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In this paper, two intersection-based architectures, named the normal-state-estimator-intersection-
based architecture (N-SEI architecture) and the failure-state-estimator-intersection-based architecture
(F-SEI architecture), are examined for decentralized diagnosis of discrete event systems. For each of
these architectures, the corresponding notion of codiagnosability is defined. These defined notions of
codiagnosability are incomparable with inference diagnosability for the inference-based architecture. In
addition, codiagnosability for the N-SEI architecture is weaker than the existing notion of intersection-
based codiagnosability, while codiagnosability for the F-SEI architecture is incomparable with it.
For each of the N-SEI and F-SEI architectures, a method for verifying the corresponding notion of
codiagnosability is developed.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For discrete event systems (DESs), the failure diagnosis frame-
work introduced by Sampath et al. (1995) has been extended to
the decentralized setting, where multiple local diagnosers jointly
diagnose the system so that the occurrence of any failure is
correctly detected within a certain number of steps. Several archi-
tectures have been developed for decentralized diagnosis. In the
disjunctive architecture (Debouk et al., 2000; Qiu & Kumar, 2006),
the global failure decision is issued if at least one local diagnoser
issues a local failure decision. On the other hand, in the conjunc-
tive architecture (Wang et al., 2007), if all local diagnosers issue
local failure decisions, then the global failure decision is issued.
The notions of disjunctive codiagnosability (Qiu & Kumar, 2006)
and conjunctive codiagnosability (Wang et al., 2007) were defined
as the diagnosability properties for the disjunctive and conjunc-
tive architectures, respectively. Later, inference-based approaches
have been developed (Kumar & Takai, 2009; Takai & Kumar, 2017;
Wang et al.,, 2007). In the inference-based approaches, each local
diagnoser issues a local diagnosis decision by inferring diagnosis
decisions of other local diagnosers. The notion of N-inference
diagnosability, where N is a nonnegative integer that represents
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the level of inference, characterizes the class of diagnosable sys-
tems in the inference-based architecture of Takai and Kumar
(2017), which is more general than the conditional disjunctive
and conjunctive architectures of Wang et al. (2007). However, for
a system that is not N-inference diagnosable, another architecture
has to be employed to diagnose it.

In the decentralized architectures mentioned above, each local
diagnoser issues a local diagnosis decision. In Debouk et al.
(2000), a decentralized architecture was proposed, where each
local diagnoser sends a certain local state estimate to the coor-
dinator and the coordinator makes the global diagnosis decision
based on the intersection of the received local state estimates,
as shown in Fig. 1. More precisely, each local diagnoser com-
putes the set of all possible states regardless whether they are
reached after the occurrence of a failure, as its local state es-
timate, and if these intersection only includes states reached
after the occurrence of a failure, then the coordinator decides
that a failure has occurred. For this intersection-based architec-
ture, the codiagnosability property, which we call intersection-
based codiagnosability in this paper, was defined and a ver-
ification method was developed for it (Panteli & Hadjicostis,
2013). As shown in this paper, however, intersection-based co-
diagnosability of Panteli and Hadjicostis (2013) should be weak-
ened to characterize diagnosable systems in this intersection-
based architecture. The intersection-based architecture is also
employed for distributed diagnosis by Keroglou and Hadjicostis
(2018). Besides, the intersection-based architecture was devel-
oped for decentralized supervisory control and the correspond-
ing notion of intersection-based coobservability was introduced
by Yin and Lafortune (2016). Interestingly, intersection-based
coobservability is incomparable with N-inference observability

0005-1098/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Intersection-based architecture.

for the inference-based decentralized supervisory control archi-
tecture of Kumar and Takai (2007).

In this paper, we examine two intersection-based architec-
tures, named the normal-state-estimator-intersection-based ar-
chitecture (N-SEI architecture) and the failure-state-estimator-
intersection-based architecture (F-SEI architecture). The main
purpose of examining these two architectures is identifying new
notions of codiagnosability that are different from the existing
ones. In the N-SEI architecture (respectively, F-SEI architecture),
each local diagnoser computes the set of possible states that are
reached by executing normal strings (respectively, executing at
least m events, where m is a given nonnegative integer, after
the occurrence of a failure), as its local state estimate, and if
the intersection of these local state estimates is empty, then the
coordinator decides that a failure has occurred (respectively, a
normal string has occurred or, after the occurrence of a failure,
at most m — 1 events have occurred). The N-SEI architecture
is equivalent to the existing intersection-based architecture in
the sense that the occurrence of a failure is detected in the
N-SEI architecture if and only if it is detected in the existing
intersection-based architecture. However, the state set explored
by local diagnosers to compute their local state estimates in the
N-SEI architecture is smaller than the state set explored by them
in the existing intersection-based architecture. For each of these
architectures, we define the corresponding notion of codiagnos-
ability to characterize diagnosable systems. Codiagnosability for
the N-SEI architecture and that for the F-SEI architecture are in-
comparable, which implies that the N-SEI and F-SEI architectures
complement each other. In addition, they are compared with
the existing notions of codiagnosability. Codiagnosability for the
N-SEI architecture is weaker than intersection-based codiagnos-
ability of Panteli and Hadjicostis (2013), while codiagnosability
for the F-SEI architecture is incomparable with it. An example of
a system that is codiagnosable in the N-SEI architecture but not
characterized by intersection-based codiagnosability of Panteli
and Hadjicostis (2013) is presented. Moreover, codiagnosability
for the N-SEI architecture and that for the F-SEI architecture
are weaker than disjunctive codiagnosability and conjunctive co-
diagnosability, respectively, and incomparable with N-inference
diagnosability for any N > 1. This means that there exists a
system that is diagnosable in the N-SEI or F-SEI architecture
but not diagnosable in the inference-based architecture of Takai
and Kumar (2017). To diagnose such a system, the N-SEI or F-
SEI architecture should be employed. These comparisons justify
developing the N-SEI and F-SEI architectures for decentralized
diagnosis. Then, for each of the N-SEI and F-SEI architectures,
we present a method for verifying the corresponding notion of
codiagnosability.

The present paper is an extended version of the authors’
conference papers (Takai & Yamamoto, 2023, 2024). It contains
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the proofs of the technical results, which were omitted in Takai
and Yamamoto (2023) and Takai and Yamamoto (2024), two mo-
tivating examples, and additional explanations on the presented
results.

2. Preliminaries

A DES to be diagnosed is modeled as a finite automaton G =
(Q, X, 8, qo), where Q is the finite set of states, X' is the finite

set of events, a partial function § : Q x ¥ — Q is the transition
©
function, and qo € Q is the initial state. A sequence ¢© Z—

) (-1
M 25 gD 25 ¢O (1 > 1) of transitions such that

8(gM, oMy = g+ foreach h € {0, 1, ..., 1—1} is called a path of
G, and it is also called a cycle if ¢© = ¢. A finite automaton G’ =
(Q', 2,8, qp) is called a subautomaton of G if Q" € Q, q; = qo,
and, forany g € Q' andany o € X, 8(q,0)! = §(q,0) = 8(q, o).
Let X* be the set of all finite strings of elements of X, including
the empty string ¢. The transition function § can be generalized
to§ : Q x X* — Q in the usual manner. For any ¢ € Q and any
s € X* 4&(q, s)! means that 4(q, s) is defined, that is, §(q,s) € Q
and —4(q, s)! denotes the negation of §(q, s)!. Let N be the set of
all nonnegative integers. For any s € X*, |s| € N denotes its
length, and s™ represents m concatenations of s, where m € N.
Besides, for any m € N, we let ¥=™ = {s € X* | |s| > m}.
A subset of X* is called a language. The generated language of
G, denoted by L(G), is defined as L(G) = {s € X* | 8(qo, 5)!}. Let
Reach(G) be the set of all reachable states of G, that is, Reach(G) =
{g € Q| (Is € LG))g = 6&(qo, s)}. For a language K C X*,
the set of all prefixes of strings in K is denoted by pr(K), that
is, pr(K) = {s € X* | (3t € X*)st € K}. If K = pr(K), then K is
said to be (prefix-)closed. Clearly, the generated language L(G) of
G is nonempty and closed.

