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Abstract

We consider the Keller-Segel systems in Rd , coupled with a bipolar source and sink flow. Focusing on 
the two-dimensional case (d = 2), we establish finite-time blow-up of solutions under an axis-symmetric 
setting, without requiring the solutions to be radial. In particular, we prove that multiple blow-up points 
appear in pairs (i.e., in even numbers) away from the origin, lying on the x1-axis and exhibiting axis
symmetry about the x2-axis. This result holds for initial data with total mass strictly greater than 16π , and 
stands in contrast to the classical radial setting, where blow-up is confined to the origin.

A crucial part of our analysis is a sharp ε-regularity theorem, originally developed for the classical Keller
Segel systems and first established by Luckhaus–Sugiyama--Velázquez [12]. This theorem states that if the 
local mass around x1 is sufficiently small at some time t1, then the solution remains locally bounded in a 
suitable parabolic cylinder in space–time centered at (x1, t1). Compared to the classical ε-regularity theo
rem, it requires weaker assumptions and yields weaker conclusions, making it a form of partial regularity 
that is particularly essential for analyzing blow-up singularities.

Based on this sharp ε-regularity theorem, we further prove that only finitely many blow-up points appear 
as singular sets, and the asymptotic profile is characterized as the sum of a finite number of δ-functions and a 
regular part in L1(R2). Moreover, our results reveal that multi-peak blow-up phenomena can occur with or 
without the presence of non-trivial flow, highlighting the intricate interplay between diffusion, chemotaxis, 
and persistent advection. By accounting for non-decaying flow and employing precise blow-up criteria, 
we establish that the blow-up time can be bounded above by any prescribed threshold. These findings are 
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justified through the construction of a time-local existence and extension theory for strong solutions, which 
incorporates both advection and mass conservation.
© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let us consider the Keller-Segel systems coupled bipolar source and sink flow:

(KSF)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂n

∂t 
+ ∇ · un = Δn − ∇ · (n∇v) in Rd × (0, T ),

0 = Δv − γ v + n in Rd × (0, T ),

n(x,0) = n0(x) in Rd,

where d ≥ 1 and γ ≥ 0. Here, the unknown functions n = n(x, t) and v = v(x, t) denote, re
spectively, the density of the relevant species and the potential, while u = u(x) is a prescribed 
fluid vector field in Rd . The parameter γ ≥ 0 represents the decay rate of the attractant. This 
mathematical model arises in a broad range of biological and physical contexts, where external 
flow or stirring interacts with the chemotactic behavior of micro-organisms.

In this paper, we introduce a specific axis-symmetric flow field:

u(x) := Q

(︃
x − b 

|x − b|2 + λ
χ(x − b) + x + b 

|x + b|2 + λ
χ(x + b)

)︃
, (1.1)

where Q ∈ R and λ > 0 are constants, b ∈ Rd is a prescribed shift vector, and χ is a smooth cut
off function. The non-trivial presence of u enriches the dynamics: depending on the direction 
and magnitude of the flow, chemotactic aggregation may be either enhanced or suppressed.

The Keller-Segel systems and its variants have long been studied as a canonical model for 
chemotaxis, whereby cells (or organisms) move in response to chemical gradients. In recent 
years, considerable attention has been devoted to flow-modified Keller-Segel systems (commonly 
referred to as Keller–Segel--Fluid Coupling Systems), in which an additional flow field or exter
nal forcing term is introduced. These systems arise naturally in settings such as microfluidics or 
population dynamics, where fluid flow significantly influences chemotactic aggregation. Under
standing the interplay among diffusion, chemotaxis, and flow remains mathematically challeng
ing, despite their broad significance in various applied and theoretical contexts. This difficulty is 
particularly pronounced when analyzing solutions with the flow u given by (1.1), which does not 
exhibit time decay. The lack of decay introduces persistent effects that significantly complicate 
the analysis.

Prior to studying the (KSF) with non-decaying flow, Kozono–Miura--Sugiyama [8,9] demon
strated that solutions to the Keller–Segel--Navier--Stokes systems exhibit time decay in Lr(Rd), 
where the decaying flow aids in controlling the long-term behavior of solutions. By contrast, the 
flow considered in the present paper remains non-decaying, requiring us to continuously address 
its substantial influence over time. In fact, starting with large initial data, the solution may blow 
2 
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up in finite time, and since the flow does not diminish, controlling its direct impact and isolat
ing its individual effects become particularly challenging. This underscores the uniqueness and 
inherent difficulty of our problem.

In view of these challenges, one particularly intriguing phenomenon is finite-time blow-up, 
where the density n relevant species becomes unbounded in L∞(R2) at certain points. This 
behavior has been extensively studied in the absence of any fluid flow, particularly in the radial 
case. Early works by Herrero and Velázquez [6,7] demonstrated that, under specific conditions, 
solutions concentrate at the origin and asymptotically resemble a sum of δ-functions. These 
investigations were motivated, in part, by conjectures such as those proposed by Nanjundiah [15] 
and explored further by Childress and Percus [2], which suggested the formation of point-mass 
blow-ups in chemotaxis models.

Recent studies, building on these foundational results, have increasingly turned to more gen
eral systems where fluid flow interacts with chemotactic processes. A key question in this paper 
in the presence of flow (i.e. within (KSF)) is whether the flow prevents blow-up entirely or in
stead facilitates finite-time singularities by concentrating mass in highly localized regions, and 
whether multiple blow-up points can occur. Even in the classical Keller–Segel systems without 
flow, Seki, Sugiyama and Velázquez [18,19] have investigated conditions leading to multiple 
blow-up phenomena; however, in flow-coupled equations, the phenomenon of multiple blow-up 
points remains not fully understood.

In response to these open questions, we first develop an existence and extension theory for 
strong solutions and establish what is commonly referred to as ``mass conservation'' in L1(Rd), 
recognized as a key conservation law. We then establish the so-called ε-regularity theorem, lay
ing the groundwork for a detailed singularity analysis. Specifically, we prove the existence of a 
suitably small constant such that, if the local mass concentration remains below this threshold, 
the center of mass stays regular and avoids singularity formation.

The ε-regularity theorem has played a pivotal role in the study of partial differential equations 
and geometric analysis. Its origins can be traced back to the pioneering work of Morrey [16], 
which provided fundamental tools for handling harmonic maps and established partial regularity 
results under suitable energy bounds. A significant breakthrough in the formalization and gen
eralization of these principles came through the work of K. Uhlenbeck in the late 1970s. In her 
seminal contributions to harmonic maps and gauge theory, K. Uhlenbeck [24] established what 
is now often referred to as the ε-regularity theorem. She showed that if the local L2-norm of 
the curvature (in the setting of gauge fields) or the energy (in the context of harmonic maps) is 
sufficiently small, then the solution is smooth in that region. This framework provided a power
ful method for controlling singularities and understanding the structure of solutions at multiple 
scales, influencing subsequent research by Schoen–K. Uhlenbeck [17], Freed–K. Uhlenbeck [3], 
and many others. Over time, this line of investigation has evolved into a cornerstone of mod
ern geometric analysis, with ε-regularity techniques being routinely employed to study minimal 
surfaces, Yang–Mills connections, Einstein manifolds, and a variety of geometric and analytic 
problems where localized control on energy or curvature provides a gateway to global structure.

A version of the ε-regularity theorem for the Keller–Segel system has been established in 
scale-invariant function spaces, in particular:

L∞(︁0, T ;L1(R2)
)︁
.

3 
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As an application, this framework allows for a comprehensive singularity analysis of the Keller--
Segel system. Indeed, building on this ε-regularity theorem, we further clarify the singular struc
ture of the solutions. In particular, the ε-regularity theorem reveals how the interplay between 
local mass concentration and singularity formation is regulated. For instance, in the classical 
two-dimensional Keller–Segel system without flow, if the initial mass is strictly greater than 8π , 
blow-up occurs. By applying the ε-regularity theorem, we also deduce that for radially symmet
ric initial data, the resulting singularities arise exclusively at the origin. This result underscores 
the critical role of symmetry in determining the blow-up structure. To further substantiate this 
claim, in this paper, we extend the ε-regularity theorem to cases where radial symmetry is bro
ken or additional effects, such as fluid flow, are introduced. This extension provides a foundation 
for analyzing the formation of multiple singularities or spatially distributed blow-up patterns. Of 
particular significance is that analyzing such multi-point blow-ups requires addressing several 
complex factors, including:

• the absence of radial symmetry, which complicates the mathematical structure of the solu
tions;

• the influence of fluid flow, which introduces additional nonlinear interactions; and
• the emergence of axis-symmetrical spatial patterns in the arrangement of blow-up points, 

which demand detailed investigation to fully understand their formation and underlying dy
namics.

The aforementioned ε-regularity theorem, originally developed for the classical Keller-Segel 
systems by Senba-Suzuki [20] and Nagai-Senba-Suzuki [13], ensures local regularity under as
sumptions on the local mass concentration of the solution. This theorem has played a pivotal 
role in advancing our understanding of blow-up phenomena in these systems. Specifically, it has 
been shown that solutions to the classical Keller-Segel systems can blow-up in finite time at a 
finite number of points. If {xi}ki=1 denotes the blow-up points at time Tb, the solution develops 
δ-function singularities at each xi with corresponding masses {Mi}ki=1. More concretely, there 
exist a function f ∈ L1(R2) and a sequence {tj }∞j=1 ⊂ (0, Tb) such that tj → Tb and:

n( · , tj ) −→ 
k∑︂

i=1 
Mi δxi

( · ) + f ( · ) as j → ∞

in the sense of distributions on R2.

Furthermore, the third author refined the ε-regularity theorem into a sharper form and uti
lized it to analyze time-global solutions as measure-valued solutions beyond the blow-up time. 
This sharp ε-regularity theorem, originally developed for the classical Keller–Segel systems, was 
first established by Luckhaus-Sugiyama-Velázquez [12]. This theorem asserts that if the local 
mass around x1 is sufficiently small at some time t1, then the solution remains locally bounded 
within a suitable parabolic cylinder in space–time centered at (x1, t1). Compared to the classi
cal ε-regularity theorem, this refined version requires weaker assumptions and provides weaker 
conclusions, positioning it as a form of partial regularity that is particularly crucial for analyzing 
blow-up singularities even after the blow-up time.

In light of the progress made on the Keller-Segel systems, the primary goal of this paper is 
to construct a blow-up solution exhibiting multiple peak aggregations for (KSF). More precisely, 
4 



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745 
we establish the occurrence of multiple blow-up points, which has not yet well-understood even 
for the classical Keller-Segel systems. Although it was known that the number of blow-up points 
could be finite, it remained possible that only a single blow-up location might occur. Our results 
characterize the initial condition to exclude this possibility and confirm the existence of multiple 
blow-up points. Specifically, we relax the strictly radial assumption by allowing the initial density 
n0 to be merely axis-symmetric, under the condition:

∥n0∥L1(R2) > 16π,

with sufficiently separated concentration peaks. For more details, see Remark 6. Under these 
assumptions, we prove the following:

• Finite-time blow-up. We derive an explicit upper bound for the blow-up time Tb. The bound 
depends on the L1-mass and the second moment of the initial data.

• Even number and non-origin location of blow-up points. None of the blow-up points lies 
at the origin. Instead, they appear at an even number of distinct points in R2:

{x(1), . . . , x(m), x(m+1), . . . , x(2m)},
where each pair (x(j), x(m+j)) is symmetric with respect to the coordinate axes.

These findings not only confirm that multiple blow-up points do indeed occur in (KSF) but also 
shed light on how symmetry and initial mass distribution play a critical role in blow-up forma
tion. This result stands in contrast to what happens in the classical radial setting, where blow-up 
is often confined to the origin, and it illustrates the diversity of multi-peak formation that can 
emerge from non-radial, axis-symmetric initial data.

The proof is carried out in several steps. First, we introduce suitable function spaces and 
construct a local-in-time solution (n, v) of (KSF) within these spaces, ensuring that it qualifies as 
a strong solution. Next, we establish a sharp ε-regularity theorem, providing uniform estimates 
near potential singularities. We then apply standard blow-up criteria for parabolic equations, 
making use of the mass conservation of a strong solution n and the second moment:∫︂

R2

n0(x)|x|2 dx

to confirm that blow-up occurs in finite time. Subsequently, we relate the geometry of blow-up 
points to the structure of the flow field u. We show that if the initial peaks are sufficiently far 
apart, then blow-up happens away from the origin and occurs in pairs along the axes. Finally, 
we prove that only finitely many blow-up points can occur and that, at the blow-up time Tb, the 
strong solution admits an asymptotic form consisting of a finite sum of delta functions and a 
regular part in L1(R2). Through these steps, we construct explicit examples of initial data which 
make multiple blow-up phenomena in solutions of (KSF) having axis-symmetric but non-radial 
initial data. This work thus advances the study of blow-up analysis for chemotaxis systems under 
fluid flow.

This paper is organized as follows. Section 2 presents the essential notation, definitions, and 
main theorems. In Section 3, we collect several preliminary lemmas that will be used in later 
5 
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proofs. Section 4 establishes the local-in-time existence of solutions in an appropriate strong for
mulation, along with the extension criterion and the mass conservation law. Section 5 is devoted 
to proving a sharp ε-regularity theorem. Section 6 provides an upper bound for the maximal ex
istence time and constructs blow-up solutions, showing in particular that blow-up points occur 
in an even number of symmetrically positioned locations rather than infinitely many. Finally, 
Section 7 demonstrates that there are only finitely many blow-up points and that, at the blow-up 
time, the asymptotic form of the solution is given by a finite sum of delta functions plus a regular 
part in L1(R2).

2. Results

In what follows, we adopt the following notations:

(1). Br(a) := {x ∈Rd | |x − a| < r, r > 0, a ∈ Rd}, Br := Br(0).
(2). 𝒬T := Rd × (0, T ).
(3). e1 := (1,0), e2 := (0,1).
(4). ∂i = ∂

∂xi
, ∂2

ij = ∂i∂j , ∇2 = (∂2
11, ∂

2
12, . . .), ∂t = ∂

∂t
, i, j = 1,2, . . . , d .

(5). (ℱf )(ξ) = f̂ (ξ) := ∫︁
Rd e−2πix·ξ f (x) dx, (ℱ−1f )(x) = f̌ (x) := ∫︁

Rd e2πix·ξ f (ξ) dξ .
(6). ∥f ∥Lp = ∥f ∥Lp(Rd ), ∥f ∥Wm,p = ∥f ∥Wm,p(Rd ), 1 ≤ p ≤ ∞, m ∈N .
(7). For 0 < p < ∞ and 0 < q ≤ ∞, let Lp,q(Rd) = Lp,q denote the Lorentz space on Rd

equipped with the norm:

∥f ∥Lp,q (Rd ) = ∥f ∥Lp,q :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p

1 
q

(︂ ∞ ∫︂
0 

(sμ(|f | > s)
1 
p )q

ds

s

)︂ 1 
q

for 0 < q < ∞,

sup
s>0 

sμ(|f | > s)
1 
p for q = ∞,

(2.1)

where μ denotes the Lebesgue measure.
(8). When n and its weak derivatives ∇n, ∇2n and ∂tn belong to Lp(𝒬T ) for some 1 ≤ p ≤ ∞, 

we say n ∈ W
2,1
p (𝒬T ), which is defined as:

W 2,1
p (𝒬T ) := {n ∈ Lp(0, T ;W 2,p(Rd)) ∩ W 1,p(0, T ;Lp(Rd)) | ∥n∥

W
2,1
p (𝒬T )

< ∞}

with the corresponding norm:

∥n∥
W

2,1
p (𝒬T )

:= ∥n∥Lp(0,T ;W 2,p(Rd )) + ∥n∥W 1,p(0,T ;Lp(Rd )).

(9). For T > 0, we define the function space W(𝒬T ) as follows:

W(𝒬T ) := W
2,1
d+2(𝒬T ) × Ld+2(0, T ;W 2,d+2(Rd)). (2.2)

(10). For T > 0, we define the function space XT as follows:

XT :=
{︂
n ∈ L∞(0, T ;W 2,d+2(Rd)) | ∂tn ∈ Ld+2(𝒬T ), n ≥ 0 in 𝒬T ,
6 
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∥n∥L∞(0,T ;W 2,d+2(Rd )) + ∥∂tn∥Ld+2(𝒬T ) ≤ 4∥n0∥W 2,d+2(Rd ) + 1
}︂
. (2.3)

(11). For r1, r2 > 0 and p,q ∈Rd , we define the function τr1,r2(p,q) as follows:

τr1,r2(p,q) :=
{︄

1 if p = q,

0 if |p − q| ≥ r1 + r2.
(2.4)

Throughout this paper, we impose the following assumptions.

Assumption 2.1. 

(i). The parameter γ ≥ 0.
(ii). The initial data n0 satisfies n0 ∈ W 2,d+2(Rd) with n0 ≥ 0.

Under Assumption 2.1, we introduce the axis-symmetric function u.

Definition 2.1. Let Q ∈ R and λ > 0. We suppose that a ∈Rd satisfy:

a = k(1,0, . . . ,0) with k > 0.

We consider the following two cases for the vector b ∈Rd :

(i). b = a,
(ii). b =ˆ︁k(0,0, . . . ,1) with ˆ︁k > 0.

Then, the axis-symmetric fluid vector field u is defined as follows:

u(x) := Q

(︃
x − b 

|x − b|2 + λ
χ(x − b) + x + b 

|x + b|2 + λ
χ(x + b)

)︃
, (2.5)

where χ ∈ C∞
c (Rd) is an axis-symmetric function satisfying the following conditions:

0 ≤ χ(x) ≤ 1 for all x ∈Rd and supp χ ⊂ Bh(0) with 0 < h < min{k,ˆ︁k}.

Remark 1. By Definition 2.1, the following estimate holds:

∥u∥L∞(Rd ) ≤ 2|Q|max
{︂

1,
1 
λ

}︂
. (2.6)

In addition, since χ ∈ C∞
c (Rd), there exists a positive constant C = C(Q,λ) such that:

∥∇ · u∥L∞(Rd ) ≤ C and ∥∂i(∇ · u)∥L∞(Rd ) ≤ C. (2.7)

Moreover, since supp χ(x) ⊂ Bh(0) with 0 < h < min{k,ˆ︁k}, it follows:

supp χ(x − b) ∩ supp χ(x + b) = ∅.
7 
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To proceed, we introduce the definition of a strong solution to (KSF).

Definition 2.2. Let 1 ≤ p ≤ ∞. We assume that n0 ∈ W 2,p(Rd) with n0 ≥ 0. A pair of non
negative functions (n, v) on 𝒬T is called a strong solution of (KSF) on [0, T ) if the following 
conditions are satisfied:

(i). n ∈ W
2,1
p (𝒬T ),

(ii). v ∈ Lp(0, T ;W 2,p(Rd)),
(iii). The pair of (n, v) satisfies (KSF) on (0, T ).

Next, we provide the definitions of blow-up time and blow-up point.

Definition 2.3. Let (n, v) be a strong solution of (KSF) on [0, T ) in the sense of Definition 2.2.

(i). (Blow-up Time) The strong solution n is said to blow-up at time Tb < ∞ if:

n(t) ∈ L∞(Rd) for a.e. t ∈ (0, Tb) and lim sup
t→Tb−0 

∥n(t)∥L∞(Rd ) = ∞. (2.8)

Such a time Tb is called the blow-up time of n.
(ii). (Blow-up Point) Let Tb be the blow-up time of n. A point x0 ∈Rd is called a blow-up point 

of n at time Tb if for any sequence {tj }∞j=1 ⊂ (0, Tb) with tj → Tb as j → ∞, there exists a 

sequence {xj }∞j=1 ⊂ Rd with xj → x0, such that:

n(xj , tj ) → ∞ as j → ∞.

Our first results concerning the strong solution are presented in the following theorem:

Theorem 2.1. Let Assumption 2.1 hold. Then, the following assertions hold:

(I). (Existence of Time Local Solution) 
There exists a positive time T1 = T1(d, γ,Q,λ,∥n0∥W 2,d+2(Rd )) such that (KSF) has a non
negative strong solution (n, v) on [0, T1) in the sense of Definition 2.2, which is unique in 
the class W(𝒬T1) with n ∈ XT1 . Moreover, the following estimate holds:

sup 
t∈(0,T1)

∥n(t)∥L∞(Rd ) ≤ C
(︁∥n0∥W 2,d+2(Rd ) + 1

)︁
, (2.9)

where C = C(d).
(II). (Extension Criterion) 

If the strong solution n obtained from Theorem 2.1 (I) satisfies:

sup 
t∈(0,T0)

∥n(t)∥L∞(Rd ) < ∞, (2.10)

then, there exists a time T ′
0 > T0 such that (n, v) can be extended as a unique strong 

solution of (KSF) in W(𝒬T ′
0
). Furthermore, if the maximal existence time Tmax of the 

extended strong solution (n, v) is finite, the following holds:
8 
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lim sup 
t→Tmax−0

∥n(t)∥L∞(Rd ) = ∞, (2.11)

which implies:

Tmax = Tb. (2.12)

Here, Tb is the blow-up time of n defined in Definition 2.3. Furthermore, it holds:

n ∈ C([0, Tmax);C(Ω)) (2.13)

for any bounded subset Ω ⊂ Rd .
(III). (Mass Conservation Law)

In addition, we assume that the initial data n0 belongs to L1(Rd). Let Tmax be the maximal 
existence time of the strong solution (n, v) obtained from Theorem 2.1 (I) and (II). Let ˆ︁T be 
an arbitrary positive number such that ˆ︁T ∈ (0, Tmax). Then, the strong solution n belongs 
to C([0,ˆ︁T ];L1(Rd)) and satisfies the mass conservation law:

∥n(t)∥L1(Rd ) = ∥n0∥L1(Rd ) for all t ∈ [0,ˆ︁T ]. (2.14)

We shall state an ε-regularity theorem for strong solutions of (KSF).

