis (2013).

Example 19.  We consider the finite automaton G shown in Fig. 
6 and let I = {1, 2}, Σo,1 = {a, b, c, d, g1, g2, o}, and Σo,2 =

{a, b, c, e, h1, h2, o}.
First, we consider the subautomaton GN1  of G that is obtained 

by removing the transitions labeled by the event f1 and the states 
q7, q8, and q10, as shown in Fig.  7. Let K1 denote its generated 
language. Relevant parts of the refined model G ∥ G̃N1m  (m ∈
N) and the subautomaton GN1  are shown in Fig.  8(a) and (b), 
respectively. We can verify that

(∀s ∈ L(G) ∩ (L(G)− K1)Σ≥1)(∃t ∈ pr({s}))⋂
i∈I

EN−SEI
i (Pi(t)) = ∅,

which implies that G is N-SEI codiagnosable with respect to K1. 
For example, for s1 = adf1ok ∈ L(G) ∩ (L(G) − K1)Σ≥1, where 
k ≥ 1, we have s1 ∈ pr({s1}) and EN−SEI

1 (P1(s1)) ∩ EN−SEI
2 (P2(s1)) =

{q9} ∩ {q6} = ∅. We can also verify that

(∀s ∈ L(G) ∩ (L(G)− K1)Σ≥1)(∀q, q′ ∈ Q )

{(q, q), (q′, qd)} ̸⊆
⋂
i∈I

EG∥G̃N ,i(Pi(s)),

which implies that G is intersection-based codiagnosable with 
respect to K1. Again, for example, for s1 = adf1ok ∈ L(G)∩ (L(G)−
K1)Σ≥1, where k ≥ 1, we have EG∥G̃N1 ,1(P1(s1))∩EG∥G̃N1 ,2(P2(s1)) =
{(q9, q9), (q7, qd), (q10, qd)} ∩ {(q6, q6), (q7, qd)} = {(q7, qd)}. On 
the other hand, for any m ∈ N, we have EF−SEI

1 (P1(s′1),m) ∩
EF−SEI
2 (P2(s′1),m) = {(q7, qdm), (q10, qdm)}∩{(q8, qdm), (q10, qdm)} =
{(q10, qdm)} for s′1 = aedom ∈ K1, which implies that G is not F-SEI 
codiagnosable with respect to K1.

Next, we consider the subautomaton GN2  of G that is obtained 
by removing the transitions labeled by the event f2 and the states 
q16 and q19, as shown in Fig.  9. Let K2 denote its generated 
language. Relevant parts of the refined model G ∥ G̃N21  and the 
subautomaton GN2  are shown in Fig.  10 (a) and (b), respectively. 
It can be verified that

(∀s ∈ K2)
⋂
i∈I

EF−SEI
i (Pi(s), 1) = ∅,

which implies that G is F-SEI codiagnosable with respect to K2. 
For example, for s2 = bdo ∈ K2, we have EF−SEI

1 (P1(s2), 1) ∩
EF−SEI
2 (P2(s2), 1) = {(q19, qd1)} ∩ {(q16, qd1)} = ∅. On the other 

hand, G is not N-SEI codiagnosable with respect to K2. For any 
m ∈ N, we consider s′2 = bedf2om ∈ L(G) ∩ (L(G) − K2)Σ≥m
and any prefix t ′2 ∈ pr({s′2}). If t ′2 ∈ K2, then δN2 (q0, t

′

2) ∈
EN−SEI
1 (P1(t ′2)) ∩ EN−SEI

2 (P2(t ′2)). In the case of t ′2 = bedf2, we have 
EN−SEI
1 (P1(t ′2)) ∩ EN−SEI

2 (P2(t ′2)) = {q12, q14, q15} ∩ {q13, q14, q15} =
{q14, q15}. Moreover, in the case of t ′2 = bedf2ok, where 1 ≤ k ≤ m, 
we have EN−SEI

1 (P1(t ′2)) ∩ EN−SEI
2 (P2(t ′2)) = {q17, q20} ∩ {q18, q20} =

{q20}. In addition, by Proposition  10, G is not intersection-based 
codiagnosable with respect to K2.
7

Fig. 6. Finite automaton G.

Fig. 7. Subautomaton GN1 .

Fig. 8. Relevant parts of (a) refined model G ∥ G̃N1m  and (b) subautomaton GN1 .

Fig. 9. Subautomaton GN2 .

Fig. 10. Relevant parts of (a) refined model G ∥ G̃N21  and (b) subautomaton GN2 .
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Fig. 11. Subautomaton GN3 .

Fig. 12. Relevant parts of (a) refined model G ∥ G̃N3m  and (b) subautomaton GN3 .

5.4. Comparison with N-inference diagnosability

We compare N-SEI codiagnosability and F-SEI codiagnosability 
with N-inference diagnosability. We obtain the following propo-
sition on 0-inference diagnosability.

Proposition 20.  For a regular sublanguage K ⊆ L(G) generated 
by a subautomaton GN = (QN , Σ, δN , q0) of G, if G is 0-inference 
diagnosable with respect to K, then it is N-SEI codiagnosable or F-SEI 
codiagnosable with respect to K.