In the setting of decentralized diagnosis, n local diagnosers lo-
cally observe the occurrence of an eventin G. Let I = {1, 2, ..., n}
be the index set of local diagnosers. For the ith local diagnoser
(i eI X,; € X is the set of locally observable events, and
P; : ¥* — X*. is the natural projection from X* to X, which
is inductively defined as Pi(e) = ¢ and, for any s € X* and any
o € X, ifo € X,; then Pi(so) = Pi(s)o; otherwise P;(so) = Py(s).
If a string s € L(G) is executed in G, then the locally observable
event string Pi(s) € X, is observed by the ith local diagnoser.
Two strings s,s' € L(G) are said to be indistinguishable (under
P)) if P(s) = Pi(s'). The inverse projection P : X%, — 2% is
defined by Pi’](ti) ={se X* | P(s) = t;} for any t; € X7 . That is,
Pi_l(tj) is the set of strings that are observed as t; by the ith local
diagnoser. For any languages K € X* and K; € X7, let P(K) =
{Pi(s) € X7, | s € K} and Pi’1(K,~) = {s € X* | P(s) € K;}. For any
s € L(G), the estimate of the current state of G with respect to P; is
obtained as &g i(Pi(s)) = {q € Q | (3s; € L(G) N Pf1P,-(s))8(q0, i) =
q}

For each i € I, the unobservable reach is defined as a function
URg,; : 22 — 29 such that URc(Q') = {g € Q | (3¢ € Q')(3s €
(X — 2,1)8(q,s) = q} for each Q' € 22. Then, the observer
automaton Obsi(G) = (Qops;» Xo.i, Sobs;» qobs;,0) Of G is defined,
where the state set is Qups, = 29, the initial state is Qobs;,0 =
URg,i({qo}), and the transition function Seps; : Qops; X Xoi —> Qops;
is given as

qt/)bs,-’ if (3q € qobs; )8(q, Uo,i)!

5"”Sf(q"bs"’G"”'):{ undefined, otherwise,

where g, = URci({q’ € Q | (3g € qonsi)8(d,00:) = q'}),
for each qops; € Qops; and each o,; € X,;. It follows that
L(0bsi(G)) = P{(L(G)) and, for any t; € Pi(L(G)), Sobs;(qobs; 0. ti) =
&:.i(t;) (Cassandras & Lafortune, 2021).
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3. Existing intersection-based architecture

In this section, we review an existing intersection-based ar-
chitecture proposed by Debouk et al. (2000) for decentralized
diagnosis and the corresponding notion of intersection-based co-
diagnosability introduced by Panteli and Hadjicostis (2013).

Let the normal behavior of the system G = (Q, X, §, qo) be
described by a nonempty closed regular sublanguage K < L(G).
The occurrence of an event ¢ € X such that so € [(G) — K for
some s € K models a failure. A string in K (respectively, L(G) — K)
is called a normal (respectively, failure) string. For the sake of
simplicity, we assume in the remainder of the paper that the
system G is deadlock free, that is, for any s € L(G), there exists
o € X such that so € L(G). In addition, we assume without
loss of generality that a nonempty closed regular sublanguage
K C L(G) that models the normal behavior of the system G is
generated by a subautomaton Gy = (Qn, X, 8y, qo) of G. Then, it
holds that L(Gy) = K. To characterize failure strings in L(G) — K,
Gy is augmented by adding a dump state g4 ¢ Qu. The augmented
automaton is defined as Gy = (Qn, X, SN, qo), where the state set
isQy = Qy U {qq}, and the transition function Sy Oy x X — Qy
is given as

3 = ) én(Gn, o), ifgn € Qv A Sn(Gn, o)
On(an. o) = { qa, otherwise

for each gy € Qv and eacho € ¥ (Qiu & Kumar, 2006). It follows
from the definition of the transition function 8y that L(GN) X,
Then, we construct the synchronous composition G || Gy =
(Q xQn, X, , (o, qo)) of G and Gy, where the transition function
a:(Q xQy)x X — (Q x Q) is given as

= — (8(q1 U)v SN(EINv U))! lf 8(q7 J)'
((q, ). o) = { undefined, otherwise

for each (q,qn) € Q x Qv and each o_€ X. Since L(G || 6N) =
L(G)NL(GN) = L(G) N £* = L(G), G || Gy can be considered as a
refined model of the system. In the refined model G || Gy, a string
s € L(G) is a failure one with s € L(G)—K if and only if the second
element of the state reached by the execution of s € L(G) is the
dump state qq.

A certain intersection-based architecture shown in Fig. 1 was
proposed by Debouk et al. (2000) for decentralized diagnosis'.
When s € L(G) is executed in the system G, the ith local diagnoser
observes P;(s), computes the set SGHENJ»(PI‘(S)) of possible states in

the refined model G || Gy, as its local state estimate, and sends it
to the coordinator. Then, the global diagnosis decision is issued
by the coordinator based on the intersection (7. &gc,.i(Pi(S))-
If Mig 5G\|GN,1(P (s)) € Q x {qq}, then the intersection-based
diagnoser decides that a failure has occurred. Note that, since Gy
is a subautomaton of G, a reachable state of G || Gy is of the
form (q, q) or (q, q¢), where g € Q. For this intersection-based
architecture, the notion of intersection-based codiagnosability
introduced by Panteli and Hadjicostis (2013) can be described by
the following condition:

(Im e N)

(Vs € LG) N (L(G) — K)Z=")¥q.q' € Q)

(9. 9). (4" 400} Z [ ) ey alPS)). (1)
iel

The condition (1) is weaker than disjunctive codiagnosability (Pan-
teli & Hadjicostis, 2013).

1 In Debouk et al. (2000), a failure is modeled by the occurrence of an event
in the failure event set Xy. In this paper, the intersection-based architecture
proposed by Debouk et al. (2000) is slightly modified to adapt to the case where
a failure is modeled by the occurrence of an event o € ¥ such that so € L(G)—K
for some s € K.
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Fig. 2. (a) Finite automaton G that models plant and (b) its subautomaton Gy.
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Fig. 3. Refined model G || Gw.

4. Motivating examples

In this section, we first show that intersection-based codiag-
nosability of Panteli and Hadjicostis (2013) should be weakened
to characterize diagnosable systems in the intersection-based
architecture presented in Section 3.

Example 1. We consider the finite automaton G shown in Fig.
2(a), which models a simple plant that processes a job. The event
set X of Gis ¥ = {a,d, 01, 02,03, f, e}, where a and d denote
arrival and departure of a job, respectively, o; (j = 1,2, 3) are
three kinds of operations, f denotes the occurrence of a failure,
and e is the fictitious event added to satisfy the deadlock-free
assumption. A departure after solely o; (without o0, or o3) is
considered as a failure. The finite automaton Gy that describes
the normal behavior of G is shown in Fig. 2(b).

Let] = {1, 2}, ¥, 1 = {a, 01, 02,d},and X, , = {a, 01, 03, d}. In
the intersection-based architecture presented in Section 3, each
local diagnoser estimates the current state of the refined model
G || Gy shown in Fig. 3. We consider a failure string afo; € L(G) —
K. Since ;¢ 1(Pi(afo1)) = &g, 1(a01) = {(q7,47). (45, qa)}
and &g 2gl’z(afm)) = &8, zﬁaol) = {(gs, g6), (g5, qa)}, we
have (), SGHGN’,( i(afo1)) = {(gs,qq)}. Thus, the occurrence
of the failure event f is detected. However, the condition (1)
of intersection-base codiagnosability of Panteli and Hadjicostis
(2013) is not satisfied. For any m € N, we consider a failure
string afo;de™ € L(G)N(L(G)—K)X=™. Since Ealen ,(Pl(afoldem))
{(gs. gs), (gs, qa)} for i = 1,2, we have [, &¢, .i(Pi(aforde™))
{(qs, gs), (g8, qa)}. Therefore, intersection- basedN codlagnosablllty
of Panteli and Hadjicostis (2013) should be weakened to charac-
terize diagnosable systems in the intersection-based architecture.

Next, we show an example of a system that is not diagnosable
in the inference-based architecture of Takai and Kumar (2017).
To diagnose such a system, another architecture must be em-
ployed. G is said to be N-inference diagnosable with respect
to a nonempty closed regular sublanguage K < L(G) if there
exists m € N such that Fy.1(m) = @ or Hyyi(m) = @ (Takai
& Kumar, 2017), where a monotonically decreasing sequence
{(Fx(m), H(m))}k>0 of language pairs is defined as follows:

e Base step:

Fo(m) = L(G) N (L(G) — K)Z="
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Ho(m) = K.

e Induction step:

Figa(m) = Fi(m) 0 (ﬂP 'Pi(Hi(m )

iel

Hip1(m) = Hi(m) 0 (ﬂ Pi_lPi(Fk(m))> :

iel

Remark 2. Disjunctive (respectively, conjunctive) codiagnosabil-
ity is equivalent to the existence of m € N such that F;(m) = ¢
(respectively, Hy(m) = @) (Takai & Kumar, 2017).

The following example shows a system that is not N-inference
diagnosable for any N € N.