Theorem 2.2. (ε-regularity Theorem) Let Assumption 2.1 hold and suppose that n0 ∈ L1(R2). 
Let Tmax be the maximal existence time of the strong solution (n, v) obtained from Theo
rem 2.1 (I) and (II). There exist an absolute positive constant m∗ and a positive constant 
c1 = c1(γ,Q,λ,∥n0∥L1(R2)) such that if :

∫︂
B2ρ(x0)

n(x, t1) dx ≤ m∗ (2.15)

holds for some x0 ∈ R2, 0 < ρ ≤ 1, and t1 ∈ [0, Tmax), then the following estimates are valid:

(i). In the case 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, the following estimate holds:

sup 
s∈(t1−c1ρ

2,min{t1+2c1ρ
2,Tmax})

∥n(s)∥
L∞(︂

B ρ
4 
(x0)

)︂ ≤ C, (2.16)

where C = C(γ,Q,λ,∥n0∥L1(R2), ρ).
(ii). In the case 2c1ρ

2 < Tmax and 0 ≤ t1 < min{2c1ρ
2, Tmax} = 2c1ρ

2, for any 0 < ε ≤ 1, the 
following estimate holds:

sup 
s∈(0,min{t1+2c1ρ

2,Tmax})
s1+ ε

4 ∥n(s)∥
L∞(︂

B ρ
4 
(x0)

)︂ ≤ C, (2.17)

where C = C(γ,Q,λ,∥n0∥L1(R2), ρ, ε).
9 
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(iii). In the case 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = Tmax, provided that n0 ∈
L2

loc(R
2), the following estimate holds:

sup 
s∈(0,min{t1+2c1ρ

2,Tmax})
∥n(s)∥

L∞(︂
B ρ

4 
(x0)

)︂ ≤ C, (2.18)

where C = C(γ,Q,λ,∥n0∥L1(R2),∥n0∥L∞
loc(R

2), ρ).

Remark 2. In view of the results concerning the global-in-time existence of solutions with spa
tially global estimates, it is conjectured that the constant m∗ in Theorem 2.2 can be improved to 
8π . For detailed statements and proofs, refer to the work by Nagai, Senba, and Yoshida [14].

Theorem 2.2 provides a necessary lower bound for the concentration of n near x0, uniformly 
in time. Furthermore, Theorem 2.2 leads to the following result.

Theorem 2.3. Let Assumption 2.1 hold and suppose that n0 ∈ L1(R2). Let Tmax denote the max
imal existence time of the strong solution (n, v) obtained from Theorem 2.1 (I) and (II). Let m∗
be the positive constant provided in Theorem 2.2, and let x0 ∈ R2. Then, the following estimate 
holds:

sup 
t∈(0,Tb)

∫︂
Br(x0)

n(x, t) dx ≥ m∗ for all r > 0. (2.19)

Remark 3. By Theorem 2.3, the mass at each blow-up point is at least m∗, as described in 
(2.19). As mentioned in Remark 2, it is conjectured that m∗ can be refined to 8π . 1 A significant 
aspect of blow-up analysis is determining whether the aggregation mass of a blow-up solution 
can exceed 8π . This question was investigated by Seki, Sugiyama, and Velázquez [18], who 
constructed a blow-up solution with an aggregation mass strictly greater than 8π through the 
method of matched asymptotics.

We construct an initial data such that the corresponding solution exhibits blow-up at two or 
more distinct points in finite time. The main result is stated as follows:

Theorem 2.4. Let Assumption 2.1 hold and suppose that n0 ∈ L1(R2). We suppose δ > 0, 0 <

α < 1, and let a := ke1 = k(1,0) with k > 0. We assume that the initial data n0 is given by:

n0(x) = ϕ(x − a) + ϕ(x + a) with ∥n0∥L1(R2) > 16π. (2.20)

Here, we assume that ϕ satisfies the following properties (i), (ii) and (iii):

(i). The function ϕ is axis-symmetric with respect to both e1 = (1,0) and e2 = (0,1).
(ii). The support of ϕ satisfies supp ϕ = Bδ(0).

(iii). In addition, ϕ satisfies the following inequality:∫︂
2

ϕ(x)|x|2 dx
R

10 
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< ε0 min

⎧⎨⎩ 1 
γ

· (1 − α)N
3
2

0
√

π

512
√

2(
√

2πN0 + 8π)∥n0∥L1(R2)

(︃
log

N0

32π

)︃2

, 
αN0

16(
√

2πN0 + 8π)

⎫⎬⎭
=: Φ0, (2.21)

where ε0 and N0 are defined as follows:

ε0 := ∥n0∥L1(R2) − 16π, and N0 := ∥n0∥L1(R2) + 16π. (2.22)

For the flow field u defined by (2.5) in Definition 2.1, we impose the following condition on 
the coefficient Q of u:

|Q| ≤ ε0N0

32∥n0∥L1(R2)(
√

2πN0 + 8π)
=: Q0 if a = b. (2.23)

Let T ∗ be defined by:

T ∗ :=
32π

∫︂
R2

ϕ(x) |x|2 dx 

α
(︁∥n0∥L1(R2) + 16π

)︁(︁√︂
2π
(︁∥n0∥L1(R2) + 16π

)︁− 8π
)︁ . (2.24)

Then, there exists a mapping:

G = G(ε0, τ ) : R+ ×R+ −→R+,

satisfying the following properties:

(a). For every fixed ε0 > 0, limτ→0+ G(ε0, τ ) = 6δ
(︂

1+ 1 
ε0

· 32
π

(︂√
2

e
+1

)︂
∥n0∥2

L1(R2)

√
2πN0+8π

N0

)︂
,

(b). For every fixed ε0 > 0, limτ→∞ G(ε0, τ ) = ∞,

such that if the following conditions hold:

|a| = k ≥ G(ε0, T
∗),

and:

|a − b| ≥ G(ε0, T
∗)
(︄

1 + 1 
ε0

· 32

π

(︃√
2

e
+ 1

)︃
∥n0∥2

L1(R2)
·
√

2πN0 + 8π

N0

)︄−1

+ h if a ≠ b,

with a positive number h as defined in Definition 2.1, then the strong solution (n, v) of (KSF) on 
[0, Tmax), obtained in Theorem 2.1, satisfies the following properties (I) and (II):
11 
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(I). (Maximal Existence Time Estimate) The maximal existence time Tmax is bounded above by 
an estimate that depends on the initial data, as follows:

Tmax < T ∗ :=
32π

∫︂
R2

ϕ(x)|x|2dx 

α(∥n0∥L1(R2) + 16π)(
√︁

2π(∥n0∥L1(R2) + 16π) − 8π)
. (2.25)

(II). (Blow-up Configuration) The blow-up points of n(t) at the blow-up time Tb are not lo
cated at the origin. Instead, these points consist of an even number of points x1, . . . , xm, 
xm+1, . . . , x2m. These points are organized into m pairs (xj , xm+j ) for j = 1, . . . ,m, where 
each pair xj and xm+j is symmetric with respect to both the e1- and e2-axes. Consequently, 
all blow-up points lie on one of these axes.

Remark 4. The support of n0(x) = ϕ(x − a) + ϕ(x + a) described in Theorem 2.4 is depicted, 
as follows in Fig. 1.

x−a 0 a

Fig. 1. Solid circles represent suppϕ centered at −a = −k(1,0) and a = k(1,0). 

Remark 5. For the flow field u defined by (2.5) in Definition 2.1, Theorem 2.4 establishes the 
existence of solutions exhibiting multiple blow-up behavior in two cases: (i) when a = b, and (ii) 
when |a−b| > 2ℓ0 +h, where ℓ0 and h are positive constants defined in (2.27) and Definition 2.1, 
respectively. The second case requires that |Q| is sufficiently small. This paper does not address 
the case |a − b| ≤ 2ℓ0 + h. Nevertheless, we conjecture that blow-up may also occur in this 
setting, provided |Q| remains small.

Remark 6. The function G(ε0, T
∗), whose existence is ensured in Theorem 2.4 (I), can be ex

plicitly defined as follows:

G(ε0, T
∗) := 2ℓ0(ε0, T

∗)
(︄

1 + 32 
πε0

(︃√
2

e
+ 1

)︃
∥n0∥2

L1(R2)
·
√

2πN0 + 8π

N0

)︄
, (2.26)

where ε0 and N0 are given in (2.22). In addition, the parameter ℓ0 = ℓ0(ε0, T
∗) is derived from 

(2.27) and (2.28). The numbers N0, Φ0, Q0, G, and ℓ0 satisfy the following properties:

(1).
√

2πN0 − 8π > 0 for ∥n0∥L1(R2) > 16π ,
(2).

√
2πN0 − 8π → 0 as ∥n0∥L1(R2) → 16π ,

(3). Φ0, Q0 → 0 as ∥n0∥L1(R2) → 16π ,
(4). For every fixed τ > 0, G(∥n0∥L1(R2) − 16π, τ) → ∞ as ∥n0∥L1(R2) → 16π ,
(5). For every fixed τ > 0, G(∥n0∥L1(R2) − 16π, τ) → ∞ as ∥n0∥L1(R2) → ∞,
(6). ℓ0(∥n0∥L1(R2) − 16π,T ∗) → ∞ as ∥n0∥L1(R2) → 16π ,
12 
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(7). C∗ → ∞ as ∥n0∥L1(R2) → 16π , and C∗ → ∞ as ∥n0∥L1(R2) → ∞.

Here, the parameter ℓ0 = ℓ0(ε0, T
∗) is explicitly given by:

ℓ0(ε0, T
∗) := max

{︄
3δ, 4

√︄
6∥n0∥L1(R2)

(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1(R2)

)︁
T ∗

ε0
,

16
√

2∥n0∥L1(R2)|Q|max
{︁
1, 1 

λ

}︁
T ∗

ε0
,

2δ + 32

⌜⃓⃓⎷3πC∗∥n0∥L1(R2)

(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1(R2)

)︁
T ∗

N0(
√

2πN0 − 8π) 
,

2δ + 256
√

2πC∗∥n0∥L1(R2)|Q|max
{︁
1, 1 

λ

}︁
T ∗

N0(
√

2πN0 − 8π) 
,

δ + 4

√︄
6∥n0∥L1(R2)

(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1(R2)

)︁
T ∗

m∗
,

δ + 8
√

2∥n0∥L1(R2)|Q|max
{︁
1, 1 

λ

}︁
T ∗

m∗

}︄
(2.27)

with m∗ obtained in Theorem 2.2, where C∗ is given by:

C∗ := 16(
√

2 + 6) + 4
√

2|Q|τ2ℓ0,h(a,b)

+ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1(R2)

[︄
8
√

2

(︃
2 + N0(

√
2πN0 − 8π) 

128
(︁√

2
e

+ 1
)︁∥n0∥2

L1(R2)

)︃

+ 48

(︃
1 +

64
(︁√

2
e

+ 1
)︁∥n0∥2

L1(R2)

N0(
√

2πN0 − 8π) 

)︃2

+ 8
√

2

(︃
1 +

64
(︁√

2
e

+ 1
)︁∥n0∥2

L1(R2)

N0(
√

2πN0 − 8π) 

)︃
+ 3

]︄
. (2.28)

The quantities G(ε0, T
∗), ℓ0, and C∗ have the following roles:

• G(ε0, T
∗): quantifies the separation condition between peaks and ensures that blow-up 

points remain well separated.
• ℓ0: defined in terms of ∥n0∥L1(R2), |Q|, ε0, and T ∗, serves as a local threshold for applying 

the ε-regularity theorem; in particular, a large value of ℓ0 prevents excessive concentration 
at the origin.

• C∗: used in the definition of ℓ0 as an auxiliary constant, consolidating several constants 
arising in the proofs and making their parameter dependence explicit.

Remark 7. The term 
√

2πN0 − 8π , which appears in the definitions of ℓ0 and C∗, is directly 
related to ε0 as defined in (2.22). In fact, the following equality holds:
13 
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(
√︁

2πN0 − 8π)(
√︁

2πN0 + 8π) = 2πN0 − 64π2 = 2π(∥n0∥L1(Rd ) − 16π) = 2πε0.

Remark 8. Theorem 2.4 can be proved in a more straightforward manner when γ = 0. In this 
paper, however, we address the case γ > 0, which requires additional techniques for the proof.

The following theorem establishes that the number of blow-up points of n at the blow-up time 
Tb is finite. It provides a quantitative bound on the number of blow-up points in terms of the 
initial mass of n and a constant m∗ determined by Theorem 2.2.

Theorem 2.5. (Finiteness of the Blow-up Points) Let Assumption 2.1 hold and suppose that 
n0 ∈ L1(R2). Let Tmax denote the maximal existence time of the strong solution (n, v) obtained 
from Theorem 2.1 (I) and (II). Then, the number k of the blow-up points of n of (KSF) at the 
blow-up time Tb(= Tmax) is finite. More precisely, k is bounded by:

k ≤ ∥n0∥L1(R2)

m∗
,

where m∗ is the same constant given by Theorem 2.2.

Remark 9. Theorem 2.5 states that if the initial data is radially symmetric, then the solution 
must blow up exclusively at the origin. In contrast, our result addresses the non-radial case and 
provides an example where the solution does not necessarily blow up at the origin.

Next, we present a definition that characterizes the formation of a δ-function singularity at the 
blow-up points of the solution n(x, t). It describes how n(x, t) converges, as t approaches the 
blow-up time Tb, to a combination of δ-functions centered at the blow-up points, each associated 
with a specified mass.

Definition 2.4. Let Tb be the blow-up time of a strong solution n of (KSF) as defined in Defini
tion 2.3. Let {xi}ki=1 denote the blow-up points of n for (KSF) at time Tb. We say that n forms 
a δ-function singularity at {xi}ki=1 and at time Tb with masses {Mi}ki=1 if the following property 
holds: there exists a function f ∈ L1(R2) and a sequence {tj }∞j=1 ⊂ (0, Tb) with limj→∞ tj = Tb

such that:

n(·, tj ) →
k∑︂

i=1 
Miδxi

(·) + f (·) as j → ∞ in the sense of distributions in R2,

i.e.,

lim 
j→∞

∫︂
R2

n(x, tj )ψ(x) dx =
k∑︂

i=1 
Miψ(xi) +

∫︂
R2

f (x)ψ(x) dx

for all ψ ∈ C∞(R2).
0

14 
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The following Theorem establishes that at the blow-up time Tb = Tmax, the solution n(x, t)

develops a δ-function singularity at its blow-up points. Each of these singularities is associated 
with a mass that is bounded below by a constant m∗, which is determined by Theorem 2.3.

Theorem 2.6. (δ-function Singularity) Let Assumption 2.1 hold and suppose that n0 ∈ L1(R2). 
Let Tmax denote the maximal existence time of the strong solution (n, v) obtained from Theo
rem 2.1 (I) and (II). Let {xi}ki=1 be the blow-up points of n at time Tb(= Tmax). We suppose that 
m∗ is the constant provided by Theorem 2.3. Then, there exist k constants Mi ≥ m∗ (1 ≤ i ≤ k)

such that n forms the δ-function singularity at {xi}ki=1 and at time Tb(= Tmax) with masses 
{Mi}ki=1.

3. Preliminaries

In this section, we introduce notation and preliminary results to support the analysis developed 
in subsequent sections.

We begin by defining the Bessel potential operator. Let γ > 0 and α > 0. For f ∈ Lp(Rd)

with 1 ≤ p ≤ ∞, the operator (γ − Δ)− α
2 is defined as:

(γ − Δ)−
α
2 f := ℱ−1

[︂
(γ + 4π2|ξ |2)− α

2 f̂
]︂
, (3.1)

where ℱ−1 denotes the inverse Fourier transform and f̂ is the Fourier transform of f .
The corresponding Bessel kernel Gγ,α is given by:

Gγ,α(x) := γ
d−α

2 ad e−√
γ |x|

∞ ∫︂
0 

e−√
γ |x|s

(︃
s + s2

2 

)︃ d−α−1
2 

ds, (3.2)

where the constant ad is defined as:

ad = 1 

2(2π)
d−1

2 Γ
(︁

d−1
2 
)︁ ,

and Γ is the gamma function.

Remark 10. The Bessel kernel Gγ,α has the following properties:

(i). For α > 0, the function Gγ,α(x) is smooth for all x ∈Rd \ {0}.
(ii). The kernel satisfies the scaling property:

Gγ,α(x) = γ
d−α

2 G1,α(
√

γ x),

where G1,α corresponds to the case γ = 1.
(iii). The Fourier transform of Gγ,α is:

ˆ︁Gγ,α(ξ) = (γ + 4π2|ξ |2)− α
2 . (3.3)
15 
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(iv). The L1(Rd)-norm of Gγ,α satisfies:

∥Gγ,α∥L1(Rd ) = γ − α
2 .

In particular, for γ = 1, we have ∥G1,α∥L1(Rd ) = 1. This follows from the Fourier transform 
property (3.3), as: ∫︂

Rd

Gγ,α(x) dx = ˆ︁Gγ,α(0) = γ − α
2 .

(v). The operator (γ −Δ)− α
2 can be represented in terms of convolution with the Bessel kernel:

(γ − Δ)−
α
2 f = ℱ−1[︁

ˆ︁Gγ,αf̂
]︁= Gγ,α ∗ f. (3.4)

For further details, see Grafakos [5, p.13] or Stein [21, p.132].

When α = 2 in (3.2), we denote Gγ,2 by Gγ . The following proposition provides estimates 
for the inner product between the gradient of the Bessel kernel, ∇Gγ , and x. Specifically, we 
establish upper bounds for x · ∇Gγ (x) and |x||∇Gγ (x)| that hold uniformly for all γ > 0.

Lemma 3.1. Let d = 2 and γ > 0. Then, the following estimates hold:

(i). For all x ∈ R2, the following estimate holds:

x · ∇Gγ (x) ≤ − 1 
2π

e−√
γ |x| < 0. (3.5)

(ii). For all x ∈ R2, the following estimate holds:

|x| ⃓⃓∇Gγ (x)
⃓⃓≤ 1 

π

(︂√
2

e
+ 1

)︂
<

1

2
. (3.6)

Proof of Lemma 3.1. For the estimate (3.5), see Kozono-Sugiyama [10, p.368, Lemma 3.1]. To 
establish (3.6), we start from the representation in (3.2):

∇Gγ (x) = −
√

γ

2
√

2π
· x

|x|e
−√

γ |x|
∞ ∫︂

0 

e−√
γ |x|s(1 + s)

(︃
s + s2

2 

)︃− 1
2

ds,

which leads to:

|∇Gγ (x)| =
√

γ

2
√

2π
e−√

γ |x|
∞ ∫︂

0 

e−√
γ |x|s(1 + s)

(︃
s + s2

2 

)︃− 1
2

ds

=
√

γ

2
√

2π
e−√

γ |x|(︁I1 + I2
)︁
, (3.7)
16 
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where the terms I1 and I2 are defined as:

I1 :=
1 ∫︂

0 

e−√
γ |x|s(1 + s)

(︃
s + s2

2 

)︃− 1
2

ds, I2 :=
∞ ∫︂

1 

e−√
γ |x|s(1 + s)

(︃
s + s2

2 

)︃− 1
2

ds.

Considering I1, we obtain:

I1 ≤
1 ∫︂

0 

2s− 1
2 ds = 4. (3.8)

For I2, using the inequality:

(1 + s)

(︃
s + s2

2 

)︃− 1
2

≤ 2s ·
√

2

s
= 2

√
2 for all s > 0,

we deduce:

I2 ≤ 2
√

2

∞ ∫︂
1 

e−√
γ |x|s ds = 2

√
2e−√

γ |x|
√

γ |x| . (3.9)

Combining (3.7) through (3.9), it follows that:

|∇Gγ (x)| ≤
√

γ√
2π

e−√
γ |x|(︂2 +

√
2e−√

γ |x|
√

γ |x| 
)︂
,

which further implies:

|x||∇Gγ (x)| ≤
√

2γ

π
e−√

γ |x||x| + 1 
π

e−2
√

γ |x|.