Proof.  There exists m ∈ N such that F1(m) = ∅ or H1(m) = ∅. 
First, we consider the case where F1(m) = ∅. Then, for any 
s ∈ L(G) ∩ (L(G) − K )Σ≥m = F0(m), there exists i ∈ I such 
that s /∈ P−1i Pi(H0(m)) = P−1i Pi(K ). For such i ∈ I , we have 
Pi(s) /∈ Pi(L(GN )), which implies EN−SEI

i (Pi(s)) = ∅. Thus, G is N-
SEI codiagnosable. Next, we consider the case where H1(m) = ∅. 
Then, for any s ∈ K = H0(m), there exists i ∈ I such that 
s /∈ P−1i Pi(F0(m)) = P−1i Pi(L(G) ∩ (L(G) − K )Σ≥m). For such 
i ∈ I , we have Pi(s) /∈ Pi(L(G) ∩ (L(G) − K )Σ≥m), which implies 
EF−SEI
i (Pi(s),m) = ∅. Thus, G is F-SEI codiagnosable. □

As shown in the following example, the reverse implication 
of Proposition  20 does not necessarily hold, and, for any N ≥ 1, 
N-inference diagnosability is incomparable with N-SEI codiagnos-
ability and F-SEI codiagnosability.

Example 21.  We consider the setting of Example  19. As shown 
in Example  19, G is N-SEI codiagnosable and F-SEI codiagnosable 
with respect to the languages K1 and K2, respectively. However, 
for K1, we have adf1om, aef1om ∈ Fk(m) and aom, aedom ∈ Hk(m)
for any m ∈ N and any k ∈ N. It follows that, for any N ∈ N, 
G is not N-inference diagnosable with respect to K1. For K2, we 
have bf2om, bedf2om ∈ Fk(m) and bdom, beom ∈ Hk(m) for any 
m ∈ N and any k ∈ N. Thus, for any N ∈ N, G is not N-
inference diagnosable with respect to K2. To detect the occurrence 
of f1 (respectively, f2) correctly, the N-SEI (respectively, F-SEI) 
architecture should be used.
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We consider the subautomaton GN3  of G that is obtained by 
removing the transition labeled by the event f3 and the state 
q25, as shown in Fig.  11. Let K3 denote its generated language. 
Relevant parts of the refined model G ∥ G̃N3m  (m ∈ N) and the 
subautomaton GN3  are shown in Fig.  12(a) and (b), respectively. 
In the case of m = 1, we have F2(1) = ∅ and H2(1) = {cok |
k ≥ 1} for K3. Since F2(1) = ∅, G is N-inference diagnosable 
with respect to K3 for any N ≥ 1. However, G is not N-SEI 
codiagnosable with respect to K3. For any m ∈ N, we consider 
s3 = cg1f3om ∈ L(G)∩ (L(G)−K3)Σ≥m and any prefix t3 ∈ pr({s3}). 
If t3 ∈ K3, then δN3 (q0, t3) ∈ EN−SEI

1 (P1(t3)) ∩ EN−SEI
2 (P2(t3)). In 

the case of t3 = cg1f3, we have EN−SEI
1 (P1(t3)) ∩ EN−SEI

2 (P2(t3)) =
{q22, q23} ∩ {q21, q22, q23} = {q22, q23}. Moreover, in the case of 
t3 = cg1f3ok, where 1 ≤ k ≤ m, we have EN−SEI

1 (P1(t3)) ∩
EN−SEI
2 (P2(t3)) = {q26} ∩ {q24, q26} = {q26}. Thus, G is not N-SEI 

codiagnosable with respect to K3. Furthermore, for any m ∈ N, 
we have EF−SEI

1 (P1(com),m) ∩ EF−SEI
2 (P2(com),m) = {(q25, qdm)} ∩

{(q25, qdm)} = {(q25, qdm)} for com ∈ K3, which implies that G is 
not F-SEI codiagnosable with respect to K3. Therefore, to detect 
the occurrence of f3 correctly, the inference-based architecture 
of Takai and Kumar (2017) should be employed.

Example  21 shows that the N-SEI and F-SEI architectures and 
the inference-based architecture compliment each other.

6. Verification of N-SEI codiagnosability and F-SEI codiagnos-
ability

In this section, we present methods for effectively verifying 
N-SEI codiagnosability and F-SEI codiagnosability.

