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Abstract

We consider the Keller-Segel systems in RY, coupled with a bipolar source and sink flow. Focusing on
the two-dimensional case (d = 2), we establish finite-time blow-up of solutions under an axis-symmetric
setting, without requiring the solutions to be radial. In particular, we prove that multiple blow-up points
appear in pairs (i.e., in even numbers) away from the origin, lying on the x{-axis and exhibiting axis-
symmetry about the x,-axis. This result holds for initial data with total mass strictly greater than 167z, and
stands in contrast to the classical radial setting, where blow-up is confined to the origin.

A crucial part of our analysis is a sharp e-regularity theorem, originally developed for the classical Keller-
Segel systems and first established by Luckhaus—Sugiyama—Veldzquez [12]. This theorem states that if the
local mass around x is sufficiently small at some time #1, then the solution remains locally bounded in a
suitable parabolic cylinder in space—time centered at (xp, ¢1). Compared to the classical e-regularity theo-
rem, it requires weaker assumptions and yields weaker conclusions, making it a form of partial regularity
that is particularly essential for analyzing blow-up singularities.

Based on this sharp e-regularity theorem, we further prove that only finitely many blow-up points appear
as singular sets, and the asymptotic profile is characterized as the sum of a finite number of §-functions and a
regular part in L! (Rz). Moreover, our results reveal that multi-peak blow-up phenomena can occur with or
without the presence of non-trivial flow, highlighting the intricate interplay between diffusion, chemotaxis,
and persistent advection. By accounting for non-decaying flow and employing precise blow-up criteria,
we establish that the blow-up time can be bounded above by any prescribed threshold. These findings are
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justified through the construction of a time-local existence and extension theory for strong solutions, which
incorporates both advection and mass conservation.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let us consider the Keller-Segel systems coupled bipolar source and sink flow:

on . d
§+V~un:An—V-(an) in R4 x (0, T),

(KSF) O0=Av—yv+n in RY x 0, 7),
n(x,0) = ng(x) inR9,

where d > 1 and y > 0. Here, the unknown functions n = n(x, t) and v = v(x, t) denote, re-
spectively, the density of the relevant species and the potential, while u = u(x) is a prescribed
fluid vector field in R?. The parameter y > 0 represents the decay rate of the attractant. This
mathematical model arises in a broad range of biological and physical contexts, where external
flow or stirring interacts with the chemotactic behavior of micro-organisms.

In this paper, we introduce a specific axis-symmetric flow field:

T bR TP

u(x) :=Q< x(x+b)>, (L.D)

_x+b
|x +b|2+ 1

where Q € R and A > 0 are constants, b € RYisa prescribed shift vector, and x is a smooth cut-
off function. The non-trivial presence of u enriches the dynamics: depending on the direction
and magnitude of the flow, chemotactic aggregation may be either enhanced or suppressed.

The Keller-Segel systems and its variants have long been studied as a canonical model for
chemotaxis, whereby cells (or organisms) move in response to chemical gradients. In recent
years, considerable attention has been devoted to flow-modified Keller-Segel systems (commonly
referred to as Keller—Segel-Fluid Coupling Systems), in which an additional flow field or exter-
nal forcing term is introduced. These systems arise naturally in settings such as micro-fluidics or
population dynamics, where fluid flow significantly influences chemotactic aggregation. Under-
standing the interplay among diffusion, chemotaxis, and flow remains mathematically challeng-
ing, despite their broad significance in various applied and theoretical contexts. This difficulty is
particularly pronounced when analyzing solutions with the flow u given by (1.1), which does not
exhibit time decay. The lack of decay introduces persistent effects that significantly complicate
the analysis.

Prior to studying the (KSF) with non-decaying flow, Kozono—Miura—Sugiyama [8,9] demon-
strated that solutions to the Keller—Segel-Navier—Stokes systems exhibit time decay in L’ (R%),
where the decaying flow aids in controlling the long-term behavior of solutions. By contrast, the
flow considered in the present paper remains non-decaying, requiring us to continuously address
its substantial influence over time. In fact, starting with large initial data, the solution may blow
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up in finite time, and since the flow does not diminish, controlling its direct impact and isolat-
ing its individual effects become particularly challenging. This underscores the uniqueness and
inherent difficulty of our problem.

In view of these challenges, one particularly intriguing phenomenon is finite-time blow-up,
where the density n relevant species becomes unbounded in L>°(R?) at certain points. This
behavior has been extensively studied in the absence of any fluid flow, particularly in the radial
case. Early works by Herrero and Velazquez [6,7] demonstrated that, under specific conditions,
solutions concentrate at the origin and asymptotically resemble a sum of §-functions. These
investigations were motivated, in part, by conjectures such as those proposed by Nanjundiah [15]
and explored further by Childress and Percus [2], which suggested the formation of point-mass
blow-ups in chemotaxis models.

Recent studies, building on these foundational results, have increasingly turned to more gen-
eral systems where fluid flow interacts with chemotactic processes. A key question in this paper
in the presence of flow (i.e. within (KSF)) is whether the flow prevents blow-up entirely or in-
stead facilitates finite-time singularities by concentrating mass in highly localized regions, and
whether multiple blow-up points can occur. Even in the classical Keller—Segel systems without
flow, Seki, Sugiyama and Velazquez [18,19] have investigated conditions leading to multiple
blow-up phenomena; however, in flow-coupled equations, the phenomenon of multiple blow-up
points remains not fully understood.

In response to these open questions, we first develop an existence and extension theory for
strong solutions and establish what is commonly referred to as “mass conservation” in L'(R%),
recognized as a key conservation law. We then establish the so-called e-regularity theorem, lay-
ing the groundwork for a detailed singularity analysis. Specifically, we prove the existence of a
suitably small constant such that, if the local mass concentration remains below this threshold,
the center of mass stays regular and avoids singularity formation.

The e-regularity theorem has played a pivotal role in the study of partial differential equations
and geometric analysis. Its origins can be traced back to the pioneering work of Morrey [16],
which provided fundamental tools for handling harmonic maps and established partial regularity
results under suitable energy bounds. A significant breakthrough in the formalization and gen-
eralization of these principles came through the work of K. Uhlenbeck in the late 1970s. In her
seminal contributions to harmonic maps and gauge theory, K. Uhlenbeck [24] established what
is now often referred to as the e-regularity theorem. She showed that if the local L>-norm of
the curvature (in the setting of gauge fields) or the energy (in the context of harmonic maps) is
sufficiently small, then the solution is smooth in that region. This framework provided a power-
ful method for controlling singularities and understanding the structure of solutions at multiple
scales, influencing subsequent research by Schoen—K. Uhlenbeck [17], Freed—K. Uhlenbeck [3],
and many others. Over time, this line of investigation has evolved into a cornerstone of mod-
ern geometric analysis, with e-regularity techniques being routinely employed to study minimal
surfaces, Yang—Mills connections, Einstein manifolds, and a variety of geometric and analytic
problems where localized control on energy or curvature provides a gateway to global structure.

A version of the e-regularity theorem for the Keller—Segel system has been established in
scale-invariant function spaces, in particular:

L>®(0,T; L'(R?)).

3
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As an application, this framework allows for a comprehensive singularity analysis of the Keller—
Segel system. Indeed, building on this e-regularity theorem, we further clarify the singular struc-
ture of the solutions. In particular, the e-regularity theorem reveals how the interplay between
local mass concentration and singularity formation is regulated. For instance, in the classical
two-dimensional Keller—Segel system without flow, if the initial mass is strictly greater than 8,
blow-up occurs. By applying the e-regularity theorem, we also deduce that for radially symmet-
ric initial data, the resulting singularities arise exclusively at the origin. This result underscores
the critical role of symmetry in determining the blow-up structure. To further substantiate this
claim, in this paper, we extend the e-regularity theorem to cases where radial symmetry is bro-
ken or additional effects, such as fluid flow, are introduced. This extension provides a foundation
for analyzing the formation of multiple singularities or spatially distributed blow-up patterns. Of
particular significance is that analyzing such multi-point blow-ups requires addressing several
complex factors, including:

e the absence of radial symmetry, which complicates the mathematical structure of the solu-
tions;

o the influence of fluid flow, which introduces additional nonlinear interactions; and

e the emergence of axis-symmetrical spatial patterns in the arrangement of blow-up points,
which demand detailed investigation to fully understand their formation and underlying dy-
namics.

The aforementioned e-regularity theorem, originally developed for the classical Keller-Segel
systems by Senba-Suzuki [20] and Nagai-Senba-Suzuki [13], ensures local regularity under as-
sumptions on the local mass concentration of the solution. This theorem has played a pivotal
role in advancing our understanding of blow-up phenomena in these systems. Specifically, it has
been shown that solutions to the classical Keller-Segel systems can blow-up in finite time at a
finite number of points. If {xi}i.‘zl denotes the blow-up points at time 7j, the solution develops
8-function singularities at each x; with corresponding masses {Mi}i.‘= |- More concretely, there

exist a function f € L! (Rz) and a sequence {tj}f/’.o 1 € (0, Tp) such that t; — T} and:

k
n(e,tj) — Y Midy () + f(-) as j— o0

i=1

in the sense of distributions on RZ.

Furthermore, the third author refined the e-regularity theorem into a sharper form and uti-
lized it to analyze time-global solutions as measure-valued solutions beyond the blow-up time.
This sharp e-regularity theorem, originally developed for the classical Keller—Segel systems, was
first established by Luckhaus-Sugiyama-Veldzquez [12]. This theorem asserts that if the local
mass around x is sufficiently small at some time ¢#1, then the solution remains locally bounded
within a suitable parabolic cylinder in space—time centered at (xi, #1). Compared to the classi-
cal e-regularity theorem, this refined version requires weaker assumptions and provides weaker
conclusions, positioning it as a form of partial regularity that is particularly crucial for analyzing
blow-up singularities even after the blow-up time.

In light of the progress made on the Keller-Segel systems, the primary goal of this paper is
to construct a blow-up solution exhibiting multiple peak aggregations for (KSF). More precisely,
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we establish the occurrence of multiple blow-up points, which has not yet well-understood even
for the classical Keller-Segel systems. Although it was known that the number of blow-up points
could be finite, it remained possible that only a single blow-up location might occur. Our results
characterize the initial condition to exclude this possibility and confirm the existence of multiple
blow-up points. Specifically, we relax the strictly radial assumption by allowing the initial density
no to be merely axis-symmetric, under the condition:

||no||L1(Rz) > 167,

with sufficiently separated concentration peaks. For more details, see Remark 6. Under these
assumptions, we prove the following:

o Finite-time blow-up. We derive an explicit upper bound for the blow-up time 7. The bound
depends on the L'-mass and the second moment of the initial data.

e Even number and non-origin location of blow-up points. None of the blow-up points lies
at the origin. Instead, they appear at an even number of distinct points in R?:

(xD L xm xmED Gy
where each pair (x/), x*+7)) is symmetric with respect to the coordinate axes.

These findings not only confirm that multiple blow-up points do indeed occur in (KSF) but also
shed light on how symmetry and initial mass distribution play a critical role in blow-up forma-
tion. This result stands in contrast to what happens in the classical radial setting, where blow-up
is often confined to the origin, and it illustrates the diversity of multi-peak formation that can
emerge from non-radial, axis-symmetric initial data.

The proof is carried out in several steps. First, we introduce suitable function spaces and
construct a local-in-time solution (n, v) of (KSF) within these spaces, ensuring that it qualifies as
a strong solution. Next, we establish a sharp e-regularity theorem, providing uniform estimates
near potential singularities. We then apply standard blow-up criteria for parabolic equations,
making use of the mass conservation of a strong solution n and the second moment:

/no(x)|x|2 dx

RZ

to confirm that blow-up occurs in finite time. Subsequently, we relate the geometry of blow-up
points to the structure of the flow field u. We show that if the initial peaks are sufficiently far
apart, then blow-up happens away from the origin and occurs in pairs along the axes. Finally,
we prove that only finitely many blow-up points can occur and that, at the blow-up time 7}, the
strong solution admits an asymptotic form consisting of a finite sum of delta functions and a
regular part in L' (R?). Through these steps, we construct explicit examples of initial data which
make multiple blow-up phenomena in solutions of (KSF) having axis-symmetric but non-radial
initial data. This work thus advances the study of blow-up analysis for chemotaxis systems under
fluid flow.

This paper is organized as follows. Section 2 presents the essential notation, definitions, and
main theorems. In Section 3, we collect several preliminary lemmas that will be used in later
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proofs. Section 4 establishes the local-in-time existence of solutions in an appropriate strong for-
mulation, along with the extension criterion and the mass conservation law. Section 5 is devoted
to proving a sharp e-regularity theorem. Section 6 provides an upper bound for the maximal ex-
istence time and constructs blow-up solutions, showing in particular that blow-up points occur
in an even number of symmetrically positioned locations rather than infinitely many. Finally,
Section 7 demonstrates that there are only finitely many blow-up points and that, at the blow-up
time, the asymptotic form of the solution is given by a finite sum of delta functions plus a regular
partin L!(R?).

2. Results
In what follows, we adopt the following notations:

(. Br@)={xeR?||x—a|<r, r >0, a e R4}, B, .= B.(0).

(2). Or =R% x (0, 7).

(3). e1:=(1,0), e2:= (0, 1.

@). 9 _ax,afj—aa V2=(0}, 0%, .0, =2, j=12,....d.

(5). (FHE) = &) = [gae X f(x) dx, (FTLf)(x) = f(x) = [a €275 £ (£) dE.

©). I fllr =1 fllLe@ays 1f lwme = | f lwmpway> 1 < p <00, meN.

(7). For 0 < p <oo and 0 < g < o0, let LP4(R9) = LP denote the Lorentz space on R4
equipped with the norm:

T S\a
4(/(su(|f|>s)l’)q —)q for 0 < g < o0,
I f N paway = fllLra = 0 .1
1
sup su(| f|>s)? for g = o0,

s>0

where p denotes the Lebesgue measure.
(8). When n and its weak derivatives Vn, V25 and d;n belong to L?(Qr) for some 1 < p < oo,
we say n € Wi’l(QT), which is defined as:

Wl (Qr) =1{n e LP(0,T; WP R)) N W P(0, T; LPR) | n]l 21,0, < )
14 Wp (QT)
with the corresponding norm:
”n”Wg‘l(Qr) = ||”||Lp(0,T;W2,p(Rd)) + ||n||W1»p((),T;Lp(]Rd))-
(9). For T > 0, we define the function space W(Q7) as follows:
W(Qr) = Wi (Qr) x LIT2(0, T; w42 (RY)). (2.2)

(10). For T > 0, we define the function space X7 as follows:
Xri={ne L0, T; W ®R:) |an € L*2(Qr),n = 0in Qr,

6
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||l’l||Loo(0’le2.d+2(]Rd)) + ||aﬂl||Ld+2(QT) < 4”}’10”W2.d+2(]Rd) + 1} (23)
(11). Forry,r» >0and p,q € R4, we define the function Tr.r, (P, q) as follows:

1 if p=gq,
T, s = .
e [

2.4)
Throughout this paper, we impose the following assumptions.

Assumption 2.1.

(i). The parameter y > 0.
(ii). The initial data ng satisfies ng € W24+2(R9) with ny > 0.

Under Assumption 2.1, we introduce the axis-symmetric function u.
Definition 2.1. Let Q € R and A > 0. We suppose that a € R? satisfy:
a=k(1,0,...,0) withk> 0.

We consider the following two cases for the vector b € R?:

. b
@ii). b=%(0,0,...,1) withk > 0.

Then, the axis-symmetric fluid vector field u is defined as follows:

uix)=Q ( (x—=b)+ x(x+ b)) , (2.5)

x—b
x—b21 2% b + b2+
where y € C° (R9) is an axis-symmetric function satisfying the following conditions:

0<x(x)<1 forallx e R? and supp x C By(0) withO<h < min{kjc\}.

Remark 1. By Definition 2.1, the following estimate holds:

1
1, -t. 2.6
= (2.6)

o ey <210 max |
In addition, since x € C*° (Rd ), there exists a positive constant C = C(Q, A) such that:
IV - ull ey <C and (V- )]l o may < C. @.7)
Moreover, since supp x (x) C By (0) with 0 < h < min{kjc\}, it follows:

supp x(x —b) Nsupp x(x +b) =0.

7
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To proceed, we introduce the definition of a strong solution to (KSF).

Definition 2.2. Let 1 < p < co. We assume that ng € w2p (Rd) with ng > 0. A pair of non-
negative functions (n, v) on Qr is called a strong solution of (KSF) on [0, T') if the following
conditions are satisfied:

(). ne Wy (Qr),
(ii). ve LP(0, T; W>P(R?)),
(iii). The pair of (n, v) satisfies (KSF) on (0, T).

Next, we provide the definitions of blow-up time and blow-up point.
Definition 2.3. Let (n, v) be a strong solution of (KSF) on [0, T) in the sense of Definition 2.2.
(1). (Blow-up Time) The strong solution » is said to blow-up at time T} < oo if:

n() e LOO(Rd) forae.7€(0,7p) and limsup ||n(t)l oy = 0. 2.8)
t—Tp,—0

Such a time T}, is called the blow-up time of n.
(ii). (Blow-up Point) Let T}, be the blow-up time of n. A point xg € R4 is called a blow-up point

of n at time T} if for any sequence {t./}?o 1 C (0, Tp) with t; — Tj as j — oo, there exists a

sequence {x;}72, C R4 with x; — xo, such that:
n(xj,tj) —> 00 asj— oo.
Our first results concerning the strong solution are presented in the following theorem:
Theorem 2.1. Let Assumption 2.1 hold. Then, the following assertions hold:

(D). (Existence of Time Local Solution)
There exists a positive time Ty = T1(d, v, Q, A, ||[noll w2.4+2rdy) such that (KSF) has a non-
negative strong solution (n, v) on [0, T1) in the sense of Definition 2.2, which is unique in
the class W(Qr,) with n € X1,. Moreover, the following estimate holds:

sup (1)l ooray < C (Inollweaegay + 1), (2.9)
te(0,T7)

where C = C(d).
(II). (Extension Criterion)
If the strong solution n obtained from Theorem 2.1 (1) satisfies:

sup  [[n(0)l Loo ey < 00, (2.10)
1€(0,Tp)

then, there exists a time T(; > Tp such that (n,v) can be extended as a unique strong
solution of (KSF) in W(QT(;). Furthermore, if the maximal existence time Tpmax of the
extended strong solution (n, v) is finite, the following holds:
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limsup [[n(?) || oo (ray = 00, 2.11)

t— Tmax—0

which implies:
Tinax = Tp. (2.12)

Here, Ty, is the blow-up time of n defined in Definition 2.3. Furthermore, it holds:

n € C([0, Tmax); C(£2)) (2.13)

for any bounded subset Q@ C R.

(IIT). (Mass Conservation Law)
In addition, we assume that the initial data no belongs to LY(R?). Let Trax be the maximal
existence time of the strong solution (n, v) obtained from Theorem 2.1 (I) and (I1). Let T be
an arbitrary positive number such that Te (0, Thnax)- Then, the strong solution n belongs
to C([O, ?]; LY(R?)) and satisfies the mass conservation law:

In@ L1 ray = Inoll 1 ey forallt €0, T1. (2.14)
We shall state an e-regularity theorem for strong solutions of (KSF).

Theorem 2.2. (s-regularity Theorem) Let Assumption 2.1 hold and suppose that no € L' (R?).
Let Tmax be the maximal existence time of the strong solution (n,v) obtained from Theo-
rem 2.1 (I) and (I). There exist an absolute positive constant m, and a positive constant
ci=ci(y, @, A, llnoll 1 (r2y) such that if:

/ n(x, 1) dx <my (2.15)

Bap (x0)
holds for some xq € RZ, 0 < p <1, and t| € [0, Tnax), then the following estimates are valid:

(1). In the case 261,02 < Tmax and 261,02 <11 < Tmax, the following estimate holds:

sup 7)o

se(ty—c1p?,min{t; +2c1 p2, Tmax })

E C, (2.16)

Bp (x0)
)

Where C = C(V, Qv )\,, ||n0||Ll(R2)7 p)
(i1). In the case 2c1,02 <Thmax and 0 < 11 < min{2cl,02, Tax} = 26],02, forany 0 <¢e <1, the
following estimate holds:

1+
sup s )l

j=c 2.17)
s€(0,minf{t;+2¢1 p2, Tmax})

Lw(3£ (x0)

where C = C(V, Qv )\,, ||n0||Ll(R2)7 P, 8)'
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(iii). In the case 201,02 > Thmax and 0 <t < min{2clp2, Tmax} = Tmax, provided that ng €
leoC (R?), the following estimate holds:

sup

) <C, (2.18)
se€(0,min{t;+2¢1 p2, Tmax })

196) (5,
by

Where C = C(V, Qv )‘" ”nO”Ll(]Rz)’ ||n0||LIO(i(R2)7 10)

Remark 2. In view of the results concerning the global-in-time existence of solutions with spa-
tially global estimates, it is conjectured that the constant m, in Theorem 2.2 can be improved to
8. For detailed statements and proofs, refer to the work by Nagai, Senba, and Yoshida [14].

Theorem 2.2 provides a necessary lower bound for the concentration of n near x¢, uniformly
in time. Furthermore, Theorem 2.2 leads to the following result.