Since e−√
γ |x||x| ≤ 1 √

γ e
for all x ∈R2, it follows that:

|x||∇Gγ (x)| ≤
√

2γ

π
· 1 √

γ e
+ 1 

π
= 1 

π

(︂√
2

e
+ 1

)︂
.

This completes the proof of Lemma 3.1. □
In the following lemma, we establish a representation formula for elliptic equations of Poisson 

type. Specifically, we show that for a function f ∈ Lp(Rd), the solution z, defined via convo
lution, lies in the Sobolev space W 2,p(Rd). For further details, refer to Grafakos [5, Chapter 1, 
Sec. 1.2.2], among others.
17 
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Lemma 3.2. Let d ≥ 1, and let γ > 0 and 1 ≤ p ≤ ∞. We define the function z as:

z(x) =
∫︂
Rd

Gγ (x − y)f (y) dy for f ∈ Lp(Rd). (3.10)

Then:

z ∈ W 2,p(Rd) (3.11)

and satisfies the elliptic equation:

−Δz + γ z = f in Rd . (3.12)

The function z defined by (3.10) is the unique solution of (3.12) in W 2,p(Rd), where f ∈ Lp(Rd)

for 1 < p < ∞.
In addition, let 1 < p < ∞, and we suppose that f ∈ W 2,p(Rd). Then, the following estimate 

holds:

∥z∥W 4,p(Rd ) ≤ C∥f ∥W 2,p(Rd ), (3.13)

where C = C(d,γ,p).

Proof of Lemma 3.2. The solution z provided by (3.10) is addressed in Grafakos [5, Chapter 1, 
Sec. 1.2.2]. To demonstrate the uniqueness of the solution, we proceed as follows. Let z1 be a 
solution of (3.12) distinct from z. Then, the following equation holds:

Δ(z − z1) − γ (z − z1) = 0. (3.14)

For 1 < p < ∞, multiplying both sides of (3.14) by |z− z1|p−2(z− z1) and integrating over Rd , 
we obtain:

4(p − 1)

p2 ∥∇(z − z1)
p
2 ∥Lp + γ ∥z − z1∥Lp = 0.

This implies z(x) = z1(x) for a.e. x ∈ Rd .
To prove (3.13), we assume f ∈ W 2,p(Rd) and define the function z by (3.10). The second 

derivatives of z are given by:

∂2
ij z(x) =

∫︂
Rd

Gγ (x − y)∂2
ij f (y) dy for i, j = 1,2, . . . , d, (3.15)

where ∂2
ij f ∈ Lp(Rd). From (3.11) and (3.12) in Lemma 3.2, it follows that ∂2

ij z ∈ W 2,p(Rd), 
and z satisfies:

−Δ∂2 z + γ ∂2 z = ∂2 f in Rd . (3.16)
ij ij ij

18 
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This implies that the unique solution Z ∈ W 2,p(Rd) of the equation:

−ΔZ + γZ = ∂2
ij f in Rd

is explicitly given by:

Z(x) :=
∫︂
Rd

Gγ (x − y)∂2
ij f (y) dy = ∂2

ij z(x),

where ∂2
ij f ∈ Lp(Rd). This yields by (3.10), (3.12) and (3.16):

∥z∥W 4,p ≤ C

d∑︂
i,j=1

∥Δ∂2
ij z∥Lp ≤ C

d∑︂
i,j=1

(︂
γ ∥∂2

ij z∥Lp + ∥∂2
ij f ∥Lp

)︂
≤ C

(︁∥z∥W 2,p + ∥f ∥W 2,p

)︁≤ C
(︁∥z∥Lp + ∥Δz∥Lp + ∥f ∥W 2,p

)︁≤ C∥f ∥W 2,p

for all 1 < p < ∞, where C = C(d,γ,p). □
The following lemma establishes an Lp(Rd)-estimate for the gradient of the potential z, de

fined by (3.10). This result highlights the boundedness of ∇z in terms of the Lp(Rd)-norm of 
the source term f . It plays a crucial role in the analysis of regularity properties for solutions to 
elliptic equations.

Lemma 3.3. Let d ≥ 1, and let z be defined by (3.10). We suppose f ∈ Lp(Rd) with 1 ≤ p ≤ ∞. 
Then, the following estimate holds:

∥∇z∥Lp(Rd ) ≤ C∥f ∥Lp(Rd ), (3.17)

where C = C(γ,p).

Proof of Theorem 3.3. Since ∇Gγ ∈ L1(Rd), it follows from the Young inequality:

∥∇z∥Lp ≤ ∥∇Gγ ∥L1∥f ∥Lp ≤ C∥f ∥Lp ,

where C = C(γ,p). This completes the proof of Lemma 3.3. □
The following lemma provides a local Lp(R2)-estimate for the function z given by (3.10), 

derived from potential theory.

Lemma 3.4. Let d = 2 and let 2 ≤ p < ∞. Let ρ1, ρ2 > 0 with ρ2 > ρ1. For x0 ∈ R2 and a func
tion f ∈ L1(R2) ∩ L2(Bρ2(x0)), we define z as in (3.10). Then, there exists a positive constant 
C = C(γ,p) such that:

∥∇z∥Lp(Bρ1 (x0)) ≤ C

(︃
ρ

2 
p

1 ∥f ∥L1(R2) + ∥f ∥L2(Bρ2 (x0))

)︃
. (3.18)
ρ2 − ρ1
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Proof of Lemma 3.4. We decompose the function z given by (3.10) as follows:

z(x) = z1(x) + z2(x) for x ∈ R2, (3.19)

with:

z1(x) :=
∫︂
R2

Gγ (x − y)f (y) χBρ2 (x0)(y) dy,

z2(x) :=
∫︂
R2

Gγ (x − y)
(︁
f (y) − f (y)χBρ2 (x0)(y)

)︁
dy

for x ∈ R2, where χBρ2 (x0) is the characteristic function of Bρ2(x0). By Lemma 3.2, we have:

−Δz1 + γ z1 = f χBρ2 (x0) in R2.

By the Sobolev inequality and the classical L2(R2)-estimate, we obtain for 2 ≤ p < ∞:

∥z1∥W 1,p(Bρ1 (x0))
≤ C∥z1∥W 2,2(R2) ≤ C∥f ∥L2(Bρ2 (x0))

, (3.20)

where C = C(γ,p).
As for the function z2, we have:

∇z2(x) =
∫︂
R2

∇xGγ (x − y)
(︁
f (y) − f (y)χBρ2 (x0)(y)

)︁
dy. (3.21)

From (3.6) in Lemma 3.1, it follows:

|∇Gγ (x)| ≤ 1 
π |x|

(︄√
2

e
+ 1

)︄
for all x ∈ R2 with x ≠ 0.

In particular, for x ∈ Bρ1(x0) and y ∈R2 \ Bρ2(x0), we have:

|∇Gγ (x − y)| ≤ 1 
ρ2 − ρ1

· 1 
π

(︄√
2

e
+ 1

)︄
.

Combining this estimate with (3.21), we deduce:

∥∇z2∥L∞(Bρ1 (x0)) ≤ 1 
ρ2 − ρ1

· 1 
π

(︄√
2

e
+ 1

)︄
∥f ∥L1(R2),

and hence:
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∥∇z2∥Lp(Bρ1 (x0)) ≤ |Bρ1(x0)|
1 
p ∥∇z2∥L∞(Bρ1 (x0)) ≤ Cρ

2 
p

1

ρ2 − ρ1
∥f ∥L1(R2), (3.22)

where C = C(p). Combining (3.20) and (3.22), we obtain the desired estimate (3.18). □
The operator (γ −Δ)− α

2 exhibits mapping properties analogous to those of classical fractional 
integrals, such as the Riesz potentials. In particular, it sends Lp(Rd) functions to spaces of higher 
integrability and admits corresponding weak-type estimates. For details, see Grafakos [5, Chapter 
1, Corollary 1.2.6]

Lemma 3.5. 

(i). Let 0 < α < d , and let 1 ≤ p < q < ∞ satisfy 1 
p

− 1 
q

= α
d

. Then, there exist constants 
C = C(d,p,q,α) such that:

∥(γ − Δ)−
α
2 f ∥Lq(Rd ) ≤ C∥f ∥Lp(Rd ) for all f ∈ Lp(Rd) with p > 1,

and:

∥(γ − Δ)−
α
2 f ∥Lq,∞(Rd ) ≤ C∥f ∥L1(Rd ) for all f ∈ L1(Rd).

(ii). Let α > 0. Then the operator (γ −Δ)− α
2 is bounded from Lr(Rd) to itself for all 1 ≤ r ≤ ∞.

The following lemma introduces a cut-off function based on a quadratic polynomial, with 
estimates on its derivatives.

Lemma 3.6. Let d ≥ 1, and let ρ1, ρ2 > 0 with ρ2 > ρ1. We define ˜︁ψ by:

˜︁ψ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ r < ρ1,

1 − 2 
(ρ2 − ρ1)2 (r − ρ1)

2 if ρ1 ≤ r <
ρ1 + ρ2

2 
,

2 
(ρ2 − ρ1)2 (r − ρ2)

2 if 
ρ1 + ρ2

2 
≤ r < ρ2,

0 if ρ2 ≤ r.

Set ψ(x) := ˜︁ψ(|x|) for x ∈Rd . The function ψ satisfies the following derivative estimates:

|∂jψ(x)| ≤ 2 
ρ2 − ρ1

and |∂i∂jψ(x)| ≤ 12 
(ρ2 − ρ1)2 (3.23)

for all i, j = 1,2, . . . , d and all x ∈ Rd . Consequently:

|∇ψ(x)| ≤ 2
√

d
and |Δψ(x)| ≤ 12d 

2 for all x ∈ Rd . (3.24)

ρ2 − ρ1 (ρ2 − ρ1)
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Furthermore, there exists an absolute positive constant C such that:

|∇ψ(x)| ≤ C

ρ2 − ρ1
ψ(x)

1
2 for all x ∈ Rd . (3.25)

In addition, for any 1 ≤ p ≤ ∞, there exists a positive constant C = C(d,p) such that:

∥∇ψ∥Lp(Rd ) ≤ C(ρ2 − ρ1)
−1+ d

p and ∥Δψ∥Lp(Rd ) ≤ C(ρ2 − ρ1)
−2+ d

p . (3.26)

The following lemma provides a local mass estimate for (KSF), giving an inequality that links 
the rate of localized mass change to the initial mass ∥n0∥L1(R2), the spatial scales ρ1 and ρ2, and 
other parameters. This quantifies how the mass distribution evolves over time within a prescribed 
region.

Lemma 3.7. Let d = 2 and let Assumption 2.1 hold. Let ρ1, ρ2 > 0 with ρ2 > ρ1. We suppose 
that ψ be the cut-off function from Lemma 3.6 with ρ1 and ρ2. In addition, we suppose that the 
function u is defined in Definition 2.1. Let (n, v) denote the strong solution of (KSF) on [0, T )

as obtained in Theorem 2.1 and let p ∈ R2. Then the following estimate holds:

⃓⃓⃓⃓
⃓⃓⃓ d

dt

∫︂
R2

n(x, t)ψ(x − p) dx

⃓⃓⃓⃓
⃓⃓⃓

≤ 2∥n0∥L1(R2)

(︄
6
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1(R2)

)︁
(ρ2 − ρ1)2 +

√
2|Q|max

{︁
1, 1 

λ

}︁
τρ2,h(p,b)

ρ2 − ρ1

)︄
, (3.27)

where τρ2,h(p,b) is defined in (2.4).

Proof of Lemma 3.7. Multiplying both sides of the first equation of (KSF) by ψ(x − p) and 
integrating over R2, we obtain:

d

dt

∫︂
R2

n(x, t) ψ(x − p) dx =
∫︂
R2

n(x, t) Δψ(x − p) dx +
∫︂
R2

(n∇v)(x, t) · ∇ψ(x − p) dx

+
∫︂
R2

u(x) n(x, t) · ∇ψ(x − p) dx

=: I + J + K. (3.28)

Regarding the integral I , we use (3.24) to obtain:

I ≤ 24 
(ρ2 − ρ1)2

∫︂
2

n(x, t) dx = 24∥n0∥L1

(ρ2 − ρ1)2 . (3.29)
R
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Next, we consider J . Since the Bessel kernel Gγ is symmetric, we have:

∇xGγ (x − y) = −∇yGγ (x − y) for all x, y ∈ R2 with x ≠ y.

This implies:

J =
∫︂
R2

∫︂
R2

n(x, t)n(y, t) ∇Gγ (x − y) · ∇ψ(x − p) dxdy

= 1

2

∫︂
R2

∫︂
R2

n(x, t)n(y, t) ∇Gγ (x − y) · ∇ψ(x − p) dxdy

+ 1

2

∫︂
R2

∫︂
R2

n(y, t)n(x, t) ∇Gγ (y − x) · ∇ψ(y − p) dydx

= 1

2

∫︂
R2

∫︂
R2

n(x, t)n(y, t) ∇Gγ (x − y) · (∇ψ(x − p) − ∇ψ(y − p)) dxdy, (3.30)

since ∇v = ∇Gγ ∗ n.
By applying (3.6) in Lemma 3.1, (3.24) in Lemma 3.6, and the fundamental theorem of cal

culus, we have:

|J | ≤ 1

2

∫︂
R2

∫︂
R2

n(x, t)n(y, t) |∇Gγ (x − y)| 24 
(ρ2 − ρ1)2 |x − y| dxdy ≤

12
π

(︂√
2

e
+ 1

)︂
∥n0∥2

L1

(ρ2 − ρ1)2 .

(3.31)

Considering K , by (2.6), we have:

|K| ≤
∫︂
R2

|Q|
(︃ |x − b| 

|x − b|2 + λ
χ(x − b) + |x + b| 

|x + b|2 + λ
χ(x + b)

)︃
n(x, t)|∇ψ(x − p)| dx

≤ 2
√

2∥n0∥L1 |Q|max
{︁
1, 1 

λ

}︁
τρ2,h(p,b)

ρ2 − ρ1
, (3.32)

where τρ2,h(p,b) is defined in (2.4). Combining (3.28), (3.29), (3.31) and (3.32), we obtain 
(3.27). This completes the proof of Lemma 3.7. □
4. Proof of Theorem 2.1

4.1. Proof of Theorem 2.1 (I): existence of time local solution

In this subsection, we construct a time local solution of (KSF). To this end, we introduce the 
metric on XT by:

D(n1, n2) := ∥n1 − n2∥L∞(0,T ;Ld+2(Rd )). (4.1)
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Then, it is readily seen that (XT ,D) is the complete metric space.
To prove Theorem 2.1 (I), we consider the following modified problem h(KSF), derived from 

(KSF). In this modified problem, (KSF) is transformed into a set of independent equations by 
replacing the unknown functions in the advection and reaction terms with given functions:

h(KSF)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂n

∂t 
+ ∇ · (un) = Δn − ∇ · (n∇h) in Rd × (0, T ), (1)h

0 = Δv − γ v + f in Rd × (0, T ), (2)f

n(x,0) = n0(x) in Rd,

where h ∈ L∞(0, T ;W 2,∞(Rd)) and 0 ≤ f ∈ Lr(𝒬T ) with some 1 < r < ∞.
We remark that generalizing Theorem 9.1 in Ladyzhenskaya, Solonnikov, and Ural’tseva [11] 

to the Cauchy problem is straightforward. A more modern approach, such as the maximal reg
ularity theorem in Lp , can be found in Amann [1, Chapter IV, Theorem 1.5.1]. By virtue of [1, 
Theorem 1.5.1] or [11, Theorem 9.1], we obtain the following lemma:

Lemma 4.1. Let the same assumptions as in Theorem 2.1 hold. We assume that there exist posi
tive number B1 and B2 such that:

∥u∥L∞(Rd ) + ∥∇ · u∥L∞(Rd ) + ∥∇h∥L∞(𝒬T ) + ∥Δh∥L∞(𝒬T ) ≤ B1 (4.2)

and:

∥f ∥L∞(0,T ;Ld+2(Rd )) ≤ B2. (4.3)

Then, h(KSF) has a unique non-negative strong solution (n, v) belonging to W(𝒬T ), where the 
function space W is defined in (2.2). Moreover, (n, v) satisfies the following estimates:

∥n∥
W

2,1
d+2(𝒬T )

≤ C1T
1 

d+2 ∥n0∥W 2,d+2(Rd ) (4.4)

and:

∥v∥L∞(0,T ;W 2,d+2(Rd )) ≤ C2∥f ∥L∞(0,T ;Ld+2(Rd )) (4.5)

for some positive constants C1 = C1(B1, d,p) and C2 = C2(d).

Proof of Theorem 2.1. Let XT be the space defined in (2.3), and let f ∈ XT . By Lemma 4.1, 
there exists a strong solution v̄f of (2)f in Ld+2(0, T ;W 2,d+2(Rd)). Furthermore, since f ∈ XT , 
it follows from the Sobolev embedding theorem, the second equation of h(KSF), and (3.13) in 
Lemma 3.2 that the following holds:

∥v̄f ∥L∞(0,T ;W 3,∞(Rd ))

≤ C∥v̄f ∥L∞(0,T ;W 4,d+2(Rd )) ≤ C∥f ∥L∞(0,T ;W 2,d+2(Rd )) ≤ C(4∥n0∥W 2,d+2 + 1), (4.6)
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where C = C(d,γ ). Then, Lemma 4.1 guarantees that h(KSF) with h = v̄f (denoted by 
h=v̄f

(KSF)) has a unique strong solution (n̄h=v̄f
, v̄f ) ∈ W(𝒬T ), since v̄f ∈ L∞(0, T ; 

W 3,∞(Rd)). Moreover, by (4.4) of Lemma 4.1, it follows:

∥n̄h=v̄f ∥
W

2,1
d+2(𝒬T )

≤ CT
1 

d+2 ∥n0∥W 2,d+2, (4.7)

where C = C(d,γ ).
For the sake of simplicity, let us denote (n̄h=v̄f

, v̄f ) by (n, v). It follows that the strong solu
tion (n, v) is a non-negative. This non-negativity can be verified by multiplying both sides of the 
first equation of h=v̄f

(KSF) by n− := −min{0, n} and integrating over Rd , which leads to:

1

2

d

dt
∥n−(t)∥2

L2 ≤ −
∫︂
Rd

|∇n−|2dx +
∫︂
Rd

|n−|(|∇v| + |u|)|∇n−|dx

≤ −1

2
∥∇n−(t)∥2

L2 +
(︃

sup 
t∈(0,T )

∥∇v(t)∥2
L∞ + ∥u∥2

L∞

)︃
∥n−(t)∥2

L2

Applying (4.6), we derive the inequality:

d

dt
∥n−(t)∥2

L2 + ∥∇n−(t)∥2
L2 ≤ C∥n−(t)∥2

L2 ,

where C = C(d,γ,Q,λ,∥n0∥W 2,d+2). By the Gronwall inequality, we find:

sup 
t∈(0,T )

∥n−(t)∥2
L2 ≤ ∥n−(x,0)∥2

L2 · exp{CT } = 0

since n−(x,0) = 0. This implies:

n(x, t) ≥ 0 for a.e. (x, t) ∈ Rd × (0, T ).

Next, we define the operator Φ by:

Φ : XT ∋ f ↦→ n̄h=v̄f ∈ W
2,1
d+2(𝒬T ).

The existence of a strong solution to (KSF) is established by applying the Banach fixed-point 
theorem. Specifically, there exists T1 > 0 such that the operator Φ maps XT1 into itself as a 
contraction. Since XT1 , equipped with the metric defined by (4.1), forms a complete metric space, 
the Banach fixed-point theorem guarantees the existence of a unique solution (nh=vf

, vf ) in XT1 , 
satisfying f = nh=vf

over [0, T1]. This can be shown in the following steps.
To proceed, we demonstrate that for sufficiently small T ∗ > 0, the operator Φ maps XT ∗ into 

itself.
We further establish that n ∈ L∞(0, T ;Ld+2(Rd)). For any 1 < r < ∞, multiplying both 

sides of the first equation of h=v̄f
(KSF) by nr−1 and integrating by parts, it follows:
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1

r

d

dt
∥n(t)∥r

Lr ≤ −(r − 1)

∫︂
Rd

nr−2|∇n|2 dx + (r − 1)

∫︂
Rd

nr−1(|∇v| + |u|)|∇n| dx

≤ − r − 1

2 

∫︂
Rd

nr−2|∇n|2 dx + r − 1

2 

(︃
sup 

t∈(0,T )

∥∇v(t)∥2
L∞ + ∥u∥2

L∞

)︃
∥n(t)∥r

Lr

≤ − r − 1

2 

∫︂
Rd

nr−2|∇n|2 dx + C∥n(t)∥r
Lr ,

where C = C(d,γ,Q,λ,∥n0∥W 2,d+2, r). This yields:

sup 
t∈(0,T )

∥n(t)∥Lr ≤ ∥n0∥Lr exp{CT } (4.8)

for all 1 < r < ∞, where C = C(d,γ,Q,λ,∥n0∥W 2,d+2, r). Therefore, by setting r = d + 2 > 1, 
it follows that n ∈ L∞(0, T ;Ld+2(Rd)).