6.1. Verification of N-SEI codiagnosability

For a regular sublanguage K ⊆ L(G) generated by a subau-
tomaton GN = (QN , Σ, δN , q0) of G = (Q , Σ, δ, q0), we consider 
the synchronous composition (G ∥ G̃N ) ∥ (∥i∈I Obsi(GN )) =
(XN , Σ, δTN , xN0) of the refined model G ∥ G̃N = (Q × Q̃N , Σ, α,
(q0, q0)) and the n observers Obsi(GN ) = (QNobsi , Σo,i, δNobsi , qNobsi,0)
(i = 1, 2, . . . , n) of GN , where the state set is

XN = (Q × Q̃N )×
∏
i∈I

QNobsi ,

the initial state is
xN0 = ((q0, q0), qNobs1,0, qNobs2,0, . . . , qNobsn,0),

and the transition function δTN : XN ×Σ → XN  is given as
δTN (xN , σ )

=

{ x′N , if δ(q, σ )!∧
[(∀i ∈ I)σ ∈ Σo,i ⇒ δNobsi (qNobsi , σ )!]

undefined, otherwise

for each xN = ((q, q̃N ), qNobs1 , qNobs2 , . . . , qNobsn ) ∈ XN  and each 
σ ∈ Σ , where

x′N = (α((q, q̃N ), σ ), q′Nobs1 , q
′

Nobs2 , . . . , q
′

Nobsn )

and

q′Nobsi =
{

δNobsi (qNobsi , σ ), if σ ∈ Σo,i
qNobsi , otherwise

for each i ∈ I . It holds that L((G ∥ G̃N ) ∥ (∥i∈I Obsi(GN ))) =
L(G) ∩ (

⋂
i∈I P

−1
i (L(Obsi(GN )))) = L(G) ∩ (

⋂
i∈I P

−1
i Pi(L(GN ))).

To verify N-SEI codiagnosability, we construct a subautoma-
ton, denoted by TN , of (G ∥ G̃N ) ∥ (∥i∈I Obsi(GN )) as follows: 

T = (X̂ , Σ, δ̂ , x ), (9)
N N TN N0
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where the state set is
X̂N = {((q, q̃N ), qNobs1 , qNobs2 , . . . , qNobsn ) ∈ XN |⋂

i∈I

qNobsi ̸= ∅}

and the transition function δ̂TN : X̂N ×Σ → X̂N  is given as

δ̂TN (x̂N , σ ) =
{

δTN (x̂N , σ ), if δTN (x̂N , σ ) ∈ X̂N
undefined, otherwise.

for each x̂N ∈ X̂N  and each σ ∈ Σ . Since q0 ∈
⋂

i∈I qNobsi,0 ̸= ∅, 
we have xN0 ∈ X̂N , which implies that the subautomaton TN  is 
well-defined.

The following lemma shows that TN  generates a string s ∈ L(G)
such that 

⋂
i∈I E

N−SEI
i (Pi(s)) ̸= ∅, and will be used to prove the 

correctness of the method developed later in Theorem  23 to verify 
N-SEI codiagnosability.

Lemma 22.  For a regular sublanguage K ⊆ L(G) generated 
by a subautomaton GN = (QN , Σ, δN , q0) of G, we consider the 
subautomaton TN  of (G ∥ G̃N ) ∥ (∥i∈I Obsi(GN )) given by (9). For 
any s ∈ L(TN ), it holds that 

⋂
i∈I E

N−SEI
i (Pi(s)) ̸= ∅.

Proof.  For any s ∈ L(TN ) ⊆ L((G ∥ G̃N ) ∥ (∥i∈I Obsi(GN ))), we have 
Pi(s) ∈ L(Obsi(GN )) = Pi(L(GN )) for any i ∈ I and
δ̂TN (xN0, s)
= (α((q0, q0), s), qNobs1 , qNobs2 , . . . , qNobsn ),

where qNobsi = δNobsi (qNobsi,0, Pi(s)) = EGN ,i(Pi(s)) for each i ∈ I . For 
any i ∈ I , since Pi(s) ∈ Pi(L(GN )), we have qNobsi = EN−SEI

i (Pi(s)). It 
follows from δ̂TN (xN0, s) ∈ X̂N  that 

⋂
i∈I E

N−SEI
i (Pi(s)) =

⋂
i∈I qNobsi

̸= ∅. □

By Lemma  22, the violation of N-SEI codiagnosability can be 
characterized by the existence of an arbitrarily long failure string 
s ∈ L(G) − K  that is generated by TN . Based on this observation, 
the following theorem is obtained.

Theorem 23.  For a regular sublanguage K ⊆ L(G) generated 
by a subautomaton GN = (QN , Σ, δN , q0) of G, G is not N-SEI 
codiagnosable with respect to K  if and only if there exists a reachable 
cycle x̂(0)N

σ (0)
−−→ x̂(1)N

σ (1)
−−→ · · · x̂(l−1)N

σ (l−1)
−−−→ x̂(0)N  (l ≥ 1) such 

that q̃(h)N = qd for any h ∈ {0, 1, . . . , l − 1}, where x̂(h)N =

((q(h), q̃(h)N ), q(h)Nobs1
, q(h)Nobs2

, . . . , q(h)Nobsn ) for each h ∈ {0, 1, . . . , l− 1}, 
in the subautomaton TN  of (G ∥ G̃N ) ∥ (∥i∈I Obsi(GN )) given by (9).