Theorem 2.3. Let Assumption 2.1 hold and suppose that ny € L! (RZ). Let Tiax denote the max-
imal existence time of the strong solution (n, v) obtained from Theorem 2.1 (1) and (II). Let m,
be the positive constant provided in Theorem 2.2, and let xo € R2. Then, the following estimate
holds:

sup / n(x,t)dx >my forallr > 0. (2.19)
1€(0,7p)
By (x0)

Remark 3. By Theorem 2.3, the mass at each blow-up point is at least m,, as described in
(2.19). As mentioned in Remark 2, it is conjectured that m, can be refined to 8. 1 A significant
aspect of blow-up analysis is determining whether the aggregation mass of a blow-up solution
can exceed 8m. This question was investigated by Seki, Sugiyama, and Veldzquez [18], who
constructed a blow-up solution with an aggregation mass strictly greater than 87 through the
method of matched asymptotics.

We construct an initial data such that the corresponding solution exhibits blow-up at two or
more distinct points in finite time. The main result is stated as follows:

Theorem 2.4. Let Assumption 2.1 hold and suppose that ng € L' (R?). We suppose § > 0, 0 <
o < 1, and let a:=ke; = k(1,0) with k > 0. We assume that the initial data nq is given by:

no(x) =¢(x —a)+¢(x+a) with |nolp1 g2 > 167. (2.20)
Here, we assume that ¢ satisfies the following properties (1), (i) and (iii):
(1). The function ¢ is axis-symmetric with respect to both ey = (1,0) and e; = (0, 1).

(ii). The support of ¢ satisfies supp ¢ = Bs(0).
(iii). In addition, ¢ satisfies the following inequality:

/ ¢ (x0)|x|* dx
]RZ

10
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3
]t (1 —a)Nj /7@ ( No )2 aNy
<gming — - log— ) ,
Y 5124227 No + 8m) Inoll 1 r2) 32 16(v/27 No + 87)
=: &y, (2.21)
where gy and Ny are defined as follows:
&0 = “nO”Ll(RZ) — 16w, and Ny:= “nOHLl(]RZ) + 167. (2.22)

For the flow field u defined by (2.5) in Definition 2.1, we impose the following condition on
the coefficient Q of u:

£olNo .00 ifa=b. (2.23)

101 < =:
32||n0||L1(R2) (\/ 27TN() + 87'[)

Let T* be defined by:

327t/¢(x) Ix)? dx
RZ

T* = : (2.24)
a (ol ey +167) (/27 (Ioll 1 e, + 167) — 87)

Then, there exists a mapping:
G=G(e,1): Ry xRy — R4,
satisfying the following properties:

(2). For every fixed so > 0, lim,_ o+ G(gg, T) = 68(1 +1. %(@ + 1) 120121 s, L”g’g*g”)

(b). For every fixed g > 0, lim;_, 5, G (&g, T) = 00,

such that if the following conditions hold:

la| =k > G(e0, T"),

and:
-1
1 32/2 V27 Ny + 87 .
Ia—blEG(ao,T*)<1+—'—(—+1>|lnollil(Rz)~7 +h ifab,
g0 W\ e No

with a positive number h as defined in Definition 2.1, then the strong solution (n, v) of (KSF) on
[0, Thax), obtained in Theorem 2.1, satisfies the following properties (1) and (II):

11
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(D). (Maximal Existence Time Estimate) The maximal existence time Ty, is bounded above by
an estimate that depends on the initial data, as follows:

327 f & (x)|x|?dx
RZ

Tmax < T* =

. (2.25)
a(llnoll 1 g2 + 167) (/27 (ol L1 gz, + 167) — 87)

(I1). (Blow-up Configuration) The blow-up points of n(t) at the blow-up time T} are not lo-
cated at the origin. Instead, these points consist of an even number of points x1, ..., Xm,
Xm+1, - - -» Xom-. These points are organized into m pairs (xj, xm+j) for j =1, ..., m, where
each pair x; and xp, j is symmetric with respect to both the e1- and ey-axes. Consequently,
all blow-up points lie on one of these axes.

Remark 4. The support of ng(x) = ¢ (x — a) + ¢ (x + a) described in Theorem 2.4 is depicted,
as follows in Fig. 1.

O

—a

=1 )

>

Fig. 1. Solid circles represent supp ¢ centered at —a = —k(1,0) and a = k(1, 0).

Remark 5. For the flow field u defined by (2.5) in Definition 2.1, Theorem 2.4 establishes the
existence of solutions exhibiting multiple blow-up behavior in two cases: (i) when a = b, and (ii)
when |a—b| > 2£o+ A, where £ and / are positive constants defined in (2.27) and Definition 2.1,
respectively. The second case requires that | Q| is sufficiently small. This paper does not address
the case |a — b| < 2¢y + h. Nevertheless, we conjecture that blow-up may also occur in this
setting, provided | Q| remains small.

Remark 6. The function G(gg, T*), whose existence is ensured in Theorem 2.4 (I), can be ex-
plicitly defined as follows:

32 (V2 V2n No + 87
G(eo, T*) = 2Lo(0, T™) (1 + —(— + 1) 701171 g2y - ~————— | - (2.26)
Teg \ e No

where gy and Ny are given in (2.22). In addition, the parameter £y = £o(eg, T™*) is derived from
(2.27) and (2.28). The numbers Ny, @g, Qo, G, and £y satisfy the following properties:

(1). v/2nNog — 87 > 0 for ||Ino|| 1 (r2) > 167,

(2). /2w No—8m — Oas |lnoll 1 (r2) — 167,

(3). @0, Qo — O as [Inoll1(r2) — 167,

(4). For every fixed 7 > 0, G(|lnoll L1 (r2) — 167, T) — 00 as ||noll 1 (r2) — 167,
(5). For every fixed 7 > 0, G(||noll L1 (r2) — 167, T) — 00 as |[nol| 1 (r2) = 00,
(6). Lo(llnollL1r2) — 167, T*) — 00 as |Inoll L1 (R2) — 167,

12
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(7). Cx — oo as |lngll1r2) = 167, and Cy — 00 as ||noll 11 g2y — 0.

Here, the parameter £g = £y (g9, T*) is explicitly given by:

’

6|n 24+ L(L2 4 1)n T*
Lo(eo, T") = max{38, 4\/ ” O||L1(R2)( ”( £ )” OHLI(RZ))
€0

16v/2llnoll 1 (g2)| @ max {1, 1} 7*

)

€0

37 Cillnoll 1 2y (2+ L (2 + 1) lInoll 1 gy ) T*
No(/27 Ny — 87) ’

256727 Cyllnoll 1 g2y | QI max {1, 5} T
No(v/27 Ny — 87) ’

5 +4/6””0”L1<R2>(2 + 2 (2 + 1)linoll 1 @) T

Ny

26 +32

k]

8v2n max {1, L}7*
5t Inoll L1 w2yl @l max {1, 7] } (2.27)

M
with m, obtained in Theorem 2.2, where C, is given by:

Cy = 16(v/2 4 6) + 4+/2| Q12,1 (a, b)

1 /V2 JINo —
+;(%—+1)||no||L1(Rz)[8f2(z+ Notv2rNo = $7) )

128(32 + 1) 012, g,

e

64(*2 + 1) 10|12 2 64(*2 + 1) 10|12
+48(1+ ( ) Ll(Rz)) +8f2(1+ ( ) LI(R2>)+3 . (2.28)
No(\/27w Nog — 8) No(+/2m Ng — 87)

The quantities G (g9, T*), £o, and C* have the following roles:

e G(eg, T*): quantifies the separation condition between peaks and ensures that blow-up
points remain well separated.

e (o: defined in terms of ||ngll.1Rr2), |Ql, €0, and T*, serves as a local threshold for applying
the e-regularity theorem; in particular, a large value of £( prevents excessive concentration
at the origin.

e C*: used in the definition of £y as an auxiliary constant, consolidating several constants
arising in the proofs and making their parameter dependence explicit.

Remark 7. The term /27 No — 8, which appears in the definitions of £y and Cy, is directly
related to gg as defined in (2.22). In fact, the following equality holds:

13
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(+/2m N — 87m)(y/2m No + 87) = 2 No — 64m* = 2 (||no | 1 (mey — 167) = 27 e.

Remark 8. Theorem 2.4 can be proved in a more straightforward manner when y = 0. In this
paper, however, we address the case y > 0, which requires additional techniques for the proof.

The following theorem establishes that the number of blow-up points of n at the blow-up time
T}, is finite. It provides a quantitative bound on the number of blow-up points in terms of the
initial mass of n and a constant m, determined by Theorem 2.2.

Theorem 2.5. (Finiteness of the Blow-up Points) Let Assumption 2.1 hold and suppose that
ng € Ll(Rz). Let Tiax denote the maximal existence time of the strong solution (n, v) obtained
from Theorem 2.1 (I) and (I1). Then, the number k of the blow-up points of n of (KSF) at the
blow-up time Ty (= Tmax) is finite. More precisely, k is bounded by:

n 1 2
- Inoll L1 r2)
ny

k

)

where my is the same constant given by Theorem 2.2.

Remark 9. Theorem 2.5 states that if the initial data is radially symmetric, then the solution
must blow up exclusively at the origin. In contrast, our result addresses the non-radial case and
provides an example where the solution does not necessarily blow up at the origin.

Next, we present a definition that characterizes the formation of a §-function singularity at the
blow-up points of the solution n(x, ). It describes how n(x, tr) converges, as ¢ approaches the
blow-up time 7}, to a combination of §-functions centered at the blow-up points, each associated
with a specified mass.

Definition 2.4. Let T}, be the blow-up time of a strong solution »n of (KSF) as defined in Defini-
tion 2.3. Let {x,-}f.‘: denote the blow-up points of n for (KSF) at time 7). We say that n forms
a §-function singularity at {x,-}f,‘:1 and at time 7}, with masses {M,-}f:1 if the following property
holds: there exists a function f € L'(R?) and a sequence {¢; }?ozl C (0, Tp) withlim; oo t; =T
such that:

k
n(-,tj) — ZMiszi ()+ f(-) as j— oo in the sense of distributions in ]Rz,

i=1

ie.,
k
lim fn(x, Y () dx =Y M (x;) + / FEOY(x) dx
J*>00R2 =1 R?

for all Y € C°(R?).

14
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The following Theorem establishes that at the blow-up time 7 = Tinax, the solution n(x, )
develops a §-function singularity at its blow-up points. Each of these singularities is associated
with a mass that is bounded below by a constant m,, which is determined by Theorem 2.3.

Theorem 2.6. (8-function Singularity) Let Assumption 2.1 hold and suppose that ng € L' (R?).
Let Tmax denote the maximal existence time of the strong solution (n,v) obtained from Theo-
rem 2.1 (1) and (II). Let {xi}f?zl be the blow-up points of n at time Tp(= Tmax). We suppose that
my is the constant provided by Theorem 2.3. Then, there exist k constants M; > m, (1 <i <k)
such that n forms the §-function singularity at {x; }{?:1 and at time Tp(= Tymax) with masses
{Mi}i'; 1°

3. Preliminaries
In this section, we introduce notation and preliminary results to support the analysis developed
in subsequent sections.

We begin by defining the Bessel potential operator. Let ¥ > 0 and o > 0. For f € L?(R%)
with 1 < p < 00, the operator (y — A)™ 2 is defined as:

=073 f=F [ +anle ] (3.1)

where F~! denotes the inverse Fourier transform and f is the Fourier transform of f.
The corresponding Bessel kernel G, ¢ is given by:

oo 2 dfgfl
Gyalx) = ydTaad e VYl / eV lxls <s + %) ds, 3.2)
0
where the constant a, is defined as:
1

Ad = —— Qg3 .
20m) 7T T (45)

and I is the gamma function.
Remark 10. The Bessel kernel G, , has the following properties:

(i). For o > 0, the function G, (x) is smooth for all x € R4\ {0}.
(i1). The kernel satisfies the scaling property:

d—a
Gy,a(x) =y 2 Gl,a(\/?x),

where G1 o corresponds to the case y = 1.
(iii). The Fourier transform of G, ¢ is:

Gya(®) = (y +4n2ED) 5. (3.3)

15
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(iv). The Ll(Rd)—norm of Gy o satisfies:

—a
2.

1Gy.allp R4 =V

In particular, for y = 1, we have || G o || 1 (ge) = 1. This follows from the Fourier transform
property (3.3), as:

/ Gyo(x)dx =Gy a(0)=y2.
G
(v). The operator (y — A)_% can be represented in terms of convolution with the Bessel kernel:
r =) f=F [Cyaf]=Gyaxf. (3.4)
For further details, see Grafakos [5, p.13] or Stein [21, p.132].
When o =2 in (3.2), we denote G, > by G, . The following proposition provides estimates
for the inner product between the gradient of the Bessel kernel, VG,,, and x. Specifically, we
establish upper bounds for x - VG, (x) and |x||V G, (x)| that hold uniformly for all y > 0.

Lemma 3.1. Let d =2 and y > 0. Then, the following estimates hold:

(). For all x € R?, the following estimate holds:
1
x-VG,(x) < —Ee*W'X' <0. (3.5)

(ii). For all x € R, the following estimate holds:

1 /2 1
|x||VGy(x)|§;<7+1) <3 (3.6)

Proof of Lemma 3.1. For the estimate (3.5), see Kozono-Sugiyama [10, p.368, Lemma 3.1]. To
establish (3.6), we start from the representation in (3.2):

1
2

T 2
v 'i[mﬂ/e*mx‘s(lu) (“r%) ds.
0

22 x|

which leads to:

co 1
2\ 72
VG, l= N—%e_mx O/e‘ﬁx's(l +5) (s + %) ds

= MY~V 4 1), (3.7)

16
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where the terms [ and > are defined as:

1 2
I = /e*ﬁlxls(l +5) (s + %)
0

Considering /1, we obtain:

1
2

< 2
ds, I,:= / e*ﬁ‘xlx(l +5) (s + s_) ds.
1

1
2

2

1
I gfzs*%ds=4. (3.8)
0

For I, using the inequality:

N

1
2\ 72 2
(1+s)<s+%> 52&£=2\/§ forall s > 0,
we deduce:

24/ 2e= V7]

W' (3.9)

o
D 52\/5/.67*/7""%“:
1

Combining (3.7) through (3.9), it follows that:

a7

NY i N2V
VGl < e (2+ Vil

which further implies:
V2 1
KIVGy ()] < YL e VPRl x| 4 — =271,
T T

Since e V7l |x| < J_Ly for all x € R2, it follows that:

wvG, o< Y22 L L L2y

Jye mw owm

This completes the proof of Lemma 3.1. O

In the following lemma, we establish a representation formula for elliptic equations of Poisson
type. Specifically, we show that for a function f € L”(R?), the solution z, defined via convo-
lution, lies in the Sobolev space w2r (R4 ). For further details, refer to Grafakos [5, Chapter 1,
Sec. 1.2.2], among others.

17
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Lemma 3.2. Letd > 1, and let y > 0 and 1 < p < co. We define the function z as:

) = / Gy~ f()dy for f e LP®RY). (3.10)
R

Then:
ze W2P(RY) (3.11)
and satisfies the elliptic equation:
—Az+yz=f inR% (3.12)

The function z defined by (3.10) is the unique solution of (3.12) in WP (R?), where fe LP(R?)
for1l < p < oc.

In addition, let 1 < p < oo, and we suppose that f € W>P(R?). Then, the following estimate
holds:

||Z||W4‘p(Rd) = C||f||w2,p(Rd)s (3.13)
where C =C(d, vy, p).

Proof of Lemma 3.2. The solution z provided by (3.10) is addressed in Grafakos [5, Chapter 1,
Sec. 1.2.2]. To demonstrate the uniqueness of the solution, we proceed as follows. Let z; be a
solution of (3.12) distinct from z. Then, the following equation holds:

A(z—z1)—y(z—z1)=0. (3.14)

For 1 < p < oo, multiplying both sides of (3.14) by |z — z1|?~2(z — z1) and integrating over R¢,
we obtain:

4(p—1 P
TIIV(Z —z0)2llr +yliz —z1llLr =0.

This implies z(x) = z1(x) fora.e. x € R,
To prove (3.13), we assume f € W?2P(R?) and define the function z by (3.10). The second
derivatives of z are given by:

asz(x)=fcy(x—y)afjf(y) dy fori,j=1,2,....d, (3.15)
R4

where al?,. f € LP(R?). From (3.11) and (3.12) in Lemma 3.2, it follows that a,?jz e W2P(RY),
and z satisfies:

—AYz+ydz=05f inR% (3.16)

18
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This implies that the unique solution Z € W2?(R?) of the equation:
~AZ+yZ=09}f inR?
is explicitly given by:
20)= [ Gy (x = 009 £(3) dy =820,
R4

where Bizjf € Lp(Rd). This yields by (3.10), (3.12) and (3.16):

d d
lzllwsr <C Y 1Azl <C Y (yua,?,znm - ||a,?,f||u)
i,j=1 i,j=l

< C (Izllwzr + 1 fllw2r) < € (lzllze + 1AzILe + 1 fllw2r) < CllLf llw2r

forall 1 < p <oo,where C=C(d,y,p). O

The following lemma establishes an L? (R%)-estimate for the gradient of the potential z, de-
fined by (3.10). This result highlights the boundedness of Vz in terms of the L?(R?)-norm of
the source term f. It plays a crucial role in the analysis of regularity properties for solutions to

elliptic equations.

Lemma 3.3. Let d > 1, and let 7 be defined by (3.10). We suppose f € L? (R4) with 1 < p < oo.
Then, the following estimate holds:

IVzllLr®ay = ClILf Il Lr w4y (3.17)
where C = C(y, p).
Proof of Theorem 3.3. Since VG, € L'(R%), it follows from the Young inequality:
IVzllLr = IVGyliptll fllLe = Cll fllLe,
where C = C(y, p). This completes the proof of Lemma 3.3. O

The following lemma provides a local LP(R?)-estimate for the function z given by (3.10),
derived from potential theory.

Lemma 3.4. Letd =2 and let 2 < p < oo. Let p1, p» > 0 with px > p1. For xo € R? and a func-
tion f € L'(R?) N L2(Bp2 (x0)), we define z as in (3.10). Then, there exists a positive constant
C =C(y, p) such that:

ST}

0
IVZllLr(B,, (xo) < C<p2 _1 p 1Al w2y + ||f||L2(B,,2(xo))>- (3.13)

19



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745

Proof of Lemma 3.4. We decompose the function z given by (3.10) as follows:

2(x) =z1(x) + z2(x) forx e R?, (3.19)

with:

z1(x) :=/Gy(x =) XBy, (x) (V) dy,
R2

200 = [ Gyt = D(FO) = FO 00 0) d

R2

for x € R?, where XB,, (x0) is the characteristic function of B, (xp). By Lemma 3.2, we have:
—Az1+yz1=fXB,(p inR%.

By the Sobolev inequality and the classical L*(R?)-estimate, we obtain for 2 < p < oo:

lz1 ||W11p(Bﬂ] oy = Cllzillw22 w2y = C”f”LZ(BpZ(xO))v (3.20)

where C = C(y, p).
As for the function z;, we have:

Vaalr) = / VG (x = M) = F0) Ay, 00 () . (3.21)
R2

From (3.6) in Lemma 3.1, it follows:
1 2
VG0l = <£ + 1) for all x € R? with x 0.
T|x e

In particular, for x € B, (xg) and y € R2 \ By, (xp), we have:

VG (x — )] = — -1(£+1).

pP2—pP1 T e

Combining this estimate with (3.21), we deduce:

IVz2llLeo(B <
(Byy o) = o

11 (V2
<? + 1) IfllLr w2

and hence:
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([N}

P

Cp|
02 — p1

1
1VzallLr(s, (x) < |Bp (X0 |7 [IVz2llLo(B,, (x)) < | fll L1 r2)s (3.22)
1 1 (R#)

where C = C(p). Combining (3.20) and (3.22), we obtain the desired estimate (3.18). O

The operator (y — A)~ % exhibits mapping properties analogous to those of classical fractional
integrals, such as the Riesz potentials. In particular, it sends L” (R?) functions to spaces of higher
integrability and admits corresponding weak-type estimates. For details, see Grafakos [5, Chapter
1, Corollary 1.2.6]

Lemma 3.5.

(). Let 0 < o < d, andlet1§p<q<oosatisfy%—
C=C,p,q,a) such that:

é = %. Then, there exist constants

1y = A7 fllamey < CUfllppay forall f € LP®R?) with p > 1,
and:
Iy = A2 fll pgooway < Cllf 1 rey  forall f € L'(RY).
(i1). Let o > 0. Then the operator (y — A)_% is bounded from L’(Rd) toitselfforall 1 <r < oo.

The following lemma introduces a cut-off function based on a quadratic polynomial, with
estimates on its derivatives.

Lemma 3.6. Let d > 1, and let py, pr > 0 with p2 > p1. We define i by:

1 ifo<r<pi,
2 . p1+ p2
—m(’”—pl)2 ifo1<r< >
Y(r) =
PRY) PLY P2
e’ RS s
0 ifpp=<r.