Next, we show that ∇n ∈ L∞(0, T ;Ld+2(Rd)). Let 2 ≤ r < ∞. Differentiating both sides of 
the first equation of h=v̄f

(KSF) with respect to x and multiplying by |∇n|r−2∇n, we obtain:

1

r

d

dt
∥∇n(t)∥r

Lr =
∫︂
Rd

∇Δn · |∇n|r−2∇n dx −
∫︂
Rd

∇(∇ · (n∇v)) · |∇n|r−2∇n dx

−
∫︂
Rd

∇(∇ · (un)) · |∇n|r−2∇n dx

=: I (1)
1 + I

(1)
2 + I

(1)
3 . (4.9)

Applying integrating by parts to I (1)
1 , we find:

I
(1)
1 =

∫︂
Rd

d∑︂
i=1 

d∑︂
j=1 

∂i∂
2
j n|∇n|r−2∂in dx

= −(r − 2)

∫︂
Rd

|∇n|r−4
d∑︂

j=1 
|(∂j∇n) · (∇n)|2 dx −

∫︂
Rd

|∇n|r−2
d∑︂

j=1 
|∂j∇n|2 dx

=: −(r − 2)J
(1)
1 − J

(1)
2 . (4.10)

As for I (1)
2 , it follows from (4.6):

I
(1)
2 = −

∫︂
d

d∑︂
j=1 

∂j (∇ · (n∇v))|∇n|r−2∂jn dx
R
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=
∫︂
Rd

∇ · (n∇v)

d∑︂
j=1 

∂j (|∇n|r−2∂jn) dx

≤ (r − 2)

∫︂
Rd

(|∇n||∇v| + n|Δv|) |∇n|r−4
d∑︂

j=1 
|(∂j∇n) · (∇n)||∂jn| dx

+
∫︂
Rd

(|∇n||∇v| + n|Δv|) |∇n|r−2
d∑︂

j=1 
|∂2

j n| dx

≤ r − 2

4 
J

(1)
1 + 1

4
J

(1)
2 + 2(r − 2 + d) sup 

t∈(0,T )

∥∇v(t)∥2
L∞∥∇n(t)∥r

Lr

+ 2(r − 2 + d) sup 
t∈(0,T )

∥Δv(t)∥2
L∞∥∇n(t)∥r−2

Lr ∥n(t)∥2
Lr

≤ r − 2

4 
J

(1)
1 + 1

4
J

(1)
2 + C∥∇n(t)∥r

Lr + C∥∇n(t)∥r−2
Lr ∥n(t)∥2

Lr , (4.11)

where C = C(d,γ,∥n0∥W 2,d+2, r). Furthermore, similar to (4.11), we observe:

I
(1)
3 ≤ r − 2

4 
J

(1)
1 + 1

4
J

(1)
2 + 2(r − 2 + d)∥u∥2

L∞∥∇n(t)∥r
Lr

+ 2(r − 2 + d)∥∇ · u∥2
L∞∥∇n(t)∥r−2

Lr ∥n(t)∥2
Lr

≤ r − 2

4 
J

(1)
1 + 1

4
J

(1)
2 + C∥∇n(t)∥r

Lr + C∥∇n(t)∥r−2
Lr ∥n(t)∥2

Lr , (4.12)

where C = C(d,γ,Q,λ, r). Combining (4.9)-(4.12), we obtain the following expression:

d

dt
∥∇n(t)∥2

Lr ≤ − r − 2

2 
J

(1)
1 − 1

2
J

(1)
2 + C∥n(t)∥2

Lr + C∥∇n(t)∥2
Lr ,

which, by (4.8), yields:

sup 
t∈(0,T )

∥∇n(t)∥Lr ≤
(︄

∥∇n0∥Lr + CT
1
2 sup 

t∈(0,T )

∥n(t)∥Lr

)︄
exp{CT }

≤
(︂
∥∇n0∥Lr + CT

1
2 ∥n0∥Lr

)︂
exp{CT } (4.13)

for all 2 ≤ r < ∞, where C = C(d,γ,Q,λ,∥n0∥W 2,d+2, r). Therefore, by setting r = d + 2 > 1, 
it follows that ∇n ∈ L∞(0, T ;Ld+2(Rd)).

Next, we demonstrate that ∂i∇n ∈ L∞(0, T ;Ld+2(Rd)) for all i = 1, . . . , d . Let 2 ≤ r < ∞. 
We begin by differentiating both sides of the first equation of h=v̄f

(KSF) with respect to x and 
then multiply by |∂i∇n|r−2∂i∇n, which gives:

1

r

d

dt
∥∂i∇n(t)∥r

Lr =
∫︂
d

∂i∇Δn · |∂i∇n|r−2∂i∇n dx −
∫︂
d

∂i∇(∇ · (n∇v)) · |∂i∇n|r−2∂i∇n dx
R R

27 



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745 
−
∫︂
Rd

∂i∇(∇ · (un)) · |∂i∇n|r−2∂i∇n dx

=: I (2)
1 + I

(2)
2 + I

(2)
3 . (4.14)

We now proceed to handle I (2)
1 . By integrating by parts, we obtain the following:

I
(2)
1 =

∫︂
Rd

d∑︂
j=1 

∂i∇∂2
j n · |∂i∇n|r−2∂i∇n dx

= −(r − 2)

∫︂
Rd

|∂i∇n|r−4
d∑︂

j=1 
|(∂i∂j∇n) · (∂i∇n)|2 dx −

∫︂
Rd

|∂i∇n|r−2
d∑︂

j=1 
|∂i∂j∇n|2 dx

=: −(r − 2)J
(2)
1 − J

(2)
2 . (4.15)

For I (2)
2 , using (4.6), we obtain:

I
(2)
2 = −

∫︂
Rd

d∑︂
j=1 

∂i∂j (∇ · (n∇v))|∂i∇n|r−2∂i∂jn dx

=
∫︂
Rd

∂i(∇ · (n∇v))

d∑︂
j=1 

∂j (|∂i∇n|r−2∂i∂jn) dx

≤ (r − 2)

∫︂
Rd

(|∂i∇n||∇v| + |∇n||∂i∇v| + |∂in||Δv| + n|∂iΔv|)

× |∂i∇n|r−4
d∑︂

j=1 
|(∂i∂j∇n) · (∂i∇n)||∂i∂jn| dx

+
∫︂
Rd

(|∂i∇n||∇v| + |∇n||∂i∇v| + |∂in||Δv| + n|∂iΔv|)|∂i∇n|r−2
d∑︂

j=1 
|∂i∂

2
j n| dx

≤ r − 2

4 
J

(4)
1 + 1

4
J

(4)
2 + 4(r − 2 + d) sup 

t∈(0,T )

∥∇v(t)∥2
L∞∥∂i∇n(t)∥r

Lr

+ 4(r − 2 + d)

(︃
sup 

t∈(0,T )

∥∂i∇v(t)∥2
L∞ + sup 

t∈(0,T )

∥Δv(t)∥2
L∞

)︃
∥∂i∇n(t)∥r−2

Lr ∥∇n(t)∥2
Lr

+ 4(r − 2 + d) sup 
t∈(0,T )

∥∂iΔv(t)∥2
L∞∥∂i∇n(t)∥r−2

Lr ∥n(t)∥2
Lr

≤ r − 2

4 
J

(2)
1 + 1

4
J

(2)
2 + C

(︂
∥n(t)∥2

Lr + ∥∇n(t)∥2
Lr

)︂
∥∂i∇n(t)∥r−2

Lr + C∥∂i∇n(t)∥r
Lr ,

(4.16)
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where C = C(d,γ,∥n0∥W 2,d+2, r). Furthermore, similar to (4.16), we observe:

I
(2)
3 ≤ r − 2

4 
J

(2)
1 + 1

4
J

(2)
2 + 4(r − 2 + d)∥u∥2

L∞∥∂i∇n(t)∥r
Lr

+ 4(r − 2 + d)(∥∂iu∥2
L∞ + ∥∇ · u∥2

L∞)∥∂i∇n(t)∥r−2
Lr ∥∇n(t)∥2

Lr

+ 4(r − 2 + d)∥∂i(∇ · u)∥2
L∞∥∂i∇n(t)∥r−2

Lr ∥n(t)∥2
Lr

≤ r − 2

4 
J

(2)
1 + 1

4
J

(2)
2 C

(︂
∥n(t)∥2

Lr + ∥∇n(t)∥2
Lr

)︂
∥∂i∇n(t)∥r−2

Lr + C∥∂i∇n(t)∥r
Lr , (4.17)

where C = C(d,γ,Q,λ, r). It follows from (4.14)-(4.17):

d

dt
∥∂i∇n(t)∥2

Lr ≤ − r − 2

2 
J

(2)
1 − 1

2
J

(2)
2 + C

(︂
∥n(t)∥2

Lr + ∥∇n(t)∥2
Lr

)︂
+ C∥∂i∇n(t)∥2

Lr ,

where C = C(d,γ,Q,λ,∥n0∥W 2,d+2, r). Choosing r as d + 2, we obtain from (4.8) and (4.13):

sup 
t∈(0,T )

∥∂i∇n(t)∥Ld+2

≤
{︃
∥∂i∇n0∥Ld+2 + CT

1
2

(︃
sup 

t∈(0,T )

∥n(t)∥Ld+2 + sup 
t∈(0,T )

∥∇n(t)∥Ld+2

)︃}︃
exp{CT }

≤
{︂
∥∂i∇n0∥Ld+2 + CT

1
2 ∥∇n0∥Ld+2 + C

(︁
T

1
2 + T

)︁∥n0∥Ld+2

}︂
exp{CT } (4.18)

where C = C(d,γ,Q,λ,∥n0∥W 2,d+2). Hence, combining (4.8), (4.13) and (4.18), we conclude 
that n ∈ L∞(0, T ;W 2,d+2(Rd)).

Therefore, we observe from (4.7), (4.8), (4.13) and (4.18):

∥n∥L∞(0,T ;W 2,d+2(Rd )) + ∥∂tn∥Ld+2(𝒬T )

≤ (︁
1 + C1T

1
2 + C1T

)︁
exp{C1T }∥n0∥W 2,d+2 + C1T

1 
d+2 ∥n0∥W 2,d+2, (4.19)

where C1 = C1(d, γ,Q,λ,∥n0∥W 2,d+2). Taking T∗ by:

T∗ ≤ min

{︄(︃
1 
C1

)︃2

, 
1 
C1

log
7

6
, 
(︃

1 
2C1

)︃d+2
}︄

,

we observe from (4.19):

∥n∥L∞(0,T∗;W 2,d+2(Rd )) + ∥∂tn∥Ld+2(𝒬T∗ ) ≤ 4∥n0∥W 2,d+2 + 1. (4.20)

This implies that the operator Φ maps XT∗ into itself.
It remains to prove that the operator Φ is a contraction mapping. For the sake of simplicity, 

for i = 1,2, we denote (n̄h=v̄fi
, v̄fi ) by (ni, vi). In addition, we define w by w := n1 −n2. Then, 

we observe:
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∂tw = Δw − ∇ · (n1∇v1 − n2∇v2) − ∇ · (uw)

= Δw − ∇ · (n1∇(v1 − v2)) − ∇ · (w∇v2) − ∇ · (uw). (4.21)

We obtain from (4.8) and (4.13):

sup 
t∈(0,T )

∥ni(t)∥L∞ ≤ C sup 
t∈(0,T )

∥ni(t)∥W 1,d+2 ≤ C(1 + T
1
2 ) exp{CT }

for i = 1,2, where C = C(d,γ,∥n0∥W 2,d+2). Then, multiplying both sides of (4.21) by |w|dw

and integrating over Rd , we observe:

1 
d + 2

d

dt
∥w(t)∥d+2

Ld+2

= −(d + 1)

∫︂
Rd

|w|d |∇w|2dx + (d + 1)

∫︂
Rd

(n1∇(v1 − v2)) · |w|d∇wdx

+ (d + 1)

∫︂
Rd

(w∇v2) · |w|d∇wdx + (d + 1)

∫︂
Rd

(uw)|w|d · ∇wdx

≤ −d + 1

4 

∫︂
Rd

|w|d |∇w|2dx + C∥w(t)∥d
Ld+2 sup 

t∈(0,T )

∥n1(t)∥2
L∞∥∇(v1 − v2)(t)∥2

Ld+2

+ C

(︃
sup 

t∈(0,T )

∥∇v2(t)∥2
L∞ + ∥u∥2

L∞

)︃
∥w(t)∥d+2

Ld+2

≤ −d + 1

4 

∫︂
Rd

|w|d |∇w|2dx + C(1 + T
1
2 ) exp{CT }∥w(t)∥d

Ld+2∥∇(v1 − v2)(t)∥2
Ld+2

+ C∥w(t)∥d+2
Ld+2 ,

which yields:

∥w(t)∥2
Ld+2 ≤ C(1 + T

1
2 ) exp{CT }∥∇(v1 − v2)∥2

L2(0,T ;Ld+2(Rd ))
, (4.22)

where C = C(d,γ,Q,λ,∥n0∥W 2,d+2). In addition, by virtue of (3.17), it holds:

∥∇(v1 − v2)(t)∥2
L2(0,T ;Ld+2(Rd ))

=
T∫︂

0 

∥∇(v1 − v2)(s)∥2
Ld+2 ds ≤ CT ∥f1 − f2∥2

L∞(0,T ;Ld+2(Rd ))
, (4.23)

where C = C(γ ). Hence, from (4.22) and (4.23), we obtain:

∥w∥L∞(0,T ;Ld+2(Rd )) ≤ (C2T )
1
2 (1 + T

1
2 )

1
2 exp{C2T }∥f1 − f2∥L∞(0,T ;Ld+2(Rd )), (4.24)
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where C2 = C2(d, γ,Q,λ,∥n0∥W 2,d+2). Taking T∗∗ by:

T∗∗ ≤ min

{︃
1 

64C2
, 9, 

1 
C2

log 2

}︃
,

we observe from (4.24):

∥w∥L∞(0,T∗∗;Ld+2(Rd )) ≤ 1

2
∥f1 − f2∥L∞(0,T∗∗;Ld+2(Rd )).

Now, we apply the Banach fixed-point theorem, which guarantees the existence of a positive 
number T1 := min{T∗, T∗∗} such that Φ becomes a contraction from XT1 into itself. Thus, Φ

has a fixed point f̄ = Φ(f̄ ) = n̄h=v̄f̄
. Hence, we construct the desired solution (n̄h=v̄f̄

, v̄f̄ ) in 
Theorem 2.1. □
4.2. Proof of Theorem 2.1 (II): extension criterion

We now establish the extension criterion for the solution of (KSF). To proceed, we present the 
following Lemma:

Lemma 4.2. Let Assumptions 2.1 hold. Let (n, v) be the strong solution of (KSF) on [0, T1)

obtained from Theorem 2.1 (I) with the property (2.10). Then, there exists a positive constant 
C = C(d,γ,Q,λ,T1,∥n0∥W 2,d+2(Rd )) such that:

sup 
t∈(0,T1)

∥n(t)∥W 2,d+2(Rd ) ≤ C.

Proof of Lemma 4.2. We establish the following regularities:

n ∈ L∞(0, T1;Ld+2(Rd)), (4.25)

∇v, Δv ∈ L∞(0, T1;L∞(Rd)), (4.26)

∇n ∈ L∞(0, T1;Ld+2(Rd)), (4.27)

∇n ∈ L∞(0, T1;L∞(Rd)), (4.28)

∂i∇v, ∂iΔv ∈ L∞(0, T1;L∞(Rd)) for all i = 1,2, . . . , d, (4.29)

∂i∇n ∈ L∞(0, T1;Ld+2(Rd)) for all i = 1,2, . . . , d. (4.30)

As for (4.25), let 1 < r < ∞. Multiplying both sides of the first equation of (KSF) by nr−1

and integrating over Rd , we obtain:

sup 
t∈(0,T1)

∥n(t)∥Lr ≤ ∥n0∥Lr exp

{︃
r − 1

r
T1

(︃
sup 

t∈(0,T1)

∥n(t)∥L∞ + ∥∇ · u∥L∞
)︃}︃

.

Therefore, since d + 2 > 1, by taking r = d + 2, we obtain (4.25).
Next, we establish (4.26). By applying Lemma 3.3 and using the second equation of (KSF), 

we derive the following estimates:
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sup 
t∈(0,T1)

∥∇v(t)∥L∞ ≤ C sup 
t∈(0,T1)

∥n(t)∥L∞, (4.31)

and:

sup 
t∈(0,T1)

∥Δv(t)∥L∞ ≤ γ sup 
t∈(0,T1)

∥v(t)∥L∞ + sup 
t∈(0,T1)

∥n(t)∥L∞ ≤ 2 sup 
t∈(0,T1)

∥n(t)∥L∞, (4.32)

where C = C(d,γ ).
We move on to proving (4.27). Let 2 ≤ r < ∞. To establish (4.27), we differentiate both sides 

of the first equation of (KSF) with respect to x once and multiply by |∇n|r−2∇n. This gives us 
the following estimate:

sup 
t∈(0,T1)

∥∇n(t)∥Lr

≤
(︄

∥∇n0∥Lr +√︁
2(r + d − 2)T1

(︃
sup 

t∈(0,T1)

∥Δv(t)∥L∞ + ∥∇ · u∥L∞
)︃

sup 
t∈(0,T1)

∥n(t)∥Lr

)︄

× exp

{︄
(r + d − 2)T1

(︃
sup 

t∈(0,T1)

∥∇v(t)∥2
L∞ + ∥u∥2

L∞

)︃}︄
. (4.33)

Thus, since d + 2 > 1, by taking r = d + 2, we deduce that (4.27).
We now proceed to establish (4.28) by applying Moser’s iteration technique. Let d + 2 ≤ r <

∞. Differentiating both sides of (KSF) with respect to x and multiplying by |∇n|r−2∇n, we 
obtain the following estimate:

∥∇n(t)∥Lr ≤
{︂

5(M∗ + 1)(T1 + 1)rd(d+1)+2
}︂ 1

r
max

{︃
∥∇n0∥Ld+2 ,

∥∇n0∥L∞, sup 
t∈(0,T1)

∥n(t)∥Ld+2 , sup 
t∈(0,T1)

∥n(t)∥L∞ , sup 
t∈(0,T1)

∥∇n(t)∥
L

r
d+2

}︃
for a.e. t ∈ (0, T1), where M∗ is defined by:

M∗ := C

(︃
sup 

t∈(0,T1)

∥∇v(t)∥2
L∞ + sup 

t∈(0,T1)

∥Δv(t)∥2
L∞ + ∥u∥L∞ + ∥∇ · u∥L∞

)︃
,

where C = C(d). Choosing r as (d + 2)k with k ≥ 1, we find:

∥∇n(t)∥
L(d+2)k ≤

{︂
5(M∗ + 1)(T1 + 1)(d + 2)d(d+1)+2

}︂2
max

{︃
∥∇n0∥Ld+2 ,

∥∇n0∥L∞, sup 
t∈(0,T1)

∥n(t)∥Ld+2 , sup 
t∈(0,T1)

∥n(t)∥L∞, sup 
t∈(0,T1)

∥∇n(t)∥Ld+2

}︃
(4.34)

for a.e. t ∈ (0, T1).
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At this point, we introduce the fundamental theorem regarding the limiting norm of ∥ · ∥Lp . 
Specifically, let (X,μ) be a measure space. If f ∈ Lp0(X,μ) for some p0 < ∞, the following 
holds:

lim 
p→∞∥f ∥Lp(X) = ∥f ∥L∞(X). (4.35)

See Grafakos [4, p.11, Exercise 1.1.3] for further details. Therefore, taking the limit as k → ∞
on the left-hand side of (4.34) and applying the result from (4.35), we conclude:

sup 
t∈(0,T1)

∥∇n(t)∥L∞ ≤
{︂

5(M∗ + 1)(T1 + 1)(d + 2)d(d+1)+2
}︂2

max

{︃
∥∇n0∥Ld+2 ,

∥∇n0∥L∞, sup 
t∈(0,T1)

∥n(t)∥Ld+2 , sup 
t∈(0,T1)

∥n(t)∥L∞, sup 
t∈(0,T1)

∥∇n(t)∥Ld+2

}︃

We now turn to the proof of (4.29). Applying the Young inequality, we have:

sup 
t∈(0,T1)

∥∂i∇v(t)∥L∞ ≤ ∥∇Gγ ∥L1 sup 
t∈(0,T1)

∥∇n(t)∥L∞ ≤ C sup 
t∈(0,T1)

∥∇n(t)∥L∞, (4.36)

where C = C(d,γ ). In addition, from the second equation of (KSF), we have:

sup 
t∈(0,T1)

∥∂iΔv(t)∥L∞ ≤ γ sup 
t∈(0,T1)

∥∇v(t)∥L∞ + sup 
t∈(0,T1)

∥∇n(t)∥L∞ . (4.37)

This inequality directly leads to the proof of (4.29).
Finally, we address the proof of (4.30). Let 2 ≤ r < ∞. By differentiating both sides of the 

first equation of (KSF) with respect to x twice and multiplying by |∂i∇n|d ∂i∇n, we derive the 
following from (4.31), (4.32), (4.33), (4.36) and (4.37):

sup 
t∈(0,T1)

∥∂i∇n(t)∥Lr

≤
(︄

∥∂i∇n0∥Lr + 2
√︁

(r + d − 2)T1

(︃
sup 

t∈(0,T1)

∥∂i∇v(t)∥L∞ + ∥∂iu∥L∞
)︃

sup 
t∈(0,T1)

∥∇n(t)∥Lr

+ 2
√︁

(r + d − 2)T1

(︃
sup 

t∈(0,T1)

∥Δv(t)∥L∞ + ∥∇ · u∥L∞
)︃

sup 
t∈(0,T1)

∥∇n(t)∥Lr

+ 2
√︁

(r + d − 2)T1

(︃
sup 

t∈(0,T1)

∥∂iΔv(t)∥L∞ + ∥∂i∇ · u∥L∞
)︃

sup 
t∈(0,T1)

∥n(t)∥Lr

)︄

× exp

{︄
2(r + d − 2)T1

(︃
sup 

t∈(0,T1)

∥∇v(t)∥2
L∞ + ∥u∥L∞

)︃}︄
. (4.38)

Choosing r as d + 2, we have (4.30). This completes the proof of Lemma 4.2. □
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Continuation of the Proof of Theorem 2.1 (II). We are now ready to prove Theorem 2.1 (II). 
From the construction of the solution described in Subsection 4.1, we observe that the local 
existence time T1 depends on d , γ , Q, λ and ∥n0∥W 2,d+2 .