Proof.  First, we prove the sufficiency part. We consider any 
reachable cycle x̂(0)N

σ (0)
−−→ x̂(1)N

σ (1)
−−→ · · · x̂(l−1)N

σ (l−1)
−−−→ x̂(0)N  (l ≥ 1) 

such that q̃(h)N = qd for any h ∈ {0, 1, . . . , l − 1} in TN . Then, 
there exists s ∈ L(TN ) such that δ̂TN (xN0, s) = x̂(0)N . Since q̃(0)N = qd, 
we have s ∈ L(G) − K . Letting t = σ (0)σ (1)

· · · σ (l−1), we have 
stm ∈ L(TN )∩ (L(G)∩ (L(G)− K )Σ≥m) for any m ∈ N. We consider 
any u ∈ pr({stm}). Since u ∈ L(TN ), by Lemma  22, we have ⋂

i∈I E
N−SEI
i (Pi(u)) ̸= ∅. Thus, G is not N-SEI codiagnosable.

Next, we prove the necessity part. We consider any m ∈ N
such that m ≥ |X̂N |. Since G is not N-SEI codiagnosable, there 
exists s ∈ L(G) ∩ (L(G) − K )Σ≥m such that, for any t ∈ pr(s), ⋂

i∈I E
N−SEI
i (Pi(t)) ̸= ∅. For each i ∈ I , since EN−SEI

i (Pi(t)) ̸= ∅, 
we have Pi(t) ∈ Pi(L(GN )) and EN−SEI

i (Pi(t)) = EGN ,i(Pi(t)) =
δNobsi (qNobsi,0, Pi(t)). It holds that t ∈ L(G) ∩ (

⋂
i∈I P

−1
i Pi(L(GN ))) =

L((G ∥ G̃N ) ∥ (∥i∈I Obsi(GN ))) and 
⋂

i∈I δNobsi (qNobsi,0, Pi(t)) ̸= ∅, 
which implies s ∈ L(T̂N ). Since s ∈ L(G)∩ (L(G)− K )Σ≥m, s can be 
written as s = uv, where u ∈ L(G)−K  and |v| ≥ m ≥ |X̂ |. Letting 
N
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Fig. 13. A part of the subautomaton TN of (G ∥ G̃N2 ) ∥ (∥i∈I Obsi(GN2 )).

δ̂TN (xN0, u) = ((q, q̃N ), qNobs1 , qNobs2 , . . . , qNobsn ), since u ∈ L(G)−K , 
we have q̃N = qd. By |v| ≥ |X̂N |, there exists a reachable cycle 
x̂(0)N

σ (0)
−−→ x̂(1)N

σ (1)
−−→ · · · x̂(l−1)N

σ (l−1)
−−−→ x̂(0)N  (l ≥ 1) such that q̃(h)N = qd

for any h ∈ {0, 1, . . . , l− 1} in TN . □

Remark 24.  Since the number of reachable states of the sub-
automaton TN  of (G ∥ G̃N ) ∥ (∥i∈I Obsi(GN )) is at most 2|Q | ×
2n|Q |, the complexity of constructing the reachable part of TN  is 
O(|Q |×2n|Q |

×|Σ |). Theorem  23 shows that N-SEI codiagnosability 
can be verified by examining all maximal strongly connected 
components of TN . The computational complexity of computing 
all maximal strongly connected components of TN  is O(|Q | ×
2n|Q |
×|Σ |). Thus, the computational complexity of verifying N-SEI 

codiagnosability by Theorem  23 is O(|Q | × 2n|Q |
× |Σ |).

Remark 25.  In Viana and Basilio (2019), the synchronous compo-
sition (G ∥ G̃N ) ∥ (∥i∈I Obsi(G ∥ G̃N )) of the refined model G ∥ G̃N
and its observers Obsi(G ∥ G̃N ) (i = 1, 2, . . . , n) is used to verify 
disjunctive codiagnosability. In this paper, the observers Obsi(GN )
(i = 1, 2, . . . , n) of the normal behavior model GN , instead of 
Obsi(G ∥ G̃N ), are used for verifying N-SEI codiagnosability.

Example 26.  We consider the setting of Example  19. For the reg-
ular sublanguage K2 ⊆ L(G) generated by the subautomaton GN2

of G, a part of the subautomaton TN  of (G ∥ G̃N2 ) ∥ (∥i∈I Obsi(GN2 ))
is shown in Fig.  13. This part shows that there exists a reach-
able cycle ((q19, qd), {q17, q20}, {q18, q20})

o
−→ ((q19, qd), {q17, q20},

{q18, q20}) in TN . By Theorem  23, we can conclude that G is not 
N-SEI codiagnosable with respect to K2, as shown in Example  19.

6.2. Verification of F-SEI codiagnosability

For a regular sublanguage K ⊆ L(G) generated by a subau-
tomaton GN = (QN , Σ, δN , q0) of G = (Q , Σ, δ, q0), we use the 
verifier (Wang et al., 2007; Yamamoto & Takai, 2014) that was 
constructed to verify conjunctive codiagnosability. It is a finite 
automaton 

VF = (XF , ΣF , δVF , xF0) (10)

that consists of GN  and n copies of G ∥ G̃N , which are used to 
trace a normal string in K  and n indistinguishable failure strings 
in L(G)− K , respectively. Each element of VF  is given as follows:

• The state set is

XF = QN

× (Q × Q̃N )× (Q × Q̃N )× . . .× (Q × Q̃N )   .
n times
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• The initial state is
xF0 = (q0, (q0, q0), (q0, q0), . . . , (q0, q0)).