Example 3. We consider the finite automaton G shown in Fig.
4(a), which models another simple plant that processes a job.
The event set X of G is ¥ = {a,d, 04,03, 03, f, €}, where the
meaning of each event is the same as that of Example 1. Normally,
a departure of a job occurs following one of the operation se-
quences 01, 010203, and 01030,. A departure following 010, or 0103
is considered as a failure. The finite automaton Gy that describes
the normal behavior of G is shown in Fig. 4(b).

Let] = {1, 2}, ¥, 1 = {a, 02, d}, and X, , = {a, 03, d}. Then, for
any m € N with m > 1, we have Fo(m) = {ao;0.fde", ao,05fde"
h = m — 1} and Ho(m) = pr({aoide", ao,0,05de", ao;050,de" |
h > 0}). In addition, for any k € N with k > 1, we have
Fe(m) = {aoj0,fde", aoj0sfde™ | h > m — 1} # @ and Hi(m) =
{ao;de", aoj0,03de", aoj030,de™ | h > 0} # @. It follows that, for
any N € N, G is not N-inference diagnosable with respect to K.

5. N-SEI and F-SEI architectures

In this paper, we examine two intersection-based architec-
tures, which we call the normal-state-estimator-intersection-
based architecture (N-SEI architecture) and failure-state-estimator-
intersection-based architecture (F-SEI architecture), and intro-
duce the corresponding notions of codiagnosability.

5.1. N-SEI architecture

In the N-SEI architecture, each local diagnoser computes the
set of possible states of the normal behavior model Gy, as its local
state estimate, and the coordinator makes the global diagnosis
decision based on the intersection of these local state estimates.
More precisely, when s € L(G) is executed in the system G, the ith
local diagnoser observes Pi(s) € P;(L(G)), computes the estimate
of possible states in the normal behavior model Gy as

- Ey.i(Pi(s)),  if Pi(s) € P(L(Gn))
& (P(s) = { (ZJ(,; otherwise b
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and sends it to the coordinator. Based on the intersection of
ENE(Py(s)) over I, the coordinator issues the global diagnosis
decision.

The following lemma shows that if the intersection of the
local state estimates is empty, we can conclude that the executed
string is a failure string.

Lemma 4. For a regular sublanguage K C L(G) generated by a
subautomaton GN = (Qn, X, 8N, qo) of G, we consider any s € L(G).
If Ny €N (Pi(s)) = ¥ then s € L(G) — K.

Proof. We prove the contrapositive. If s € K = L(Gy) then Pi(s) €
P(L(Gy)) for any i € I. Since aN(qo, 5) € oy i(P(S) = & (Pi(s))
for any i € I, we have dy(qo, s) € (i, &N F(Pi(s)) # 4. O

iel “i

The condition (., &' ¥ (Pi(s)) = ¥ means that the local state
estimates &' ¥(P(s)) (1 = 1,2,...,n) do not have a common
element. It does not necessarily imply that there exists i € I
such that SN SEI(p(s)) = @. It is worth mentioning that disjunc-
tive codlagnosablllty requires the existence of i € [ such that
&N *F(P(s)) = ¥. By Lemma 4, the intersection-based diagnoser

is defined as a function Dy : L(G) — {0, 1} such that

_ 1 it & Pis) = 0,
DN(S)_{ 0. otherwise

for each s € L(G).

The following proposition shows that the N-SEI architecture
is equivalent to the existing intersection-based architecture pre-
sented in Section 3 in the sense that the occurrence of a failure is
detected in the N-SEI architecture if and only if it is detected in
the existing intersection-based architecture.

(2)

Proposition 5. For a regular sublanguage K C L(G) generated by a
subautomaton Gy = (Qn, X, dn, qo) of G, we consider any s € L(G).
Then, (e, &' (Pi(s)) = @ if and only if (g, Ege,, i(Pi(s)) S
Q x {qa}-

Proof. First, we prove the contrapositive of the sufficiency part.
We suppose that (), &' (Pi(s)) # ¥. We consider any qy €
Nier 5,” SEL(Py(s)) # (. For any i € I, since qy € &g, i(Pi(s)), there
exists s; € L(Gy) such that P;(s;) = Pi(s) and én(qo, Si) = qn. Then,
we have «((qo, o), Si) = (qn, qn) € &, Glig. i{(Pi(s)). 1t follows that
(an, qn) € ﬂisl gcuc";N,i(Pi(S)) Z Q x {qa}.

Next, we prove the contrapositive of the necessity part. We
suppose that ﬂiE, 5G\|&N,1(Pi(5)) Z Q x {qq}. Then, there exists
gy € Q such that (gn,qn) € ﬂie, 5c\|&N,i(Pi(5))- For any i € I,
there exists s; € L(G) such that Pi(s;) = Pi(s) and «((qo, qo), Si) =
(gn, gn)- Since (gn, gv) ¢ Q x {qa}, we have s; € L(Gy), which
implies 8y(qo, Si) = qn and Pi(s) = Pi(s;) € Py(L(Gy)). It follows
that gy € SGN i(P(s)) = &' F(Pys)). Thus, we have qy €

ﬂ:ez glN SEI )) 7& g. O

Remark 6. Although the N-SEI architecture is equivalent to the
existing intersection-based architecture, the state set Qy explored
by local diagnosers to compute their local state estimates in the
N-SEI architecture is smaller than the state set Q x Qy explored
by them in the existing intersection-based architecture.

To guarantee that the occurrence of any failure is correctly de-
tected within a certain number of steps, we impose the following
two conditions on Dy:

(dm € N)
(Vs € L(G) N (L(G) — K)X=™)3t € pr({s}))
Dn(t) =1 (3)
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and

(Vs € K)Dy(s) = 0. (4)

Remark 7. The condition (3) requires the existence of m € N
such that, for any s € L(G) N (L(G) — K)X=™, there exists a prefix
t € pr({s}) such that Dy(t) = 1. Even if Dy satisfies (3),

(3m e N)(¥s € L(G) N (I(G) — K)Z=™)Dy(s) = 1 (5)

does not necessarily hold. As an example, we consider the system
G of Example 1. For any m € N, we consider a failure string
afo;de™ € L(G)N(L(G)—K)X=". For its prefix afo; € pr({afo;de™}),
we have &' (P(afo1)) N &~ (Py(afor)) = {as} N {gs) =
which implies together with (2) that Dy(afo;) = 1. However,
since &) " (Py(afode™)) N &) 7 (Py(aforde™)) = {gs} N {gs} =
{qs} # @, we have Dy(afoide™) = 0. Therefore, Dy only satisfies
(3).

By Lemma 4, Dy always satisfies (4). As a condition under
which Dy satisfies (3), normal-state-estimator-intersection-based
codiagnosability (N-SEI codiagnosability) is defined as follows:

Definition 8. For a regular sublanguage K C L(G) generated by
a subautomaton Gy = (Qu, X, 8y, qo) of G, G is said to be N-SEI
codiagnosable with respect to K if

(Im e N)
(Vs € L(G) N (L(G) — K)X=™)3t € pr({s}))
BERGGEL
iel
N-SEI codiagnosability is a necessary and sufficient condi-

tion for Dy to satisfy (3) and (4), as shown in the following
proposition.

Proposition 9. For a regular sublanguage K C L(G) generated by
a subautomaton Gy = (Qn, X, dn, qo) of G, the intersection-based
diagnoser Dy : L(G) — {0, 1} given by (2) satisfies (3) and (4) if
and only if G is N-SEI codiagnosable with respect to K.

Proof. First, we prove the sufficiency part. Since G is N-SEI
codiagnosable with respect to K, there exists m € N such that

(Vs € L(G) N (L(G) — K)X=™)3t € pr({s}))

(&) = 0.

iel

By (2), Dy satisfies (3). In addition, by Lemma 4, Dy satisfies (4).

Next, we prove the necessity part. Since Dy satisfies (3), by (2),
G is N-SEI codiagnosable with respect to K. O

Introducing N-SEI codiagnosability resolves the issue raised in
Example 1. N-SEI codiagnosability is weaker than intersection-
based codiagnosability of Panteli and Hadjicostis (2013), as shown
in the following proposition.

Proposition 10. For a regular sublanguage K C L(G) generated
by a subautomaton Gy = (Qn, X2, dn, qo) of G, if the condition (1)
holds, then G is N-SEI codiagnosable with respect to K.