Set ¥ (x) := J(|x ) for x € R¥. The function  satisfies the following derivative estimates:

12
[0¢ (x)] < and |0;0;¢y (x)| < —— (3.23)
02— P1 (o2 — p1)
foralli,j=1,2,...,dand all x € RY. Consequently:
2/d 12d
IV (x)| < vd and |AY(x)] < —> forall x € RY. (3.24)
P2 — p1 (02 — p1)
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Furthermore, there exists an absolute positive constant C such that:

IVir(x)| < W(x)% forall x € RY. (3.25)

02— p1

In addition, for any 1 < p < oo, there exists a positive constant C = C(d, p) such that:

144 _p4d
IVl Lo ay <Clo2—p1)~ 7 and || AV pray < Cloa—p1) "7 7. (3.26)

The following lemma provides a local mass estimate for (KSF), giving an inequality that links
the rate of localized mass change to the initial mass ||nol| 1 (r2), the spatial scales p; and p2, and
other parameters. This quantifies how the mass distribution evolves over time within a prescribed
region.

Lemma 3.7. Let d = 2 and let Assumption 2.1 hold. Let p1, p2 > 0 with py > p1. We suppose
that  be the cut-off function from Lemma 3.6 with p1 and p>. In addition, we suppose that the
function u is defined in Definition 2.1. Let (n, v) denote the strong solution of (KSF) on [0, T)
as obtained in Theorem 2.1 and let p € R?. Then the following estimate holds:

%/n(x, HY(x —p) dx

]RZ

62+ %(@ +Dlnollir2)  V21QImax {1, 1}z, 4 (p.b)
: + . (327
(2 — p1) P2 — p1

<2llnoll 11 r2) (

where T, (P, b) is defined in (2.4).

Proof of Lemma 3.7. Multiplying both sides of the first equation of (KSF) by ¥ (x — p) and
integrating over R?, we obtain:

%/n(x,t)t/f(x—p) dx:/n(x,t) AY(x —p) dx—l—/(an)(x,t)-Vz/x(x—p) dx
R2 R2 R2

+ / ux)n(x,t) - Viy(x —p) dx
R2
=1+J+K. (3.28)

Regarding the integral I, we use (3.24) to obtain:

I< Lz /n(x, f) dx = M‘)”L;. (3.29)
(02 — p1) A (02 — p1)
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Next, we consider J. Since the Bessel kernel G, is symmetric, we have:
V.G, (x —y)=-V,G,(x —y) forallx,ycR*withx #y.

This implies:

=//n(x,t)n(y,t)VGy(x—y)'Vw(x—p) dxdy

RZR?

1
:z//n(x,t)n(y,t)VGy(x—y)-le(x—p) dxdy

R2R?

1
+5//n(y,t)n(x,t)VGy(y—X)-Vw(y—p) dydx
R2R2

1
2 /f”(x’ Hn(y, ) VGy (x = y) - (V¥ (x —p) = Vi (y — p)) dxdy, (3.30)
R2R2

since Vv =VG,, *n.
By applying (3.6) in Lemma 3.1, (3.24) in Lemma 3.6, and the fundamental theorem of cal-
culus, we have:

Vi lf/( n(y, 1) |IVGy,( )| e | | dxd ?2(\/—+1)”n0”
< - n(x,t)n(y,t X — —_— X — X <
~2 y P L P
R2R2
(3.31)
Considering K, by (2.6), we have:
K| =< /IQI b (x—b)+Lbl (x +b) ) nlx, )|V (x —p)| dx
= b|2+XX x+b2+ 2% ’ P
2f||no||L1|Q|max{ }szh(P,b) (3.32)

02— p1

where 7,, ,(p,b) is defined in (2.4). Combining (3.28), (3.29), (3.31) and (3.32), we obtain
(3.27). This completes the proof of Lemma 3.7. O

4. Proof of Theorem 2.1
4.1. Proof of Theorem 2.1 (I): existence of time local solution

In this subsection, we construct a time local solution of (KSF). To this end, we introduce the
metric on X7 by:

D(n1,n2) =|n1 — ”2||L00(0,T;Ld+2(Rd))~ 4.1
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Then, it is readily seen that (X7, &) is the complete metric space.

To prove Theorem 2.1 (I), we consider the following modified problem h (KSF), derived from
(KSF). In this modified problem, (KSF) is transformed into a set of independent equations by
replacing the unknown functions in the advection and reaction terms with given functions:

d
3_;’ +V-un)=An—V-(mVh) inRYx0,T), (M
h
(KSF) 0O=Av—yv+f inRY x (0, 7), @y
n(x,0) = no(x) in R,

where h € L®(0, T; W2 (R4)) and 0 < f € L"(Qr) with some 1 < r < 0.

We remark that generalizing Theorem 9.1 in Ladyzhenskaya, Solonnikov, and Ural’tseva [11]
to the Cauchy problem is straightforward. A more modern approach, such as the maximal reg-
ularity theorem in L?, can be found in Amann [, Chapter IV, Theorem 1.5.1]. By virtue of [,
Theorem 1.5.1] or [11, Theorem 9.1], we obtain the following lemma:

Lemma 4.1. Let the same assumptions as in Theorem 2.1 hold. We assume that there exist posi-
tive number By and By such that:

lull oo ray + IV - utll pooray + I VR Lo (Qp) + | AR L2 (Qp) < Bi 4.2)
and:
I f oo o, 7; La+2 R4y < Ba- (4.3)

Then, "(KSF) has a unique non-negative strong solution (n, v) belonging to W(Qr), where the
function space W is defined in (2.2). Moreover, (n, v) satisfies the following estimates:

1
IIHIIWﬁZ(QT) = CiT @2 nollyw2.a+2ra) (4.4)

and:

”U ||L°°(0,T;W2'd+2(Rd)) < C2 ” f||L°°(0,T;Ld+2(Rd)) (45)
for some positive constants C1 = C1(B1,d, p) and C, = C2(d).
Proof of Theorem 2.1. Let X7 be the space defined in (2.3), and let f € X7. By Lemma 4.1,
there exists a strong solution o/ of (2) fin L4t2(0, T; W24+2(R9)). Furthermore, since f € X7,

it follows from the Sobolev embedding theorem, the second equation of h(KSF), and (3.13) in
Lemma 3.2 that the following holds:

||1_)f||L°°(0,T;W3’°°(Rd))

= C||1_)fIlLDO((),T;W4,d+2(Rd)) = C||f||Loo(0’T;W2,d+2(Rd)) = C(4||”0”W2-d+2 +1), (4.6)

24



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745

where C = C(d, y). Then, Lemma 4.1 guarantees that h(KSF) with & = 9/ (denoted by
h:{’f(KSF)) has a unique strong solution (ﬁh:‘_’f,f)f) € W(Qr), since v/ € L2, T;
W32 (R%)). Moreover, by (4.4) of Lemma 4.1, it follows:

_h=pf 1
17"=" lw21 @) = CTT2 lInoll sz, .7

where C =C(d, y).

For the sake of simplicity, let us denote (n f, v/) by (n, v). It follows that the strong solu-
tion (n, v) is a non-negative. This non-negativity can be verified by multiplying both sides of the
first equation of h=v! (KSF) by n~ := —min{0, n} and integrating over R¢, which leads to:

h=v

1d

S ||n—<r>||izs—/|w-|2dx+/|n—|<|Vv|+|u|>|Vn—|dx

R4 R4

1 — 112 2 2 — (112
= =51V Olli2 +{ sup IVo@OlLeo + llullze [lin= @1l
1€(0,T)

Applying (4.6), we derive the inequality:

d _ _ _
ST OIL +1Vr~ 17 < Clln™ @172,
where C =C(d, y, O, A, lIno|ly2.¢+2). By the Gronwall inequality, we find:

sup [n= (M1, < lln~(x,0)|1%, - exp{CT} =0
t€(0,T)

since n~ (x, 0) = 0. This implies:
n(x,1)>0  forae. (x,7) e R? x (0, 7).

Next, we define the operator @ by:
_h=p/
®:Xr>f > " ewrLQr).

The existence of a strong solution to (KSF) is established by applying the Banach fixed-point
theorem. Specifically, there exists 71 > 0 such that the operator @ maps X7, into itself as a
contraction. Since X 7,, equipped with the metric defined by (4.1), forms a complete metric space,
the Banach fixed-point theorem guarantees the existence of a unique solution (nh:”f, v/)in X Ti>
satisfying f = nh=v" over [0, T1]. This can be shown in the following steps.

To proceed, we demonstrate that for sufficiently small 7* > 0, the operator @ maps X7+ into
itself.

We further establish that n € L>(0, T; LY*?(R?)). For any 1 < r < oo, multiplying both

sides of the first equation of h:ﬁf(KSF) by n"~! and integrating by parts, it follows:
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1d
Sl <~ 1>/n’—2|w|2dx+<r— 1>/n’—1<|w|+|u|>|w|dx
R4 R4

r—1 B r—1
<—— /n 2|Vn|2dx+T( sup ||Vv<t)||%oo+||u||%oo>||n(r>||’y

R te(0,T)
r—1 r—2 2 r
< - > n" " e|\Vnl|=dx +Clln@) |y,
R

where C =C(d, y, O, A, lInolly2.4+2, ). This yields:

sup |[[n()llzr < lInollzr exp{CT} (4.8)
te(0,7T)

forall 1 <r < oo, where C =C(d, y, Q, A, ||nollw2.4+2, r). Therefore, by setting r =d +2 > 1,
it follows that n € L®°(0, T; L4t2(RY)).

Next, we show that Vi € L®(0, T; L4T2(R?)). Let 2 < r < oco. Differentiating both sides of
the first equation of h:‘jf(KSF) with respect to x and multiplying by |Vn|"~2Vn, we obtain:

1d
;Envw)ng, = / VAn-|Vn|"?Vndx — / V(V - (nVv)) - |Vn| ">Vn dx
R4 R4

—/V(v.(un)).|vn|’—2vn dx
]Rd

ROINTORNTO:
=1V 41"+ 1V (4.9)

Applying integrating by parts to / 1( Y we find:

d d
1f1>=/223i3§n|Vn|’—zain dx

Ra i=1J=1
d d
——(r— 2)/ |Vn|r_42 1(0;Vn) - (Vn)|? dx — / |Vn| 2 Z 19, Vn|* dx
R4 Jj=1 R4 Jj=1
T () ¥ A A (4.10)

As for 12(1), it follows from (4.6):

d
Y= _/Zaj(v - (nVv))|Vn|""28;n dx
R4 Jj=1
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d
:/v.(an)Za,»(an—za,-n) dx

R4 j=1

d
<G —2>/<|Vn||w| +nlAvl) [V~ 1@ V) - (Tm)l[0;n] dx
R J=l

d
+/(|Vn||Vv| +n|Av)) [Va|2 ) " |37n] dx
R¢ J=1
r=2 ., 1 q 2 ,
S—J7+ =0 +2(r =244d) sup Vv zlIVR@)I] -
4 4 1€(0,T)

+2(r —2+4d) sup [Av@) |2 VRO 2N 13,
te(0,7)

< %J{l) + ;LJZ(U + CIVROI, + CIVR® 52 In @13, @.11)
where C = C(d, y, ||nolly2.4+2, r). Furthermore, similar to (4.11), we observe:
m_r=2.0, 1 o ) .
;7 < TJI + A_LJZ +20r =2+ d)ull 7 VA ||
+20r =2+ DIV - ull 1 VRO RO
< %J{” + % D CIvally, + ClIVa ;2 In @13, (4.12)

where C =C(d, y, Q, A, r). Combining (4.9)-(4.12), we obtain the following expression:
d r—2 1
— Va7, < —=—==J" =SBV + Clln)I7, + CIVR@®)113,
dt 2 2

which, by (4.8), yields:

1
sup [|Va(@)|Lr = <||Vno|ILr +CT?2 sup ||n(t)|ILr) exp{CT}
te(0,T) te(0,7)

1
= <||Vn0||Lr+CT7||n0||Lr)exp{CT} (4.13)

forall2 <r < oo, where C =C(d, y, O, A, lInglly2.4+2, r). Therefore, by setting r =d +2 > 1,
it follows that Vn € L®(0, T; LYT2(R?)).

Next, we demonstrate that 9; Vn € L°°(0, T; Ld“(Rd)) foralli=1,...,d. Let2 <r < o0.
We begin by differentiating both sides of the first equation of h=>v/ (KSF) with respect to x and
then multiply by |9; Var|"~28; Vn, which gives:

1d
o CAZIOL =/8iVAn 8V "29;Vn dx —/BiV(V (V) - 18 V| "29;Vn dx
R4 R4
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—/a,-V(V-(un))-|a,~Vn|’*23,-Vn dx
Ra’

= 1P+ 1P+ 1. (4.14)

We now proceed to handle 7 1(2). By integrating by parts, we obtain the following:

d
Il(z)Z/ZBivajZn.|aiVn|’—28iVn dx
Re /=1

d d
=—(r—2)/|aiVn|’*4Z|(a,~a,~vn)-(aivn)|2dx—/|3,~Vn|’*2Z|a,<ajVn|2dx

R4 Jj=1 Jj=1

R4
. 2 (2)
= —(r— 2)]1 — .

(4.15)
For 12(2), using (4.6), we obtain:
d
P = _/Zaia,-(v - (nVV))|9; V| "28;0;n dx
R4 j=1
d
= / 3i (V- (nVv) > " 0;(18;Vn|""28;0;n) dx
Rd J=1
S(r—2)/(|8iVn||Vv|+Ianlainl+I3in|IAvI+nI3iAvI)
R<
d
X |a,-Vn|’—4Z|(aiajw) - (3;Vn)||8;9jn| dx
j=1
d
+/(|aiVn||vU|+|vn||a,-w|+|a,-n||Av|+n|a,-Av|)|a,-Vn|f*ZZ|a,-a}n|dx
R4 J=1
r=2 @, 1w B 2 e, .
=7 Ji +4J2 +40 —2+d) sup [[Vu(®)||7]l0; VR r

te(0,7T)
+4<r—2+d>< sup [18; Vo(t)[|7e + sup ||Av<r>||’~ioo)||al-w(r)ﬂgrznwon%r
te(0,7T) te(0,T)

+4(r —24d) sup 18 Av(D)2 0 18; Vi) 2 In ()12,
te(0,T)

r—2 e
= I 4+ 210+ C(InOF + IVn @)1 )18, Vn @) 57 + CIa Va7

(4.16)
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where C = C(d, y, ||nolly2.4+2, r). Furthermore, similar to (4.16), we observe:

r—2 1
12 < TJ{” + ZJf) +4(r =24 d)|ul10: V() |l} -
+ 40 =24+ d)(|9ull3 0 + IV - ull3 )3 V@O 51 Va@) |12,

+ A4 =24 D) (V- w) 3 13 VRO |52 ()13

r—2 1 _
= =17 4+ 212 (InO1F + 1V @I ) 15 VOl + Cla V@l @17)

where C =C(d, y, Q, A, r). It follows from (4.14)-(4.17):

d r—>2 2 1 2
0 n 01, < =50 = 207 + (IOl + 1Vn 0 ) + Cla Va3,

where C =C(d, y, Q, A, lInolly2.4+2, 7). Choosing r as d + 2, we obtain from (4.8) and (4.13):

sup [|0; Va(t)|l pa+2
te(0,7T)

1
< {||3,~Vn0||Ld+2 +CT:2 ( sup ||n(t)||pqa+2 + sup ||Vn(t)||Ld+2> } exp{CT}
1€(0,T) 1€(0,T)

1 1
< {||3,~Vn0||Ld+2 +CT | Vng|lpasz + C(T2 +T) ||n0||Ld+2}eXp{CT} (4.18)

where C = C(d, y, O, A, ||no|ly2.4+2). Hence, combining (4.8), (4.13) and (4.18), we conclude
that n € L®(0, T; W24+2(R4)).
Therefore, we observe from (4.7), (4.8), (4.13) and (4.18):

”n”Lm(O,T;WZ-dJFZ(Rd)) + ||8;n||Ld+2(QT)
1 1
< (1+C T2 + C1T) exp{C1 T} Inollyaasz + C1 T T |||l a2, (4.19)

where C1 = C1(d, y, Q, A, lInolly2.a+2). Taking T, by:

o 1\ 1 ool (1 a2
min{i{— ), =—log—, | — ,

= Cy Ci g6 2C

we observe from (4.19):

”n”Lm(O’T*; W2.d+2(R4)) + ||3[n||Ld+2(QT*) < 4||n0|| Ww2.d+2 + 1. (420)

This implies that the operator @ maps X7, into itself.
It remains to prove that the operator @ is a contraction mapping. For the sake of simplicity,

fori =1, 2, we denote (ﬁhzﬁfi , Ef") by (n;, v;). In addition, we define w by w :=n| —nj. Then,
we observe:
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oow=Aw—V-m Vv —naVuvy) — V- (uw)
=Aw—V-nV(vi —v2)) = V- (wVwry) — V- (uw). “4.21)

We obtain from (4.8) and (4.13):

1
sup ||ln;(t)[[Le < C sup |ln;()[lwia+2 < C(A+T2)exp{CT}
1€(0,T) 1€(0,7)

fori =1,2, where C = C(d, y, |Inolly2.4+2). Then, multiplying both sides of (4.21) by lw|w
and integrating over RY, we observe:

1 d+2
— Zw
d+2dt|| 12

=—(d+l)f|w|d|Vw|2a’x+(d+1)/(n1V(v1 — ) - lw?Vwdx
R4 R4

—i—(d—i—l)/(wsz) : |w|dedx+(d+l)/(uu))|w|d-dex

R4 R

<—— f lwl |Vw|2dx+C||w<r>||Ld+2 sup (11 ()17 V(01 — 02) (DI 442
1e(0,T)
R4

+c< sup ||sz<z>||%m+||u||%m)||w<z>||‘{jfz

te(0,T)
<—— / wl?|Vw 2dx + C(1 + T2) exp{CT} |w(®) ¢ 4 2 IV @1 =02 ()| 412
R
+Clw® 955,
which yields:
@242 < CA+TDexplCTHIV 1 — 01122 7. a2 ey (4.22)

where C =C(d, y, O, A, ||nollw2.4+2). In addition, by virtue of (3.17), it holds:

IV @1 = v) O30 7. a2 ey,
T

= / IV @i = v2) () 17022 ds < CT I fi = foll oo 7. a2 ety (4.23)
0

where C = C(y). Hence, from (4.22) and (4.23), we obtain:
1 11
lwll oo 0,7 La+2 ey < (C2T)2(1 +T2)2 exp{C2TH| f1 — f2ll Lo (0.7 Ld+2(R4Y) 5 (4.24)
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where Co = C2(d, v, O, A, ||nolly2.a+2). Taking Ty by:

. 1
Ties §mm{@, 9, C—zlogZ},

we observe from (4.24):

1
1wl oo 0. 1, Lat2 Ry = S 11 = fall Lo, 7.0 2Ry -

Now, we apply the Banach fixed-point theorem, which guarantees the existence of a positive
number 77 := min{7%, Ty} such that @ becomes a contraction from X7, into itself. Thus, @

has a fixed point f = @(f) = ah=t" Hence, we construct the desired solution (fzh:f’f, of ) in
Theorem 2.1. O

4.2. Proof of Theorem 2.1 (Il): extension criterion

We now establish the extension criterion for the solution of (KSF). To proceed, we present the
following Lemma:

Lemma 4.2. Let Assumptions 2.1 hold. Let (n,v) be the strong solution of (KSF) on [0, T1)
obtained from Theorem 2.1 (1) with the property (2.10). Then, there exists a positive constant
C=CWd,y, O, T, |nollw2a+2ray) such that:

sup ||”(t)||w2,d+2(Rd) <C.
1€(0,T7)

Proof of Lemma 4.2. We establish the following regularities:

ne L0, Ty; L2 (RY)), (4.25)

Vv, Ave L0, T;; L®(RY)), (4.26)
Vn e L%, Ti; LT (R?)), (4.27)

Vn € L®(0, Ty; L® (RY)), (4.28)

3 Vv, 3 Ave L0, T;; L°(RY))  foralli=1,2,....d, (4.29)
3Vn e L, Ti; LT*(RY) foralli=1,2,....d. (4.30)

As for (4.25), let 1 < r < co. Multiplying both sides of the first equation of (KSF) by n’~!
and integrating over RY, we obtain:

r—1
sup |[n(D)|lLr < lInollLr eXp{ Tl( sup [[n(®)llLee + IV - u||L°°) }
te(0,Ty) r te(0,T))

Therefore, since d 4+ 2 > 1, by taking r = d + 2, we obtain (4.25).
Next, we establish (4.26). By applying Lemma 3.3 and using the second equation of (KSF),
we derive the following estimates:
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sup [[Vu(@)lz =C sup |In(0)]lr, (4.31)
1€(0,T) 1€(0,Ty)

and:

sup [|[Av()llLe <y sup [[v(@) e+ sup [n()llLe <2 sup |[n(@)|Le,  (4.32)
1e(0,Ty) 1€(0,T) 1€(0,T) 1€(0,T)

where C =C(d, y).

We move on to proving (4.27). Let 2 < r < oo. To establish (4.27), we differentiate both sides
of the first equation of (KSF) with respect to x once and multiply by |Vn|"~2Vn. This gives us
the following estimate:

sup [[Vu(@)|zr

1€(0,Ty)
< (IIVnollLr +V2(0r+d— 2)T1< sup [[Av(@)|[pee + IV - ulle) sup ||n(t)|ILr>
1€(0,Ty) te(0,Ty)
X exp {(r +d— 2)T1< sup [|Vu(0)||2 + ||u||2Loo)}. (4.33)
t€(0,Ty)

Thus, since d + 2 > 1, by taking r = d + 2, we deduce that (4.27).