• The event set is
ΣF = {(σ , σ̃1, σ̃2, . . . , σ̃n) ∈ Σ̃n+1

|

σ ∈ Σ ∧ [(∀i ∈ I)σ̃i = Pi(σ )]}
∪{(ε, σ̃1, σ̃2, . . . , σ̃n) ∈ Σ̃n+1

|

(∃i ∈ I)
σ̃i ∈ Σ −Σo,i ∧ [(∀j ∈ I − {i})σ̃j = ε]},

where

Σ̃n+1
= (Σ ∪ {ε})× (Σ ∪ {ε})× . . .× (Σ ∪ {ε})  

n+ 1 times

.

• For any
xF = (qN , (q1, q̃N1), (q2, q̃N2), . . . , (qn, q̃Nn)) ∈ XF

and any
σF = (σ̃ , σ̃1, . . . , σ̃n) ∈ ΣF ,

δVF (xF , σF )! if the following two conditions hold:

– σ̃ ̸= ε⇒ δN (qN , σ̃ )!, and
– (∀i ∈ I)σ̃i ̸= ε⇒ δ(qi, σ̃i)!.

If δVF (xF , σF )!, then
δVF (xF , σF )
= (q′N , (q′1, q̃

′

N1), (q
′

2, q̃
′

N2), . . . , (q
′

n, q̃
′

Nn)),

where

q′N =
{

δN (qN , σ̃ ), if σ̃ ̸= ε

qN , otherwise

and, for any i ∈ I ,

(q′i, q̃
′

Ni) =
{

α((qi, q̃Ni), σ̃i), if σ̃i ̸= ε

(qi, q̃Ni), otherwise.

For any xF = (qN , (q1, q̃N1), (q2, q̃N2), . . . , (qn, q̃Nn)) ∈ XF , we let 
π (xF ) = qN  and πi(xF ) = (qi, q̃Ni) for each i ∈ I . Similarly, for any 
σF = (σ̃ , σ̃1, . . . , σ̃n) ∈ ΣF , we let π (σF ) = σ̃  and πi(σF ) = σ̃i for 
each i ∈ I . In addition, for each sF ∈ Σ∗F , π (sF ) and πi(sF ) for any 
i ∈ I are defined as

π (sF ) =
{

ε, if sF = ε

π (σF1)π (σF2) · · ·π (σF |sF |), otherwise,

and

πi(sF ) =
{

ε, if sF = ε

πi(σF1)πi(σF2) · · ·πi(σF |sF |), otherwise,

where sF = σF1σF2 · · · σF |sF | if sF ̸= ε. By the construction of VF , 
the following lemma is straightforwardly obtained (Yamamoto & 
Takai, 2014), so its proof is omitted.

Lemma 27.  For a regular sublanguage K ⊆ L(G) generated by 
a subautomaton GN = (QN , Σ, δN , q0) of G, we consider the finite 
automaton VF  given by (10). Then, for any sF ∈ L(VF ), it holds that 
π (sF ) ∈ K, πi(sF ) ∈ L(G), Pi(π (sF )) = Pi(πi(sF )) for any i ∈ I , and
δVF (xF0, sF ) = (qN , (q1, q̃N1), (q2, q̃N2), . . . , (qn, q̃Nn)),

where qN = δN (q0, π (sF )) and, for any i ∈ I , (qi, q̃Ni) = α((q0, q0),
πi(sF )). In addition, for any s ∈ K  and any s1, s2, . . . , sn ∈ L(G), if 
Pi(s) = Pi(si) for any i ∈ I , then there exists sF ∈ L(VF ) such that 
π (s ) = s and π (s ) = s  for any i ∈ I .
F i F i
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For any m ∈ N and any sF ∈ L(VF ), the following lemma shows 
a condition under which 

⋂
i∈I E

F−SEI
i (Pi(π (sF )),m) ̸= ∅ holds.

Lemma 28.  For a regular sublanguage K ⊆ L(G) generated by 
a subautomaton GN = (QN , Σ, δN , q0) of G, we consider the finite 
automaton VF  given by (10). For any m ∈ N and any sF ∈ L(VF ), if 
πi(sF ) ∈ L(G) ∩ (L(G)− K )Σ≥m for any i ∈ I and πi(δVF (xF0, sF )) =
πj(δVF (xF0, sF )) for any i, j ∈ I , then 

⋂
i∈I E

F−SEI
i (Pi(π (sF )),m) ̸= ∅.