Proof. We prove the contrapositive. If G is not N-SEI codiagnos-
able with respect to K, then it holds that

(Vm e N)

(3s € L(G) N (L(G) — K)X=™)(Vt € pr({s}))

(&) # 0.

iel
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Since s € pr({s}), we have (), €iN’5E’(P,»(s)) # (, which implies
together with Proposition 5 that (1), 8c|\éN,i(Pi(5)) Z Q x {qq}.
Then, there exists qy € Q such that (qn, qn) € (g EG”(;NJ(P,'(S)).
Moreover, since s € L(G) N (L(G) — K)X=™ C I(G) — K, we have
a((qo 9o). 5) = (4, qa) € &g, i(Pi(s)), where g = 5(qo, s) € Q, for
each i € I. Thus, we have {(qy, qn), (4, qa)} € i 5c||6N‘1(Pi(5))v
which implies that (1) does not hold. O

As shown in the following example, the reverse implication of
Proposition 10 does not hold in general.

Example 11. Again, we consider the system G of Example 1,
which does not satisfy the condition (1). We consider any s €
L(G) N (I(G) — K)X =1, For its prefix afo; € pr({s}), we have
Nicr 8,.N’SE’(P,-(af01)) = (), as shown in Remark 7. Thus, G is N-SEI
codiagnosable with respect to K.

In addition, the issue raised in Example 3 can be resolved by
employing the N-SEI architecture.

Example 12. We consider the system G of Example 3, which is
not N-inference diagnosable with respect to K for any N € N.
Any s € L(G) N (L(G) — K)X=! can be written as s = ao;0,fde" or
s = ao;05fde", where h > 0. In the case of s = ao;0,fde", we have
ao10,fd € pr({s}) and Sf’_SE’(P](ao]ozfd)) N SQ’_SE’(Pz(aowad)) =
¥ (aopd) N &) (ad) = {gs, q13} N {gs} = @, which im-
plies that the occurrence of the failure event f is detected after
a0,0,fd is executed. Also, in the case of s = ao;o0sfde", we have
aoj03fd € pr({s}) and &Y ¥ (Py(a0,03fd)) N £~ (Py(a0,05fd)) =
N (ad) N €Y~ (a03d) = {g3} N {gs, g13} = . Thus, G is N-SEI
codiagnosable with respect to K, so the occurrence of the failure
event f can be correctly detected in the N-SEI architecture.

5.2. F-SEI architecture

In the F-SEI architecture, for a given nonnegative integer m €
N, each local diagnoser computes, as its local state estimate, the
set of possible states that are reached by executing at least m
events after the occurrence of a failure. A nonnegative integer
m € N is a parameter of the F-SEI architecture, which represents
an allowable detection delay.

For a given nonnegative integer m € N, L(G) N (I(G) — K)X="
is the set of failure strings such that at least m events occur after
the occurrence of a failure. To characterize such failure strings
in L(G) N (L(G) — K)X=™, we augment Gy by adding m + 1
dump states qgo, qd1> - - -, qam ¢ Qn. The augmented automaton
is defined as Gy, = (Qn,. X, Ony,, go), Where the state set is
Qn,, = Qv U {qao, Ga1, - - - » Gam}, and the transition function 3y, :
Qn,, X ¥ — Qu,, is given as

Swm(éwm, o)
On(ny,, o), if f:]Nm eQu A SN@NLW o)
qdos if Gn, € Qv A —On(Gnp,> o)

=1 qdh+1)s ifm=>1Aqn, = qan
(he{o1,.. . .m—1})
qdm, otherwise

for each Gy, € Qu, and each ¢ € X (Yamamoto & Takai,
2015). The augmented automaton Gy defined in Section 3 can be
considered as a special case of @Nm with m = 0. It follows from
the definition of the transition function &y, that L(Gy,) = Z*.
Then, we construct the synchronous composition G || éNm =
(Q x QNm, X, om, (9o, go)) of G and 6Nm, where the transition
function o, : (Q x QNm) x X — (Q x QNm) is defined in a similar
way to the transition function « : (Q x QN) x X — (Q x QN) of
G | Gy. Since L(G || éNm) = L(G), G || 5Nm can also be regarded
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as a refined model of the system. In the refined model G || 6Nm, a
string s € L(G) is a failure one with s € L(G)N(L(G)—K)X=™ if and
only if the second element of the state reached by the execution
of s € L(G) is the final dump state qgp.

When s € L(G) is executed in the system G, the ith local di-
agnoser observes Pi(s) € Pi(L(G)) and computes EF SE(py(s), m) =
SGH&Nm,i(Pi(S)) N (Q x {qgm}), which is the set of states reached
by indistinguishable failure strings in L(G) N (L(G) — K)X=™ in
the refined model G || Gy,,. That is, & " (Py(s), m) is the set of
possible states that are reached by executing at least m events
after the occurrence of a failure. Then, the ith local diagnoser
sends & —F(P(s), m) to the coordinator, as its local state es-
timate. Based on the intersection of &FH(Py(s), m) over I, the
coordinator makes the global diagnosis 'decision.

The following lemma shows that if the intersection of the
local state estimates is empty, we can conclude that the executed
string is not an element of (L(G) — K)X=".

Lemma 13. For a regular sublanguage K C L(G) generated by a
subautomaton GN = (Qn, X, 8N, qo) of G, we consider any m € N
and any s € L(G). If g £f —E(p(s),m) = @ then s ¢ (L(G) —
K)x=m,

Proof. We prove the contrapositive. If s € L(G) N (L(G) —
K)X=", then am((qo. o). 5) € £, i(Pils)) N (Q X {qam}) =
g SH(P(s), )for any i e I It follows that am((qo, Go),s) €
mlel gf SEI ) ) 7& g. O

Similar to the N-SEI architecture, the condition ﬂ,el i
(Pi(s), m) = ¢ does not necessarily imply that there exists i € |
such that &‘f’SE’(Pi(s), m) = . Note that conjunctive codiagnos-
ability requires the existence of such i € I.

By Lemma 13, the intersection-based diagnoser is defined as a
function Df,, : L(G) — {0, 1} such that, for any s € L(G),

me(s)={ 3, et ) m 26, (6)

0, otherwise.

SF SEI

To correctly detect the occurrence of any failure within m steps,
we impose the following two conditions on Dp,,:

(Vs € L(G) N (L(G) — K)X=™)3t € pr({s}))

Dg,(t) =1 (7)
and

(Vs € K)Dr, (s) = 0. 8)

Since Dy, always satisfies (7) as shown in Lemma 13, failure-
state-estimator-intersection-based codiagnosability (F-SEI codi-
agnosability) is defined, as a condition for the existence of m € N
such that D, satisfies (8), as follows:

Definition 14. For a regular sublanguage K C L(G) generated by
a subautomaton Gy = (Qn, X, 8y, qo) of G, G is said to be F-SEI
codiagnosable with respect to K if

(3m e N)(¥s € K)[ )&~ (P(s), m) = 0.
iel
F-SEI codiagnosability is a necessary and sufficient condition
for the existence of a nonnegative integer m € N such that the
intersection-based diagnoser Df,, satisfies (7) and (8), as shown
in the following proposition.

Proposition 15. For a regular sublanguage K C L(G) generated
by a subautomaton Gy = (Qn, X, 8y, qo) of G, there exists a non-
negative integer m € N such that the intersection-based diagnoser
D, : L(G) — {0, 1} given by (6) satisfies (7) and (8) if and only if
G is F-SEI codiagnosable with respect to K.
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Proof. First, we prove the sufficiency part. Since G is F-SEI
codiagnosable with respect to K, there exists m € N such that

(Vs € K) ()& (Pi(s). m) = 0.
iel
For such m € N, by (6), Df,, satisfies (8). In addition, since s €
pr({s}), by Lemma 13, Df,, satisfies (7).
Next, we prove the necessity part. Since there exists m € N
such that Dy, satisfies (8), by (6), G is F-SEI codiagnosable with
respect to K. O

Remark 16. By the proof of Proposition 15, we need to find a
nonnegative integer m € N such that

(Vs € K) ﬂ g H(Py(s), m) =0

iel
to synthesize the intersection-based diagnoser Df,, that satisfies
(7) and (8). Due to the page limit, the issue of computing such
m € N is considered out of scope for this paper.

Remark 17. Unlike the intersection-based diagnoser Dy in the
N-SEI architecture, by Lemma 13, Df,, always satisfies

(Vs € L(G) N (L(G) — K)£=™Dy, (s) = 1.

The issue raised in Example 3 can also be resolved using the
F-SEI architecture.