We now proceed to establish (4.28) by applying Moser’s iteration technique. Letd +2 <r <
oo. Differentiating both sides of (KSF) with respect to x and multiplying by |Vn| ~2Vn, we
obtain the following estimate:

1
19n @l =[SO+ DT+ P42 max { IVnoll a2,
IVnoliee. sup [In@)lpas2. sup ()|, sup IIW@IIL;H}
te(0,Ty) te(0,Ty) te(0,Ty)

for a.e. t € (0, T7), where M, is defined by:

M, ::c( sup [Vo(@)[3e + sup ||Av(r)||ioo+||u||Lw+||V-u||Loo>,
te(0,T7) te(0,T1)

where C = C(d). Choosing r as (d + 2)k with k > 1, we find:

2
IVA et = {5+ DT+ D@ + 2772 max{||Vno||Ld+z,

Vaollzee, sup [n(0)llga+2, sup [[n(®)llze, sup IIVn(l‘)IILdH}
1€(0,T)) 1€(0,T) 1€(0,Ty)
(4.34)

fora.e.t € (0, 7).
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At this point, we introduce the fundamental theorem regarding the limiting norm of || - ||z».
Specifically, let (X, ;) be a measure space. If f € LP(X, u) for some py < oo, the following
holds:

lim || flleroxy = I fllLeecx)- (4.35)
p—>00

See Grafakos [4, p.11, Exercise 1.1.3] for further details. Therefore, taking the limit as k — oo
on the left-hand side of (4.34) and applying the result from (4.35), we conclude:

2
sup V(O < {S(M. + (T + Dd + 2772 max{||Vno||Ld+z,
1e(0,Ty)

IVnolipee, sup [In(®)lga+2, sup |In(t)lle, sup IIVn(t)IILm}
te(0,T7) te(0,T7) te(0,T7)

We now turn to the proof of (4.29). Applying the Young inequality, we have:

sup [[9; Vo(@)llLee = IVGyllpr sup [[Va(@)llpe =C sup [[Va(t)|L=, (4.36)
te(0,Ty) te(0,Ty) te(0,Ty)

where C = C(d, y). In addition, from the second equation of (KSF), we have:

sup [0 Av(@)llre <y sup [[Vv(@)llL~+ sup [[Va(t)lre. (4.37)
t€(0,T7) te(0,Ty) te(0,Ty)

This inequality directly leads to the proof of (4.29).

Finally, we address the proof of (4.30). Let 2 < r < co. By differentiating both sides of the
first equation of (KSF) with respect to x twice and multiplying by |8; Vr|? 9; Vi, we derive the
following from (4.31), (4.32), (4.33), (4.36) and (4.37):

sup [|9; Va(t) |l
1€(0,T1)

S(IlaiVnollu+2\/(r+d—2)T1< sup ||3in(t)IIL°o+||3iM|IL°0> sup [[Va()|zr

te(0,T1) 1€(0,71)

+2 (r+d—2)T1< sup ||Av(t)||L°°+||V'M||L°°> sup [|Va(t)|zr

te(0,T)) te(0,T1)

te(0,71) te(0,T1)

+2\/(V+d—2)T1< sup IlaiAv(l‘)llLoo+||3iV'M||L°°) sup IIH(I)IILr)

xexpi2(r+d—2)T < sup ||Vv(t)”%oo + ||M||L°°) . (4.38)
1€(0,T1)

Choosing r as d + 2, we have (4.30). This completes the proof of Lemma 4.2. O
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Continuation of the Proof of Theorem 2.1 (II). We are now ready to prove Theorem 2.1 (I).
From the construction of the solution described in Subsection 4.1, we observe that the local
existence time 77 depends ond, y, Q, A and ||ng||y2.d+2.

Our objective is to extend the strong solution (n, v) from [0, T7) to [0, ?), where T1 < T <
Tmax- Here, Thax refers to the maximal existence time, the upper bound for the interval during
which the solution remains bounded in the LOO(Rd)—norm. In other words, Tiax is characterized
by the property:

limsup () = oo,
t—Tp—0

indicating that the solution 7(¢) becomes unbounded in the LOO(IRd)—norm as t approaches Tiax.
To achieve this extension, we assume (2.10). Then, from Lemma 4.2, there exists a positive
constant C =C(d, y, Q, A, T1, ||no|l2.4+2) such that:

sup [[n(t)[ly2a+2 < C. (4.39)
1€(0.11)

From (4.39), the solution n(Ty) with Tp < 77 belongs to WZd+2(R4),
We then consider 7j as an initial time and apply the construction method outlined in Sub-
section 4.1, using n(Tp) as initial data. This enables us to extend the strong solution (n, v)

over [Ty, Tl(])). Here, the existence time Tl(]) is determined by d, y, Q, A and n(Tp). By ap-
plying Lemma 4.2, we derive the same estimates as in (4.39), but now over [Ty, To(l)], where
7 1M

0 -

From the estimates obtained over [Ty, To(l)], we ensure that the solution n(To(l)) belongs to
W24+2(R9). Consequently, we are able to reapply the construction method from Subsection
4.1, treating n(TO(I)) as the initial data. This allows us to construct the strong solution (n, v) on
(7", 7).

Repeating this procedure iteratively, we define sequences {To(k)} and {T](k)} fork=1,2,....

In addition, we set TO(O) := Tp, and construct solutions on [To(k_l), Tl(k)), ensuring at each step
that:

e The same estimates as in (4.39) hold over [To(kfw, To(k)], where To(k) < Tl(k). These estimates
are guaranteed by Lemma 4.2.
e The construction method from Subsection 4.1 can be reapplied using n(TO(k)) as initial data

e We extend the strong solution (n, v) over [To(k), Tl(kH)).

Therefore, by this method of iterative extension, we have successfully extended the strong solu-
tion (n, v) to [0, 7:) for any T < Tax-

Based on the above facts, the following conclusion follows: the strong solution n can be
extended to the maximal existence time Tmax, at which time the solution may become unbounded
in the Loo(Rd )-norm. Specifically, Tax is characterized by the condition:

limsup ||n(?)]|pe = 00. (4.40)

t—> Tinax —0
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This condition suggests that a blow-up in the L (R?)-norm may cause for the termination of the

existence of a strong solution at Tyn,x. Indeed, Tinax < Tp by the definition of Tinax and Tp, and

the case Tinax < Tp cannot occur if (4.40) holds. Thus, we conclude that Ti.x = Tp, i.e., (2.12).
In addition, we aim to establish (2.13) in Theorem 2.1 (II). Applying Lemma 4.2, for Te

(0, Tiax), the following regularity properties hold:
neL®,T; WHH2@RY)) and  8n e L%, T; LI (RY)).

These regularities, together with the embedding W!4*2(Q) c C() for any bounded subset
Q c RY, imply by the Aubin-Lions Lemma:

neC(0,T; C(R).
Thus, we conclude (2.13). This completes the proof of Theorem 2.1 (II). O
4.3. Proof of Theorem 2.1 (IIl): mass conservation law
We now proceed with the proof of Theorem 2.1 (III). Let Te (0, Trnax), Where Tax denotes

the maximal existence time. We assume that ng € L' (]Rd). By Lemma 4.2, there exists a positive
constant C =C(d, y, Q, A, |nollz1, lnolly2e+2) such that the following bounds below hold:

sup |[n(®)|lrr <C forall 1l < p < oo, 4.41)
1€(0,T)
and:
sup V(@)L + sup [[Av(D)]le < C. (4.42)
1€(0,T) 1€(0,7)

Proof of Theorem 2.1 (ITI). Let ¢ > 1. According to Lemma 3.6, we introduce the cut-off func-
tion ¥ with p; = ¢ and pp, = 2¢. Multiplying both sides of the first equation of (KSF) by
Y = ¢ (x) and integrating over B¢, we obtain:

% / n(t)ye dx = f An(t)yrp dx — / V.-mVu)(t)ye dx — / V.- un()yedx. (4.43)
By By By By

Regarding the first term on the right-hand side of (4.43), since n € Wj;rlz(Q’T*) and the follow-
ing integrability condition holds:

V() e, V- (Vn()ye) € L' (Ba), (4.44)

we can apply the Gauss divergence theorem twice, which leads to the following identity:

/An(t)wg dx = / n(t)Ay dx. (4.45)

By By
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To confirm (4.44), we use the Holder inequality and n € Wjﬁz(Qf), obtaining the following
estimate:

IVe@Yellpi g,y + IV - (VoY L1,y
<IVa@)Yellpip,,) + 11IVR@) - Vel gy + 1 AR@ Vel 18y,

<
< an([)“Ldﬂ(Bu)”wZ”L%(BN) + ||V”(l)||Ld+2(B%)||V¢£||L%(Bzz)

N AnOl asa g 1l g3,

<X

fora.e. t € (0, f). This verifies that (4.45) holds, confirming the integrability conditions (4.44).
Concerning the second term on the right-hand side of (4.43), noting (4.42), and using n €
W;;:Z(Qf), we apply the Gauss divergence theorem to obtain the following equality:

— / V.- (nVu)(t)ye dx = /(an)(t) -V dx. (4.46)

By By

In order to verify (4.46), we conduct the following calculations:

VYO Vel L1y = IO Lo Bop) VU@ L0 By 1Well L1 (Byp) < 00

and:

IV - (V)Y OV Ol L1 By

< 00
< ||Vn(t)||Ld+2(BM) ||VU(t)||L (Bayg) ||1/f13 ”Lg—ﬁ (Bae)

F n (Ol La+2(py) 1AV [ L0 (Byy) ”W”L%(Bn)

+ ||n(t)||Ld+z(Bze)IIVv(l)IILOO(Bzz)IIVWIIng;_%(BM <0

fora.e. t € (0, f), which yields that (4.46) holds.
As for the third term on the right-hand side of (4.43), since u € WLoo(RY), we replace Vv in
(4.46) with u, yielding:

—/V~(un(t))1//g dx:/un(t)-leg dx. (4.47)

By By

Combining (4.43), (4.45), (4.46) and (4.47), we obtain the following equality:

% / n(t) Y dx = / n(t)Ave dx + /(an)(t) Ve dx + / un(t) - Vg dx. (4.48)

By By By By
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Integrating both sides of (4.48) from O to ¢, we obtain the following expression:

/ n(t)ve dx — / nowe dx

Bog By
t t t
=f / n(t) Ay dxds +f f(an)(t) - Vg dxds —i—/ / un(t) - Virp dxds (4.49)
0 By 0 By 0 B

for a.e. t € (0, f). From (4.49), we find the following:

(/nmw dx—/now dx|

B By

t t t

< ‘//n(l‘)Al//z dxds +’//(an)(t)-V1//g dxds +’f/un(t)-V1/m dxds
0 By 0 By 0 By

=:Iy+ 1,4+ l,.

(4.50)

Based on (4.41), (4.42) and (3.26) in Lemma 3.6, we derive the following estimates. For I,, we
have:

T
ln(s)|] lAYell2ap,,) ds < cTe2 sup [l (@)l (4.51)
o/ L3 (Byy) * 1(0,7) L2

where C = C(d). For Iy, it follows:

7
lle/ [(nVV)(s) - Vellpi(p,,) ds < sup ||Vv(t)||L°°/”n(s)”szid_l”V’»W”LM(BM) ds
1€(0,7)
0

<CTe2 sup [n()] 20 sup [[Vo(0)]pe. (4.52)
1€(0,7) L2=1 4 0.7)

where C = C(d). Similarly, for Ill;, we obtain:

- -
I, 5/ lun(s) - VW@“LI(BM) ds < ||u||wa||n(s)|| ||V1/fi||L2d(Bn) ds
0
<CTe 2 sup_[ln ()1l au flulzee, (4.53)
te(0,7)

where C = C(d). Therefore, in view of (4.50), (4.51), (4.52) and (4.53), by choosing an arbitrary
number £ > 1, we obtain the following:
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/n(t)w dx

R4

5/n0 dx+CTC3 sup. IOl 0,

Rd te(O,T)

~ 1 ~ 1
+CTE > sup |n@ll 20 sup [Vo@)llLee +CTE 2 sup [ 24 flufre

1€(0,7) L1 c0,7) 1€(0,7)

/no dx +CT sup_ ln(®)]
R te(0, T) L2d=T

+CT sup_[ln (@)l 4. sup. IVu(@)|lpe +CT sup_[ln ()]l 22d1||“||L°°»
1€(0,7) L 1e(0,7) 1€(0,7) -

where C = C(d). Since the right-hand side is independent of ¢, by the monotone convergence
theorem of Beppo Levi, we observe:

‘/n(t)dx—/nodx‘<‘/n(t)dx—/n(t)lpgdx‘+‘fnodx—/n01//gdx‘

R R R

+CTe sup n()l 20
1€(0,7) L2d-1

o~ 1
+CTe72 sup @] 2 sup Vo)
1e(0,T) T 1e(0.T)

+CTe? sup In@ll 20 s — 0
te(O,T)

as £ — oo. This completes the proof of Theorem 2.1 (III). O
5. Proof of Theorem 2.2: e-regularity theorem

We proceed with the proof in four steps.

Step 1. We begin by showing that if the local mass concentration of n at a given time ¢, as
described in (5.1) below, is less than a certain constant m,, then the local L% (R%)-norm of
n remains bounded over a suitable time interval around 7. In this paper, we refer to such an e-
regularity result as an e-regularity theorem of sharp type. The concept of a sharp type e-regularity
theorem was first introduced by Luckhaus, Sugiyama, and Veldzquez [12, Propositions 10, 14].
Here, we generalize and establish this sharp type e-regularity theorem for (KSF), which includes
the fluid vector field term u as defined in (2.5) of Definition 2.1.

Proposition 5.1. Let Assumption 2.1 hold and suppose that ng € LY(R?). Let Tpux de-
note the maximal existence time of the strong solution (n,v) of (KSF) obtained in Theo-
rem 2.1 ()—(III). There exist an absolute positive constant m, and a positive constant c; =

c1(y, Q. A, llnoll 1 (r2y) such that if:
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/ n(x,t) dx <my (5.1

By (x0)
holds for some xq € R2, 0 < p <1, and t| € [0, Tnax), then the following estimates are valid:

(1). In the case 201,02 < Tinax and 2cy p2 <11 < Tmax, the following estimate holds:

C
sup nz(x,s) dx < —. (5.2)

3
s€(t;—c1 p% min{r 421 p2, Tmax }) P
B% (x0)

(ii). In the case 2c1p* < Tmax and 0 < t; < min{2¢;p?, Tmax} = 2¢1p2, the following estimate
holds:

C
sup sn2(x, §)dx < —. 5.3)
0

s€(0,min{r1 4+2c ,02, Tmax})
Bg (x0)

(iii). In the case 2c1,02 > Thmax and 0 <t < min{2clp2, Tmax} = Tmax, provided that ng €
leoc (R?), the following estimate holds:

5.4

C
sup / n*(x,s) dx < o7 + ||n0||22(3,,(x0))'

s€(0,min{t; +2¢1p2, Tnax})
Bg (xo0)

Here, C =C(y, Q, A, llnoll1r2)), and it is independent of xo and p.

Remark 11. The constant ¢ appearing in (5.2), (5.3) and (5.4) of Proposition 5.1 can be explic-
itly expressed as:

1
1= —= ;
8 Cmllnoll L1 2y (1 + Inoll L1 m2))

(5.5)

where C = C(y, Q, %, Inoll .1 ®2)-
Proof of Proposition 5.1. Let 0 < p <1, and let i be the function with p; = % and pp = p as

in Lemma 3.6. Let k > 0. We choose 7y € (—o0, Thmax) and take ¢ € (0, Tax) N [f0, Tmax)-
Noting that:

1
S (nx, 12t — 10)* Y (x — x0)) = n*(x, 1)(t — to)¥* (x — x0)
+n(x, Ddn(x, )t — 10)* Y (x — xp),
we then apply the first equation of (KSF) to deduce:
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o n%(x, 1)(t — to)* Y (x — x0) dx
RZ

:/nz(x,t)(t—lo)wk(x — X0) dx—i—/n(x,t)f),n(x,t)(t —10)> ¢  (x — x0) dx

R2 R2
- /nz(x,t)(t — 10)¥* (x — x0) dx —/Vn(x,t) : V(n(x,t)(t — 1)k x —xo)) dx
R2 R2

+ /(an)(x, 1) - v<n(x, Ot — 10) ¥ (x —xo)) dx

]RZ

+ / u(x)n(x,t)- V(n(x, 1t — Io)ZI/fk(x —xo)) dx 5.6)

R2

for all IS (0, Tmax) N [t()7 Tmax)-
We define ¢ (x, t) by:

B(x.1) = (t —10) Y (x — x0). 5.7)
Then we have:

Vn - V(nx (t — 10)*y*(x — x0)) = Vn - V(n¢?) = (Vn - Vn)p* + 2(Vn - Vo)ng
=|pVn +nVe|* —n?|Ve|> = |[V(np)|> — n*|V|*, (5.8)

which implies:

—/Vn(x,t) -V (n(x, HYF(x — x0)(t — 10)%) dx
RZ

=—/|V(n(x,t)¢)(x,t))|2 dx+fn(x,t)2|V¢(x,t)|2 dx. (5.9)
R2 R2

Substituting (5.9) into (5.6), we obtain:

1d
S | e D2t — 10)* X (x — x0) dx = —go(t) + g1(t) + g2(t) + g3(t) + ga(t)  (5.10)

RZ

for all € (0, Tiax) N [f0, Tmax), Where:

5’0(1)2/IV(n(XJ)<15(XJ))|2 dx >0,
R2
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1 2 2 2 2
g1<r)=:/n (. @ (x, 1) dx, gz(t)=/n (x. )|V (x, DP dx.
ORz R2

g3(1) = / (V). 0)- ¥ (n(x. (. 1)) e,
RZ

g4(t):/u(x)n(x,t)-V(n(x,t)¢2(x,t)> dx. (5.11)

]RZ

We now derive estimates for g1, g2, g3, and g4 as indicated above. To achieve this, we establish
several auxiliary inequalities based on the Gagliardo—Nirenberg and Holder inequalities.

Lemma 5.2. Let 0 < p < 1 and k > 8. Let tg € (—oo, min{t; + 201,02, Tmax}) with the constant
c1 defined in (5.5). Let ¢ be the function introduced in (5.7) with  satisfying p1 = % and
02 = p as in Lemma 3.6. We assume n(t) € Llloc(Rz) andn(t) € WI})’CZ(RZ)for allt € (0, Tinax) N
[to, Tmax)- Then, the following estimates hold:

/ > (x, ¢ (x, 1) dx < Clln()| L1 (supp v —xgy) (¢ — 10)€0(1), (5.12)
R2
/ n*(x, 0§ (x, 1) dx < Cln()ll 1 suppy (—xon (¢ — 108G (), (5.13)
R2

k\? 1
f n2<x,r>|V¢(x,r)|2dst<;) In O L suppy —xon @ — 10085 @) (5.14)

RZ
forallt € (0, Tmax) N [?0, Tmax), where C is an absolute positive constant and go(t) is as defined

in(5.11).
In addition, there exists an absolute positive constant C such that:

/n3(x, NG (x, 1) dx

RZ
LAY 4
<Ml OlL app -0 80O € (2 ) IO i ~ 0 O (5:19)
forallt € (0, Tmax) N [to, Tmax)- Here, my is the constant introduced in (2.15).