Proof.  For any m ∈ N and any sF ∈ L(VF ), we suppose that 
πi(sF ) ∈ L(G) ∩ (L(G)− K )Σ≥m for any i ∈ I and πi(δVF (xF0, sF )) =
πj(δVF (xF0, sF )) for any i, j ∈ I . For any i ∈ I , by Lemma  27, we have 
Pi(π (sF )) = Pi(πi(sF )) and πi(δVF (xF0, sF )) = α((q0, q0), πi(sF )). 
Let α((q0, q0), πi(sF )) = (qi, q̃Ni) for any i ∈ I . Since Pi(π (sF )) =
Pi(πi(sF )) and πi(sF ) ∈ L(G)∩ (L(G)−K )Σ≥m, we have αm((q0, q0),
πi(sF )) = (qi, qdm) ∈ EG∥G̃Nm ,i(Pi(π (sF ))) ∩ (Q × {qdm}) = EF−SEI

i
(Pi(π (sF )),m). Since πi(xF ) = πj(xF ), where xF = δVF (xF0, sF ), for 
any i, j ∈ I , we can let q̂ = qi for any i ∈ I . It follows that 
(q̂, qdm) ∈

⋂
i∈I E

F−SEI
i (Pi(π (sF )),m) ̸= ∅. □

By Lemma  28, the violation of F-SEI codiagnosability can be 
characterized by the condition that, for any m ∈ N, there exists 
sF ∈ L(VF ) that satisfies πi(sF ) ∈ L(G) ∩ (L(G) − K )Σ≥m for any 
i ∈ I and πi(δVF (xF0, sF )) = πj(δVF (xF0, sF )) for any i, j ∈ I . Such 
sF ∈ L(VF ) must visit cycles so that, for each i ∈ I , πi(sF ) can be 
extended to an arbitrarily long failure string. In general, multiple 
cycles need to be executed sequentially to elongate πi(sF ) for all 
i ∈ I . Based on this observation, we construct a nondeterministic 
acyclic automaton 
VF = (YF , ΣF , ξVF , yF0) (11)

from VF , which has the same event set ΣF  as VF  (Yamamoto 
& Takai, 2014). Except for ΣF , each element of VF  is given as 
follows:

• The state set YF  is the set of all maximal strongly connected 
components of VF .
• The initial state yF0 ∈ YF  is a maximal strongly connected 

component of VF  such that xF0 ∈ yF0.
• The nondeterministic transition function ξVF : YF × ΣF →

2YF  is given as, for any yF ∈ YF  and any σF ∈ ΣF ,

ξVF (yF , σF )
= {y′F ∈ YF | yF ̸= y′F
∧[(∃xF ∈ yF )(∃x′F ∈ y′F )δVF (xF , σF ) = x′F ]}.

A labeling function JF : YF → 2I is defined as
JF (yF ) = {i ∈ I | [(∃xF ∈ yF )πi(xF ) ∈ Q × {qd}]

∧[(∃xF , x′F ∈ yF )(∃σF ∈ ΣF )

δVF (xF , σF ) = x′F ∧ πi(σF ) ̸= ε]} (12)

for each yF ∈ YF  (Yamamoto & Takai, 2014). For any i ∈ I , if 
i ∈ JF (yF ), then πi(sF ) can be extended to an arbitrarily long 
failure string by executing a cycle that includes σF ∈ ΣF  with 
πi(σF ) ̸= ε an arbitrary number of times. We consider any path 
pVF : yF0

σF0
−→ yF1

σF1
−→ · · · yF (l−1)

σF (l−1)
−−−→ yFl (l ≥ 1) that begins at 

the initial state yF0 in VF . Its label JF (pVF ) ∈ 2I is given as

JF (pVF ) =
⋃

h∈{1,2,...,l}

JF (yFh).

Then, the condition JF (pVF ) = I ensures that, by visiting these 
maximal strongly connected components yFh (h = 1, 2, . . . , l) and 
executing appropriate cycles an arbitrary number of times, πi(sF )
can be extended to an arbitrarily long failure string for any i ∈ I .

The following theorem presents how to verify F-SEI-codiag-
nosability using V .
F
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Theorem 29.  For a regular sublanguage K ⊆ L(G) generated 
by a subautomaton GN = (QN , Σ, δN , q0) of G, G is not F-SEI 
codiagnosable with respect to K  if and only if there exists a path 
pVF : yF0

σF0
−→ yF1

σF1
−→ · · · yF (l−1)

σF (l−1)
−−−→ yFl (l ≥ 1) that begins at 

the initial state yF0 in VF  given by (11) such that 
JF (pVF ) = I (13)

and 
(∃xF ∈ yFl)(∀i, j ∈ I)πi(xF ) = πj(xF ). (14)

Proof.  First, we prove the sufficiency part. We consider any path 
pVF : yF0

σF0
−→ yF1

σF1
−→ · · · yF (l−1)

σF (l−1)
−−−→ yFl (l ≥ 1) in VF  such that 

(13) and (14) hold. Then, there exists a path xF0
σ
(0)
F
−−→ x(1)F

σ
(1)
F
−−→

· · · x(l
′
−1)

F

σ
(l′−1)
F
−−−→ x(l

′)
F  (l′ ≥ 1) in VF  such that the following two 

conditions hold:
• (∀i ∈ I)(∃hi1, hi2, hi3 ∈ N)[0 < hi1 ≤ hi2 < hi3 ≤ l′]∧ [x(hi1)F =

x(hi3)F ] ∧ [πi(x
(hi2)
F ) ∈ Q × {qd}] ∧ [πi(σ

(hi2)
F ) ̸= ε], and

• (∀i, j ∈ I)q(l
′)

i = q(l
′)

j ,

where πi(x
(l′)
F ) = (q(l

′)
i , q̃(l

′)
Ni ) for each i ∈ I .