Our objective is to extend the strong solution (n, v) from [0, T1) to [0,ˆ︁T ), where T1 < ˆ︁T <

Tmax. Here, Tmax refers to the maximal existence time, the upper bound for the interval during 
which the solution remains bounded in the L∞(Rd)-norm. In other words, Tmax is characterized 
by the property:

lim sup
t→Tb−0 

∥n(t)∥L∞ = ∞,

indicating that the solution n(t) becomes unbounded in the L∞(Rd)-norm as t approaches Tmax.
To achieve this extension, we assume (2.10). Then, from Lemma 4.2, there exists a positive 

constant C = C(d,γ,Q,λ,T1,∥n0∥W 2,d+2) such that:

sup 
t∈(0,T1)

∥n(t)∥W 2,d+2 ≤ C. (4.39)

From (4.39), the solution n(T0) with T0 < T1 belongs to W 2,d+2(Rd).
We then consider T0 as an initial time and apply the construction method outlined in Sub

section 4.1, using n(T0) as initial data. This enables us to extend the strong solution (n, v)

over [T0, T
(1)
1 ). Here, the existence time T (1)

1 is determined by d , γ , Q, λ and n(T0). By ap

plying Lemma 4.2, we derive the same estimates as in (4.39), but now over [T0, T
(1)

0 ], where 

T
(1)
0 < T

(1)
1 .

From the estimates obtained over [T0, T
(1)
0 ], we ensure that the solution n(T

(1)
0 ) belongs to 

W 2,d+2(Rd). Consequently, we are able to reapply the construction method from Subsection 
4.1, treating n(T

(1)
0 ) as the initial data. This allows us to construct the strong solution (n, v) on 

[T (1)
0 , T

(2)
1 ).

Repeating this procedure iteratively, we define sequences {T (k)
0 } and {T (k)

1 } for k = 1,2, . . .. 

In addition, we set T (0)
0 := T0, and construct solutions on [T (k−1)

0 , T
(k)
1 ), ensuring at each step 

that:

• The same estimates as in (4.39) hold over [T (k−1)
0 , T

(k)
0 ], where T (k)

0 < T
(k)
1 . These estimates 

are guaranteed by Lemma 4.2.
• The construction method from Subsection 4.1 can be reapplied using n(T

(k)
0 ) as initial data

• We extend the strong solution (n, v) over [T (k)
0 , T

(k+1)
1 ).

Therefore, by this method of iterative extension, we have successfully extended the strong solu
tion (n, v) to [0,ˆ︁T ) for any ˆ︁T < Tmax.

Based on the above facts, the following conclusion follows: the strong solution n can be 
extended to the maximal existence time Tmax, at which time the solution may become unbounded 
in the L∞(Rd)-norm. Specifically, Tmax is characterized by the condition:

lim sup ∥n(t)∥L∞ = ∞. (4.40)

t→Tmax−0
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This condition suggests that a blow-up in the L∞(Rd)-norm may cause for the termination of the 
existence of a strong solution at Tmax. Indeed, Tmax ≤ Tb by the definition of Tmax and Tb, and 
the case Tmax < Tb cannot occur if (4.40) holds. Thus, we conclude that Tmax = Tb , i.e., (2.12).

In addition, we aim to establish (2.13) in Theorem 2.1 (II). Applying Lemma 4.2, for ˆ︁T ∈
(0, Tmax), the following regularity properties hold:

n ∈ L∞(0,ˆ︁T ;W 1,d+2(Rd)) and ∂tn ∈ L∞(0,ˆ︁T ;Ld+2(Rd)).

These regularities, together with the embedding W 1,d+2(Ω) ⊂ C(Ω) for any bounded subset 
Ω ⊂ Rd , imply by the Aubin-Lions Lemma:

n ∈ C([0,ˆ︁T ];C(Ω)).

Thus, we conclude (2.13). This completes the proof of Theorem 2.1 (II). □
4.3. Proof of Theorem 2.1 (III): mass conservation law

We now proceed with the proof of Theorem 2.1 (III). Let ˆ︁T ∈ (0, Tmax), where Tmax denotes 
the maximal existence time. We assume that n0 ∈ L1(Rd). By Lemma 4.2, there exists a positive 
constant C = C(d,γ,Q,λ,∥n0∥L1,∥n0∥W 2,d+2) such that the following bounds below hold:

sup 
t∈(0,ˆ︁T )

∥n(t)∥Lp ≤ C for all 1 < p ≤ ∞, (4.41)

and:

sup 
t∈(0,ˆ︁T )

∥∇v(t)∥L∞ + sup 
t∈(0,ˆ︁T )

∥Δv(t)∥L∞ ≤ C. (4.42)

Proof of Theorem 2.1 (III). Let ℓ ≥ 1. According to Lemma 3.6, we introduce the cut-off func
tion ψ with ρ1 = ℓ and ρ2 = 2ℓ. Multiplying both sides of the first equation of (KSF) by 
ψ = ψ(x) and integrating over B2ℓ, we obtain:

d

dt

∫︂
B2ℓ

n(t)ψℓ dx =
∫︂

B2ℓ

Δn(t)ψℓ dx −
∫︂

B2ℓ

∇ · (n∇v)(t)ψℓ dx −
∫︂

B2ℓ

∇ · (un(t))ψℓ dx. (4.43)

Regarding the first term on the right-hand side of (4.43), since n ∈ W
2,1
d+2(𝒬ˆ︁T ) and the follow

ing integrability condition holds:

∇n(t)ψℓ, ∇ · (∇n(t)ψℓ) ∈ L1(B2ℓ), (4.44)

we can apply the Gauss divergence theorem twice, which leads to the following identity:∫︂
Δn(t)ψℓ dx =

∫︂
n(t)Δψℓ dx. (4.45)
B2ℓ B2ℓ
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To confirm (4.44), we use the Hölder inequality and n ∈ W
2,1
d+2(𝒬ˆ︁T ), obtaining the following 

estimate:

∥∇n(t)ψℓ∥L1(B2ℓ)
+ ∥∇ · (∇n(t)ψℓ)∥L1(B2ℓ)

≤ ∥∇n(t)ψℓ∥L1(B2ℓ)
+ ∥∇n(t) · ∇ψℓ∥L1(B2ℓ)

+ ∥Δn(t)ψℓ∥L1(B2ℓ)

≤ ∥∇n(t)∥Ld+2(B2ℓ)
∥ψℓ∥

L
d+2
d+1 (B2ℓ)

+ ∥∇n(t)∥Ld+2(B2ℓ)
∥∇ψℓ∥

L
d+2
d+1 (B2ℓ)

+ ∥Δn(t)∥Ld+2(B2ℓ)
∥ψℓ∥

L
d+2
d+1 (B2ℓ)

< ∞

for a.e. t ∈ (0,ˆ︁T ). This verifies that (4.45) holds, confirming the integrability conditions (4.44).
Concerning the second term on the right-hand side of (4.43), noting (4.42), and using n ∈

W
2,1
d+2(𝒬ˆ︁T ), we apply the Gauss divergence theorem to obtain the following equality:

−
∫︂

B2ℓ

∇ · (n∇v)(t)ψℓ dx =
∫︂

B2ℓ

(n∇v)(t) · ∇ψℓ dx. (4.46)

In order to verify (4.46), we conduct the following calculations:

∥(n∇v)(t)ψℓ∥L1(B2ℓ)
≤ ∥n(t)∥L∞(B2ℓ)∥∇v(t)∥L∞(B2ℓ)∥ψℓ∥L1(B2ℓ)

< ∞

and:

∥∇ · ((n∇v)(t)ψℓ)∥L1(B2ℓ)

≤ ∥∇n(t)∥Ld+2(B2ℓ)
∥∇v(t)∥L∞(B2ℓ)∥ψℓ∥

L
d+2
d+1 (B2ℓ)

+ ∥n(t)∥Ld+2(B2ℓ)
∥Δv(t)∥L∞(B2ℓ)∥ψℓ∥

L
d+2
d+1 (B2ℓ)

+ ∥n(t)∥Ld+2(B2ℓ)
∥∇v(t)∥L∞(B2ℓ)∥∇ψℓ∥

L
d+2
d+1 (B2ℓ)

< ∞

for a.e. t ∈ (0,ˆ︁T ), which yields that (4.46) holds.
As for the third term on the right-hand side of (4.43), since u ∈ W 1,∞(Rd), we replace ∇v in 

(4.46) with u, yielding:

−
∫︂

B2ℓ

∇ · (un(t))ψℓ dx =
∫︂

B2ℓ

un(t) · ∇ψℓ dx. (4.47)

Combining (4.43), (4.45), (4.46) and (4.47), we obtain the following equality:

d

dt

∫︂
B2ℓ

n(t)ψℓ dx =
∫︂

B2ℓ

n(t)Δψℓ dx +
∫︂

B2ℓ

(n∇v)(t) · ∇ψℓ dx +
∫︂

B2ℓ

un(t) · ∇ψℓ dx. (4.48)
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Integrating both sides of (4.48) from 0 to t , we obtain the following expression:∫︂
B2ℓ

n(t)ψℓ dx −
∫︂

B2ℓ

n0ψℓ dx

=
t∫︂

0 

∫︂
B2ℓ

n(t)Δψℓ dxds +
t∫︂

0 

∫︂
B2ℓ

(n∇v)(t) · ∇ψℓ dxds +
t∫︂

0 

∫︂
B2ℓ

un(t) · ∇ψℓ dxds (4.49)

for a.e. t ∈ (0,ˆ︁T ). From (4.49), we find the following:⃓⃓⃓ ∫︂
B2ℓ

n(t)ψℓ dx −
∫︂

B2ℓ

n0ψℓ dx

⃓⃓⃓

≤
⃓⃓⃓ t∫︂

0 

∫︂
B2ℓ

n(t)Δψℓ dxds

⃓⃓⃓
+
⃓⃓⃓ t∫︂

0 

∫︂
B2ℓ

(n∇v)(t) · ∇ψℓ dxds

⃓⃓⃓
+
⃓⃓⃓ t∫︂

0 

∫︂
B2ℓ

un(t) · ∇ψℓ dxds

⃓⃓⃓
=: Iℓ + I Iℓ + I I Iℓ. (4.50)

Based on (4.41), (4.42) and (3.26) in Lemma 3.6, we derive the following estimates. For Iℓ, we 
have:

Iℓ ≤
ˆ︁T∫︂

0 

∥n(s)∥
L

2d 
2d−1 (B2ℓ)

∥Δψℓ∥L2d (B2ℓ)
ds ≤ Cˆ︁T ℓ− 3

2 sup 
t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

, (4.51)

where C = C(d). For I Iℓ, it follows:

I Iℓ ≤
ˆ︁T∫︂

0 

∥(n∇v)(s) · ∇ψℓ∥L1(B2ℓ)
ds ≤ sup 

t∈(0,ˆ︁T )

∥∇v(t)∥L∞

ˆ︁T∫︂
0 

∥n(s)∥
L

2d 
2d−1

∥∇ψℓ∥L2d (B2ℓ)
ds

≤ Cˆ︁T ℓ− 1
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

sup 
t∈(0,ˆ︁T )

∥∇v(t)∥L∞, (4.52)

where C = C(d). Similarly, for I I Iℓ, we obtain:

I I Iℓ ≤
ˆ︁T∫︂

0 

∥un(s) · ∇ψℓ∥L1(B2ℓ)
ds ≤ ∥u∥L∞

ˆ︁T∫︂
0 

∥n(s)∥
L

2d 
2d−1

∥∇ψℓ∥L2d (B2ℓ)
ds

≤ Cˆ︁T ℓ− 1
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

∥u∥L∞, (4.53)

where C = C(d). Therefore, in view of (4.50), (4.51), (4.52) and (4.53), by choosing an arbitrary 
number ℓ ≥ 1, we obtain the following:
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∫︂
Rd

n(t)ψℓ dx

≤
∫︂
Rd

n0 dx + Cˆ︁T ℓ− 3
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

+ Cˆ︁T ℓ− 1
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

sup 
t∈(0,ˆ︁T )

∥∇v(t)∥L∞ + Cˆ︁T ℓ− 1
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

∥u∥L∞

≤
∫︂
Rd

n0 dx + Cˆ︁T sup 
t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

+ Cˆ︁T sup 
t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

sup 
t∈(0,ˆ︁T )

∥∇v(t)∥L∞ + Cˆ︁T sup 
t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

∥u∥L∞,

where C = C(d). Since the right-hand side is independent of ℓ, by the monotone convergence 
theorem of Beppo Levi, we observe:

⃓⃓⃓ ∫︂
Rd

n(t) dx −
∫︂
Rd

n0 dx

⃓⃓⃓
≤
⃓⃓⃓ ∫︂
Rd

n(t) dx −
∫︂
Rd

n(t)ψℓ dx

⃓⃓⃓
+
⃓⃓⃓ ∫︂
Rd

n0 dx −
∫︂
Rd

n0ψℓ dx

⃓⃓⃓

+ Cˆ︁T ℓ− 3
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

+ Cˆ︁T ℓ− 1
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

sup 
t∈(0,ˆ︁T )

∥∇v(t)∥L∞

+ Cˆ︁T ℓ− 1
2 sup 

t∈(0,ˆ︁T )

∥n(t)∥
L

2d 
2d−1

∥u∥L∞ → 0

as ℓ → ∞. This completes the proof of Theorem 2.1 (III). □
5. Proof of Theorem 2.2: 𝜺-regularity theorem

We proceed with the proof in four steps.

Step 1. We begin by showing that if the local mass concentration of n at a given time t , as 
described in (5.1) below, is less than a certain constant m∗, then the local L∞(R2)-norm of 
n remains bounded over a suitable time interval around t . In this paper, we refer to such an ε
regularity result as an ε-regularity theorem of sharp type. The concept of a sharp type ε-regularity 
theorem was first introduced by Luckhaus, Sugiyama, and Velázquez [12, Propositions 10, 14]. 
Here, we generalize and establish this sharp type ε-regularity theorem for (KSF), which includes 
the fluid vector field term u as defined in (2.5) of Definition 2.1.

Proposition 5.1. Let Assumption 2.1 hold and suppose that n0 ∈ L1(R2). Let Tmax de
note the maximal existence time of the strong solution (n, v) of (KSF) obtained in Theo
rem 2.1 (I)--(III). There exist an absolute positive constant m∗ and a positive constant c1 =
c1(γ,Q,λ,∥n0∥L1(R2)) such that if :
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∫︂
B2ρ(x0)

n(x, t1) dx ≤ m∗ (5.1)

holds for some x0 ∈ R2, 0 < ρ ≤ 1, and t1 ∈ [0, Tmax), then the following estimates are valid:

(i). In the case 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, the following estimate holds:

sup 
s∈(t1−c1ρ

2,min{t1+2c1ρ
2,Tmax})

∫︂
B ρ

2 
(x0)

n2(x, s) dx ≤ C

ρ3 . (5.2)

(ii). In the case 2c1ρ
2 < Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = 2c1ρ
2, the following estimate 

holds:

sup 
s∈(0,min{t1+2c1ρ

2,Tmax})

∫︂
B ρ

2 
(x0)

sn2(x, s) dx ≤ C

ρ5
. (5.3)

(iii). In the case 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = Tmax, provided that n0 ∈
L2

loc(R
2), the following estimate holds:

sup 
s∈(0,min{t1+2c1ρ

2,Tmax})

∫︂
B ρ

2 
(x0)

n2(x, s) dx ≤ C

ρ7 + ∥n0∥2
L2(Bρ(x0))

. (5.4)

Here, C = C(γ,Q,λ,∥n0∥L1(R2)), and it is independent of x0 and ρ.

Remark 11. The constant c1 appearing in (5.2), (5.3) and (5.4) of Proposition 5.1 can be explic
itly expressed as:

c1 = 1 

8 ˜︁C m∗∥n0∥L1(R2)

(︁
1 + ∥n0∥L1(R2)

)︁ , (5.5)

where ˜︁C = ˜︁C(γ,Q,λ,∥n0∥L1(R2)).

Proof of Proposition 5.1. Let 0 < ρ ≤ 1, and let ψ be the function with ρ1 = ρ
2 and ρ2 = ρ as 

in Lemma 3.6. Let k > 0. We choose t0 ∈ (−∞, Tmax) and take t ∈ (0, Tmax) ∩ [t0, Tmax).
Noting that:

1

2
∂t

(︁
n(x, t)2(t − t0)

2ψk(x − x0)
)︁= n2(x, t)(t − t0)ψ

k(x − x0)

+ n(x, t)∂tn(x, t)(t − t0)
2ψk(x − x0),

we then apply the first equation of (KSF) to deduce:
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1

2

d

dt

∫︂
R2

n2(x, t)(t − t0)
2ψk(x − x0) dx

=
∫︂
R2

n2(x, t)(t − t0)ψ
k(x − x0) dx +

∫︂
R2

n(x, t)∂tn(x, t)(t − t0)
2ψk(x − x0) dx

=
∫︂
R2

n2(x, t)(t − t0)ψ
k(x − x0) dx −

∫︂
R2

∇n(x, t) · ∇
(︂
n(x, t)(t − t0)

2ψk(x − x0)
)︂

dx

+
∫︂
R2

(n∇v)(x, t) · ∇
(︂
n(x, t)(t − t0)

2ψk(x − x0)
)︂

dx

+
∫︂
R2

u(x)n(x, t) · ∇
(︂
n(x, t)(t − t0)

2ψk(x − x0)
)︂

dx (5.6)

for all t ∈ (0, Tmax) ∩ [t0, Tmax).
We define ϕ(x, t) by:

ϕ(x, t) := (t − t0) ψ
k
2 (x − x0). (5.7)

Then we have:

∇n · ∇(︁n × (t − t0)
2ψk(x − x0)

)︁= ∇n · ∇(︁nϕ2)︁= (∇n · ∇n)ϕ2 + 2(∇n · ∇ϕ)nϕ

= |ϕ∇n + n∇ϕ|2 − n2|∇ϕ|2 = |∇(nϕ)|2 − n2|∇ϕ|2, (5.8)

which implies:

−
∫︂
R2

∇n(x, t) · ∇(︁n(x, t)ψk(x − x0)(t − t0)
2)︁ dx

= −
∫︂
R2

|∇(n(x, t)ϕ(x, t))|2 dx +
∫︂
R2

n(x, t)2|∇ϕ(x, t)|2 dx. (5.9)

Substituting (5.9) into (5.6), we obtain:

1

2

d

dt

∫︂
R2

n(x, t)2(t − t0)
2ψk(x − x0) dx = −g0(t) + g1(t) + g2(t) + g3(t) + g4(t) (5.10)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where:

g0(t) =
∫︂

2

|∇(n(x, t)ϕ(x, t))|2 dx ≥ 0,
R
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g1(t) = 1 
t − t0

∫︂
R2

n2(x, t)ϕ2(x, t) dx, g2(t) =
∫︂
R2

n2(x, t)|∇ϕ(x, t)|2 dx,

g3(t) =
∫︂
R2

(n∇v)(x, t) · ∇
(︂
n(x, t)ϕ2(x, t)

)︂
dx,

g4(t) =
∫︂
R2

u(x)n(x, t) · ∇
(︂
n(x, t)ϕ2(x, t)

)︂
dx. (5.11)

We now derive estimates for g1, g2, g3, and g4 as indicated above. To achieve this, we establish 
several auxiliary inequalities based on the Gagliardo–Nirenberg and Hölder inequalities.