Proof of Lemma 5.2. First, we prove (5.12). Applying the Gagliardo-Nirenberg inequality, we
obtain:

/n3(x,t)¢>3(x,t) dx 5C/n(x,t)¢>(x,t) dx/IVn(x,t)qb(x,t)l2 dx
R2 R2 R2

< Cllu(Il L1 supp y (-—xg)) (t — 10)&0 (1),
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where C is an absolute positive constant.
Next, we establish (5.13). Using (5.7), (5.12) and the interpolation inequality, we have:

/nz(x,t)qﬁz(x,t)dx < (/n(x,t)d)(x,t) dx)i(/n3(x,t)¢3(x,t) dx)7
R?2 R2 R2

1
< CIO L1 supp v (—r0n ( — 10)8G () (5.16)

for all ¢ € (0, Timax) N [?0, Tmax), Where C is an absolute positive constant.
We next address (5.14). Using (5.7) and the Holder inequality, we obtain:

/nz(x,t)Wd)(x, |2dx
RZ

<(= n(x,t)lVl/f(x—xo)|4dx% e, 0t — 1) Y2 D (x —xp) dx ). (5.17)
)(/ )'(/ )

R2 R2

D=

Since it holds:

(t — 1) W2 ¢ D (x —x0) =3 (x. 1) - (t — 10)¥ T4 (x — x0) < (t — 1) (x. 1) (5.18)

for k > 8, substituting (5.18) into (5.17), and applying (3.24) in Lemma 3.6 with p; = % and
02 = p, we have:

kN2 /32\2 1 1 1
[ o = (5)(5) 6= 0 01 gy ([ 7008700 dx)

R2 R2
for all k > 8 and all 7 € (0, Tnax) N [#0, Tmax)- Combining this with (5.12) yields:
2 2 kN2 3
n(x, DIV (x, 1)2dx < c(;) 1P 1 supp v oy (¢ — 108G (D) (5.19)
R2
for all £ > 8 and ¢ € (0, Timax) N [f0, Tmax), Where C is an absolute positive constant. Thus, we

obtain (5.14).
To show (5.15), it should be noted by the Sobolev inequality:

lwll;2 < C|Vw| 1 forwe WhI(R?), (5.20)
where C is an absolute positive constant. By (5.20), we have:
3 2 3 2 3 2
3, 02 (e 1) dx = | (n3 (e, D (x. ) dx < C( )v(uz (x, ) (x, t))‘ dx) ,
R2 R2 R2
where C is an absolute positive constant. Applying the product rule, we have:
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3 3.1 3 31 11
Vinig) = §n2Vn¢ +n2Vep = EnZV(nd)) - EnZnVQS.
By the Holder inequality, and using (5.14), we deduce:
f 3 (x, > (x, 1) dx

RZ

gm*(/n%(x,t)‘v(n(x,t)qs(x,t))‘ dx)2+c(/n%(x,r) In(x, HV(x, )| dx)2
R? R2

Em*”n(t)”Ll(suppl//(»—xO))/ ‘V<n(x7f)¢(x,t))‘2 dx

RZ

+ IO supp (s / n2(x,0)V e, O d
RZ

kN2 1
< m*”n(t)“Ll(supp 1p(._x0))g0(t) + C(;) ”n(t)”i](suppl//(-f)co)) (t - tO)gé (t)

for all 1 € (0, Tnax) N [fo, Tmax), Where m, is the constant from (2.15), and C is an absolute
positive constant. This completes the proof of Lemma 5.2. O

Completion of the proof of Proposition 5.1. Concerning g1, using (5.13), we have:

1
g1(0) < CllRO 11 supp (- &0 @) (5.21)

for all # € (0, Tmax) N [f0, Tmax), Where C is an absolute positive constant.
For g», applying (5.14), we deduce:

k\? 1
@) <C (;) 1)1 21 supp v (-0 ( — 10085 (1) (5.22)

for all ¢ € (0, Timax) N [#0, Tmax), Where C is an absolute positive constant.
Regarding g3, we have:

g3(t) = /(an)(x, t)- V(n(x, t)¢2(x, t)) dx
R2

=/n(x, H)Vn(x,t) - Vu(x, t)d:z(x, t)dx + 2/(an)(x, t)-ulx,t)p(x,)Veo(x,t) dx

R2 R2
By integration by parts, we obtain:
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g3(t)=—%/nz(x,t)Av(x,t)d)z(x,t) dx—/nz(x,t)Vv(x,t) P (x, )V (x,1) dx

R2 R2
—G—Z/(an)(x, t)-n(x,)p(x,t)Ve(x,t) dx.
RZ

Using the second equation in (KSF), we obtain:

g3(t)=—%/nz(x,t)v(x,t)qﬁz(x,t) dx—i—%/n}(x,t)qbz(x,t) dx
R2 R2

+/"2(xvf)vv(x»f)'¢(X,I)V¢>(x,t) dx
]RZ
5%/7%L0¢%%”dx—/n%nwwxﬂovmmoﬁ+¢A¢uJ0dx

R2 R?

— an(x, HVn(x,t) - v(x,)o(x, )V (x,t) dx
R2
=:83,1() + g3.2(¢) + g3,3(0), (5.23)

where the terms are defined as follows:

1 3 2
&ﬂﬂiifnuﬁ¢@JML

R2

@20 == [ 120,006 0 (1990 0P + 686 1) .
R2

83,3(t) = —2/n(x, HVn(x,t)-v(x, )¢ (x,1)Ve(x,t) dx.
R2

Regarding g3, 1, it follows from (5.15) that:

My k\2 5 %
8310 = SO L1 19800 +C (=) IO, (= 10)g3 (1) (5.24)

o (supp ¥ (-—x0)

for all ¢ € (0, Tmax) N [f0, Tmax). The constant m, is introduced in (2.15), and C is an absolute
positive constant.
We now estimate g3 2. By its definition, we see:

g32(1) < /nz(x,t)v(x,t)(|V¢(x,t)|2+¢(x,t)|A¢(x,t)|> dx =:J. (5.25)
RZ

Since we find:
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kN2
Vo 0P = (5) ¢ =10y 26 = x0) VY (r = x0)
and:

$(x. DI AG(x. )|
= (1 —t)¥ 2 (x —x0) - (t — 10)| A2 (x — x0)]

5k k[ k k_o 2 k_1
<@ —1t)Prix —XO)E (5 — DY (x —x) VY (x —x0)|”+ ¥ 27 (x — x0)[AY (x — x0)] ¢+
choosing k > 8 and p; = % and py = p in Lemma 3.6, and using (3.24) and (3.25), we have:

Vo (x,1)* + ¢ (x,1)|Ad (x,1)]

k(k—1
<TG 0 2 o) (199 = 500 4 = x0) Ay — o)1)
< %(r 02 = x), (5.26)

where C is an absolute positive constant. Substituting (5.26) into (5.25), we obtain:

Ck(k

J < p—z_l)/nz(x, D, O — 10)* 9" (x — xo) dx. (5.27)
R2

On the other hand, by the definition of the Lorentz norm as given in (2.1) and the Hardy-
Littlewood rearrangement theorem, we have:

/ lo1 ()20 dx < ll@iliLpillo2ll Ly (5.28)
R2

foralll<p<oowith%+%:l.
Since it holds:

PRVIVN = P —(r_ N34 L
(t —10) 2y N (x —x0) = (t —10) 33 (x, )Y 5~ (x — x0)
<t —10)3¢3 (%, 1) Xsupp v (—x0) () (5.29)

for k > 3, we observe from (5.27), (5.28), (5.29) and the Holder inequality for weak spaces:

Ck(k—1) 2 4
J < T /nz()ﬁ Hu(x, 1) —19)3¢3 (x, t)XsuppI//(»—xo)(x) dx
R2
Ck(k—1), , ; )
< THH (t)v(t)¢3(t)”Lgm||Xsupp¢(-—xo)||L6~l([ —10)3

Ck(k—1) 5 4 2
= — 5 IO DI 3 IO ool xsupp v (-—x0) | L6:1 (£ = 10) 2
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Ck(k—1)
_,07” (t)¢3(l)|| 3||U(t)||L600||Xsuppllf( xo)||L61(t—t0)3 (5.30)

where C is an absolute positive constant. By direct computation, we obtain:

o]
1

1ds 1 11
||Xsupp1p(‘—xo)||L6v1 =/SM(|XSUPPW(‘—X0)| > 5)6 T=/A|B,o(x0)|6 ds=mop3. (5.31)
0

By Lemma 3.5, we find:

_s _1 _1
lo@ll Lo =1y —A) 6y = A) 6n@)|lLo0c <Cll(y —A) n@)llp1 < Clin@)llp1, (5.32)
where C = C(y). Substituting (5.31) and (5.32) into (5.30), we have:

Ck(k
1< LD ol 0R o1l « - )i, (5.33)

5
p3
where C = C(y). According to (5.15):
2
(/n3(x,t)¢2(x,t) dx)3
R2

2 1
< (I8 a0 <r>+( ) 1O s g a0 80 @), (539

where m, is the constant associated with (2.15). Combining (5.34) with (5.25) and (5.33), it
follows that:

2 2
T o3

10

4 1
”n(t)”Ll||n(t)||L](§upp1//( —x ))( Z‘O)Tg(; (t)’ (535)

where C = C(y).
For g3 3, using the identity (Vn)¢ = V(n¢) —nV¢, we obtain:

833(t) = —2/n(x, HVn(x,t)p(x,t)-v(x,t)Ve(x,t) dx
]RZ

<2|IV(ng)D)l 2 In(O) vV )]l 2 +2fn2<x,r>v(x,z>|V¢<x,r)|2dx

]RZ

<2g3 () In@®v(O)Vo @)l 12 +2J. (5.36)
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Applying Lemma 3.6 with p; = % and pp = p, together with (5.28) and the Holder inequality
for weak spaces, we estimate:

In(OvO VD)7,

:(E)zfnz(x,t)vz(x’[)(t_t0)2|vw(x_XO)|2wk72(x_x0) dx

2
R?

kN2 /4:/2\2
(5 (R I OO O ¢ M tsapp 1~ 0%

2 P
k\2 143212 4 2
<C(5) (57) I @0 Ol 3107 o tsupp v 161 ¢ = 0)’

4/2\2
=c(3) (- D 100 O1 3100 sl p—ollisa €~ 0)F, (537
where C is an absolute positive constant. By Lemma 3.5, we have:

IO 1200 = [ (¥ — A) T (y — A Zn(@) | pize < Cll(y — A En(®)ll 1 < Clln() 11,
(5.38)

where C = C(y). Substituting (5.31) and (5.38) into (5.37), we obtain:

IOV D)2, < I O, IO, ¢ —10)3 (5.39)

3
3

0
where C = C(y). Further substituting (5.15) into (5.39), we obtain:
Ck
[nvOVe@ll2 < —5lIn@ 1 (r — f0)’
p6

2
3

1
(||n<r)||L1(Supp¢( S (r)+( ) ||n<r)||L1(supW( g ®), (540)

where C = C(y). Using (5.35) and (5.40) in (5.36), we estimate g3 3() as follows:

£33() < 2¢5 O u@vO)Ve D)2 +2J

Ck 14
< —<lIn@®lh @ —10)3g, )
pG

1 1L
A (T (r>+( ) 1O o — 0 88 0))

Ck?
+ —5ln@®) .1 IIn(t)IIU

2 2
T3
p% (supp ¥ (- xo))( —10)3 gy (1)
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10
4

crs 3 ted 41
+ ,03 ”n(t)”Ll ”n(t)“Ll(Supptﬂ('fxo))(t - t()) g() (t)v (5 )

where C = C(y).
Combining (5.23), (5.24), (5.35), and (5.41), we obtain:

m kN2 1
83(1) = 100 23 upp s 80(1) + C(;) @)1, [t = 10)g5 (1)

(supp ¥ (-—x0)

cx? ; ; 3
+ T IO gy =085 O
% 4 4 1
S IO IO gy € =005 )
Ck 1 13
S5 IO IO s ro €~ 10) 25 (), (5.42)

pE

where m, is the constant associated with (2.15) and C = C(y).
To evaluate g4, we utilize the product rule for differentiation:

g4(t)=/u(x)n(x,t)~V<n(x,t)¢2(x,t)) dx

R2

:/u(x)n(x,t)~(Vn(x.t)¢2(x,t)) dx+2fu(x)n(x,t)-(n(x.t)¢(x,t)V¢(x,t)) dx

R2 R2
:—%/nz(x,t) v. (u(x)¢2(x,t)> dx+2[n2(x,t)u(x)-¢(x,t)V¢(x,t) dx
R2 R2

:—%/nz(x,t) V- u(x) ¢ (x, 1) dx+/n2(x,t)u(x)-¢>(x,t)v¢>(x,t) dx
R2 R2
=:84,1(1) + g4,2(1).

For g4 1, using (2.7) and (5.13), we estimate:

1 1
841 (D) = IV - ullp f n?(x, D@ (x, 1) dx < ClIn(Ol 11 supp (o) & — 10084 ().
RQ

where C = C(Q, 1).
Next, we consider g4 2. Combining (2.7), (5.13), and (5.14), we have:

g42(1) < IIV-MIILOO/nz(x,t)¢(x,t)lv¢(x,t)l dx
R2
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1 2 2 1 2 2
§§||V’u||L°° n”(x, )¢ (x, 1) dx+§||v'“||L°° n*(x,0)|Ve(x,1)|" dx
R? R2

1 kN2 1
< ClO N L1 supp (s — 10)82 () + C(;) 1AL 1 tsupp 1z — 10)8E (0,

where C = C(Q, A). By summing up the contributions from g4 | and g4 2, we obtain:

1 kN2 !
2a(0) < ClINO 11 (supp sy (F — 10)83 () + c(;) 1RO L1 (supp (s (¢ — 10)8E (1),
(5.43)

where C = C(Q, A).
From (5.10), (5.21), (5.22), (5.42), and (5.43), the following inequality holds:

S n%(x, )t — to) > (x — x0) dx
RZ

1 kN2 1
< —80(0) + ClIn® L1 supp rc—so 82 (D) + C(—) 1AL 1 (supp (s — 10)8E (1)

1
+ SO supp xo))go<t>+C( ) 12 OI2 1 anp sy .~ 1006 (1)

2 2
2z
T o3

% IO o €~ 10585 0

,o

I(J

1
@l o1, (t —10)3 g4 (1)

(supp ¥ (-—x0))
g
pg ) IO gy gy €~ 08 0
for all ¢ € (0, Tmax) N [fo, Tmax), Where m, is the constant associated with (2.15), and C =

C(y, O, A). Using the Young inequality and (2.14) in Theorem 2.1 (III), we obtain:

%% n%(x, 1)t — t0)* Y (x — x0) dx

RZ

1 C
< =380 + SOl upp o800+ 2 (0 =10 + IO L app g G4

forall 0 < p <1 andt € (0, Tmax) N [f0, Tmax), Where m, is the constant associated with (2.15),
and C =C(y, O, A, [lnoll 1)-

Now, let xo € R? and 11 € [0, Tinax), and assume that (5.1) holds with the absolute positive
constant m, defined in (2.15). Applying Lemma 3.7 with p; = % and p; = p, we have:
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n(x,t) dx

~

C
n(x,t) dx < pllnollu(l + ol — 2] +
Bap (x0)

B (x0)
c
< ?Ilnollu(l + llnollp)ler — ¢ + o, (5.45)
for all r € (¢1, Tmax), Where C= E(y, 0, A). Let us define a and b as follows:
a :=max{0, 1 — 2c1,02} and b :=min{t; + 2c1p2, Tax}
1
with ¢c] = —< . (5.46)
8Cmy||lnoll 1 (1 + linoll 1)
Substituting this definition (5.46) into (5.45), we deduce:
C 1 1
= (5.47)
dmy,  2my

C
/ n(x,t)dx < ?Hnollu(l +llnoll 1) - 2¢10” +

B,o(xO)
for all £ € (0, Tax) N (11 — 2c1p%, 11 + 2¢1p2). Using the result in (5.47) with (5.44), we obtain:
((t —10)* +1) (5.48)

d
—/n2(x, 0t — 10)*Y* (x — xo) dx <
dt My P>
]RZ
for all € (0, Tmax) N [70, Tmax) N (11 — 2¢10%, 11 + 2¢1p%), where C = C(y, O, A, |noli;1).
(i). In the case 2c1,02 < t1 < Tmax, We choose 7y as a = max{0, t; — 2c1p2} =1 — 2c1p2 in (5.48).
Integrating both sides of (5.48) over [a, s] for s € (a, b), we find:
5 - C [((s—a)’
n°(x,s)(s —a)“ ¥y (x —xg) dx < + (@ —a)),
2my pd 3

]RZ
! ) (5.49)

<
3 s—a

which implies:
C _

/nz(x,s)lpk(x—xo) dx < s—ad

Zm*ps

RZ

Since s satisfies:
s € [a, Tmax) N (a + Clpz, b)=(a+ Clpz’ min{r + 261:02, Tiax})
= (t — c1p?, min{t; +2¢1p%, Tax)).

it holds:
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61,02 <s—a< min{4c1p2, Tax — t1 + 201,02}

_ 4c1,02 when 201,02 < Thmax — t1,
B Tnax — 11 + 25'1,02 when 201:02 > Thax — 1,
<dcip?.

This, together with (5.49), yields:

C
nz(x, s)dx < —
P

B p (x0)
2
forall s € (1 — c1p%, min{t; 4 2¢1p2, Tmax}), where C = C(y, Q, A, |noll.1). This provides the
estimate (5.2).

(i1). In the case 0 < t; < min{2c; ,02, Tmax}, we choose fy as 0 in (5.48). Integrating both sides of
(5.48) over [0, s] for s € (0, b), we have:

2 2.1k ¢ s?
ne(x,s)s Y (x —xo) dx < —+s).
2myp3 \ 3

RZ

This yields:

2 X C 52
/sn (x, )" (x — xg) dx < s\ + 1). (5.50)
2myp° \ 3

RZ

Since s € (0, b), it follows:

O<s<b§t1+201p2§4c1p2.

Thus, combining this with (5.50), we have:

Cs?2+1) C
/ snz(x,s) dxfi(s 5+ )5—5
P P

Bp (x0)
2
for all s € (0, min{t; + 2c1p2, Tmax}), where C = C(y, Q, A, ||ng||;1). This provides the desire
estimate (5.3).

(iii). For the case 2c¢q ,02 > Tmax, the situation 2cq ,02 <11 < Tmax as described in (i) does not
arise. As (ii), we consider 0 < 11 < min{2c1,02, Tmax} = Tmax and choose g = —,02 in (5.48).
Then, integrating both sides of (5.48) over [0, s] for s € (0, b), we have:
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/ n?(x, $)(s + pH* Yk (x — x0) dx
R2

<

C (s +p2)3
T 2mypd

3+ (s + ,02)) + / n3 () p*yk (x — xo) dx. (5.51)

RZ
Since it holds:
O<s<b<n +2c1,02 §4c1p2,

we deduce from (5.51):

C (G+p), |1 p*
/ n2(x,s) dx < 5 *,05( 3 + St o2 ) /no(x)lﬁ (x —xo)( 2 dx
Bg(Xo) R?

2
=< 7 + ”nOHLz(Bp(X()))

for all s € (0, min{#; + 2c1,02, Tmax}), where C = C(y, Q, A, ||ng||;1). Thus, the estimate (5.4)
is obtained. This completes the proof of Proposition 5.1. O

Step 2. This theorem provides local L”(R?)-estimates for the gradient of v. If the local mass
of n satisfies (5.52), bounds for | V| rr are derived in three cases based on the relationships
between 71, Tiax, and 2c¢ p2, as given in (5.53), (5.54), and (5.55).

Proposition 5.3. Ler 2 < p < oo. Let Assumption 2.1 hold and suppose that ng € L' (R?).
Let Tmax denote the maximal existence time of the strong solution (n,v) of (KSF) obtained
in Theorem 2.1 (I)-(IIl). There exist an absolute positive constant m, and a positive constant

cr=ci(y, @, 2, noll L1 (r2y) such that if:

n(x, ) dx < my (5.52)

BZp(XO)
holds for some xq € Rz, 0<p =<1, andt) €0, Tmax), then the following estimates are valid:

(1). In the case 201,02 < Tmax and 201p2 <11 < Tmax, the following estimate holds:

C
sup Vo ) = 5 (5.53)
I

3
se(ty—ci p?, min{t;+2¢1 p2, Tmax }) p2

(ii). In the case 2¢1p” < Tmax and 0 <1y < min{2¢1p°, Tonax} = 2¢10°, the following estimate
holds:

2 Vo)l <L 5.5

sup s v(s < .

s€(0, min{r;4+2¢1 02, Tiax}) Lp (Bﬁ(xo)) ,0%
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(iii). In the case 201,02 > Thmax and 0 <t < min{2clp2, Tmax} = Tmax, provided that ng €
leoc (R?), the following estimate holds:
1
IV (s, ) = C( 7 + Wol2gy00n ) 559
k3 p2

sup
s€(0,min{t; +2¢1 p2, Tmax })

Here, C = C(y, Q, A, llnoll .1 r2), p), and it is independent of xo and p.

Proof of Proposition 5.3. Applying Lemma 3.4 with py = & and p, = 4§, we find that there
(5.56)

exists a constant C = C(y, p) satisfying:

=

0

0

i)l + Iln<s>lle(Bp<xo>)>f
2

199 L (s ) < c(

for all s € (0, Trax)-
C
nz(X, s) dx ==,

i)

(1). In the case 2c; /o2 < Tmax and 2¢; p2 <11 < Tmax., it follows from Proposition 5.1 (i) that:
(5.57)

sup

s€(ti—cy pz» min{f;+2c pzmiax )
Bg (x0)

=<

where C = C(y, Q, A, ||nollz1). From (5.56), (5.57) and (2.14) in Theorem 2.1 (III), we have:
3
pZ

2
pr 1
||Vv(s)||Lp(B£(X0)) <Cl —lnoll, +—
4 pZ

sup
se(ti—c1 p?, min{t;+2c1 0%, Tmax})

c

9

for2 < p < oo, where C =C(y, Q, A, ||lnoll1, p).
(ii). Inthe case 0 < 1] < min{2c1p2, Thax} = 2c1p2, we obtain from Proposition 5.1 (ii):
an(x, §)dx < (5.58)
0

sup
s€(0, min{t; +2¢1 p2,T;
s€(0, min{t; +2c1p max})Bg(xO)

when 2c1,02 < Tmax — t1,

where C = C(y, Q, A, [noll.1). Since s € (0, min{t; + 2¢1p2, Trax}), it holds:
11+ 2¢1p?
when 201/02 > Tmax — 11,

O<s < min{t1 + 2C1/02, Tmax}) =
Tinax

<t +2¢c10% < 4e1p”.