We consider any m ∈ N. By Algorithm 12, we construct 
sF ∈ Σ∗F  and tF ,i ∈ Σ∗F  for each i ∈ I . Then, we have sF , tF ,i ∈

L(VF ) and tF ,i ∈ pr({sF }) for each i ∈ I . Let s = π (sF ). By 
Lemma  27, we have s ∈ K . For each i ∈ I , since tF ,i ∈

pr({sF }), there exists uF ,i ∈ Σ∗F  such that sF = tF ,iuF ,i. Let 
ti = πi(tF ,i) and ui = πi(uF ,i). By the construction of tF ,i in 
Algorithm 1 and Lemma  27, we have δVF (xF0, tF ,i) = x(hi1)F  and 
α((q0, q0), ti) = πi(x

(hi1)
F ) = πi(x

(hi3)
F ). Since πi(x

(hi2)
F ) ∈ Q × {qd}, 

we have α((q0, q0), ti) ∈ Q × {qd}, which implies ti ∈ L(G) − K . 
In addition, since |ui| ≥ m by πi(σ

(hi2)
F ) ̸= ε, we have πi(sF ) =

tiui ∈ L(G)∩ (L(G)−K )Σ≥m. Furthermore, by Lemma  27, we have 
πi(δVF (xF0, sF )) = α((q0, q0), tiui) = (q(l

′)
i , qd). For any i, j ∈ I , since 

q(l
′)

i = q(l
′)

j , we have πi(δVF (xF0, sF )) = πj(δVF (xF0, sF )). It follows 
from Lemma  28 that 

⋂
i∈I E

F−SEI
i (Pi(s),m) ̸= ∅. Therefore, G is not 

F-SEI codiagnosable.
We next prove the necessity part. Since G is not F-SEI co-

diagnosable, for any m ∈ N, there exists s ∈ K  such that ⋂
i∈I E

F−SEI
i (Pi(s),m) ̸= ∅. We consider any (q̂, qdm) ∈

⋂
i∈I E

F−SEI
i

(Pi(s),m) =
⋂

i∈I EG∥G̃Nm ,i(Pi(s)) ∩ (Q × {qdm}). For each i ∈ I , 
there exists si ∈ L(G) ∩ (L(G) − K )Σ≥m such that Pi(s) = Pi(si)
and αm((q0, q0), si) = (q̂, qdm). Then, by Lemma  27, there exists 
sF ∈ L(VF ) such that π (sF ) = s and πi(sF ) = si for each i ∈ I . For 
any i ∈ I , by si ∈ L(G) ∩ (L(G) − K )Σ≥m, we have si ̸= ε, which 
implies sF ̸= ε. We let sF = σ

(0)
F σ

(1)
F · · · σ

(l−1)
F  (l ≥ 1).

In the case of m > |XF |, we consider the path pVF : x
(0)
F

σ
(0)
F
−−→

x(1)F

σ
(1)
F
−−→ · · · x(l−1)F

σ
(l−1)
F
−−−→ x(l)F , where x(0)F = xF0, obtained by 

executing sF  in VF . For each i ∈ I , since πi(sF ) = si, by Lemma 
27, we have πi(x

(l)
F ) = α((q0, q0), si) = (q̂, qd). For the path pVF , 

there exists the path pVF : yF0
σF0
−→ yF1

σF1
−→ · · · yF (l′−1)

σF (l′−1)
−−−−→ yFl′

(l′ ≥ 1) in VF  such that
{x(0)F , . . . , x(h0)F } = yF0,

{x(h0+1)F , . . . , x(h1)F } = yF1,

...

2 Algorithm 1 is presented to show a procedure for constructing the strings 
s ∈ Σ∗ and t ∈ Σ∗ for each i ∈ I .
F F F ,i F
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Algorithm 1 Constructions of sF , tF ,i ∈ Σ∗F  (∀i ∈ I)

Require: σ
(0)
F σ

(1)
F · · · σ

(l′−1)
F , hi1, hi3 (∀i ∈ I), m

1: sF ← ε, tF ,i ← ε (∀i ∈ I) 
2: h← 0
3: while h ≤ l′ − 1 do 
4: Φ(h)← {i ∈ I | h = hi1}

5: while Φ(h) ̸= ∅ do 
6: Pick any i ∈ Φ(h)
7: tF ,i ← sF
8: sF ← sF (σ

(hi1)
F σ

(hi1+1)
F · · · σ

(hi3−1)
F )m

9: Φ(h)← Φ(h)− {i}
10: end while
11: sF ← sFσ

(h)
F

12: h← h+ 1
13: end while

{x
(hl′−1+1)
F , . . . , x(l)F } = yFl′

for some h0, h1, . . . , hl′−1 ∈ {0, 1, . . . , l − 1} such that 0 ≤ h0 <
h1 < · · · < hl′−1 < l.