Example 18. Again, we consider the system G of Example 3.
Letting m = 1, the refined model G || Gy,, which is isomorphic to
G, is obtained as shown in Fig. 5. For any s € K, we can show
that (), & ¥ (Pi(s), 1) = @. For example, for s = ao;de" €
K, where h > 0, we have £%F(Py(s), 1) N €5 F(Py(s), 1) =

£F-71(ad, 1) (1 €5 (ad, 1) = (@1, @)} O {(ds. dar)) = 6. Also,
fors' = a010203de” € K and s” = a0,030,de" € K, where h > 0, it
follows that &5 F(Py(s'), 1)N&y F (Py(s), 1) = & H(Py(s”), 1)N
& (Py(s"), 1) = €5 (aopd, 1) N &5 (a0sd, 1) = {(gs, 1)} N
{(q11, qa1)} = @. Thus, G is F-SEI codiagnosable with respect to
K. The occurrence of the failure event f can also be correctly
detected after aoq0,fd and aojosfd in L(G) N (L(G) — K)X=! are
executed in the F-SEI architecture.

5.3. Relationship between N-SEI and F-SEI architectures

We explore the relationship between the N-SEI and F-SEI
architectures. First, we show a certain duality between them. In
the N-SEI (respectively, F-SEI) architecture, the intersection-based
diagnoser Dy (respectively, Dg,, (m € N)) should satisfy (3) and (4)
(respectively, (7) and (8)). The conditions (3) and (7) are imposed
to guarantee that there is no missed detection of the occurrence
of a failure, while (4) and (8) are required to ensure that there
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is no wrong detection. By Lemmas 4 and 13, Dy and Df,, always
satisfy (4) and (7). In addition, N-SEI codiagnosability and F-SEI
codiagnosability guarantee that Dy and D, satisfy (3) and (8),
respectively. These facts indicate a certain duality between the
N-SEI and F-SEI architectures.

Moreover, the N-SEI and F-SEI architectures complement each
other in the sense that, as shown in the following example, N-SEI
codiagnosability and F-SEI codiagnosability are incomparable. It
is worth to mentioning that F-SEI codiagnosability is also incom-
parable with intersection-based codiagnosability of Panteli and
Hadjicostis (2013).

Example 19. We consider the finite automaton G shown in Fig.
6and let I = {1,2}, ¥,; = {a,b,c,d, g1,8,0}, and %,, =
{a, b, c,e, hy, hy, 0}.

First, we consider the subautomaton Gy, of G that is obtained
by removing the transitions labeled by the event f; and the states
47, gs, and ¢qo, as shown in Fig. 7. Let K; denote its_generated
language. Relevant parts of the refined model G || Gy, (m €
N) and the subautomaton Gy, are shown in Fig. 8(a) and (b),
respectively. We can verify that

(Vs € L(G) N (L(G) — K1) Z=1)3t € pr({s}))

BERGGET

iel

which implies that G is N-SEI codiagnosable with respect to Kj.
For example, for s; = adfio* € L(G) N (L(G) — K1)X=!, where
k > 1, we have s; € pr({s;}) and &) F(Py(s1)) N &) F(Py(s1)) =
{qo} N {gs} = ¥. We can also verify that

(Vs € LG)N(L(G) — K1) Z=")(¥q,q € Q)
(9. 9). (4" 400} Z [ ) ey alPS)):

iel

which implies that G is intersection-based codiagnosable with
respect to K;. Again, for example, for s; = adf;0* € L(G) N (L(G) —
K1)X=1, where k > 1, we have SG”G (P1(s1))OSG”G (Py(s1)) =
{(9, 49), (a7, 4a)s (q10> 4a)} N {(de» G6). (a7, 4a)} = {ﬂqv,qd)}. On
the other hand, for any m € N, we have 55_5“(1’1(5/]), m) N
& (Py(s}), m) = {(q7. Gam)- (q10+ Gam)}N{(Gs. Gam): (q10. am)} =
{(q10, qam)} for s} = aedo™ € K;, which implies that G is not F-SEI
codiagnosable with respect to K.

Next, we consider the subautomaton Gy, of G that is obtained
by removing the transitions labeled by the event f; and the states
qis and qq9, as shown in Fig. 9. Let K, denote its generated
language. Relevant parts of the refined model G || Gy,, and the
subautomaton Gy, are shown in Fig. 10 (a) and (b), respectively.
It can be verified that

(¥s € Ko) () & (Pi(s). 1) = 0,
iel

which implies that G is F-SEI codiagnosable with respect to K.
For example, for s, = bdo € K, we have & H(Py(s;), 1) N
5575’51([’2(52), 1) = {(q19, 9a1)} N {(q16, Ga1)} = 9. On the other
hand, G is not N-SEI codiagnosable with respect to K. For any
m € N, we consider s, = bedf,o™ € L(G) N (L(G) — K;)Z="
and any prefix t;, € pr({s’z}). If t; € K, then éy,(qo,t;) €
Sf"SE’(I%(t/ )) N & ~F(Py(t;)). In the case of tj = bedf,, we have
& (Py(E)) N 5N H(Py(85)) = {q12, G1as fhs} N {q13, 914, q15} =
{q14, q1s}. Moreover in the case of t), = bedf,0*, where 1 < k < m,
we have £} (Py(t;)) N &) SE’(PZ( t5)) = {q17. G20} N {q1s, G20} =
{q20}. In addltlon by Proposition 10, G is not intersection-based
codiagnosable with respect to K.
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5.4. Comparison with N-inference diagnosability

We compare N-SEI codiagnosability and F-SEI codiagnosability
with N-inference diagnosability. We obtain the following propo-
sition on O-inference diagnosability.

Proposition 20. For a regular sublanguage K < L(G) generated
by a subautomaton Gy = (Qn, X, dn, qo) of G, if G is O-inference
diagnosable with respect to K, then it is N-SEI codiagnosable or F-SEI
codiagnosable with respect to K.

Proof. There exists m € N such that F;(m) = @ or Hi(m) = (.
First, we consider the case where Fi(m) = ¢. Then, for any
s € LG) N (I(G) — K)X=" = Fy(m), there exists i € I such
that s ¢ Pi’lPl(Ho( ) = P’]P,(K) For such i € I, we have
Pi(s) ¢ Pi(L(Gy)), which implies &"(Py(s)) = @. Thus, G is N-
SEI codiagnosable. Next, we con51der the case where H{(m) = @.
Then, for any s € K = Hy(m), there exists i € I such that
s ¢ P 'P(Fo(m)) = P 'P(L(G) N (L(G) — K)X=™). For such
i € I, we have P(s) ¢ P,(L(G) N (L(G) — K)X=™), which implies
eF=SE(py(s), m) = @. Thus, G is F-SEI codiagnosable. O

1

As shown in the following example, the reverse implication
of Proposition 20 does not necessarily hold, and, for any N > 1,
N-inference diagnosability is incomparable with N-SEI codiagnos-
ability and F-SEI codiagnosability.

Example 21. We consider the setting of Example 19. As shown
in Example 19, G is N-SEI codiagnosable and F-SEI codiagnosable
with respect to the languages K; and K, respectively. However,
for K, we have adfi0™, aefio™ € F,(m) and ao™, aedo™ € Hy(m)
for any m € N and any k € N. It follows that, for any N € N,
G is not N-inference diagnosable with respect to K;. For K;, we
have bf,0™, bedf,0™ € Fi(m) and bdo™, beo™ € Hy(m) for any
m € Nand any k € N. Thus, for any N € N, G is not N-
inference diagnosable with respect to K;. To detect the occurrence
of f; (respectively, f,) correctly, the N-SEI (respectively, F-SEI)
architecture should be used.
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We consider the subautomaton Gy, of G that is obtained by
removing the transition labeled by the event f; and the state
s, as shown in Fig. 11. Let K3 denote its generated language.
Relevant parts of the refined model G || Gy,,, (m € N) and the
subautomaton Gy, are shown in Fig. 12(a) and (b), respectively.
In the case of m = 1, we have F,(1) = @ and Hy(1) = {co* |
k > 1} for Ks. Since F,(1) = @, G is N-inference diagnosable
with respect to K3 for any N > 1. However, G is not N-SEI
codiagnosable with respect to K. For any m € N, we consider
s3 = ¢g1f30™ € L(G)N(L(G) — K3)X=™ and any prefix t; € pr({ss}).
If t3 € Ks, then 5N3(q0, t3) (S S{V_SEI(Pﬂtg)) N EQI_SEI(Pz(fg,)). In
the case of t3 = cgifs, we have &) F(Py(t3)) N &) (Py(13)) =
{q22. 423} N {421, 22, 423} = {q22. q23}. Moreover, in the case of
t; = cgifsof, where 1 < k < m, we have &/ (P(t3)) N
& H(Py(t3)) = {q26} N {424, G26} = {qz6}. Thus, G is not N-SEI
codiagnosable with respect to K3. Furthermore, for any m € N,
we have &{ % (Py(co™), m) N &5~ SE'(Pz(COm), m) = {(qzs, gam)} N
{(q2s, qdm)} = {(q25, qam)} for co™ € Ks, which implies that G is
not F-SEI codiagnosable with respect to K3. Therefore, to detect
the occurrence of f; correctly, the inference-based architecture
of Takai and Kumar (2017) should be employed.