Using (5.56), (5.58), and (2.14) in Theorem 2.1 (III), we deduce:
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1
sup s2[[Vos)ll
s€(0, min{t;+2c¢ ﬂzaTmax})

1
1p 2 :
<C(s2=lmnoll,1 + sup sn”(x, ) dx
p s€(0, min{t;+2c1 o2, Tmax})
Bp (x0)

L”(B% (XO))

=

P
2
2
pr 1 C
<Clp—lnollpr+—5 ) <—
1Y p7 p?
for 2 < p < 0o, where C = C(y, Q, A, ||lnoll1, p).

(iii). In the case 2c1,o2 > Tmax and 0 < 1] < min{2c1p2, Tmax} = Tmax, We have, by Proposi-
tion 5.1 (iii):

C
sup [ s dr s ol (559)

€(0,min{t;4+2¢1 p2, Tin:
s€(0,min{t; +2c1 0 mdx})B%(Xo)

where C = C(y, Q, A, ||noll;1). From (5.56), (5.59) and (2.14) in Theorem 2.1 (III), we find:

2
IVu(s)|l <C<p;|l I+ < + llnoll
sup v, , = O —linolipt T =5 T 10l L2(B, (xp))
5€(0, min{ry+2¢1 0. Tonax)) Lr(By o) P p? .

1
< C<—7 + ||nOI|L2(Bp(x0))>
p7

for 2 < p < oo, where C = C(y, Q, A, |lnollz1, p). This completes the proof of Proposi-
tion5.3. O

Step 3. In this step, we derive the estimates required for the application of Moser’s iteration
technique.

Proposition 5.4. Let 2 < p < 0o and let i € N withi > 2. Let Assumption 2.1 hold and suppose
that ng € LY(R?). Let Tmax denote the maximal existence time of the strong solution (n,v) of
(KSF) obtained in Theorem 2.1 (I)-(II). There exist an absolute positive constant m, and a
positive constant ¢y = c1(y, Q, A, |lnoll1(r2)) such that if:

n(x, 1) dx <my (5.60)
Bap (x0)

holds for some xg € RZ, 0 < p <1, and t; € [0, Tnax), then, for any 0 < p1 < p2 < p, the
following estimates are valid:
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(1). In the case 2c1/o2 < Tinax and 201,02 <11 < Tmax, the following estimate holds:

ln(s)l < _
S L2 (B, (x0)) = 9
" (o2 — p1)3

S

1
1\7
<_> sup (D)l Li 8, xo)

1Y t1—cy p2 <t <min{t+2c1 p2, Tax}
(5.61)

forall s € (t; — c1p*, min{t; +2¢10?, Tmax}), where C = C(y, Q. 1., IInoll 1 r2). P)-
(ii). In the case 2c1p* < Tmax and 0 < t; < min{2¢;p?, Tmax} = 2¢1p, the following estimate

holds:
1— L4201
s 2D ||n(s) ||LZi(Bp1 (x0))
5
G \* 114202
< ( 3) sup T i Vi(p-2) ||n(t)||Li(Bp2(x0)) (562)
(p2 = p1) 7€(0, min{t+2¢1 p2, Tmax})

fOr ClllS € (O’ mln{tl + 2611021 Tmax}), Where C = C(V, Qv )‘41 ”nO”Ll(]Rz)’ p)
(iii). In the case 2c1,o > Thmax and 0 <t < min{2c1p2, Tmax} = Tmax, provided that ng €
(R?), the following estimate holds:

10c

||”(S)||L2i(1_l;pl (x0))

Ci 517
< <72_|) - sup IR i (8, vy + 701l L2 (B, (xo))
(p2 — p1)3 P 0<t<min{r+2c1 2, Tmax }
(5.63)

for all s € (0, min{t; + 2c1p?, Tmax}), where C = C(y, Q. A, lInoll 1 R2). P)-

Proof of Proposition 5.4. Let xg € R2, and let 0 < p1 < p2. We suppose that ¢ be the cut-off
function given in Lemma 3.6 corresponding to p; and py < p. We choose #y € (—oo, min{t] +
2c1p2, Tmax}) and t € [max{0, 7o}, Tmax). Let £ > 2 and let i € N with i > 2. We define ¢ by:

4
$(x, 1) = (t —10)29* (x — x0). (5.64)
Using the following identity:
0 (n . 09%x.1)) = S 09 ) e D, 067, ),
2i 2i(t —ty)
we deduce:

% dt/ (x t)(b (x,t)dx

RZ

t)/ n% (x, )¢ (x, 1) dx—/V(nz’ Yx,0)¢%(x, 1)) - Vn(x, 1) dx
RZ

21 (t—
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+/V(n2i*1(x,t)¢2(x,t))-Vv(x,t)n(x,z) dx+/V(n2f*1(x,z)¢2(x,t))-u(x)n(x,z) dx.
R2 R2

Examining the term —V(n2i—l(x, % (x, t)) -Vn(x,t), we find:

VO, D0, 1) - Vi, 1) = — 2 = L1900, 0 (e, D) = Il (6, DV x, DP)
N 2( -1

ni(x, ¢ (x, VR (x, 1) - Vo (x,1).  (5.65)

For the last term, we have:

2(1 1)

n'(x,0)¢(x,1)Vn' (x,1) - Vo (x, 1)
2(1 1
i2

(V(n (x, )¢ (x, 1) —n'(x, Vo (x, t)) ni(x,t)V(ﬁ(x,t)

-1 i )
= — (V@ . 0g )P = Inf (r. )V (. ). (5.66)
Combining (5.65) with (5.66), we have:

2i—1 2 -1 i 2 L 2
V™ x, De7(x, D) - Vax, 1) = — |V (x, D (x, D)7+ —|n (x, HV S (x, DI

This leads to the inequality:

T n? (x, @ (x, 1) dx < —go(t) + §1(1) + £2(1) + §3(1) + 4 (1), (5.67)
]RZ

where the terms are defined as:

Golt) =~ /W(n b P dx. §1(1) = ;)f'” (e, D (x, 1) dx,

gz(o:;/|n"(x,t>V¢<x,r>|2dx, g3(r)=/V<n2"—1(x,t)¢2(x,r>)-Vv(x,wn(x,t) dx,

R2 R2
ga(r) = / V(2 x, g% (x, 1)) - u(x)n(x, 1) dx. (5.68)
R2

Next, we derive three estimates for n in L2 and L3.

Lemma 5.5. Let xg € R% 0 < p <1, and £ > 2. We suppose that i > 2 is an integer, and take
to € (—oo, min{t| + 2c1,02, Tmax}), where c is the constant in (5.5). We denote by ¢ the function
defined in (5.64), where  satisfies p1 = p/2 and pp = p as in Lemma 3.6. We further assume
that n(t) € Li(sz (x0)) for every t € (0, Tmax) N [to, Tmax)- Then, the following estimates hold:
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. L. ;
/ In! (e, D@ (1 dix < it —10) 280N} 5, (10 (5.69)
R2
. 1 ¢ .1 '
f In' (e, ) (. D dx < Ci2 (1 = 10)2 602 DI} 5, (5.70)
R2
ci?
i 2 ! £-3 i
[ln (x,OVe(x,1)|" dx < m(r —t0)2g02(t)||n(t)||L,-(Bp2(x0)) (5.71)
R

forall t € (0, Tmax) N [t0, Tmax), where C is an absolute positive constant, and gy is as defined
in (5.68).

Proof of Lemma 5.5. Concerning (5.69), the Gagliardo—Nirenberg inequality gives:

[ e 0 dx < IV @@ @RI D801,
RZ

. L. i
S Cl(t - IO)ng(t)”n(t)” i(sz(X()))’

where C is an absolute positive constant.
For (5.70), we apply (5.69) to estimate:

/ In' (x, )¢ (x. )2 dx < |ln (OO 25 In () (D)1,
R2

1 .
Lo £ i 2. L 5
= (Cit =P @Oy () €= 0RO
1 €1 ;
= Ci2 (t - t0)2802 (t)”n(t)”Li(sz(xo))’

where C is an absolute positive constant.
Next, we consider (5.71). From (3.24) in Lemma 3.6, it follows:

C
Vo (x)|*> < W(r — 1) YO (x —x0) =

_ € i—wi¢twn
(02— 02 — p1)? 0 o

(

This, together with (5.69), leads to the conclusion:

/|nf(x,r)v¢(x,t)|2dx
R2

< c i 3 5
< m(l —t0)* [ (D@l 5 lln @)l (B, (x0))

1 .
i

¢ [ ; 2 i
<———(t—tx)* (Ci(t —19)28p(t D, ) 2.
< (pz—m)z( 0) ( i(t —19)280(1)|In( )IILI(BPZ(XO)) ln (@)l (B, (x0))
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1

Ci2
< ——— = ( — [ 2 2 t t ,
S R OOl )

where C is an absolute positive constant. This completes the proof of Lemma 5.5. O

Continuation of the proof of Proposition 5.4. As for g; and g», using (5.69) in Lemma 5.5,
we obtain:

8o(?)
(1) < Ci™ 20t — 19) 2~ goza)nn(r)nL,(B oy = g TCLU—10) IO 5y

8
(5.72)

where C is an absolute positive constant. Similarly, applying (5.70) in Lemma 5.5, we obtain the
following estimate:

(o1 _ %0
t—t (1) |n ()
Lt — 1) 802 Ol NLi,, 00 = g~ + (02— p1)?

i < S
H0) < =10 10O 5

(5.73)

where C is an absolute positive constant.
Next, we consider g3. Let g9 > 0. Then, we have:

&3(1) < (2i — 1>/n2i*1<x, DIVn(x, D[Vo(x, 1)|¢*(x, 1) dx
RZ
+ 2/n2i(x, HIVu(x,)||Ve(x,t)|p(x, 1) dx
RZ
21

1fn (x, NP (x, DIV (x, )P (x, 1) —n' (x, DV (x, DI Vo(x, 1)] dx
R2

+ 2/n2i(x, DIV, )||Vo(x,t)|p(x,t) dx
R2

-1 . .
In' ®p OVl 2ln' )V ()l 2

, 1 , .
<ol V' )7, + (Q +4> In' O OVVOIl72 + [0 OVSD7,.  (5.74)
In addition, let 1 > 0. Then, we have the following estimate:

I’ OB OVVOI2, < 0" OSDOI 5, IV0OI 05,
L2

pt2 p—2

< CIVE OB E 10" OSON,T IV 05, (0
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_pt2 4p

<e1igo() +Ce, "I OO IVVON 5, oy (5T

for all p > 2, where C = C(p). Combining (5.71), (5.74) and (5.75), we derive:

1
83(1) < epigo(t) + <€— +4> e11go(1)

1 1:+2
+C< +4> & ! 2||Vv(t)||Lp(3 (xo))(t t0) ||n(t)||L,(B x0))

go(1) Ci
8 (02 — p1)

2

where C = C(p).
We proceed to estimate g4. According to Definition 2.1, for any 1 < r < oo, the following
holds:

r

lull?, —10r TN x4 — 04 x0)
L7 (Bpy (x0)) lx —x0l% 4+ A Ix + x0]% + A

sz (XO)

<2'= 1|Q|r <2max{ }|Bp2(xo)|> =2r|Q|rTE(,02)2max{l, )Lir}’

which yields:

14l (8,5 e = 2121 (w(02)?)" max{l,%}sc, (5.77)

where C = C(Q, A, r), since 0 < p» < 1. Following a similar argument to that in (5.76), we
obtain:

- . 1 .
84(t) < eoigo(t) + (% +4> e1igo(1) +C ( +4) € - 2(t - to)llln(t)llL,(B o)

8o Ci .
T8 Tt IO 5, (o (5.78)

where C =C(Q, A, p).
Combining (5.67), (5.72), (5.73), (5.76), and (5.78), we deduce:

E n? (x, )% (x, 1) dx < —280(t) + 281 (t) + 28>(t) + 285 (t) + 284(t)
]R2

- . 1 N -
< —2g0(t) + <1 +4igo +4 <5 +4> 811) go(t) + CL(t —19)"~ 2||n(t)||L,(B o
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Ci 1 1
(or— 1) +C ( +4> (l'vv(t)||Lp(B con T 1) t —10)" ||n(f)||Lz(B x0))’
el

(5.79)

where C = C(y, Q, X, p). Setting g9 = and g] = m in (5.79), we obtain:

16l

Ld n? (x, g% (x, 1) dx < CL*(t —to) 2 |n()|*

i dt ’ ’ = 0 Li (B, (x0))
RZ

3p=2 1 4p
+Cir <m+uw(¢)nm3 (XO))+1> (t—t0)£||n(t)||L,(B oy (5:80)

where, C = C(y, Q, A, p), as 222 >3forp>2

(i). In the case 2c1,0 < Tmax and 2c1p <t < Tmax, Wesetto=a=1] — 2c1,02 and £ = 2 with
2 < p <ooin(5.80). Let s € (] — c1p%, min{t; +2¢1p?, Tmax})- Integrating both sides of (5.80)
over [a, s] for s € (a, min{t; + 2c1p2, Tmax}), and using (5.53) in Lemma 5.3, we deduce:

g .a) / n?(x,s) dx < l/nzl(x,s)sz(xvs) dx
l

1

Bpl (x0) R2
4p
. 3p—2 1 1 =2 3
=CyG—a)+ir? 7+ 3 +1)(s—a)
(p2 = p1) (02— p1)2
X sup In ()13 , (5.81)
te(ti—ci p?,min{t; +2¢1 02, Tmax}) LBy (o)
where C = C(y, Q. 4, lInoll 1, p)-
By selecting p > 6 in (5.81), it follows that 3272 — 4 4P <6, and the following inequality
holds:
2
— 1
(s .a) / n%(x,s)dx < —/nz’(x $)¢>(x, s) dx
i
By, (x0) R?
4
C{(s—a)+7( —a) } sup (o),
( '01)9 te(t—cy p2,min{ty+2c1 o2, Tnax}) LB (XO))
= (6—a+6-) In (I,
< s—a s —a)” sup n(t i s
(,02 - )9 te(t;—c1 p2,minfr1+2¢1 0%, Tinax }) g (sz (x0)

where C = C(y, O, A, ||noll.1, p). This yields the inequality:

ci® 1 2
(p2 = p1)° ( o a) Sup ”n(t)”L"(sz (x0))

2i
. <
”n(s)”LZI(Bpl (x0)) = s ! 5
t1—c1p?<t<min{t+2c1 p%, Tmax}

s—a
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for all s € (] — c1p?, min{t; + 2¢1p?, Tmax}), Where C = C(y, Q, A, ||noll .1, p). Moreover, it
holds that:
2 _ 2 : 2 2
cip”<s—a=s—(t1 —2c1p") <minfdc1p”, Tmax — 11 + 2¢1p7}
_ 4c1,o2 when 2c1,02 < Tmax — t1,
B Thax — 11 +2Cl,02 when 201/02 > Tmax — 11,

<dcip*.

Consequently, we obtain:

5 1
Ci %1\ 7
||f’l(S)||L2i(Bpl N =\—77"""=% - sup ||”(T)||Li(3p2(x0))

(o2 — p1)> P/ re(i—c1p?,minft1+2¢1 p2, Trax )

foralls € (t; — cl,oz, min{¢ ~|—2c1,02, Tmax}), where C = C(y, Q, A, |lnoll 11, p). This establishes
the desired estimate (5.61).

(i1). In the case 2c1/o2 < Tmaxand 0 <t < min{2c1,o2 Tmax}, wetake 19 =0, £ =2i — 2 + —+—

=2 with 2 < p < oo in (5.80). Let s € (0, min{r + 2c1,0 Tmax})- Substituting 79 and E into

(5. 80) we have:

Ld [ 2
-— 1 0 d
T n”(x,1)¢"(x,t) dx
R2
2 4 —2)\2 _4_
§{C<21 2+—p+ @ )> tp4—2
p—2 p—2

3p=2 1 2p 27!’
+ Ci r2 (( — )4+(t2||Vv(t)||Lp(Bp2(xO)))1 2l =2 +1> 2}

x (G 2, (5.82)
where C = C(y, Q, A, p). Thus, integrating both sides of (5.82) over [0, s] for s € (0, min{¢; +

2¢1p2, Tmax}), and applying (5.54) in Proposition 5.3, we find:

1 , 2 4G —2)\2p—2 pi2
f/nz'(x,swz(x,s)dxsc{(zi—z+ p_ 40 )) Ay
l

-2 p-2/)pt2
RZ
+%<( 1 +1>P—2 31)722_‘_ 1 )
i = - s P— —_—S

(p2 — p)* 3p-2 (/02—/01)%
1-14+22 .

X sup T i) ||n(77)||Li(Bp2 (x0))

7€(0, min{r+2c1 02, Tnax})

for all s € (0, min{t + 2¢1 p2, Tmax}), where C = C(y, Q, A, lnoll 1. p).
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Here, we observe:

1— 1 26=1 % 2 8 2i—24 20 4 4D
s T ()12 B, () / n” (x, $)Y°(x — xo)s P=2TTp=2 dx
Bpl(x())
= / n? (x,)¢?(x, 1) dx.
Bpl(xo)

Choosing p > 6, we have 3}‘;’%22 <4 and % < 15. Furthermore, noting that s € (0, min{¢; +
2¢10%, Trmax)), it follows:

. t +2c1 02 when 2¢1p? < Tax — 1,
0 < s < min{r; +2¢1 0%, Tnax}) = 1 sap CIP2 s
Tinax when 2C1p > Thmax — 11,

<t +2c1p* <4c1p.

As a consequence, we have:

. 2i
1_i+M — [
(s T )2, oy ) 570 [ 0¥ 0997, ) dx

R2
2 Mi—D\2p—2
<cif(2i-2+-L 4 4 )) P==5im
p—2""p—2/) p+2
+”’zz(( : +1>p_2 L )}
ir- sP
— 4 _ 10p
(P2 — p1) 3p—2 (02 — p1) 72
1-1420=2 z
x sup T DR i, (xg))
7€(0, min{t+2¢1 02, Tinax })

<Ci’ p%Jr<(—1 +1)p%+;)
- (o2 — p)* (o2 — P13

1-1420=3 .
« sup T iTip2 ||n(7:)”Li(Bp2(xo))
t€(0, min{t+2c1 p2, Tnax})

Ci’ ( 1-142022) Y
< sup T T () Li (B, (o)
(02 = P (0. minfr261 0. Tums)) =

for all s € (0, min{r + 201,02a Tmax}), where C = C(y, Q. 4, [Inoll 1, p). This implies:

X
-4+

.2 i—1)
s i(p=2) ||I’l(AS‘)|ILZi(Bﬂ1 (x0))
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S

Ci )2, 114 26-2)
<(— sup T P02 () i, (xo))
<(,02 —p1)? 7€(0, min{t+2¢1 02, Tnax }) n

for all s € (0, min{z + 2¢1p2, Tmax}), where C = C(y, O, A, llnoll .1, p). Hence, the desired es-
timate (5.62) is obtained.

(iii). In the case 2c1,o2 >Thax and 0 <1 < min{2c1p2, Tmax} = Tmax, We choose 1y = —,02 and
¢ =2 with 2 < p < o0 in (5.80). Let s € (0, min{r + 2c1p2, Tmax})- Integrating both sides of
(5.80) over [0, s] for s € (0, min{t; + 2c1p2, Tmax}), and applying (5.55) in Proposition 5.3, we
find:

(s +p?)?
i

/ n?(x,s)dx < 7/112’ (x, $)>(x, s) dx
i
B,O] (x0) R2
4p

3p=2 1 1 =i
Cils+pH)+ir? + s+ pD?
- {(S o <(p2_p‘)4 ((pz—m)%) >(S P)}

2 P 2i
x sup I o+ ol
ce(O.min{ry 4261 2. Toms)) (Bp, (x0)) i (Bp, (x0))

where C = C(y, Q, A, [noll.1, p).
Choosing p > 6, we find that 3:%22 < 4 and % < 6. Furthermore, noting that s €

(0, min{t; + 2¢1 2, Tmax)), it follows that:

tr+ 2c1,02 when 2c1,o2 < Tmax — 11,

0 < s < min{t; + 2¢1p%, T, =
{1 107, Tax}) {Tmax when 251,02 > Tmax — 11,

<11 +2¢10% < 4e1p%.
Therefore, we deduce:

(s +p%)?
i

f n?(x,s)dx < —,/nZ’ (x, $)$>(x, s) dx
i
By, (x0) R?

<C{(s+p2)+i4< L, ! +1>(s+p2)3}
- (o2 —pD*  (p2— p1)?!
X sup In (o)1, + —llnoll7
reOmint foe g T (Bpy(xo) T L% (B (x0))
4

Ci ( 2 213 2i
s ——(6+p+6+0D) sup I
(02 = p1)*! re(O,min{t1+2¢1 p2. Tonar ) L (B (o)

4
2i
+ l “nollLZi(sz (x0))’

where C = C(y, Q, A, ||nollz1, p). This leads to the following inequality:
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2i
”I’l(S) ”in(Bpl (x0))

ci®

2 2i
< ( +s4+p ) sup ln(T))%
(02 = p1)*! \s + 2 (0, min{11+2¢1 02, Tynax})  Brytoon
4 5
(S + p2)2 ||n0||L21 (sz (x0))
-5
Ci 1 2

2i
— " — su n(T)|l;; + ||n ;
T (2 =P p? rE(O,min{tl+£€1P2,Tmax}) I )”L (Bry (o) : 0”L2 (B (o)

for all s € (0, min{r + 2c1p2, Tmax}), where C = C(y, Q, A, ||noll;1). Hence, we conclude:

||'1(S)||1‘2i(13/)1 (x0))

Ci 27 1 t
= (7@) (‘) sup IR Li (B, (o) + 701l L2i (B, (xo))
(02— p1)3 P/t minft+2¢1 p?, Tnax})

for all s € (0, min{t + 2¢1p2, Tmax}), where C = C(y, O, A, llnoll .1, p). This establishes the
desired estimate.