Lemma 5.2. Let 0 < ρ < 1 and k ≥ 8. Let t0 ∈ (︁−∞,min{t1 + 2c1ρ
2, Tmax}

)︁
with the constant 

c1 defined in (5.5). Let ϕ be the function introduced in (5.7) with ψ satisfying ρ1 = ρ
2 and 

ρ2 = ρ as in Lemma 3.6. We assume n(t) ∈ L1
loc(R

2) and n(t) ∈ W
1,2
loc (R2) for all t ∈ (0, Tmax)∩

[t0, Tmax). Then, the following estimates hold:∫︂
R2

n3(x, t)ϕ3(x, t) dx ≤ C∥n(t)∥L1(suppψ(·−x0))
(t − t0)g0(t), (5.12)

∫︂
R2

n2(x, t)ϕ2(x, t) dx ≤ C∥n(t)∥L1(suppψ(·−x0))
(t − t0)g

1
2
0 (t), (5.13)

∫︂
R2

n2(x, t)|∇ϕ(x, t)|2 dx ≤ C

(︃
k

ρ

)︃2

∥n(t)∥L1(suppψ(·−x0))
(t − t0)g

1
2
0 (t) (5.14)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where C is an absolute positive constant and g0(t) is as defined 
in (5.11).

In addition, there exists an absolute positive constant C such that:∫︂
R2

n3(x, t)ϕ2(x, t) dx

≤ m∗∥n(t)∥L1(suppψ(·−x0))
g0(t) + C

(︃
k

ρ

)︃2

∥n(t)∥2
L1(suppψ(·−x0))

(t − t0)g
1
2
0 (t) (5.15)

for all t ∈ (0, Tmax) ∩ [t0, Tmax). Here, m∗ is the constant introduced in (2.15).

Proof of Lemma 5.2. First, we prove (5.12). Applying the Gagliardo-Nirenberg inequality, we 
obtain: ∫︂

R2

n3(x, t)ϕ3(x, t) dx ≤ C

∫︂
R2

n(x, t)ϕ(x, t) dx

∫︂
R2

|∇n(x, t)ϕ(x, t)|2 dx

≤ C∥u(t)∥L1(supp ψ(·−x0))
(t − t0)g0(t),
41 



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745 
where C is an absolute positive constant.
Next, we establish (5.13). Using (5.7), (5.12) and the interpolation inequality, we have:∫︂

R2

n2(x, t)ϕ2(x, t)dx ≤
(︂∫︂
R2

n(x, t)ϕ(x, t) dx
)︂ 1

2
(︂∫︂
R2

n3(x, t)ϕ3(x, t) dx
)︂ 1

2

≤ C∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t) (5.16)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where C is an absolute positive constant.
We next address (5.14). Using (5.7) and the Hölder inequality, we obtain:∫︂

R2

n2(x, t)|∇ϕ(x, t)|2dx

≤
(︂k

2 

)︂2(︂∫︂
R2

n(x, t)|∇ψ(x − x0)|4 dx
)︂ 1

2
(︂∫︂
R2

n3(x, t)(t − t0)
4ψ2(k−2)(x − x0) dx

)︂ 1
2
. (5.17)

Since it holds:

(t − t0)
4ψ2(k−2)(x − x0) = ϕ3(x, t) · (t − t0)ψ

k
2 −4(x − x0) ≤ (t − t0)ϕ

3(x, t) (5.18)

for k ≥ 8, substituting (5.18) into (5.17), and applying (3.24) in Lemma 3.6 with ρ1 = ρ
2 and 

ρ2 = ρ, we have:∫︂
R2

n2(x, t)|∇ϕ(x, t)|2dx ≤
(︂k

2 

)︂2(︂32

ρ

)︂2
(t − t0)

1
2 ∥n(t)∥

1
2
L1(supp ψ(·−x0))

(︂∫︂
R2

n3(x, t)ϕ3(x, t) dx
)︂ 1

2

for all k ≥ 8 and all t ∈ (0, Tmax) ∩ [t0, Tmax). Combining this with (5.12) yields:∫︂
R2

n2(x, t)|∇ϕ(x, t)|2dx ≤ C
(︂ k

ρ

)︂2∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t) (5.19)

for all k ≥ 8 and t ∈ (0, Tmax) ∩ [t0, Tmax), where C is an absolute positive constant. Thus, we 
obtain (5.14).

To show (5.15), it should be noted by the Sobolev inequality:

∥w∥L2 ≤ C∥∇w∥L1 for w ∈ W 1,1(R2), (5.20)

where C is an absolute positive constant. By (5.20), we have:∫︂
R2

n3(x, t)ϕ2(x, t) dx =
∫︂
R2

(︁
n

3
2 (x, t)ϕ(x, t)

)︁2
dx ≤ C

(︂∫︂
R2

⃓⃓⃓
∇
(︂
u

3
2 (x, t)ϕ(x, t)

)︂⃓⃓⃓
dx
)︂2

,

where C is an absolute positive constant. Applying the product rule, we have:
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∇(n
3
2 ϕ) = 3

2
n

1
2 ∇nϕ + n

3
2 ∇ϕ = 3

2
n

1
2 ∇(nϕ) − 1

2
n

1
2 n∇ϕ.

By the Hölder inequality, and using (5.14), we deduce:

∫︂
R2

n3(x, t)ϕ2(x, t) dx

≤ m∗
(︂∫︂
R2

n
1
2 (x, t)

⃓⃓⃓
∇
(︂
n(x, t)ϕ(x, t)

)︂⃓⃓⃓
dx
)︂2 + C

(︂∫︂
R2

n
1
2 (x, t) |n(x, t)∇ϕ(x, t)| dx

)︂2

≤ m∗∥n(t)∥L1(supp ψ(·−x0))

∫︂
R2

⃓⃓⃓
∇
(︂
n(x, t)ϕ(x, t)

)︂⃓⃓⃓2
dx

+ C∥n(t)∥L1(supp ψ(·−x0))

∫︂
R2

n2(x, t)|∇ϕ(x, t)|2 dx

≤ m∗∥n(t)∥L1(supp ψ(·−x0))
g0(t) + C

(︂ k

ρ

)︂2∥n(t)∥2
L1(supp ψ(·−x0))

(t − t0)g
1
2
0 (t)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where m∗ is the constant from (2.15), and C is an absolute 
positive constant. This completes the proof of Lemma 5.2. □
Completion of the proof of Proposition 5.1. Concerning g1, using (5.13), we have:

g1(t) ≤ C∥n(t)∥L1(suppψ(·−x0))
g

1
2
0 (t) (5.21)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where C is an absolute positive constant.
For g2, applying (5.14), we deduce:

g2(t) ≤ C

(︃
k

ρ

)︃2

∥n(t)∥L1(suppψ(·−x0))
(t − t0)g

1
2
0 (t) (5.22)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where C is an absolute positive constant.
Regarding g3, we have:

g3(t) =
∫︂
R2

(n∇v)(x, t) · ∇(︁n(x, t)ϕ2(x, t)
)︁
dx

=
∫︂
R2

n(x, t)∇n(x, t) · ∇v(x, t)ϕ2(x, t) dx + 2
∫︂
R2

(n∇v)(x, t) · u(x, t)ϕ(x, t)∇ϕ(x, t) dx

By integration by parts, we obtain:
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g3(t) = −1

2

∫︂
R2

n2(x, t)Δv(x, t)ϕ2(x, t) dx −
∫︂
R2

n2(x, t)∇v(x, t) · ϕ(x, t)∇ϕ(x, t) dx

+ 2
∫︂
R2

(n∇v)(x, t) · n(x, t)ϕ(x, t)∇ϕ(x, t) dx.

Using the second equation in (KSF), we obtain:

g3(t) = −γ

2 

∫︂
R2

n2(x, t)v(x, t)ϕ2(x, t) dx + 1

2

∫︂
R2

n3(x, t)ϕ2(x, t) dx

+
∫︂
R2

n2(x, t)∇v(x, t) · ϕ(x, t)∇ϕ(x, t) dx

≤ 1

2

∫︂
R2

n3(x, t)ϕ2(x, t) dx −
∫︂
R2

n2(x, t)v(x, t)
(︂
|∇ϕ(x, t)|2 + ϕΔϕ(x, t)

)︂
dx

− 2
∫︂
R2

n(x, t)∇n(x, t) · v(x, t)ϕ(x, t)∇ϕ(x, t) dx

=: g3,1(t) + g3,2(t) + g3,3(t), (5.23)

where the terms are defined as follows:

g3,1(t) := 1

2

∫︂
R2

n3(x, t)ϕ2(x, t) dx,

g3,2(t) := −
∫︂
R2

n2(x, t)v(x, t)
(︂
|∇ϕ(x, t)|2 + ϕΔϕ(x, t)

)︂
dx,

g3,3(t) := −2
∫︂
R2

n(x, t)∇n(x, t) · v(x, t)ϕ(x, t)∇ϕ(x, t) dx.

Regarding g3,1, it follows from (5.15) that:

g3,1(t) ≤ m∗
2 

∥n(t)∥L1(supp ψ(·−x0))
g0(t) + C

(︂ k

ρ

)︂2∥n(t)∥2
L1(supp ψ(·−x0))

(t − t0)g
1
2
0 (t) (5.24)

for all t ∈ (0, Tmax) ∩ [t0, Tmax). The constant m∗ is introduced in (2.15), and C is an absolute 
positive constant.

We now estimate g3,2. By its definition, we see:

g3,2(t) ≤
∫︂
R2

n2(x, t)v(x, t)
(︂
|∇ϕ(x, t)|2 + ϕ(x, t)|Δϕ(x, t)|

)︂
dx =: J. (5.25)

Since we find:
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,

|∇ϕ(x, t)|2 =
(︂k

2 

)︂2
(t − t0)

2ψk−2(x − x0)|∇ψ(x − x0)|2

and:

ϕ(x, t)|Δϕ(x, t)|
= (t − t0)ψ

k
2 (x − x0) · (t − t0)|Δψ

k
2 (x − x0)|

≤ (t − t0)
2ψ

k
2 (x − x0)

k

2 

{︃
(
k

2 
− 1)ψ

k
2 −2(x − x0)|∇ψ(x − x0)|2 + ψ

k
2 −1(x − x0)|Δψ(x − x0)|

}︃
choosing k ≥ 8 and ρ1 = ρ

2 and ρ2 = ρ in Lemma 3.6, and using (3.24) and (3.25), we have:

|∇ϕ(x, t)|2 + ϕ(x, t)|Δϕ(x, t)|
≤ k(k − 1)

2 
(t − t0)

2ψk−2(x − x0)
(︂
|∇ψ(x − x0)|2 + ψ(x − x0)|Δψ(x − x0)|

)︂
≤ Ck(k − 1)

ρ2 (t − t0)
2ψk−1(x − x0), (5.26)

where C is an absolute positive constant. Substituting (5.26) into (5.25), we obtain:

J ≤ Ck(k − 1)

ρ2

∫︂
R2

n2(x, t)v(x, t)(t − t0)
2ψk−1(x − x0) dx. (5.27)

On the other hand, by the definition of the Lorentz norm as given in (2.1) and the Hardy
Littlewood rearrangement theorem, we have:∫︂

R2

|φ1(x)φ2(x)| dx ≤ ∥φ1∥Lp,1∥φ2∥Lp′,∞ (5.28)

for all 1 < p < ∞ with 1 
p

+ 1 
p′ = 1.

Since it holds:

(t − t0)
2ψk−1(x − x0) = (t − t0)

2
3 ϕ

4
3 (x, t)ψ

k
3 −1(x − x0)

≤ (t − t0)
2
3 ϕ

4
3 (x, t)χsupp ψ(·−x0)(x) (5.29)

for k ≥ 3, we observe from (5.27), (5.28), (5.29) and the Hölder inequality for weak spaces:

J ≤ Ck(k − 1)

ρ2

∫︂
R2

n2(x, t)v(x, t)(t − t0)
2
3 ϕ

4
3 (x, t)χsupp ψ(·−x0)(x) dx

≤ Ck(k − 1)

ρ2 ∥n2(t)v(t)ϕ
4
3 (t)∥

L
6
5 ,∞∥χsupp ψ(·−x0)∥L6,1(t − t0)

2
3

≤ Ck(k − 1)

2 ∥n2(t)ϕ
4
3 (t)∥ 3 ,∞∥v(t)∥L6,∞∥χsupp ψ(·−x0)∥L6,1(t − t0)

2
3

ρ L 2
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≤ Ck(k − 1)

ρ2 ∥n2(t)ϕ
4
3 (t)∥

L
3
2
∥v(t)∥L6,∞∥χsupp ψ(·−x0)∥L6,1(t − t0)

2
3 , (5.30)

where C is an absolute positive constant. By direct computation, we obtain:

∥χsupp ψ(·−x0)∥L6,1 =
∞ ∫︂

0 

sμ(|χsupp ψ(·−x0)| > s)
1
6

ds

s
=

1 ∫︂
0 

|Bρ(x0)| 1
6 ds = π

1
6 ρ

1
3 . (5.31)

By Lemma 3.5, we find:

∥v(t)∥L6,∞ = ∥(γ − Δ)−
5
6 (γ − Δ)−

1
6 n(t)∥L6,∞ ≤ C∥(γ − Δ)−

1
6 n(t)∥L1 ≤ C∥n(t)∥L1 , (5.32)

where C = C(γ ). Substituting (5.31) and (5.32) into (5.30), we have:

J ≤ Ck(k − 1)

ρ
5
3

∥n(t)∥L1∥n3(t)ϕ2(t)∥
2
3
L1(t − t0)

2
3 , (5.33)

where C = C(γ ). According to (5.15):

(︂∫︂
R2

n3(x, t)ϕ2(x, t) dx
)︂ 2

3

≤ m
2
3∗
(︂
∥n(t)∥

2
3
L1(supp ψ(·−x0))

g
2
3
0 (t) +

(︂ k

ρ

)︂ 4
3 ∥n(t)∥

4
3
L1(supp ψ(·−x0))

(t − t0)
2
3 g

1
3
0 (t)

)︂
, (5.34)

where m∗ is the constant associated with (2.15). Combining (5.34) with (5.25) and (5.33), it 
follows that:

g3,2(t) ≤ J ≤ Ck2

ρ
5
3

∥n(t)∥L1∥n(t)∥
2
3
L1(supp ψ(·−x0))

(t − t0)
2
3 g

2
3
0 (t)

+ Ck
10
3 

ρ3 ∥n(t)∥L1∥n(t)∥
4
3
L1(supp ψ(·−x0))

(t − t0)
4
3 g

1
3
0 (t), (5.35)

where C = C(γ ).
For g3,3, using the identity (∇n)ϕ = ∇(nϕ) − n∇ϕ, we obtain:

g3,3(t) = −2
∫︂
R2

n(x, t)∇n(x, t)ϕ(x, t) · v(x, t)∇ϕ(x, t) dx

≤ 2∥∇(nϕ)(t)∥L2∥n(t)v(t)∇ϕ(t)∥L2 + 2
∫︂
R2

n2(x, t)v(x, t)|∇ϕ(x, t)|2 dx

≤ 2g
1
2
0 (t)∥n(t)v(t)∇ϕ(t)∥L2 + 2J. (5.36)
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Applying Lemma 3.6 with ρ1 = ρ
2 and ρ2 = ρ, together with (5.28) and the Hölder inequality 

for weak spaces, we estimate:

∥n(t)v(t)∇ϕ(t)∥2
L2

=
(︂k

2 

)︂2
∫︂
R2

n2(x, t)v2(x, t)(t − t0)
2|∇ψ(x − x0)|2ψk−2(x − x0) dx

≤ C
(︂k

2 

)︂2(︂4
√

2

ρ

)︂2∥n2(t)v2(t)ϕ
4
3 (t)∥

L
6
5 ,∞∥χsupp ψ(·−x0)∥L6,1(t − t0)

2
3

≤ C
(︂k

2 

)︂2(︂4
√

2

ρ

)︂2∥n2(t)ϕ
4
3 (t)∥

L
3
2
∥v2(t)∥L6,∞∥χsupp ψ(·−x0)∥L6,1(t − t0)

2
3

= C
(︂k

2 

)︂2(︂4
√

2

ρ

)︂2∥n2(t)ϕ
4
3 (t)∥

L
3
2
∥v(t)∥2

L12,∞∥χsupp ψ(·−x0)∥L6,1(t − t0)
2
3 , (5.37)

where C is an absolute positive constant. By Lemma 3.5, we have:

∥v(t)∥L12,∞ = ∥(γ − Δ)−
11
12 (γ − Δ)−

1 
12 n(t)∥L12,∞ ≤ C∥(γ − Δ)−

1 
12 n(t)∥L1 ≤ C∥n(t)∥L1,

(5.38)

where C = C(γ ). Substituting (5.31) and (5.38) into (5.37), we obtain:

∥n(t)v(t)∇ϕ(t)∥2
L2 ≤ Ck2

ρ
5
3

∥n3(t)φ2(t)∥
2
3
L1∥n(t)∥2

L1(t − t0)
2
3 , (5.39)

where C = C(γ ). Further substituting (5.15) into (5.39), we obtain:

∥n(t)v(t)∇ϕ(t)∥L2 ≤ Ck

ρ
5
6

∥n(t)∥L1(t − t0)
1
3

×
(︂
∥n(t)∥

1
3
L1(supp ψ(·−x0))

g
1
3
0 (t) +

(︂ k

ρ

)︂ 2
3 ∥n(t)∥

2
3
L1(supp ψ(·−x0))

(t − t0)
1
3 g

1
6
0 (t)

)︂
, (5.40)

where C = C(γ ). Using (5.35) and (5.40) in (5.36), we estimate g3,3(t) as follows:

g3,3(t) ≤ 2g
1
2
0 (t)∥u(t)v(t)∇ϕ(t)∥2 + 2J

≤ Ck

ρ
5
6

∥n(t)∥1(t − t0)
1
3 g

1
2
0 (t)

×
(︂
∥n(t)∥

1
3
L1(supp ψ(·−x0))

g
1
3
0 (t) +

(︂ k

ρ

)︂ 2
3 ∥n(t)∥

2
3
L1(supp ψ(·−x0))

(t − t0)
1
3 g

1
6
0 (t)

)︂
+ Ck2

5 ∥n(t)∥L1∥n(t)∥
2
3
L1(supp ψ(·−x0))

(t − t0)
2
3 g

2
3
0 (t)
ρ 3
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+ Ck
10
3 

ρ3 ∥n(t)∥L1∥n(t)∥
4
3
L1(supp ψ(·−x0))

(t − t0)
4
3 g

1
3
0 (t), (5.41)

where C = C(γ ).
Combining (5.23), (5.24), (5.35), and (5.41), we obtain:

g3(t) ≤ m∗
2 

∥n(t)∥L1(supp ψ(·−x0))
g0(t) + C

(︂ k

ρ

)︂2∥n(t)∥2
L1(supp ψ(·−x0))

(t − t0)g
1
2
0 (t)

+ Ck2

ρ
5
3

∥n(t)∥L1∥n(t)∥
2
3
L1(supp ψ(·−x0))

(t − t0)
2
3 g

2
3
0 (t)

+ Ck
10
3 

ρ3 ∥n(t)∥L1∥n(t)∥
4
3
L1(supp ψ(·−x0))

(t − t0)
4
3 g

1
3
0 (t)

+ Ck

ρ
5
6

∥n(t)∥L1∥n(t)∥
1
3
L1(supp ψ(·−x0))

(t − t0)
1
3 g

5
6
0 (t), (5.42)

where m∗ is the constant associated with (2.15) and C = C(γ ).
To evaluate g4, we utilize the product rule for differentiation:

g4(t) =
∫︂
R2

u(x)n(x, t) · ∇
(︂
n(x, t)ϕ2(x, t)

)︂
dx

=
∫︂
R2

u(x)n(x, t) ·
(︂
∇n(x.t)ϕ2(x, t)

)︂
dx + 2

∫︂
R2

u(x)n(x, t) ·
(︂
n(x.t)ϕ(x, t)∇ϕ(x, t)

)︂
dx

= −1

2

∫︂
R2

n2(x, t) ∇ ·
(︂
u(x)ϕ2(x, t)

)︂
dx + 2

∫︂
R2

n2(x, t)u(x) · ϕ(x, t)∇ϕ(x, t) dx

= −1

2

∫︂
R2

n2(x, t) ∇ · u(x) ϕ2(x, t) dx +
∫︂
R2

n2(x, t)u(x) · ϕ(x, t)∇ϕ(x, t) dx

=: g4,1(t) + g4,2(t).