We show that the path pVF  satisfies (13). For each i ∈ I , since 
si ∈ L(G) ∩ (L(G) − K )Σ≥m, it can be written as si = tiui, where 
ti ∈ L(G) − K  and |ui| ≥ m > |XF |. By |ui| ≥ m > |XF |, there 
exist hi1, hi2, hi3 ∈ N that satisfy 0 < hi1 ≤ hi2 < hi3 ≤ l, 
x(hi1)F = x(hi3)F , πi(σ

(hi2)
F ) ̸= ε, and ti ∈ pr(πi(σ

(0)
F σ

(1)
F · · · σ

(hi1−1)
F )). In 

addition, since ti ∈ L(G)−K  and ti ∈ pr(πi(σ
(0)
F σ

(1)
F · · · σ

(hi1−1)
F )) ⊆

pr(πi(σ
(0)
F σ

(1)
F · · · σ

(hi2−1)
F )), we have πi(x

(hi2)
F ) = α((q0, q0), πi

(σ (0)
F σ

(1)
F · · · σ

(hi2−1)
F )) ∈ Q×{qd}. It follows that i ∈ JF (yFh) for some 

h ∈ {1, 2, . . . , l′}. Thus, we have pVF  satisfies (13). In addition, 
since πi(x

(l)
F ) = (q̂, qd) for each i ∈ I , pVF  satisfies (14). □

Remark 30.  Conjunctive codiagnosability (Wang et al., 2007) 
is verified by testing the existence of a path pVF  in the non-
deterministic acyclic automaton VF  such that the condition (13) 
holds (Yamamoto & Takai, 2014). Theorem  29 shows that, by 
additionally imposing (14), F-SEI codiagnosability can be verified.

Remark 31.  The number of reachable states of the finite automa-
ton VF  is at most 2n

|Q |n+1, and the number of events of VF  is 
at most (n+ 1)|Σ |. Therefore, the complexity of constructing VF
is O(2n

|Q |n+1 × n|Σ |). To construct the nondeterministic acyclic 
finite automaton VF , we need to compute all maximal strongly 
connected components of VF . Its computational complexity is 
O(2n
|Q |n+1 × n|Σ |).

Similar to verification of conjunctive codiagnosability (Wang 
et al., 2015; Yamamoto & Takai, 2014) and N-inference diagnos-
ability (Takai & Kumar, 2017) that involves multiple arbitrarily 
long failure strings, by Theorem  29, F-SEI codiagnosability can be 
verified by exploring paths pVF : yF0

σF0
−→ yF1

σF1
−→ · · ·

σF (l−1)
−−−→ yFl

(l ≥ 1) of VF  which end with deadlocking states. Since the events 
σFh (h = 0, 1, . . . , l − 1) are not relevant to the conditions (13) 
and (14), the number of such paths that have to be explored is 
at most (|YF | − 1)!, where YF  is the state set of VF  and |YF | is 
at most 2n

|Q |n+1. To verify whether there exists a path pVF  that 
satisfies (13) and (14), we have to construct the labeling function 
JF : YF → 2I defined by (12) and identify all states yF ∈ YF  that 
satisfy 
(∃xF ∈ yF )(∀i, j ∈ I)πi(xF ) = πj(xF ). (15)

Its computational complexity is O(|YF |×n×|XF |×|ΣF |). Once the 
labeling function JF : YF → 2I is constructed and all states yF ∈ YF
that satisfy (15) are identified, the computational complexity of 
verifying the existence of a path pVF  that satisfies (13) and (14) 
is O((|Y | − 1)!).
F
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Fig. 14. A part of the finite automaton VF .

Example 32.  We consider the setting of Example  19. For the 
regular language K1 ⊆ L(G) generated by the subautomaton 
GN1  of G, a part of the finite automaton VF  is shown in Fig.  14. 
Letting xF = (q9, (q10, qd), (q10, qd)), by Fig.  14, a singleton state 
{xF } is reachable in the nondeterministic acyclic automaton VF . 
We consider any path pVF  that ends with {xF }. Then, we have 
π1(xF ) = π2(xF ) = (q10, qd) ∈ Q × {qd}. In addition, we have 
δVF (xF , (o, o, o)) = xF  for (o, o, o) ∈ ΣF  with π1((o, o, o)) =
π2((o, o, o)) = o ̸= ε, as shown in Fig.  14. It follows that JF (pVF ) =
I and π1(xF ) = π2(xF ). By Theorem  29, we can conclude that G is 
not F-SEI codiagnosable with respect to K1, as shown in Example 
19.

7. Conclusion

The two intersection-based decentralized diagnosis architec-
tures, named the N-SEI architecture and the F-SEI architecture, 
were considered. The notions of N-SEI codiagnosability and F-
SEI codiagnosability were defined for the N-SEI architecture and 
the F-SEI architecture, respectively, and compared with the ex-
isting notions of codiagnosability. Then, methods for verifying N-
SEI codiagnosability and F-SEI codiagnosability were developed. 
To verify F-SEI codiagnosability, paths of the acyclic automa-
ton constructed for verifying F-SEI codiagnosability are explored. 
Developing an efficient exploration method for this purpose is 
important future work.
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