Step 4. In this step, we complete the proof of Theorem 2.2. To achieve this, we assume that
(2.15) holds for some xg € R2,0 < p <1,and 0 <t < Tyax. Furthermore, let m, and ¢ denote
the constants given in Proposition 5.1, where the explicit expression for ¢ is provided in (5.5) of
Remark 11.

Proof of Theorem 2.2. (). If 201p2 < Tax and 2c1,02 <11 < Tmax, Proposition 5.4 with i > 2
provides a local L*-estimate of n on:

By (x0) x (tl —01,02, min{z +2C1p27 Tmax})-

Combining this with the reverse Holder-type inequality in Proposition 5.4, and starting from
this inequality, we apply Moser’s iteration (cf. [23, p. 3079-3082], [22, Proof of Theorem 2.2]).
Iterating with i + 2i — 4i > --- and letting i — 0o, we obtain:

sup 7)o

se(ty—c1p?, min{t;+2c1 02, Tmax})

)SC,

Bp (xo0)
7

where C = C(y, O, A, ||noll.1, p). This proves (2.16).

(ii). If 2¢1 p? < Tiax and 0 < 71 < 2¢1 p2, Proposition 5.4 with i > 2 yields the weighted inequal-
ity:
1, (i—De
l— 54—
S 2i + 4i ||”(S)”L2"(Bp1 (x0))
. 5 .
= 1 (i—2)e
< ( Ci )2, 1‘7’"”T

su T
(p2—p1)3 P

(N Li B, (x0))-
7€(0, min{t; +2c1 02, Tymax})
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Applying the same Moser’s iteration as in (i) and letting i — 0o, we obtain:

145
sup s 4 n()ll

) =<C,
s€(0, min{t +2C1p27 Tmax})

L°°(B§ (x0)

where C = C(y, O, A, ||nollz1, p, €). This proves (2.17).

(iii). If 2¢1p% = Tiax and 0 < #; < Tiax, Proposition 5.4 with i > 2 provides a local L’-estimate
for n, including additional terms depending on the initial data, on:

B, (x0) x (0, min{t; +2¢1p%, Trmax})-

Together with the reverse Holder inequality in Proposition 5.4, performing the same Moser’s
iteration as above and letting i — oo gives:

sup 7)o

) <C,
s€(0, min{t;+2¢1 2, Tmax })

Bp (x0)
ps

where C = C(y, Q, 4, Inoli.1, lInollLes , ). This proves (2.18). This completes the proof of The-
orem2.2. 0O

6. Proof of Theorem 2.4
6.1. Proof of Theorem 2.4 (I): maximal existence time estimate

Let 7* be positive time defined in (2.24), and let gy be given in (2.22). We define G(gg, T*)
as in (2.26) in Remark 6. The constant £ in the definition of G (&g, T™*) will be determined later,
so that:

o> ©.1)

>
where, § denotes the parameter in assumption (ii) concerning ¢ in Theorem 2.4. In addition, we
assume |a| > G(gg, T%).

Using Lemma 3.6, we introduce the cut-off function i with p; = €o and p> = 2£. To derive
an upper bound for the blow-up time Tax, we multiply the first equation of (KSF) by |x —
a|?y (x — a). This yields:

E/n(x,t)|x—a| Y(x —a)dx
R2

=/An(x,t)|x—a|21ﬂ(x—a) dx—fV~((an)(x,t))|x—a|21/f(x—a) dx

R2 R2
- / V- (u)n(x, H)lx —al*y (x — a) dx
R2
= 1+J+K. 6.2)
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Since the following identity holds:

A(lx —al*y(x —a)) =4y (x —a) +4(x —a) - VY (x —a) + [x —a]* Ay (x —a),
we estimate / as:
I§4/n(x,t)w(x—a) dx +4 / n(x,t)|x —a||Vy(x —a)| dx
R2 By (@)\ By (2)

+ / n(x,nlx —al’ | Ay (x —a)| dx

Bagy (@)\ By (a)

54/n(x,t)¢(x—a) dx +16(v/2 4 6) / n(x) dx. (6.3)

R2 Bag, (@)\ By, (a)

Next, we consider J. By integrating by parts, it follows:

J= /(an)(x, 1) -V(lx —al*y(x —a)) dx
RZ

:2/(an)(x,t)~(x —a)Y(x —a)dx + / (nVv)(x,t) - |x—a|2V1//(x—a) dx
R2

Bagy (@)\ By ()

= 2/(an)(x, t)-(x—ay(x —a)y(y—a)dx
R2
+2/(an)(x,t) x—ay(x—a)(l -y (y—a)dx
RZ

+ / (nVv)(x,1) - |x —a]’Vy (x —a) dx
Bag (a)\ By (a)
=J1 + Jo + J3. (6.4)

Let R be a sufficiently small positive real number, to be determined later. Since Vv = VG, *
n, it follows from the symmetry of V.G, (x — y) - (x — y) and (3.5):

J1 = / / nx,Hn(y,H)VG,(x —y) - {(x —a)—(y — a)}W(x —a)y(y —a) dxdy
R2xR?2

5_%/ / n(x, On(y, e V¥l (x —a)y (y —a) dxdy
g R2xR2
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TR
< / / n(x, Oy, DY (x — A (y — ) dxdy
[x—y|<R
VR
= [ / n(x, n(y, )y (x —a)y(y —a) dxdy
R2xR2
e VYR
+ / / n(x, Hnly, Y (x — a) (y — a) dxdy
[x—y[=R
2
efﬁR
< - o /n(x,t)lp(x—a) dx
2
e VYR 2 2
/ / nx,Hn(y, HYx —a)y(y — a)Rz(IX—aI + |y —a|”) dxdy
[x—y[=R
2
e~ VYR 2e~ VYR 2
<- > /n(x,t)l/f(x—a) dx +—2||no||L1/n(x,t)|x—a| Y(x —a)dx.
T TR
2 R2

(6.5)

We now consider J,. Let L be a positive real number, to be determined later. Then, the fol-
lowing holds:

h=2 / /n(x,r>n<y,r)VGy<x—y>~<x—a)w<x—a)(1—wy—a))dxdy

R2\ By, (a) B2y (a)

=2 / / n(x, Hn(y,HVG,(x —y) - (x —a)y(x —a)(l =¥ (y —a)) dxdy

R2 \B2[0+L (a) BZlo (a)

+2 / / n(x,Hn(y, VG, (x —y) - (x —a)y(x —a)(1 — ¥ (y —a)) dxdy

Bagg 1 (a)\ By (a) By (a)

=J) + Ji (6.6)
As for le, since |x — y| > L and |x — a| < 2{, it follows from (3.6):
<2 / / n (e, On(y. DIV Gy (x — y)llx — alyr(x —a)(1 — ¥ (y — a) dxdy
R2\3250+L (a) 32(,0 (a)

/ n(x, O)n(y, NIVGy (x — y)llx — y| 2bo dxdy

R2\32g0+L (a) BZIZO (a)

~
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449 1 2
< TO . —(£ + 1) n(x,Hn(y,t) dxdy
e
R2\32(O+L(a) BZZO (a)
400 1 /2 )
< LY, 67
= — (S5 +1) ol 6.7)
We define Dy, as:
2| 4o
Dy =1xeR ‘Eflx—a|§2£o+L . (6.8)

Regarding J22, since ¥ (x —a) =0 for 2¢g <|x —a| <2¢p+ L and 1 — ¢y (y —a) =0 for
%0 <|y — a| < £y, it holds:

2=2 / / nCe, (3, DVG, (x — 3) - (x — )y (x —a)(1 — ¥ (y — a)) dxdy

Bagy+1(a)\ By (@) Bagy+L(a)

=2/ /MLﬂM%ﬁVGﬂx—w-@—QWQ—MG—ww—aDiwy

Dy Dy,
+2 / / n e, (3, VG, (x — y) - (x — )y (x —a)(1 — ¥ (y — a)) dxdy
Bagg+1(2)\ By (a) By ()
2
=y (6.9)

We estimate J22,1 and J22’2. For J22’1, using the symmetry of VG, (x —y) - (x — ), it follows:

.@Jzzf‘/n&Jﬁdy0VGy

Dl() DZO

-(a—mwu—wa—w@—a»—@—mw@—ma—wu—mﬁdwy
(6.10)

Using the following identity transformation:

x—ayx-al-yvyO—a)-y-ay@y—adl-—yx—a)
=—yG-ay@y-ac-y+x-ayx-a-—(y-ay(y—a
=—y@x—ayQy—ax—y+x-—ay-—a—y(y-—a)+x-—yy(y—a)
=@x—yI-vyx-a)y(y—a)+x—a)(y(x—a)—y(y—a), (6.11)

it follows from (6.10), (6.11), (3.6), (3.24), and the fundamental theorem of calculus:
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|,22’1|5/ /n(x,t)n(y,t)IVGy(X—y)HX—y|(1—¢(X—a))1ﬁ(y—a) dxdy

DEO DZO

+/ /n(x,t)n(y,t)lVGy(x—y)llx—a||1ﬁ(x—a)—1ﬁ(y—a)|dxdy

Dzo DZO
1 /42
< —(£ + l) / / n(x,H)n(y,t) dxdy
T e
D@O DZO
242
+ / / G O, DIV G (6 = )] Rlo+ L) == |1 =yl dxdy
Dy, Dy,
1 /42 L
E—(£+l)||n0||L1 <1+2J§<2+—>> /n(x,t) dx. (6.12)
e Eo
)
As for J22’2, since |x — y| > %0, it follows from (3.6):
1722 <2 / / n (e, 0y, DIVGy (x — y)llx —al P (xr —a)(1 — ¥ (y — a)) dxdy
Bayy+L(@)\Bey (@) B, ()
2
2|x —y| Lo
<2 / / n(x,Hn(y,)|VG, (x — y)] % > dxdy

Bagg+L (@)\ By, (a) By (a)
2
1 2
<2. _<“/__ 4 1) / / n(x,t)n(y,t) dxdy
e

T
Bagy+L(@)\ By, () By, ()
2

52-l<£+1)||n0||L1 /n(x,t) dx. (6.13)
T e

DZO

Thus, combining (6.9), (6.12) and (6.13), we have:

1 /2 L
|J§|§;(7+1>|Inollp (3+2f2(2+%)> /n(x) dx. (6.14)

‘o

At this point, substituting (6.7) and (6.14) into (6.6), we obtain:

J < ||+ 3]
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400 1 /2 , 12 L
ST';(7+1>||'10||L1+;(7+1)||"0||L1 3+2\/§(2+%) /n(x,t)dx.
o

(6.15)

We now proceed to estimate J3. The whole plane R? is divided as follows:
R? = By (@)U Dy UEy,, where E; = {x eR? | |x —al >2€g+ L} .
7z
It then follows:

n=[ [ nwon00¥G,G )P - dydy
R2 By, (a)\Be, (@)

< / / /) / n(x, OOV Gy (x =) - |x —al Vi (x —a) dxdy
By @ Egy  Bagy(@)\By,(a)
2

We now estimate J. 13 and J33 simultaneously. Since the support of |V| is contained in Dy, we
deduce from (3.6) that:

413 < / / n (e, (3. 0IVGy (x — y)|lx — a2V (x — )] dxdy
By @) Bagg @)\ Beg (@)
2

+/ / n(x, Hn(y, HIVGy (x — y)|lx —al’| V) (x —a)| dxdy

Eqq By (a)\ By, ()

2 2
S B B V2 ay
% %
By, (@) Bay (2)\ By, (@)
2
s [ noniovG, @ - 442*—fdxdy
Egg Bagy(2)\Beg ()
<82 (£+1)I|n0||L1( —)/n(x,t)dx. 6.17)

DZO

For J32, we have:
1
=3 / / n(x,Hn(y, VG, (x —y) - (|x —a)’Vy(x —a)— |y —a) >V (y — a)) dxdy.
Dy Dy,
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Using the following identity:

lx —a]’Vy (x —a) — [y —al’ Vi (y — a)
=[x —a’ (V{(x —a) — Vi (y —a)) + (Ix —a]* — [y —a) Vi (y — a)
=|x —a*(V{(x —a) — Vy(y —a)) + (Ix —a| — |y —a))(lx —a| + |y —a)Vy (y —a),

it follows from (3.24), (3.6), and the fundamental theorem of calculus:

1
|132|S§/ /n(x,t)n(y,t)|VGy(x—y)||x—a|2|V1p(x—a)—V1p(y—a)|dxdy
DZODZO

1
3 / / n(x,Nn(y, NIVG, (x = y)llx — yl(lx —al + |y —a)|Vy (y —a)| dxdy
DZO D@O

1 24
55/ /n(x,t)n(y,rNVGy(x—yn (to+ L) =5 x = | dxdy
0

D@O D(O
1 23/2
+ 3 [ f n(x,Hn(y,HIVGy, (x — y)||lx — y| (2(2¢p + L)) % dxdy
D@O DZO
2
< i(«/—E + 1)|In0||L1 {12 (2+ 5) +2v2 <2+ 5)} / n(x,t)dx. (6.18)
7\ e Lo Lo

D@O

Thus, combining (6.16), (6.17) and (6.18), we find:

1,2 ¢
J3§8«/§-;<§+1)||n0||y (2+ZO) /n(x,t)dx

Dy,

1/V2 L\? L
+;<7+1)||n0||L1 |:12<2+%> +2\/§<2+%>i| /n(x,t)dx

o

1 /2 2o L\? L
52«/5-;(7+1)|Inolly [4<2+f)+3ﬁ<2+%> +<2+%>:|/n(x,t)dx.

Dy,
(6.19)

Consequently, substituting (6.5), (6.15) and (6.19) into (6.4), we have:

2
e V7R
J<-— o /n(x,t)lﬁ(x —a)dx

2
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2e V¥R 469 1 /32
2ol [ G ot~y a dx+ 52 L2 ) im
RZ
1 /42 ¢ L\’ L
+—(£+1)||n()||L1 8V2 (24 2 ) +12(2+ =) +4v2(2+ ) +3
7\ e L Lo Lo
X / n(x,t)dx (6.20)
Dy,
Let us now focus on K. By applying integration by parts, it follows:
K = / u(x)n(x,t) - V(|x — a|21//(x — a)) dx
RZ
=2 / u(x)n(x,t)- (x —a)y(x —a)dx
Bog (a)
+ / u()n(x,t) - |x —al*’Vy (x — a) dx.
Bag (a)\ By (a)
Since supp x C Bj(b), it follows:
K| <2/Qlt26.1(a, b) / Al =Bl by, 0y - a)
T , ——————y(x —b)n(x, X — X
= 200,h Ix —b|2 T X
Bog (a)N By, (b)
+1Ql2t0.4 (2, b) / Al =Bl by, )l —al | VY — a)]d
T s —————x(x —b)nlx,t)|x — X — X
2ok x—b2 12 %
(Baty (a)\ By, () NBy (b)
. 2V/2
<2[Qlraey,n(@,b)l|Inoll L1 + 1 Q260,10 (2, b) n(x,t) min{2¢g, h} de
(Batg ()\ Bgy (2)N By, (b)
<2|Qlta¢gn (@, bl 1 + 4721 Q72601 (a, b) f n(x,t)dx, (6.21)

Dy,

where, the function 2, 5 (a, b) is defined in (2.4). Thus, using (6.2), (6.3), (6.20) and (6.21), we
derive:

%/n(x,t)pc —al®y(x —a)dx
RZ

< —%/‘n(x,t)l/f(x —a)dx eiﬁR/n(X, HY(x —a)dx — 8
nRz 2
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400 1,2
TS (5 1)l + € [ et dx 201 a B ol
Dy,
2e VYR 2
+ R ||n0||L1/n(x,t)|x—a| Y(x —a)dx, (6.22)

R2

where C., is defined as follows:
Cy = 16(V2 + 6) + 4v/2| Q| 7240, (2, b)
1 /42 ¢ L\? L
+—<£+1)Ilnolly 8V2(2+ 2 ) +12(24+ =) +4v2(2+ =) +3].
TN\ e L Lo Lo

We assume that:

32n/¢(x)|x|2dx
R2 *
Tonax > =T, (6.23)
" w(lIngll 1+ 167) (/27 (lnoll 1 + 167) — 87)
Applying Lemma 3.7 with p; = €y and py = 2€(, we obtain:
/n(x,t)gﬁ(x —a) dxz/no(x)Ip(x—a) dx
R2 R2
62+ L(2+1)|n
gl B2 C Do) 7, ifa=b,
EO
" N
62+ L(Z+1)ln V2|Qmax {1,
_2||n0||Ll ( n’( e 5 )” O”Ll) + |Q| { )\.} T* 1f|a—b|22€0+h
£ Lo
(6.24)

fora.e.r € (0, T%).
We consider the first term on the right-hand side of (6.24). From (2.26) and (6.1), it holds that
8 <28y < G(gg, T*) < |a|, which implies supp ¢ (x +a) Nsupp ¥ (x —a) = @. Thus, we obtain:

/no(x)w —a)dr— / (6 — ) + p(x +2)Y(x —a) dx
R2 R2

=/¢(x—a)w(x—a)dx= f ¢ (x) dx=871+%0. (6.25)
RZ

Bs(0)
Here, the supports of ng(x) = ¢ (x — a) + ¢ (x + a) and ¥ (x — a) are depicted as follows:
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=1 )

—a

Next, we choose €y = £ (g, T*) sufficiently large to satisfy the following conditions:

62+ L(2 +1)n
—2|lnoll 11 @+ 7 (& + Dlinoll1) 75> _2 ifa—b,
e 8
62+ L2 +1)lnolly)  V2QImax{L, L} | e (6.26)
~2llnoll 1 - + g
£ Lo 4
if la—b|>20g+h.
Thus, combining (6.24) with (6.25) and (6.26), we deduce:
fn(x,z)w(x—a) dx38n+%°—%°=8n+84—° (6.27)
R2
for a.e. t € (0, T*). In addition, choosing R as follows:
1 16
R:= log Mnollu + 167 (6.28)
N 327
we obtain:
TR o 207V7R gy 327 log IP0llL1 + 167 *2‘
lnoll 1 + 167 7 R?2 7\ llnoll 1 + 167 327

(6.29)

Then, from (6.27)), we find:

e—ﬁR/n(x, DY (x —a) dx — 87 > /2w (|no|l 1 + 167) — 87 > 0,
R2

which leads to:
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—%[n(x,t)lﬁ(x—a) dx e—ﬁR/n(x,t)w(x —a)dx —8n
nRZ R2

1 &0
<5 (871 n Z) (/27 (ol 1 + 167) — 87)

1
= — g (Inoll g1 +16m) (/27 (Inoll 1 + 167) — 87) =: —e1 < 0. (6.30)

Substituting (6.28)-(6.30) into (6.22), we find:

d 2
E/n(x,t)|x—a| Y(x —a)dx
]RZ

400 1 /2
< -+ A ;(7 + 1)””0”%1 + Cs [ n(x, 1) dx
Dy,
+2[Qlr2¢p,n (@, b)lInoll 1 + 5/11()6, tlx —al*y (x — a) dx, (6.31)
R2
where C is defined by:
~ 8y 327 Inoll 1 + 167\ 2
C=— 1 . 6.32
o T (og o lInoll . (6.32)

We determine L in (6.6) based on &1 in (6.30) as follows:

1660 - L(2 41
L= %nnonil. (6.33)

From (2.26), we confirm:

la] > G(eo, T*) =200 + L.

Using the identity:

L 128(2 + 1) InolI2,

L (lnoll + 167) (27 (ol 1 + 167) — 87)
we observe:

Cy = 16(v/2 + 6) + 4+/2|Q|t2¢, 1 (a, b)

+l(‘f2+1)unonu [8ﬁ<2+ (o]l +16n><£n<||no||Ll +16n>—8n>>
128( %2 + 1) [Inoll .