Example 21 shows that the N-SEI and F-SEI architectures and
the inference-based architecture compliment each other.

6. Verification of N-SEI codiagnosability and F-SEI codiagnos-
ability

In this section, we present methods for effectively verifying
N-SEI codiagnosability and F-SEI codiagnosability.

6.1. Verification of N-SEI codiagnosability

For a regular sublanguage K C L(G) generated by a subau-
tomaton Gy = (Qn, X, 8y, qo) of G = (Q, X, 8, qo), we consider
the synchronous composition (G || Gy) || (i Obsi(Gy)) =
(Xn, X, b1y, Xno) of the refined model G || Gy = (Q x Qn, X, «,
(9o qo)) and the n observers Obs;(Gy) = (QNobs,w o.is 8N0b$,‘7 QNobsi,O)
(i=1,2,...,n)of Gy, where the state set is

XN— QXQN HQNobs,’

iel

the initial state is

xno = ((90> G0)s ANobsy,05 ANobsy,05 - - - » ANobsn,0)s

and the transition function ér, : Xy x X — Xy is given as

Sy (Xn, o)
Xy, if §(q, o)A

= [(Viel)o e 2o = 5Nobs,-(QN0bs,-» o)]
undefined, otherwise

for each xy = ((q, gn), Gnobs, > ANobs, » - - - » ANobs,) € Xn and each

o € X, where

J/ ~ / / /
xy = (a((q, qn), o), ANobsy > Nobs > + + + » qNobsn)
and
q/ _ 8Nobs,-(qNobs,-v o), ifoeX,;

Nobsi = 1 Qobs;» otherwise

for eachi IS I It holds that L((G || GN) [| (||161 Obsi(Gy))) =

N (Nt P (LObsi(GN)))) = LG) N ([N P ' PiLIGN)))-
To verify N-SEI codlagnosablllty, we construct a subautoma-

ton, denoted by Ty, of (G || Gn) || (lies Obsi(Gy)) as follows:

Ty = Xn, ¥, STN, XN0) (9)
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where the state set is

)A(N = {((q, qn), ANobsy » ANobsy s « - - » ANobs,) € Xn |

m (Nobs; 5’é 0)}
iel
and the transition function STN : )A(N X X — XN is given as
NP St (Ry, o), if 81, (Rn, o) € X
Ky — Ty\XN, O ), Ty (XN N
(%, o) { undefined, otherwise.

for each xy € XN and each o € X. Since qo € () qnobs;,0 # 9.
we have xyg € )A(N, which implies that the subautomaton Ty is
well-defined.

The following lemma shows that Ty generates a string s € L(G)
such that (), SlN SEI(py(s)) # (), and will be used to prove the
correctness of the method developed later in Theorem 23 to verify

N-SEI codiagnosability.

Lemma 22. For a regular sublanguage K C L(G) generated
by a subautomaton Gy =_(Qn, X, én. qo) of G, we consider the
subautomaton Ty of (G || Gy) || (||,e, Obs;(Gy)) given by (9). For
any s € L(Ty), it holds that ﬂlel ; SE(py(s)) £ 0.

Proof. For any s € [(Ty) < L((G || E;N) Il (licr Obsi(Gy))), we have
Pi(s) € L(Obs;(Gy)) = Pi(L(Gy)) for any i € I and

STN(XNOs s)
= (e((qo> qo): S), ANobs; » ANobsy » - - -

where QNobs; = ‘SNobs,(QNobs, 0, Pi(s)) = Eay, i(Pi(s)) for each i € I. For
any i € I, since Py(s) € P(L(Gy)), we have qnops; = & F(Pi(s)). It

1

follows from 8, (xo, 5) € Xy that (i, ¥ (Pi(s)) = (Mie; Inobs;
£¢. O

» ANobs;, )!

By Lemma 22, the violation of N-SEI codiagnosability can be
characterized by the existence of an arbitrarily long failure string
s € L(G) — K that is generated by Ty. Based on this observation,
the following theorem is obtained.

Theorem 23. For a regular sublanguage K < L(G) generated
by a subautomaton Gy = (Qn, X, N, qo) of G, G is not N-SEI
codiagnosable with respect to K if and only if there exists a reachable

o o 1) oU=D

cycle f( SRS OB x% R A (0) (I = 1) such

that qN = qq forany h € {0,1,...,1 — 1} where x(h) =
h h h h

(g™ ,q;,)) q;,gbsl,q(No)bsz, ce qE\,O)bSH)for each hefo,1,..., l -1}

in the subautomaton Ty of (G || C‘N) Il (llie1 Obsi(Gy)) given by (9).

Proof. First, we prove the sufficiency part. We consider any

(0) (1) 1-1)
0) @ (1) @ -1 o £(0)
reachable cycle X" — X’ —> -~-xN — Xy (1= 1)

=(h)

such that q° = qq for any h € {0, l — 1} in TN Then,
there exists s € L(Ty) such that (STN(XNO, s) = xN Since q = q4,
we have s € L(G) — K. Letting t = ¢@c™...50=1 we have

st™ € L(Ty) N (L(G) N (L(G) — K)X=™) for any m € N. We consider
any u € pr({stm}) Since u € L(Ty), by Lemma 22, we have
Nicr & (Pi(u)) # ¥. Thus, G is not N-SEI codiagnosable.

Next, We provg the necessity part. We consider any m € N
such that m > |Xy|. Since G is not N-SEI codiagnosable, there
exists s € L(G) ((G) — K)X=™ such that, for any t € pr(s),
a é’lN —SEL(py(t)) # @. For each i € I, since SN SENp(t)) #£ 0,
we have P( ) € P(L(Gy)) and &'~ s’f'( (r)) = gGN ,(P,(t)) =
SNobs; (qNobs; 0+ Pi(t)). It holds that t € L(G N (Mg P PiL(GN))) =
LG I Gv) Il (llier Obsi(Gn))) and (g 8Nobs,(QNobs,,0aP1( ) # 0,
which implies s € L(Ty). Since s € L(G) N (L(G) — K)EEA"’, s can be
written as s = uv, where u € [(G)—K and |v| > m > |Xy|. Letting
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6 (90, 90), (10} {qo}

(Iu (Iu {CJHJIIJ} {(111 (112})
(@13, q13), {a11, @3}, {aus, qua, qas })
jlj

(@14 q14), {12, @14, @15}, { @13, 14, 15 })

(110 (Id) {(112 q14; (115} {(113 q14; (11>})
o

6 (qu9, f]d (11, (120} {(118 (120})

Fig. 13. A part of the subautomaton Ty of (G || fJNZ) Il (llier Obsi(Gn, )

81y (o, ) = (4, An), Aobs; » GNobsy » - - - » ANobs )» Since u € L(G)—K,
we have gy = qq. By |v| > |Xy|, there exists a reachable cycle

o 6@ Ly o el
RO 2 ZD 2 D25 20 (1> 1) such that ) = gq

— Xy —> X
forany h € {0,1,...,1— 1} in Ty. D

Remark 24. Since the number of reachable states of the sub-
automaton Ty of (G || Gy) || (llier Obsi(Gy)) is at most 2|Q| x
2"Ql the complexity of constructing the reachable part of Ty is
0(]Q|x2MQ x| x|). Theorem 23 shows that N-SEI codiagnosability
can be verified by examining all maximal strongly connected
components of Ty. The computational complexity of computing
all maximal strongly connected components of Ty is O(|Q| x
2"Ql x| ). Thus, the computational complexity of verifying N-SEI
codiagnosability by Theorem 23 is 0(|Q| x 2"Q! x | ¥)).

Remark 25. In Viana and Basilio (2019), the synchronous compo-
sition (G || Gn) Il (llier Obsi(G || Gn)) of the refined model G || Gy
and its observers Obs;(G || Gy) (i = 1,2, ..., n) is used to verify
disjunctive codiagnosability. In this paper, the observers Obs;(Gy)
(i = 1,2,...,n) of the normal behavior model Gy, instead of
Obs;(G || Gy), are used for verifying N-SEI codiagnosability.