For g4,1, using (2.7) and (5.13), we estimate:

g4,1(t) ≤ 1

2
∥∇ · u∥L∞

∫︂
R2

n2(x, t)ϕ2(x, t) dx ≤ C∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t),

where C = C(Q,λ).
Next, we consider g4,2. Combining (2.7), (5.13), and (5.14), we have:

g4,2(t) ≤ ∥∇ · u∥L∞
∫︂

2

n2(x, t)ϕ(x, t)|∇ϕ(x, t)| dx
R
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≤ 1

2
∥∇ · u∥L∞

∫︂
R2

n2(x, t)ϕ2(x, t) dx + 1

2
∥∇ · u∥L∞

∫︂
R2

n2(x, t)|∇ϕ(x, t)|2 dx

≤ C∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t) + C

(︂ k

ρ

)︂2∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t),

where C = C(Q,λ). By summing up the contributions from g4,1 and g4,2, we obtain:

g4(t) ≤ C∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t) + C

(︂ k

ρ

)︂2∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t),

(5.43)

where C = C(Q,λ).
From (5.10), (5.21), (5.22), (5.42), and (5.43), the following inequality holds:

1

2

d

dt

∫︂
R2

n2(x, t)(t − t0)
2ψk(x − x0) dx

≤ −g0(t) + C∥n(t)∥L1(supp ψ(·−x0))
g

1
2
0 (t) + C

(︂ k

ρ

)︂2∥n(t)∥L1(supp ψ(·−x0))
(t − t0)g

1
2
0 (t)

+ m∗
2 

∥n(t)∥L1(supp ψ(·−x0))
g0(t) + C

(︂ k

ρ

)︂2∥n(t)∥2
L1(supp ψ(·−x0))

(t − t0)g
1
2
0 (t)

+ Ck2

ρ
5
3

∥n(t)∥L1∥n(t)∥
2
3
L1(supp ψ(·−x0))

(t − t0)
2
3 g

2
3
0 (t)

+ Ck
10
3 

ρ3 ∥n(t)∥L1∥n(t)∥
4
3
L1(supp ψ(·−x0))

(t − t0)
4
3 g

1
3
0 (t)

+ Ck

ρ
5
6

∥n(t)∥L1∥n(t)∥
1
3
L1(supp ψ(·−x0))

(t − t0)
1
3 g

5
6
0 (t)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where m∗ is the constant associated with (2.15), and C =
C(γ,Q,λ). Using the Young inequality and (2.14) in Theorem 2.1 (III), we obtain:

1

2

d

dt

∫︂
R2

n2(x, t)(t − t0)
2ψk(x − x0) dx

≤ −1

2
g0(t) + m∗

2 
∥n(t)∥L1(supp ψ(·−x0))

g0(t) + C

ρ5

(︁
(t − t0)

2 + 1
)︁∥n(t)∥L1(supp ψ(·−x0))

(5.44)

for all 0 < ρ ≤ 1 and t ∈ (0, Tmax) ∩ [t0, Tmax), where m∗ is the constant associated with (2.15), 
and C = C(γ,Q,λ,∥n0∥L1).

Now, let x0 ∈ R2 and t1 ∈ [0, Tmax), and assume that (5.1) holds with the absolute positive 
constant m∗ defined in (2.15). Applying Lemma 3.7 with ρ1 = ρ and ρ2 = ρ, we have:
2 
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∫︂
Bρ(x0)

n(x, t) dx ≤ ˜︁C
ρ2 ∥n0∥L1(1 + ∥n0∥L1)|t1 − t | +

∫︂
B2ρ(x0)

n(x, t1) dx

≤ ˜︁C
ρ2 ∥n0∥L1(1 + ∥n0∥L1)|t1 − t | + 1 

4m∗
(5.45)

for all t ∈ (t1, Tmax), where ˜︁C = ˜︁C(γ,Q,λ). Let us define a and b as follows:

a := max{0, t1 − 2c1ρ
2} and b := min{t1 + 2c1ρ

2, Tmax}

with c1 = 1 

8˜︁Cm∗∥n0∥L1(1 + ∥n0∥L1)
. (5.46)

Substituting this definition (5.46) into (5.45), we deduce:

∫︂
Bρ(x0)

n(x, t) dx ≤ ˜︁C
ρ2 ∥n0∥L1(1 + ∥n0∥L1) · 2c1ρ

2 + 1 
4m∗

= 1 
2m∗

(5.47)

for all t ∈ (0, Tmax) ∩ (t1 − 2c1ρ
2, t1 + 2c1ρ

2). Using the result in (5.47) with (5.44), we obtain:

d

dt

∫︂
R2

n2(x, t)(t − t0)
2ψk(x − x0) dx ≤ C

2m∗ρ5

(︁
(t − t0)

2 + 1
)︁

(5.48)

for all t ∈ (0, Tmax) ∩ [t0, Tmax) ∩ (t1 − 2c1ρ
2, t1 + 2c1ρ

2), where C = C(γ,Q,λ,∥n0∥L1).

(i). In the case 2c1ρ
2 ≤ t1 < Tmax, we choose t0 as a = max{0, t1 −2c1ρ

2} = t1 −2c1ρ
2 in (5.48). 

Integrating both sides of (5.48) over [a, s] for s ∈ (a, b), we find:

∫︂
R2

n2(x, s)(s − a)2ψk(x − x0) dx ≤ C

2m∗ρ5

(︃
(s − a)3

3 
+ (s − a)

)︃
,

which implies:

∫︂
R2

n2(x, s)ψk(x − x0) dx ≤ C

2m∗ρ5

(︃
s − a

3 
+ 1 

s − a

)︃
. (5.49)

Since s satisfies:

s ∈ [a,Tmax) ∩ (a + c1ρ
2, b) = (a + c1ρ

2, min{t1 + 2c1ρ
2, Tmax})

= (t1 − c1ρ
2, min{t1 + 2c1ρ

2, Tmax}),

it holds:
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c1ρ
2 < s − a < min{4c1ρ

2, Tmax − t1 + 2c1ρ
2}

=
{︄

4c1ρ
2 when 2c1ρ

2 < Tmax − t1,

Tmax − t1 + 2c1ρ
2 when 2c1ρ

2 ≥ Tmax − t1,

≤ 4c1ρ
2.

This, together with (5.49), yields:

∫︂
B ρ

2 
(x0)

n2(x, s) dx ≤ C

ρ3

for all s ∈ (t1 − c1ρ
2, min{t1 +2c1ρ

2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1). This provides the 
estimate (5.2).

(ii). In the case 0 < t1 < min{2c1ρ
2, Tmax}, we choose t0 as 0 in (5.48). Integrating both sides of 

(5.48) over [0, s] for s ∈ (0, b), we have:

∫︂
R2

n2(x, s)s2ψk(x − x0) dx ≤ C

2m∗ρ5

(︃
s3

3 
+ s

)︃
.

This yields:

∫︂
R2

sn2(x, s)ψk(x − x0) dx ≤ C

2m∗ρ5

(︃
s2

3 
+ 1

)︃
. (5.50)

Since s ∈ (0, b), it follows:

0 < s < b ≤ t1 + 2c1ρ
2 ≤ 4c1ρ

2.

Thus, combining this with (5.50), we have:

∫︂
B ρ

2 
(x0)

sn2(x, s) dx ≤ C(s2 + 1)

ρ5
≤ C

ρ5

for all s ∈ (0, min{t1 + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1). This provides the desire 

estimate (5.3).

(iii). For the case 2c1ρ
2 ≥ Tmax, the situation 2c1ρ

2 ≤ t1 < Tmax as described in (i) does not 
arise. As (ii), we consider 0 < t1 < min{2c1ρ

2, Tmax} = Tmax and choose t0 = −ρ2 in (5.48). 
Then, integrating both sides of (5.48) over [0, s] for s ∈ (0, b), we have:
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∫︂
R2

n2(x, s)(s + ρ2)2ψk(x − x0) dx

≤ C

2m∗ρ5

(︃
(s + ρ2)3

3 
+ (s + ρ2)

)︃
+
∫︂
R2

n2
0(x)ρ4ψk(x − x0) dx. (5.51)

Since it holds:

0 < s < b ≤ t1 + 2c1ρ
2 ≤ 4c1ρ

2,

we deduce from (5.51):∫︂
B ρ

2 
(x0)

n2(x, s) dx ≤ C

2m∗ρ5

(︃
(s + ρ2)

3 
+ 1 

s + ρ2

)︃
+
∫︂
R2

n2
0(x)ψk(x − x0)

ρ4

(s + ρ2)2 dx

≤ C

ρ7 + ∥n0∥2
L2(Bρ(x0))

for all s ∈ (0, min{t1 + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1). Thus, the estimate (5.4)

is obtained. This completes the proof of Proposition 5.1. □
Step 2. This theorem provides local Lp(R2)-estimates for the gradient of v. If the local mass 
of n satisfies (5.52), bounds for ∥∇v∥Lp are derived in three cases based on the relationships 
between t1, Tmax, and 2c1ρ

2, as given in (5.53), (5.54), and (5.55).

Proposition 5.3. Let 2 ≤ p < ∞. Let Assumption 2.1 hold and suppose that n0 ∈ L1(R2). 
Let Tmax denote the maximal existence time of the strong solution (n, v) of (KSF) obtained 
in Theorem 2.1 (I)--(III). There exist an absolute positive constant m∗ and a positive constant 
c1 = c1(γ,Q,λ,∥n0∥L1(R2)) such that if :∫︂

B2ρ(x0)

n(x, t1) dx ≤ m∗ (5.52)

holds for some x0 ∈ R2, 0 < ρ ≤ 1, and t1 ∈ [0, Tmax), then the following estimates are valid:

(i). In the case 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, the following estimate holds:

sup 
s∈(t1−c1ρ

2, min{t1+2c1ρ
2,Tmax})

∥∇v(s)∥
Lp

(︂
B ρ

4 
(x0)

)︂ ≤ C

ρ
3
2

. (5.53)

(ii). In the case 2c1ρ
2 < Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = 2c1ρ
2, the following estimate 

holds:

sup 
2

s
1
2 ∥∇v(s)∥

Lp
(︂
B ρ (x0)

)︂ ≤ C
5
2

. (5.54)

s∈(0, min{t1+2c1ρ ,Tmax}) 4 ρ
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(iii). In the case 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = Tmax, provided that n0 ∈
L2

loc(R
2), the following estimate holds:

sup 
s∈(0,min{t1+2c1ρ

2,Tmax})
∥∇v(s)∥

Lp
(︂
B ρ

4 
(x0)

)︂ ≤ C

(︃
1 

ρ
7
2

+ ∥n0∥L2(Bρ(x0))

)︃
. (5.55)

Here, C = C(γ,Q,λ,∥n0∥L1(R2), p), and it is independent of x0 and ρ.

Proof of Proposition 5.3. Applying Lemma 3.4 with ρ1 = ρ
4 and ρ2 = ρ

2 , we find that there 
exists a constant C = C(γ,p) satisfying:

∥∇v(s)∥Lp
(︁
B ρ

4 
(x0)

)︁ ≤ C

(︃
ρ

2 
p

ρ
∥n(s)∥L1 + ∥n(s)∥

L2
(︂
B ρ

2 
(x0)

)︂)︃, (5.56)

for all s ∈ (0, Tmax).

(i). In the case 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, it follows from Proposition 5.1 (i) that:

sup 
s∈(t1−c1ρ

2, min{t1+2c1ρ
2,Tmax})

∫︂
B ρ

2 
(x0)

n2(x, s) dx ≤ C

ρ3 , (5.57)

where C = C(γ,Q,λ,∥n0∥L1). From (5.56), (5.57) and (2.14) in Theorem 2.1 (III), we have:

sup 
s∈(t1−c1ρ

2, min{t1+2c1ρ
2,Tmax})

∥∇v(s)∥
Lp

(︂
B ρ

4 
(x0)

)︂ ≤ C

(︃
ρ

2 
p

ρ
∥n0∥L1 + 1 

ρ
3
2

)︃
≤ C

ρ
3
2

for 2 ≤ p < ∞, where C = C(γ,Q,λ,∥n0∥L1,p).

(ii). In the case 0 ≤ t1 < min{2c1ρ
2, Tmax} = 2c1ρ

2, we obtain from Proposition 5.1 (ii):

sup 
s∈(0, min{t1+2c1ρ

2,Tmax})

∫︂
B ρ

2 
(x0)

sn2(x, s) dx ≤ C

ρ5
, (5.58)

where C = C(γ,Q,λ,∥n0∥L1). Since s ∈ (0, min{t1 + 2c1ρ
2, Tmax}), it holds:

0 < s < min{t1 + 2c1ρ
2, Tmax}) =

{︄
t1 + 2c1ρ

2 when 2c1ρ
2 < Tmax − t1,

Tmax when 2c1ρ
2 ≥ Tmax − t1,

≤ t1 + 2c1ρ
2 ≤ 4c1ρ

2.

Using (5.56), (5.58), and (2.14) in Theorem 2.1 (III), we deduce:
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sup 
s∈(0, min{t1+2c1ρ

2,Tmax})
s

1
2 ∥∇v(s)∥

Lp
(︂
B ρ

4 
(x0)

)︂

≤ C

(︄
s

1
2
ρ

2 
p

ρ
∥n0∥L1 +

(︃
sup 

s∈(0, min{t1+2c1ρ
2,Tmax})

∫︂
B ρ

2 
(x0)

sn2(x, s) dx

)︃ 1
2
)︄

≤ C

(︃
ρ

ρ
2 
p

ρ
∥n0∥L1 + 1 

ρ
5
2

)︃
≤ C

ρ
5
2

for 2 ≤ p < ∞, where C = C(γ,Q,λ,∥n0∥L1,p).

(iii). In the case 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = Tmax, we have, by Proposi
tion 5.1 (iii):

sup 
s∈(0,min{t1+2c1ρ

2,Tmax})

∫︂
B ρ

2 
(x0)

n2(x, s) dx ≤ C

ρ7 + ∥n0∥2
L2(Bρ(x0))

, (5.59)

where C = C(γ,Q,λ,∥n0∥L1). From (5.56), (5.59) and (2.14) in Theorem 2.1 (III), we find:

sup 
s∈(0, min{t1+2c1ρ

2,Tmax})
∥∇v(s)∥

Lp
(︂
B ρ

4 
(x0)

)︂ ≤ C

(︃
ρ

2 
p

ρ
∥n0∥L1 + C

ρ
7
2

+ ∥n0∥L2(Bρ(x0))

)︃

≤ C

(︃
1 

ρ
7
2

+ ∥n0∥L2(Bρ(x0))

)︃

for 2 ≤ p < ∞, where C = C(γ,Q,λ,∥n0∥L1,p). This completes the proof of Proposi
tion 5.3. □
Step 3. In this step, we derive the estimates required for the application of Moser’s iteration 
technique.

Proposition 5.4. Let 2 < p < ∞ and let i ∈ N with i ≥ 2. Let Assumption 2.1 hold and suppose 
that n0 ∈ L1(R2). Let Tmax denote the maximal existence time of the strong solution (n, v) of 
(KSF) obtained in Theorem 2.1 (I)--(III). There exist an absolute positive constant m∗ and a 
positive constant c1 = c1(γ,Q,λ,∥n0∥L1(R2)) such that if :

∫︂
B2ρ(x0)

n(x, t1) dx ≤ m∗ (5.60)

holds for some x0 ∈ R2, 0 < ρ ≤ 1, and t1 ∈ [0, Tmax), then, for any 0 < ρ1 < ρ2 ≤ ρ, the 
following estimates are valid:
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(i). In the case 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, the following estimate holds:

∥n(s)∥L2i (Bρ1 (x0))
≤
(︃

Ci 

(ρ2 − ρ1)
9
5

)︃ 5 
2i
(︃

1 
ρ

)︃ 1
i

sup 
t1−c1ρ

2<τ<min{t+2c1ρ
2,Tmax}

∥n(τ)∥Li(Bρ2 (x0))

(5.61)

for all s ∈ (t1 − c1ρ
2,min{t1 + 2c1ρ

2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1(R2), p).
(ii). In the case 2c1ρ

2 < Tmax and 0 ≤ t1 < min{2c1ρ
2, Tmax} = 2c1ρ

2, the following estimate 
holds:

s
1− 1 

2i
+ 2(i−1) 

i(p−2) ∥n(s)∥L2i (Bρ1 (x0))

≤
(︃

Ci 
(ρ2 − ρ1)3

)︃ 5 
2i

sup 
τ∈(0, min{t+2c1ρ

2,Tmax})
τ

1− 1
i
+ 2(i−2) 

i(p−2) ∥n(τ)∥Li(Bρ2 (x0))
(5.62)

for all s ∈ (0,min{t1 + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1(R2), p).

(iii). In the case 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = Tmax, provided that n0 ∈
L2

loc(R
2), the following estimate holds:

∥n(s)∥L2i (Bρ1 (x0))

≤
(︂ Ci 

(ρ2 − ρ1)
21
5 

)︂ 5 
2i

(︃
1 
ρ

)︃ 1
i

sup 
0<τ<min{t+2c1ρ

2,Tmax}
∥n(τ)∥Li(Bρ2 (x0))

+ ∥n0∥L2i (Bρ2 (x0))

(5.63)

for all s ∈ (0,min{t1 + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ, ∥n0∥L1(R2), p).

Proof of Proposition 5.4. Let x0 ∈ R2, and let 0 < ρ1 < ρ2. We suppose that ψ be the cut-off 
function given in Lemma 3.6 corresponding to ρ1 and ρ2 ≤ ρ. We choose t0 ∈ (−∞,min{t1 +
2c1ρ

2, Tmax}) and t ∈ [max{0, t0}, Tmax). Let ℓ ≥ 2 and let i ∈ N with i ≥ 2. We define ϕ by:

ϕ(x, t) := (t − t0)
ℓ 
2 ψ4(x − x0). (5.64)

Using the following identity:

1 
2i

∂t

(︂
n2i (x, t)ϕ2(x, t)

)︂
= ℓ 

2i(t − t0)
n2i (x, t)ϕ2(x, t) + n2i−1(x, t)∂tn(x, t)ϕ2(x, t),

we deduce:

1 
2i

d

dt

∫︂
R2

n2i (x, t)ϕ2(x, t) dx

= ℓ 
2i(t − t0)

∫︂
2

n2i (x, t)ϕ2(x, t) dx −
∫︂

2

∇(n2i−1(x, t)ϕ2(x, t)) · ∇n(x, t) dx
R R
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+
∫︂
R2

∇(n2i−1(x, t)ϕ2(x, t)) · ∇v(x, t)n(x, t) dx +
∫︂
R2

∇(n2i−1(x, t)ϕ2(x, t)) · u(x)n(x, t) dx.

Examining the term −∇(︁n2i−1(x, t)ϕ2(x, t)
)︁ · ∇n(x, t), we find:

−∇(n2i−1(x, t)ϕ2(x, t)) · ∇n(x, t) = −2i − 1

i2

(︁|∇(ni(x, t)ϕ(x, t))|2 − |ni(x, t)∇ϕ(x, t)|2)︁
+ 2(i − 1)

i2 ni(x, t)ϕ(x, t)∇ni(x, t) · ∇ϕ(x, t). (5.65)

For the last term, we have:

2(i − 1)

i2 ni(x, t)ϕ(x, t)∇ni(x, t) · ∇ϕ(x, t)

= 2(i − 1)

i2

(︁∇(ni(x, t)ϕ(x, t)) − ni(x, t)∇ϕ(x, t)
)︁ · ni(x, t)∇ϕ(x, t)

≤ i − 1

i2

(︂
|∇(ni(x, t)ϕ(x, t))|2 − |ni(x, t)∇ϕ(x, t)|2

)︂
. (5.66)

Combining (5.65) with (5.66), we have:

−∇(n2i−1(x, t)ϕ2(x, t)) · ∇n(x, t) ≤ −1

i
|∇(ni(x, t)ϕ(x, t))|2 + 1

i
|ni(x, t)∇ϕ(x, t)|2.

This leads to the inequality:

1 
2i

d

dt

∫︂
R2

n2i (x, t)ϕ2(x, t) dx ≤ −g̃0(t) + g̃1(t) + g̃2(t) + g̃3(t) + g̃4(t), (5.67)

where the terms are defined as:

g̃0(t) = 1

i

∫︂
R2

|∇(ni(x, t)ϕ(x, t))|2 dx, g̃1(t) = ℓ 
2i(t − t0)

∫︂
|ni(x, t)ϕ(x, t)|2 dx,

g̃2(t) = 1

i

∫︂
R2

|ni(x, t)∇ϕ(x, t)|2 dx, g̃3(t) =
∫︂
R2

∇(n2i−1(x, t)ϕ2(x, t)) · ∇v(x, t)n(x, t) dx,

g̃4(t) =
∫︂
R2

∇(n2i−1(x, t)ϕ2(x, t)) · u(x)n(x, t) dx. (5.68)

Next, we derive three estimates for ni in L2 and L3.