T e
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64(22 4 1) [ln||? 2
+48<1+ (2 +1)lInoll?, )
(Ilnoll L1 + 167) (/27 (lnoll L1 + 167) — 87)

V2 2

64(L2 +1

+8ﬁ(1+ (& £ Dlinoll, )+3 . (6.34)
(Inoll L1 + 16m) (/27 (Inoll 1 + 167) — 87)

Combining (6.33) with (6.31), we obtain:

%/n(x, t)|x — a|2w(x —a)dx
RZ

£
<61+ +C / n(x.1) dx +21 Q|72 @, b) ol 11

Dy,

+ G/n(x, Olx —al?y (x — a) dx. (6.35)
R2

On the other hand, to estimate the integral term on Dy, defined in (S).S), let p3, p4, pP5, P6 be
positive numbers such that p3 < p4 < p5 < pg. Using these, we define ¢ as follows:

1 for0<r < p3,
(p4fp3)2 (r — p3)* for p3 <r < 22524
1—@0—,04)2 for 22504 < r < py,
¢(r)y=10 for p4s <r < ps,
(06_2/)5)2 (r — ps)? for ps < r < &5505
— o (r = pe)* for B5P% < r < py,
1 for pg <r

and set {(x) as ¢(x) := Z(|x|) for x € R%. We choose p3 = L + %Zo, p4=L4+20g—3, p5s =
L+20p+38,and pg =L + %60. Then, since £ > 28, we verify that p3 < p4 < p5 < pg.
Similar to Lemmas 3.6 and 3.7, we find the following:

/n(x,t)dxf/n(x,t)g“(x—a) dx

Dy, R2
122+ 12 4 1)|n
4||no||L1( 2 (e * Ul 0”“)T*, ifa=bh,
(Lo — 28)?
= s
1224 2(Z +1)linoll1)  +2|Qmax |1, 1}
4 mle ALV T* ifla—b| > 260+ h,
||n0||L1< T3y 2 if [a — b > 260 +

(6.36)
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for a.e. t € (0, T*). Furthermore, we choose £y = £o(gg, T*) sufficiently large to satisfy the
following conditions:

48C.lnolly @+ (2 + Dlinolly) ., &1 4V2CImollplQ@Imax {1 1} ¢

o T < —.
(Lo — 26)2 - 8 Ly — 26 -8
(6.37)
Using (6.36) and (6.37), this leads to:
€1
Cy / n(x,t)dx < 1 (6.38)
D[O
In addition, applying (2.23), we obtain:
€1

2|Q|72e9,n(@, ) Inoll L1 < T (6.39)

Combining (6.35), (6.38) and (6.39), and choosing £y = £o(gg, T*) sufficiently large to satisfy
(6.1), (6.26) and (6.37), we deduce the following:

d ~
Ef”(’“ Dlx —al*y (x —a) dx < —%1 + c/n(x, Dlx —al*y (x — a) dx,
R2 R2

which implies:
/n(x, Hlx —al>y(x —a) dx
R2

t

g/no(x)|x—a|2¢(x—a) dx+/ —%+5-/n(x,s)|x—a|2w(x—a) dx |ds (6.40)

R2 0 R?2

fora.e.t € (0, T*).
We define M (t) as:

M(t) = /n(x, Hlx — a2y (x — a) dx. 6.41)

RZ

We introduce the linear function F (M) for M > 0 as:
€1 ~
F(M) = vy +CM,

where 1 and C are given by (6.30) and (6.32), respectively. Then, from (6.40), we have:
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t
M) 5M(0)+/F(M(s)) ds (6.42)
0

for t € (0, T*). To prove (2.25), we proceed by contradiction. For this purpose, we first observe
that F(M,) =0 for M, defined as:

3
1 dinollpr + 167)2 (/27 (lInoll .1 + 167) — 87) (log lInollzr + 16JT>2

M, =
Y 1024+/27 10|l .1 02n

Next, we note that |a| > G(eg, T*) =2£g+ L > 2£p > § by (6.1) and (6.33), which implies that
supp ¢ (x + a) Nsupp ¥ (x —a) =@. Thus, for 0 < o < 1, it follows from (2.20) and (2.21):

M(0) = /no(x)|x —a’y(x —a)dx = / é(x —a)|x —al®y(x —a) dx

R2 Bs(a)
= / <J5()C—a)|)€—21|2617J€=/<15()C)|X|2 dx < (1 —a)M,.
Bs(a) R2

Since F is strictly increasing on [0, 00), we observe:

FM©O0)<F((—-a)M,) < F(M,)=0. (6.43)
We define H as:
t
H(t)=M(QO) + / F(M(t))dt fort € (0, T™). (6.44)
0
Using (6.42), we obtain:
M(t) < H(t) fort € (0, T™). (6.45)

For the moment, we assume the following estimate for H, which will be proved later:
H(t) < H(0) forr e (0, T"). (6.46)
Then, from (6.43)-(6.46) and monotonicity of F, we have:
H'(t)=F(M(1)) < F(H(1)) < F(H(0)) = F(M(0)) < F((1 —a)M.)
for t € (0, T*). Consequently, from (6.45), we deduce:
M@)=H@) =H©O)+ F((1—a)M,) -t =M©O0) + F((1 —a)My) - 1
for t € (0, T*). Noting that F((1 — a¢)M,) < 0, we conclude:
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M(0)

M) <0 fort > ——————|
F((1—a)M,)

(6.47)
where:

32n/¢(x)|x|2dx
Mo R
F(1—a)M.)  a(lnoll,1 + 16m) (/2w ([noll 1 + 167) — 87)

(6.48)

Since the strong solution 7 is non-negative, one must have M (¢) > 0 on (0, Trax). Therefore, the
above (6.47) contradicts (6.23), implying:

32n/¢(x) Ix|? dx
RZ

* .

o a(||n0||L1 + 1671)(\/2n(||no||L1 + 16m) — 87[) '

Thax < T

which is precisely the bound asserted in Theorem 2.4 (I).
It now remains to establish (6.46). To this end, we proceed by contradiction and assume that
there exists Ty € (0, Ty) such that:

H(Ty) > H(0).
By (6.43), we observe:
H'(0) = F(M(0)) <0,
implying:
H(t) < H(0) for r € (0, T') with some 0 < T’ < T*.
We may assume:
T' =sup{t > 0| H(r) < HWO) fort e (0,1)}.

Since H is a continuous function on [0, T*), we find that H(T’) = H(0). By (6.43)-(6.45) and
monotonicity of F', it follows:

H'(T")=F(M(T")) < F(H(T")) = F(H(0)) = F(M(0)) <0,
which implies:
H(t) < H(0) fort € (0, T")

for some T” > T’. This contradicts the definition of 7’, and thus we conclude (6.46). This com-
pletes the proof of Theorem 2.4 (I). O

79



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745

6.2. Proof of Theorem 2.4 (I11): blow-up configuration

First, we show that the strong solution (n, v) of (KSF) on [0, Thhax) is axis-symmetric with
respect to both the ;- and e;-axes. We define nt and n™ as follows:

n+('x5t) :Zn(xlvxzat)’ n_(xvt) ::n(_xl7x27t)a
v (x, 1) =v(xy, x2, 1), v (x, 1) = v(—x1, X2, 1),
ut(x, 1) =u(xy, x2,1), u”(x, 1) =u(—xy,x2,1).

Since the pairs of functions (n, v™) and (n~, v™) are strong solutions of (KSF) on [0, Tinax)
with fluid vector fields u+ and u—, respectively, we obtain:

dmT—n)=AnT—=n")=V. ((n+ —n )V +n Vet - v_)>
_v. (u+(n+ — )+t — u*)n*), (6.49)
where v and v~ satisfy AvT — yvT +nT =0 and Av™ — yv~ 4+ n~ =0, respectively. Let

1 < r < oco. Multiplying both sides of (6.49) by [nt —n~|"">(n* — n™) and integrating over
R2, we obtain:

1d o

o IOl

= = DI I (1Y =) OIE + 't =13 ) l6* =n )17
+ 0 = D(IVor Ol + I 13 ) 10" = O

Since u is axis-symmetric with respect to the e;-axis, it follows that u*(x) — u~ (x) =0 for
a.e. x € R2. Thus, we deduce:

1d
Sl =) Ol = C = DI 1 + 190" Ol 4+ 1 )0 =)
(6.50)

where C = C(y). Let T be an arbitrary number satisfying Te (0, Tmax)- By Theorem 2.1 (ID),
there exists a positive constant C = C(y, Q, A, T, ||no|l w24 (r2)) such that:

sup_ In(@®llw24w2y = C.
te(0,7T)

Using the embedding theorem, (3.17) and (2.6), we obtain the following:

sup [[n()llLe <C,  sup [[Vu(0)|[r = C sup |n(r)llz= = C,
1e(0,7) 1€(0,7) 1(0,7)

1
Jullz <21 max {1, |.
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where C = C(y, f, llnolly2.4). Thus, choosing r =4 in (6.50), we have:

d
EII(HJr —n)Ollgs < CllT —n) @)

for a.e. t € (0, f), where C =C(y, O, A, T, l0]l w2.4).
Since ng is also axis-symmetric with respect to the ep-axis, we find nar (x) —ny (x) =0 for
a.e. x € R2. From the Gronwall inequality, it follows:

0< It =n )0l < lIng —ng g4 - exp{CT} =0

for a.e. t € (0, f). Therefore, nt (x, 1) —n~(x,t) = 0 holds for a.e. (x, 1) € R x (0, f), and the
strong solution of (KSF) on the two-dimensional whole space R2, as obtained in Theorem 2.1,
is axis-symmetric with respect to the e»-axis for a.e. t € (0, T).

Since 7 is an arbitrary positive number, the strong solution n(¢) is axis-symmetric with respect
to the ep-axis for a.e. t € (0, Thax). Furthermore, since both the initial data ng and the fluid vector
fields are also symmetric with respect to the eq-axis, a similar argument shows that the strong
solution n(¢) is axis-symmetric with respect to both the e;- and e-axes for a.e. t € (0, Tax)-

Here, let m, be the constant satisfying (2.15), and choose G (g9, T*) such that G(eg, T*) >
200 > 8§ + Lo, where £y = £o(gg, T™) satisfies:

, ! . (651)

My ny

fo>max {4

\/6||no||L1(2+ L(L2 4 1) Ingll,1 )T+ 8v2lnoll, QI max {1, 1T

Applying Lemmas 3.6 and 3.7 with p; = %0 and pr = £, and noting that supp ng N By, (0) =¥,
we obtain:

/ n(x,t) dxf/n(x,t)l/f(x) dx

By, (0) R2
2

122+ L (2 +1)lInoll 1)
€

4ol L1 T, ifa=b,

=

1224+ L(2 1 1)|n V2|0 max {1, 1
4||n0||L1<( x (e + Dlmolley) | v2I0Imax{l 1)/, if |]a—b| > 260 + I,

602 )
(6.52)
for a.e. t € (0, Tmax). Here, we note that Ty,.x < T*, as shown in Theorem 2.4 (I).
Furthermore, by (6.51), we have:
122+ 1(2 +1)n V2|0 max {1, 1
Anoll ( 2+ < Jlinollr) | V2101 - i) o % n % —m,. (6.53)
0 0

Thus, combining (6.52) and (6.53), we conclude:

81



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745

n(x,t) dx < my (6.54)

By, (0)
2

for a.e. 1 € (0, Trnax). Applying Theorem 2.2 together with (6.54), often referred to as the
e-regularity theorem, we conclude that the origin cannot be a blow-up point. Since n(t) re-
mains axis-symmetric for a.e. t € (0, Thax), the blow-up points of n(¢) at the blow-up time T}
(=Tmax) consist of points x1, ..., Xy, ..., X2m, where 2m is even and each pair x; and x,,, ; (for
j=1,...,m) is symmetrically located with respect to e;-axis. Since the strong solution n(¢)
is symmetric with respect to both the e;- and e>-axes up to Tiax, this implies that all blow-up
points lie on one of these axes. This completes the proof of Theorem 2.4 (II). O

7. Proof of Theorem 2.5 and 2.6
7.1. Proof of Theorem 2.5: finiteness of the blow-up points

First, let us take an integer k € N such that:

km > lInoll L1 g2y, (7.1)

where m, is the constant obtained in Theorem 2.2.

From (2.13) in Theorem 2.1 (II), it follows that n € C ([0, Thax); C(£2)) for every bounded
subset Q C R2. Here, Tinax is the maximal existence time of the strong solution (n, v) constructed
in Theorem 2.1 (I) and (II). Moreover, by applying (2.12) in Theorem 2.1 (II), we deduce Tipax =
Ty, which implies n € C ([0, Tp); C(2)), where T}, represents the blow-up time of n as defined in
(2.8) of Definition 2.3.

We suppose there exist infinitely many blow-up points {x;}7° . Then we can choose £ > 0 and
k blow-up points {x1, x2,...,xx} C {x,-}?il such that:

Bao(xi) N Boe(x;) =9 foralli, j=1,2,... kwithi # j. (7.2)

For these ¢ and {x; };‘:1 , it follows from (2.19) in Theorem 2.3:

sup / n(x,t)ydx >m, foralli=1,2,... k. (7.3)
1€(0,Ty)
Be(xi)
Since Theorem 2.1 (III) ensures that sup,¢ o ;) 7)1 = lInoll 1, combining the results from

(7.1) through (7.3), we obtain:

k k

kmy < E sup / n(x,t)dx = sup E / n(x,t)dx
i=1 le(osTb)B ( t€(0,Tp) i=lg
14 {4

Xi (xi)

< sup |[n@llp1 = lnollpr < kmy,
1e(0,Tp)

which is a contradiction. O
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7.2. Proof of Theorem 2.6: §-function singularity
The following lemma ensures that evaluating the solution against any smooth, compactly sup-
ported test function yields a time-continuous mapping on the entire interval up to and including

the blow-up time Tp.

Lemma 7.1. Let all assumptions in Theorem 2.6 hold. Then, for every € C° (R?), the map-
ping:

t— /n(x, HY(x) dx
R2

is continuous on [0, Tp].

Proof of Lemma 7.1. Using the first equation of (KSF), we have:

/ 0 DY () dx = f1(0) + o) + f0) + / no(OY (x) dx (7.4)

R2 R2

for all ¢ € (0, Tp) and all ¥ € C°(R?), where:

' t '
fi(®) :=//nAw dxds, f2(t) :://(an -V dxds, f3(t) :=//(un - V) dxds.

0 R2 0 R2 0 R2
(7.5)
As for f1 and f3, we obtain from (2.6):
t
A = AG)] < 1AY] 1 / 1L upp 4
S
and:
1 t
[ f3() — f3(s)| <2|Q|max {1, X}”VW”L"Of In (N L1 supp y) 4T
)
forall 0 <s <t < Tj. Since n € L' (0, Tj; B) for all balls B, we deduce:
J1, f3€ C(0, Tp]). (7.6)
Next, we establish that f> € C ([0, Tp]). Choose a ball B such that supp ¢y C B. Let us choose
= ;,’22. Since 1 < p; <2, we have 1 < p < oo with:
1
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Hence, by Lemma 3.5, it holds:

VUl gy = ClinlliLr r2) (7.7)

where C = C(y, p).
According to Theorem 2.1, it holds by d = 2:

ne W (1,00 NLPO, Tiax; L' (R?)).
This implies:
n € L0, Tiax: L5 (B)) N L0, Tnax; L2 (R?)).

Applying (7.7) with p = g and p; = % we have p’ =6 and p| = 3, which yields:

t
[f2(1) = f2(9)] = IIVWIILOO(B)f/IanldxdT
s B
t
=< IIVIIIIILOO(B)/IIH(T)IILg(B)IIVU(T)IIm(B) dt
N

t
< CIIVWIILOO(B)/ IIH(T)IILg(B)Iln(f)IIL%(RZ) dt
N

< CIIVWILOO(B)IIHIILI( lI7l (7.8)

siLS By Lol R2)

forall0<s <t <Tp.
Combining (2.12) in Theorem 2.1 and (7.8) with the absolute continuity of the integral, we
conclude:

J2 € C([0, Tp)). (7.9)

Thus, applying (7.4)—(7.6) and (7.9), we obtain the desired continuity. This completes the
proof of Lemma 7.1. O

Proof of Theorem 2.6. By Theorem 2.5, we may assume that n blows up at exactly k distinct
points xi, ..., Xk.
Foreach 1 <i <k andr > 0, we define:

M;, = lin; n(x,t)ni(x) dx, (7.10)
1—
bBr(Xi)
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where 1; € C° (R?) is a cut-off function chosen so that:

1 |y —xi| <5,
ni(x) = (7.11)
0 if |x —x;|>r.
It follows from Lemma 7.1 that the limit in (7.10) exists. Moreover, foreachi =1,2,...,k,

the quantity M; , is monotonically decreasing in r and bounded below by m.. Therefore, the
limit as r — O exists, and we define M; as:

M; = lin%)M,-,r<oo foralli=1,2,...,k. (7.12)
r—

In the following lemma, we identify and characterize the regular part f(x) of n(x,t): that is,
the limit to which n(x, t) converges almost everywhere, excluding potential blow-up points.

Lemma 7.2. We suppose that the assumptions of Theorem 2.6 hold. Then, there exists a sequence
{tm} gy With ty, — Tj as m — oo such that:

lim n(x,t,)=: f(x) <oco forae xé€ R2. (7.13)
m—0o0

Furthermore, f belongs to L'(R?).
Proof of Lemma 7.2. We divide the proof into two steps. First, we define the sets €2, and €2,/
by:
k k
Q =R\ JB (), =R\ By, (7.14)
i=1 i=1
where 0 < r < p is chosen sufficiently small so that:
B (x;))NB,(x;) =9 foralli,j=1,2,...,kwithi # j.

For such r, there exist £ points x]“, e, xz‘ € Q, and positive constants pp and § with 0 < § <
po < p such that:

¢ ¢
Qr | Boo () | Boots(xf) € 2. (7.15)
i=1 i=1
Step 1. We establish (7.13). By (2.13) in Theorem 2.1 (II), we have:
n e C([0,7): C()

for any bounded subset 2 C R2. Here, T}, is the blow-up time of n specified by (2.8) (see Defi-
nition 2.3). Consequently, there exist a function f, € L?*(Q,) and a sequence {t,}5°_; C (0, Tp)
with t,, — Tp as m — 00, such that:
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n(x, ty) = fr(x) forae xe, asm— oo.

Let {rj};?ozl be a sequence with 7| > rp > .- >r; = 0 as j — oo. For each x € R?Z \

Ule{x,-}, there is an integer £ such that x € Q,,. We define f(x) on R?\ Ule{x,-} by
fx) = fr,(x). It is straightforward to verify that f(x) is well-defined on R2\ Ule{xi }, since

fro@x) = f;, (x) forall p > ¢£.
By a standard diagonal argument, we can extract a subsequence {t,,};,>_; with limy, o0ty =
T}, such that:

k
n(x,ty) — f(x) forae.x GRZ\U{xi} as m — 00.
i=1

This yields (7.13) for a.e. x € R2\ [ *_, {x;} as m — o0.
Step 2. We now establish:

feL'(R?. (7.16)

By choosing r sufficiently small as in the proof of Lemma 7.2 and applying the Lebesgue domi-
nated convergence theorem, we obtain:

ff(x) dx = lim /n(x, tm) dx <||noll;1 forall0<r <p, (7.17)
m—00
Q Q,

since n(x, ty) < supg,.7, n(x, 1) for all x € Q,, and supy_, 7, n(-, 1) is bounded on R2\
Uf-‘zl By (x;). Letting r — 0 in (7.17), we deduce:

/f(x)dx =< lInoll 1,
R2

which verifies (7.16). This completes the proof of Lemma 7.2. O

Continuation of the proof of Theorem 2.6. We now prove:

m— o0

RZ

k
lim n(x,tm)lﬂ(x)dx=ZMi1/f(xi)+ff(X)1ﬁ(x)dx,
i=1 R2

for all Y € C;’O(RZ). Let n;(x),i =1,...,k, be the cut-off functions introduced in (7.11). Since
1—ni(x)=0forx e B% (x;), a straightforward calculation shows:

k
/‘n(xyt)Kﬁ(x) dx—ZMiw(xi)—/f(x)iﬂ(x) dx
R2 i=l R2
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k
= [ Geo-sopwa-Y [ v d
RAUL, B, (xi) =1, (x1)

k k
+y / n(x, N (x) dx - Y (x) — Y My (x;)

i=lg ) i=1
—Z f n(x, 1)n; (x) dx - Iﬂ(xl)—l—z f n(x, )Y (x) dx
=g ) =g x)
k
= [ eo-sopwa-Y [ v
RQ\U{":I Br(xi) i:lBr(xi)
k
+Z< / n(x,nm(x)dx—M,-)w(xn
=1 B

k
+y f (n(x, 1) = F)) Y (x) - (1 —ni(x)) dx

"=lBr<x,-)\Bg<x,->

k
S / FEOP@) - (1= 1;(x)) dx

"=‘Br<xi>\B%<xi)

k
+y / nGe, i) - (Y () — ¥ () dx
=1B, (x;)

Similarly to (7.17), we use the definition of the function f to obtain:

— 0,

' / (n(x,tm) — £ (X)) ¥ (x) dx
R2\UL, B (x)

(n(x,tm) = FO)P () - (1 = n; (x)) dx

Substituting ¢ = t,,;, in (7.18) and then letting m — oo, we obtain from (7.10):

lim sup
n—o0

k
/n(x,lm)lﬁ(x) dx—ZM,-w(x,-)—/f(x)Ip(x) dx
R2 i=l R2

87
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k k
> / S dx - max [ (0] + 3 1My — Ml ()

’=lBr(x,-) i=1

IA

k k
+2 f S @) de - max [P+ ol max () = ()l
=B, () =1
LF(r). (7.19)

Since ¢ € C2° (R?), we obtain from (7.12) and (7.16) that lim,_,o F(r) = 0. Since the left-hand
side of (7.19) is independent of r, we conclude:

=0.

k
‘mlgnoofn@, )V () dx = ) My () — f FEW ) dx
i=1 R2

RZ

This completes the proof of Theorem 2.6. O
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