Example 26. We consider the setting of Example 19. For the reg-
ular sublanguage K, C L(G) generated by the subautomaton Gy,
of G, a part of the subautomaton Ty of (G || 6,\,2) Il (llier Obsi(G,))
is shown in Fig. 13. This part shows that there exists a reach-
able cycle (g1, 9a), {917, G20}, {18, G201) = ((qr9, a); {17, G20},
{q18, g20}) in Ty. By Theorem 23, we can conclude that G is not
N-SEI codiagnosable with respect to K, as shown in Example 19.

6.2. Verification of F-SEI codiagnosability

For a regular sublanguage K C L(G) generated by a subau-
tomaton Gy = (Qn, X, 6y, qo) of G = (Q, X, 6, qo), we use the
verifier (Wang et al., 2007; Yamamoto & Takai, 2014) that was
constructed to verify conjunctive codiagnosability. It is a finite
automaton

Vi = (Xp, ZF, Ov;, Xro) (10)

that consists of Gy and n copies of G || Gy, which are used to
trace a normal string in K and n indistinguishable failure strings
in L(G) — K, respectively. Each element of Vi is given as follows:

e The state set is

Xr = Qn

x (Q x Qu) X (Q x Q) X ... x (Q x Qu).

n times
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e The initial state is

xro = (4o, (9o, 9o); (9o 9o), - - - » (dos Go))-
e The event set is
Sr ={(0,61,64,...,6,) € E™1|
o e X A[(Viels; = Pio)]}
U{(e, 61,52, ..., 6y) € "1
Fiel

i€ X — X i AV el —{i})oj =el},
where

S — (D U{e)) x (ZU{e}) x ... x (T U{e}).

n+ 1 times
e For any

xr = (qn, (q1, Gn1)s (2, Anz)s - - -5 (Gn, GNe)) € XF
and any
of =(0,61,...,0n) € X,

v, (Xg, op)! if the following two conditions hold:

- 6 # &= dn(gn, o), and
- (Vie )6i # & = 8(qi, 67)\.

If SVF(XF, (71:)!, then

v, (xF, oF)
= (qy. (@1, Gy1)s (@5, Ana)s - - -5 (s Q)

where
e = Sn(gn, o),
N qn,

and, for any i €I,

ifog £¢
otherwise

if & # ¢

a((qi, i), G3),
q otherwise.

(Gi, qni),

/o=l

(q,-, qu) = {

For any xr = (qn, (41, Gn1), (925 Gn2)s - - - » (Gns> Gn)) € X, we let
w(xr) = qy and mi(xr) = (q;, Gn;) for each i € I. Similarly, for any
or = (6,01,...,6,) € Xk, we let m(oF) = ¢ and mi(oF) = o; for
each i € I. In addition, for each s € X, w(s¢) and m;(s¢) for any
i € I are defined as

(sp) = e, ifsp =¢
7 w(or)m(ora) - - -m(oF)s)),  otherwise,
and
Ti(s) = g, ifsp=¢
E milopr)mi(or2) - - - wilors|),  otherwise,

where sg = 0r10F; - - - OF|s if Sp # €. By the construction of V,
the following lemma is straightforwardly obtained (Yamamoto &
Takai, 2014), so its proof is omitted.

Lemma 27. For a regular sublanguage K C L(G) generated by
a subautomaton Gy = (Qn, X, Sy, o) of G, we consider the finite
automaton Vp given by (10). Then, for any sg € L(Vf), it holds that
7(sr) € K, mi(s¢) € L(G), Py (sF)) = Pi(mi(sg)) for any i € I, and

Sve (X0, SF) = (qn, (91, Gn1)s (G2, Gnz)s - - -5 (Gns Gin))s

where qy = én(qo, (s¢)) and, for any i € 1, (qi, qni) = «((qo, o),
mi(Sp)). In addition, for any s € K and any sq, S, ..., Sy € L(G), if
Pi(s) = Pi(s;) for any i € I, then there exists s € L(V) such that
(sp) = s and mwi(sg) = s; forany i € I.

10
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For any m € N and any sf € L(VE), the following lemma shows
a condition under which (., & ¥ (P((s¢)), m) # ¥ holds.
Lemma 28. For a regular sublanguage K < L(G) generated by
a subautomaton Gy = (Qn, X, Sy, qo) of G, we consider the finite
automaton Vg given by (10). For any m € N and any sg € L(Vg), if
mi(sp) € L(G) N (L(G) — K)X=™ for any i € I and m;(8v, (X0, SF)) =
7(8ve (Xeo, 5p)) for any i, € I, then My & ~F (Pi((s)), m) # .

Proof. For any m € N and any sf € L(Vf), we suppose that
mi(sr) € L(G) N (L(G) — K)X=™ for any i € I and m;(8v, (Xro, SF)) =
7j(8v, (Xro, Sp)) forany i, j € I. For any i € I, by Lemma 27, we have
Pi(m(sp)) = Pi(mi(sp)) and (v, (xro, SF)) = a((qo, Go), mi(Sk))-
Let «((qo, qo), 7i(sr)) = (qi, Gni) for any i € I. Since Pi(7(sf))
Pi(7i(sp)) and i(sp) € L(G) N (L(G) — K) =", we have am((qo, qo),
i(se)) = (Gi. dam) € g, (POT(SF)) N (Q X {qam}) = &
(Pi(7(sf)), m). Since mi(xr) = mj(xp), where X = 8y, (Xro, S), for
any i,j € I, we can let § = q; for any i € I. It follows that
(@ qam) € Nicr & (Pi(x(s6)), m) £ 0. O

By Lemma 28, the violation of F-SEI codiagnosability can be
characterized by the condition that, for any m € N, there exists
s € L(VF) that satisfies m;(sf) € L(G) N (I(G) — K)X=™ for any
i € I and mi(8v, (xro, Sr)) = mj(8vy(Xro, S¢)) for any i,j € I. Such
s € L(Vr) must visit cycles so that, for each i € I, m;(s¢) can be
extended to an arbitrarily long failure string. In general, multiple
cycles need to be executed sequentially to elongate s;(s¢) for all
i € I. Based on this observation, we construct a nondeterministic
acyclic automaton

Ve = (Yr, ZF, &v;, Yro) (11)

from Vg, which has the same event set Xy as Vp (Yamamoto
& Takai, 2014). Except for X, each element of Vr is given as
follows:

e The state set Yr is the set of all maximal strongly connected
components of V.

e The initial state yrg € Yr is @ maximal strongly connected
component of V¢ such that xzg € yro.

e The nondeterministic transition function &, : Yr x Xf —
2¥F is given as, for any yr € Y and any or € X,

Eve (YF, oF)
={yr € Yr | Yr # Vi
Al(3xr € yr)(3x; € Y )dv, (Xe, 0F) = X;1}.

A labeling function Jr : Yy — 2! is defined as

Jrr) = {i e[| [(3xr € yp)mi(xr) € Q x {qq}]
Al(3xF, X € yr)(Jor € ZF)

vy (xp, oF) = X A mioF) # €]} (12)

for each yr € Yr (Yamamoto & Takai, 2014). For any i € I, if
i € Jr(yr), then m(sp) can be extended to an arbitrarily long
failure string by executing a cycle that includes o € X with

mi(oF) # € an arbitrary number of times. We consider any path
OFQ OF1 OF(1-1) .
Pvr 1 Yro — Yr1 —> -+ Yru—1) — Yr (I > 1) that begins at

the initial state ygo in V. Its label Jr(py, ) € 2! is given as

U

he{1,2....1

Je(pve) = JEWem).
}

Then, the condition Jr(py,) = I ensures that, by visiting these
maximal strongly connected components yg, (h = 1,2, ...,[)and
executing appropriate cycles an arbitrary number of times, 7;(sF)
can be extended to an arbitrarily long failure string for any i € I.

The following theorem presents how to verify F-SEI-codiag-
nosability using V.
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Theorem 29. For a regular sublanguage K < L(G) generated

by a subautomaton Gy = (Qn, X, dn,qo) of G, G is not F-SEI

codiagnosable with respect to K if and only if there exists a path
OFQ OF1, OF(I-1)

Pve t Yro — YF1 —> - YF(i-1) -8 yr (I > 1) that begins at

the initial state yro in V¢ given by (11) such that

Je(pye) =1 (13)
and
(Ixr € yr)(Vi, j € Drmi(xp) = mi(xF). (14)

Proof. First, we prove the sufficiency part. We consider any path

OFQ OF1 OF(I-1) .
Pve :Yro — YF1 — - Yru—1) — Yr (I = 1) in V¢ such that
o® o

(13) and (14) hold. Then, there exists a path xgq BEEN x(” BEN

1

A2 A (' > 1) in Vi such that the following two

F
conditions hold:

o (Vi € I)3hir, hip, iz € N)[O < hiy < hyp < hiz < 1A =
X A [m(x(h”)) € Q x {ga}] A [mi(0f"™)) # €], and
. r

o (Vi,je I)qg qj( )
where n,(xF )= (qll ), Z]M ) foreachiel.

We consider any m € N. By Algorithm 1%, we construct
sp € Xf and tp; € XY for each i € I. Then, we have sg, tr; €
L(VF) and tr; € pr({sf}) for each i € I. Let s = m(sg). By
Lemma 27, we have s € K. For each i € I, since tr; €
pr({sr}), there exists ur; € XF such that s = tr;ur;. Let
ti = m(tr;) and u; = mi(up;). By the construction of tr; in

Algorithm 1 and Lemma 27, we have 8y, (xro, tri) = x(Fh“) and

(4o, 90), 1) = mi(x"™) = mi(x"). Since (X)) € Q x {qa),
we have «((qo, o), ti) € Q X {qq}, which implies t; € L(G) —
In addition, since |u;| > m by m(oF(h"Z)) £ g, we have mi(sp) =
tiu; € L(G)N(L(G) — K)E>m Furthermore by Lemma 27, we have
m@vF(XFo; s¢)) = a((qo. qo). titt)) = (¢, qa). For any i, j € I, since
qfl = qJ(-l ), we have ﬂi(5VF(XF0, s¢)) = mj(8vp(Xro, Sr)). 1t follows
from Lemma 28 that (., & " (P(s), m) # . Therefore, G is not
F-SEI codiagnosable.

We next prove the necessity part. Since G is not F-SEI co-
diagnosable, for any m € N, there exists s € K such that
Nicr & (Pi(s), m) # 9. We consider any (4, qam) € (i &
(Pi(s),m) = Mici €gyy, i(Pi(8) N (Q X {dam}). For each'i € I,
there exists s; € L(G) N (L(G) — K)X=™ such that P(s) = Pi(s;)
and on,((qo, 90), i) = (q, gam). Then, by Lemma 27, there exists
sp € L(VF) such that 7(sp) = s and m;(sp) = s; for each i € I. For
any i € I, by s; € L(G) N (L(G) — K)X=™, we have s; # &, which

implies sr # e. We let sf = aF(O)aé1 o =,
MO
In the case of m > |Xg|, we consider the path py, : x(FO) BEEN
Q) )
e = x(Fl), where x” = xgo, obtained by

executing sp in Vg. For each i € I, since mi(sf) = s;, by Lemma
27, we have 7(x;') = a((do, 4o), $1) = (d da). For the path py,

OF(l -1

there exists the path py, : yro Iro, VF1 LN e YRU—1) —> YR

(I' > 1) in Vr such that

0 h,
{XE;),...,X(FO)} = YFo,
(ho+1 h
{XFO )7"'5)‘5-‘1)}:}/1:1»

2 Algorithm 1 is presented to show a procedure for constructing the strings
sp € X and tp; € X for eachiel.
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Algorithm 1 Constructions of sg, tr; € Xf (Viel)
Require: aF(O)aF“) . (’ -
1: Sp <&, tpj < ¢ (Vl € 1)
2: h<0
3: whileh <! —1do

hl]! h13 (Vl € I)

4: @(h) <« {iel|h=hj}

5:  while @(h) # ¢ do

6: Pick any i € @(h)

7: tri < SF

3: Sp < SF(G}Shn)GF(hnH) . a}ghirl))m
9: @(h) < @(h) — {i}

10: end while

11:  Sp <« spch(h)

122 h<h+1

13: end while

{X(Fh,/,lﬂ), L X(F:)} — v

for some hg, hy,...,hy_1 € {0,1,...,1— 1} such that 0 < hy <
h1<~'~<hl/,]<l.

We show that the path py, satisfies (13). For each i € I, since
si € L(G) N (L(G) — K)X=™, it can be written as s; = t;u;, where
t; € L(G) — K and |u;] = m > |Xg|. By |u;] > m > |Xg|, there

exist hi, hip, his € N that satisfy 0 < hiy < hp < hz < 1,
K = X80 (o)) # &, and 6 € prim(oy o - of ). In
addition, since t; € L(G)— K and t; € pr(m(aF( )UF( Y. F(h” l))) -
pr(mi(o oy - 0" 7V)), we have m(x;®) = a((qo, @), 7
(UF(O)JF“) . aéh'z_l )) € Qx{qq}. It follows that i € Jg(yg) for some
h e {1,2,...,I'}. Thus, we have p,, satisfies (13). In addition,

since m(x(F’)) =(q, qq) for each i € I, py,, satisfies (14). O

Remark 30. Conjunctive codiagnosability (Wang et al., 2007)
is verified by testing the existence of a path py, in the non-
deterministic acyclic automaton Vr such that the condition (13)
holds (Yamamoto & Takai, 2014). Theorem 29 shows that, by
additionally imposing (14), F-SEI codiagnosability can be verified.

Remark 31. The number of reachable states of the finite automa-
ton Vy is at most 2"|Q|""!, and the number of events of Vi is
at most (n + 1)| X'|. Therefore, the complexity of constructing V
is 0(2"|Q|™! x n|X|). To construct the nondeterministic acyclic
finite automaton Vg, we need to compute all maximal strongly
connected components of Vr. Its computational complexity is
0"Q|™! x n|X|).

Similar to verification of conjunctive codiagnosability (Wang
et al,, 2015; Yamamoto & Takai, 2014) and N-inference diagnos-
ability (Takai & Kumar, 2017) that involves multiple arbitrarily
long failure strings, by Theorem 29, F-SEI codiagnosability can be

verified by exploring paths py, : yro LY YF1 oL e Y
(I = 1) of V¢ which end with deadlocking states. Since the events
om (h =0,1,...,1 — 1) are not relevant to the conditions (13)
and (14), the number of such paths that have to be explored is
at most (|Yr| — 1)!, where Yr is the state set of Vr and |Y¢| is
at most 2"|Q|"*. To verify whether there exists a path Py, that
satisfies (13) and (14), we have to construct the labeling function
Jr : Yr — 2! defined by (12) and identify all states yr € Yy that

satisfy
(3xr € yp)(Vi,j € Dmi(xp) = mj(xF). (15)

Its computational complexity is O(|Yr| x n x |Xg| x | X¢|). Once the
labeling function Jr : Y — 2! is constructed and all states y; € Y;
that satisfy (15) are identified, the computational complexity of
verifying the existence of a path p,, that satisfies (13) and (14)
is O((IYr| — 1))
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(40, (90: 90); (90, 90))

(a,a,a)

(q1, (g1, @), (a1, q1))
(e,e,€)

(a3, (a1, @), (a3, 43))
(e,e,)

(g3, (g3, 93), (g3, 43))
(d,d,e)

(04: (1, 9a), (43, 43))
(e,e,d)

(q1: (41, 90): (41, qa))
(e,e,2)

(a4, (@5, 95); (qa5 q4))
(e,e,d)

O (41, (45, a5), (45, 95))

(e fwf)l

(114«, (11104, qd)y (g5, q:a))
(676, )

(a1, (@10, 90): (q10: 4a))
(0,0,0)

6(1197 (910, 9a); (q10, 94))

(0,0,0)

Fig. 14. A part of the finite automaton V.

Example 32. We consider the setting of Example 19. For the
regular language K; C L(G) generated by the subautomaton
Gy, of G, a part of the finite automaton Vi is shown in Fig. 14.
Letting xr = (q9, (910, 94), (910, 94)), by Fig. 14, a singleton state
{x¢} is reachable in the nondeterministic acyclic automaton V.
We consider any path p,, that ends with {xr}. Then, we have
w1(xp) = ma(xr) = (q10,94) € Q x {qq}. In addition, we have
8v.(Xg, (0,0,0)) = x¢ for (0,0,0) € Xp with 71((o, 0, 0))
m((0, 0, 0)) = 0 # &, as shown in Fig. 14. It follows that Jr(py;)
I and m1(XxF) = m2(xF). By Theorem 29, we can conclude that G is
not F-SEI codiagnosable with respect to Ki, as shown in Example
19.

7. Conclusion

The two intersection-based decentralized diagnosis architec-
tures, named the N-SEI architecture and the F-SEI architecture,
were considered. The notions of N-SEI codiagnosability and F-
SEI codiagnosability were defined for the N-SEI architecture and
the F-SEI architecture, respectively, and compared with the ex-
isting notions of codiagnosability. Then, methods for verifying N-
SEI codiagnosability and F-SEI codiagnosability were developed.
To verify F-SEI codiagnosability, paths of the acyclic automa-
ton constructed for verifying F-SEI codiagnosability are explored.
Developing an efficient exploration method for this purpose is
important future work.
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