Lemma 5.5. Let x0 ∈ R2, 0 < ρ ≤ 1, and ℓ ≥ 2. We suppose that i ≥ 2 is an integer, and take 
t0 ∈ (−∞,min{t1 + 2c1ρ

2, Tmax}), where c1 is the constant in (5.5). We denote by ϕ the function 
defined in (5.64), where ψ satisfies ρ1 = ρ/2 and ρ2 = ρ as in Lemma 3.6. We further assume 
that n(t) ∈ Li(Bρ (x0)) for every t ∈ (0, Tmax) ∩ [t0, Tmax). Then, the following estimates hold:
2

56 



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745 
∫︂
R2

|ni(x, t)ϕ(x, t)|3 dx ≤ Ci(t − t0)
ℓ 
2 g̃0(t)∥n(t)∥i

Li (Bρ2 (x0))
, (5.69)

∫︂
R2

|ni(x, t)ϕ(x, t)|2 dx ≤ Ci
1
2 (t − t0)

ℓ 
2 g̃0

1
2 (t)∥n(t)∥i

Li (Bρ2 (x0))
, (5.70)

∫︂
R2

|ni(x, t)∇ϕ(x, t)|2 dx ≤ Ci
1
2

(ρ2 − ρ1)2 (t − t0)
ℓ 
2 g̃0

1
2 (t)∥n(t)∥i

Li (Bρ2 (x0))
(5.71)

for all t ∈ (0, Tmax) ∩ [t0, Tmax), where C is an absolute positive constant, and g̃0 is as defined 
in (5.68).

Proof of Lemma 5.5. Concerning (5.69), the Gagliardo–Nirenberg inequality gives:∫︂
R2

|ni(x, t)ϕ(x, t)|3 dx ≤ C∥∇(ni(t)ϕ(t))∥2
L2∥ni(t)ϕ(t)∥L1

≤ Ci(t − t0)
ℓ 
2 g̃0(t)∥n(t)∥i

Li (Bρ2 (x0))
,

where C is an absolute positive constant.
For (5.70), we apply (5.69) to estimate:∫︂
R2

|ni(x, t)ϕ(x, t)|2 dx ≤ ∥ni(t)ϕ(t)∥
3
2
L3∥ni(t)ϕ(t)∥

1
2
L1

≤
(︂
Ci(t − t0)

ℓ 
2 g̃0(t)∥n(t)∥i

Li (Bρ2 (x0))

)︂ 1
2
(t − t0)

ℓ 
4 ∥n(t)∥

i
2
Li(Bρ2 (x0))

≤ Ci
1
2 (t − t0)

ℓ 
2 g̃0

1
2 (t)∥n(t)∥i

Li (Bρ2 (x0))
,

where C is an absolute positive constant.
Next, we consider (5.71). From (3.24) in Lemma 3.6, it follows:

|∇ϕ(x)|2 ≤ C

(ρ2 − ρ1)2 (t − t0)
ℓψ6(x − x0) = C

(ρ2 − ρ1)2 (t − t0)
ℓ 
4 ϕ

3
2 (x, t).

This, together with (5.69), leads to the conclusion:∫︂
R2

|ni(x, t)∇ϕ(x, t)|2 dx

≤ C

(ρ2 − ρ1)2 (t − t0)
ℓ 
4 ∥ni(t)ϕ(t)∥

3
2
L3∥n(t)∥

i
2
Li(Bρ2 (x0))

≤ C

2 (t − t0)
ℓ 
4

(︂
Ci(t − t0)

ℓ 
2 g̃0(t)∥n(t)∥i

Li (Bρ (x0))

)︂ 1
2 ∥n(t)∥

i
2
Li(Bρ (x0))
(ρ2 − ρ1) 2 2
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≤ Ci
1
2

(ρ2 − ρ1)2 (t − t0)
ℓ 
2 g̃0

1
2 (t)∥n(t)∥i

Li (Bρ2 (x0))
,

where C is an absolute positive constant. This completes the proof of Lemma 5.5. □
Continuation of the proof of Proposition 5.4. As for g̃1 and g̃2, using (5.69) in Lemma 5.5, 
we obtain:

g̃1(t) ≤ Ci−
1
2 ℓ(t − t0)

ℓ 
2 −1g̃0

1
2 (t)∥n(t)∥i

Li (Bρ2 (x0))
≤ g̃0(t)

8 
+ Cℓ2(t − t0)

ℓ−2∥n(t)∥2i
Li (Bρ2 (x0))

,

(5.72)

where C is an absolute positive constant. Similarly, applying (5.70) in Lemma 5.5, we obtain the 
following estimate:

g̃2(t) ≤ Ci− 1
2

ρ2 (t − t0)
ℓ 
2 g̃0

1
2 (t)∥n(t)∥Li(Bρ2 )(x0)

≤ g̃0(t)

8 
+ C

(ρ2 − ρ1)4 (t − t0)
ℓ∥n(t)∥2i

Li(Bρ2 (x0))
,

(5.73)

where C is an absolute positive constant.
Next, we consider g̃3. Let ε0 > 0. Then, we have:

g̃3(t) ≤ (2i − 1)

∫︂
R2

n2i−1(x, t)|∇n(x, t)||∇v(x, t)|ϕ2(x, t) dx

+ 2
∫︂
R2

n2i (x, t)|∇v(x, t)||∇ϕ(x, t)|ϕ(x, t) dx

= 2i − 1

i

∫︂
R2

ni(x, t)ϕ(x, t)|∇(ni(x, t)ϕ(x, t)) − ni(x, t)∇ϕ(x, t)||∇v(x, t)| dx

+ 2
∫︂
R2

n2i (x, t)|∇v(x, t)||∇ϕ(x, t)|ϕ(x, t) dx

≤ 2i − 1

i
∥∇(ni(t)ϕ(t))∥L2∥ni(t)ϕ(t)∇v(t)∥L2

+ 4i − 1

i
∥ni(t)ϕ(t)∇v(t)∥L2∥ni(t)∇ϕ(t)∥L2

≤ ε0∥∇(ni(t)ϕ(t))∥2
L2 +

(︃
1 
ε0

+ 4

)︃
∥ni(t)ϕ(t)∇v(t)∥2

L2 + ∥ni(t)∇ϕ(t)∥2
L2 . (5.74)

In addition, let ε1 > 0. Then, we have the following estimate:

∥ni(t)ϕ(t)∇v(t)∥2
L2 ≤ ∥ni(t)ϕ(t)∥2

L
2p 

p−2
∥∇v(t)∥2

Lp(Bρ2 (x0))

≤ C∥∇(ni(t)ϕ(t))∥
p+2
p

2 ∥ni(t)ϕ(t)∥
p−2
p

1 ∥∇v(t)∥2
p

L L L (Bρ2 (x0))
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≤ ε1ig̃0(t) + Cε
− p+2

p−2
1 ∥ni(t)ϕ(t)∥2

L1∥∇v(t)∥
4p 

p−2
Lp(Bρ2 (x0))

(5.75)

for all p > 2, where C = C(p). Combining (5.71), (5.74) and (5.75), we derive:

g̃3(t) ≤ ε0ig̃0(t) +
(︃

1 
ε0

+ 4

)︃
ε1ig̃0(t)

+ C

(︃
1 
ε0

+ 4

)︃
ε
− p+2

p−2
1 ∥∇v(t)∥

4p 
p−2
Lp(Bρ2 (x0))

(t − t0)
ℓ∥n(t)∥2i

Li (Bρ2 (x0))

+ g̃0(t)

8 
+ Ci 

(ρ2 − ρ1)4 (t − t0)
ℓ∥n(t)∥2i

Li (Bρ2 (x0))
, (5.76)

where C = C(p).
We proceed to estimate g̃4. According to Definition 2.1, for any 1 ≤ r < ∞, the following 

holds:

∥u∥r
Lr
(︁
Bρ2 (x0)

)︁ = |Q|r
∫︂

Bρ2 (x0)

⃓⃓⃓⃓
x − x0

|x − x0|2 + λ
χ(x − x0) + x + x0

|x + x0|2 + λ
χ(x + x0)

⃓⃓⃓⃓r
dx

≤ 2r−1|Q|r
(︃

2 max
{︂

1,
1 
λr

}︂⃓⃓
Bρ2(x0)

⃓⃓)︃= 2r |Q|rπ(ρ2)
2 max

{︂
1,

1 
λr

}︂
,

which yields:

∥u∥Lr
(︁
Bρ2 (x0)

)︁ ≤ 2|Q|
(︂
π(ρ2)

2
)︂ 1

r
max

{︂
1,

1 
λ

}︂
≤ C, (5.77)

where C = C(Q,λ, r), since 0 < ρ2 ≤ 1. Following a similar argument to that in (5.76), we 
obtain:

g̃4(t) ≤ ε0ig̃0(t) +
(︃

1 
ε0

+ 4

)︃
ε1ig̃0(t) + C

(︃
1 
ε0

+ 4

)︃
ε
− p+2

p−2
1 (t − t0)

ℓ∥n(t)∥2i
Li (Bρ2 (x0))

+ g̃0(t)

8 
+ Ci 

(ρ2 − ρ1)4 (t − t0)
ℓ∥n(t)∥2i

Li (Bρ2 (x0))
, (5.78)

where C = C(Q,λ,p).
Combining (5.67), (5.72), (5.73), (5.76), and (5.78), we deduce:

1

i

d

dt

∫︂
R2

n2i (x, t)ϕ2(x, t) dx ≤ −2g̃0(t) + 2g̃1(t) + 2g̃2(t) + 2g̃3(t) + 2g̃4(t)

≤ −2g̃0(t) +
(︃

1 + 4iε0 + 4

(︃
1 + 4

)︃
ε1i

)︃
g̃0(t) + Cℓ2(t − t0)

ℓ−2∥n(t)∥2i
Li(Bρ (x0))
ε0 2

59 



Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745 
+
⎛⎜⎝ Ci 

(ρ2 − ρ1)4 + C

(︃
1 
ε0

+ 4

)︃
1 

ε

p+2
p−2
1

(︃
∥∇v(t)∥

4p 
p−2
Lp(Bρ2 (x0))

+ 1

)︃⎞⎟⎠ (t − t0)
ℓ∥n(t)∥2i

Li (Bρ2 (x0))
,

(5.79)

where C = C(γ,Q,λ,p). Setting ε0 = 1 
16i

and ε1 = 1 
64(4i+1)i

in (5.79), we obtain:

1

i

d

dt

∫︂
R2

n2i (x, t)ϕ2(x, t) dx ≤ Cℓ2(t − t0)
ℓ−2∥n(t)∥2i

Li (Bρ2 (x0))

+ Ci
3p−2
p−2 

(︃
1 

(ρ2 − ρ1)4 + ∥∇v(t)∥
4p 

p−2
Lp(Bρ2 (x0))

+ 1

)︃
(t − t0)

ℓ∥n(t)∥2i
Li (Bρ2 (x0))

, (5.80)

where, C = C(γ,Q,λ,p), as 3p−2
p−2 > 3 for p > 2.

(i). In the case 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, we set t0 = a = t1 − 2c1ρ
2 and ℓ = 2 with 

2 < p < ∞ in (5.80). Let s ∈ (t1 − c1ρ
2,min{t1 + 2c1ρ

2, Tmax}). Integrating both sides of (5.80)
over [a, s] for s ∈ (a,min{t1 + 2c1ρ

2, Tmax}), and using (5.53) in Lemma 5.3, we deduce:

(s − a)2

i

∫︂
Bρ1 (x0)

n2i (x, s) dx ≤ 1

i

∫︂
R2

n2i (x, s)ϕ2(x, s) dx

≤ C

⎧⎨⎩(s − a) + i
3p−2
p−2 

⎛⎝ 1 
(ρ2 − ρ1)4 +

(︃
1 

(ρ2 − ρ1)
3
2

)︃ 4p 
p−2 + 1

⎞⎠ (s − a)3

⎫⎬⎭
× sup 

τ∈(t1−c1ρ
2,min{t1+2c1ρ

2,Tmax})
∥n(τ)∥2i

Li (Bρ2 (x0))
, (5.81)

where C = C(γ,Q,λ,∥n0∥L1,p).
By selecting p ≥ 6 in (5.81), it follows that 3p−2

p−2 ≤ 4, 4p 
p−2 ≤ 6, and the following inequality 

holds:

(s − a)2

i

∫︂
Bρ1 (x0)

n2i (x, s) dx ≤ 1

i

∫︂
R2

n2i (x, s)ϕ2(x, s) dx

≤ C

{︃
(s − a) + i4

(ρ2 − ρ1)9 (s − a)3
}︃

sup 
τ∈(t1−c1ρ

2,min{t1+2c1ρ
2,Tmax})

∥n(τ)∥2i
Li (Bρ2 (x0))

≤ Ci4

(ρ2 − ρ1)9

(︂
(s − a) + (s − a)3

)︂
sup 

τ∈(t1−c1ρ
2,min{t1+2c1ρ

2,Tmax})
∥n(τ)∥2i

Li (Bρ2 (x0))
,

where C = C(γ,Q,λ,∥n0∥L1,p). This yields the inequality:

∥n(s)∥2i
L2i (Bρ1 (x0))

≤ Ci5

(ρ2 − ρ1)9

(︂ 1 
s − a

+ s − a
)︂

sup 
t1−c1ρ

2<τ<min{t+2c1ρ
2,Tmax}

∥n(τ)∥2i
Li (Bρ2 (x0))
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for all s ∈ (t1 − c1ρ
2,min{t1 + 2c1ρ

2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1,p). Moreover, it 
holds that:

c1ρ
2 < s − a = s − (t1 − 2c1ρ

2) < min{4c1ρ
2, Tmax − t1 + 2c1ρ

2}

=
{︄

4c1ρ
2 when 2c1ρ

2 < Tmax − t1,

Tmax − t1 + 2c1ρ
2 when 2c1ρ

2 ≥ Tmax − t1,

≤ 4c1ρ
2.

Consequently, we obtain:

∥n(s)∥L2i (Bρ1 (x0))
≤
(︃

Ci 

(ρ2 − ρ1)
9
5

)︃ 5 
2i
(︃

1 
ρ

)︃ 1
i

sup 
τ∈(t1−c1ρ

2,min{t1+2c1ρ
2,Tmax})

∥n(τ)∥Li(Bρ2 (x0))

for all s ∈ (t1 − c1ρ
2,min{t +2c1ρ

2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1 ,p). This establishes 
the desired estimate (5.61).

(ii). In the case 2c1ρ
2 < Tmax and 0 ≤ t ≤ min{2c1ρ

2, Tmax}, we take t0 = 0, ℓ = 2i − 2 + 2p 
p−2 +

4(i−2)
p−2 with 2 < p < ∞ in (5.80). Let s ∈ (0, min{t + 2c1ρ

2, Tmax}). Substituting t0 and ℓ into 
(5.80), we have:

1

i

d

dt

∫︂
R2

n2i (x, t)ϕ2(x, t) dx

≤
{︃
C
(︂

2i − 2 + 2p 
p − 2

+ 4(i − 2)

p − 2 

)︂2
t

4 
p−2

+ Ci
3p−2
p−2 

(︃
1 

(ρ2 − ρ1)4 + (t
1
2 ∥∇v(t)∥Lp(Bρ2 (x0))

)︁ 4p 
p−2 t

− 2p 
p−2 + 1

)︃
t

2p 
p−2

}︃
× t

(︁
1− 1

i
+ 2(i−2) 

i(p−2)

)︁
2i∥n(t)∥2i

Li (Bρ2 (x0))
, (5.82)

where C = C(γ,Q,λ,p). Thus, integrating both sides of (5.82) over [0, s] for s ∈ (0,min{t1 +
2c1ρ

2, Tmax}), and applying (5.54) in Proposition 5.3, we find:

1

i

∫︂
R2

n2i (x, s)ϕ2(x, s) dx ≤ C

{︄(︂
2i − 2 + 2p 

p − 2
+ 4(i − 2)

p − 2 

)︂2 p − 2

p + 2
s

p+2
p−2

+ i
3p−2
p−2 

(︃(︂ 1 
(ρ2 − ρ1)4 + 1

)︂ p − 2 
3p − 2

s
3p−2
p−2 + 1 

(ρ2 − ρ1)
10p 
p−2

s

)︃}︄

× sup 
τ∈(0, min{t+2c1ρ

2,Tmax})

(︃
τ

1− 1
i
+ 2(i−2) 

i(p−2) ∥n(τ)∥Li(Bρ2 (x0))

)︃2i

for all s ∈ (0, min{t + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1,p).
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Here, we observe:

s

(︃
s

1− 1 
2i

+ 2(i−1) 
i(p−2) ∥n(s)∥L2i (Bρ1 (x0))

)︃2i

=
∫︂

Bρ1 (x0)

n2i (x, s)ψ8(x − x0)s
2i−2+ 2p 

p−2 + 4(i−2)
p−2 dx

=
∫︂

Bρ1 (x0)

n2i (x, t)ϕ2(x, t) dx.

Choosing p ≥ 6, we have 3p−2
p−2 ≤ 4 and 10p 

p−2 ≤ 15. Furthermore, noting that s ∈ (0, min{t1 +
2c1ρ

2, Tmax}), it follows:

0 < s < min{t1 + 2c1ρ
2, Tmax}) =

{︄
t1 + 2c1ρ

2 when 2c1ρ
2 < Tmax − t1,

Tmax when 2c1ρ
2 ≥ Tmax − t1,

≤ t1 + 2c1ρ
2 ≤ 4c1ρ

2.

As a consequence, we have:

(︃
s

1− 1 
2i

+ 2(i−1) 
i(p−2) ∥n(s)∥L2i (Bρ1 (x0))

)︃2i

≤ s−1
∫︂
R2

n2i (x, s)ϕ2(x, s) dx

≤ Ci

{︄(︂
2i − 2 + 2p 

p − 2
+ 4(i − 2)

p − 2 

)︂2 p − 2

p + 2
s

4 
p−2

+ i
3p−2
p−2 

(︃(︂ 1 
(ρ2 − ρ1)4 + 1

)︂ p − 2 
3p − 2

s
2p 

p−2 + 1 

(ρ2 − ρ1)
10p 
p−2

)︃}︄

× sup 
τ∈(0, min{t+2c1ρ

2,Tmax})

(︃
τ

1− 1
i
+ 2(i−2) 

i(p−2) ∥n(τ)∥Li(Bρ2 (x0))

)︃2i

≤ Ci5

{︄
ρ

8 
p−2 +

(︃(︂ 1 
(ρ2 − ρ1)4 + 1

)︂
ρ

4p 
p−2 + 1 

(ρ2 − ρ1)15

)︃}︄

× sup 
τ∈(0, min{t+2c1ρ

2,Tmax})

(︃
τ

1− 1
i
+ 2(i−2) 

i(p−2) ∥n(τ)∥Li(Bρ2 (x0))

)︃2i

≤ Ci5

(ρ2 − ρ1)15
sup 

τ∈(0, min{t+2c1ρ
2,Tmax})

(︃
τ

1− 1
i
+ 2(i−2) 

i(p−2) ∥n(τ)∥Li(Bρ2 (x0))

)︃2i

for all s ∈ (0, min{t + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1,p). This implies:

s
1− 1 

2i
+ 2(i−1) 

i(p−2) ∥n(s)∥L2i (B (x ))
ρ1 0
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≤
(︃

Ci 
(ρ2 − ρ1)3

)︃ 5 
2i

sup 
τ∈(0, min{t+2c1ρ

2,Tmax})
τ

1− 1
i
+ 2(i−2) 

i(p−2) ∥n(τ)∥Li(Bρ2 (x0))

for all s ∈ (0, min{t + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1 ,p). Hence, the desired es

timate (5.62) is obtained.

(iii). In the case 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < min{2c1ρ

2, Tmax} = Tmax, we choose t0 = −ρ2 and 
ℓ = 2 with 2 < p < ∞ in (5.80). Let s ∈ (0, min{t + 2c1ρ

2, Tmax}). Integrating both sides of 
(5.80) over [0, s] for s ∈ (0,min{t1 + 2c1ρ

2, Tmax}), and applying (5.55) in Proposition 5.3, we 
find:

(s + ρ2)2

i

∫︂
Bρ1 (x0)

n2i (x, s) dx ≤ 1

i

∫︂
R2

n2i (x, s)ϕ2(x, s) dx

≤ C

{︄
(s + ρ2) + i

3p−2
p−2 

(︄
1 

(ρ2 − ρ1)4 +
(︂ 1 

(ρ2 − ρ1)
7
2

)︂ 4p 
p−2 + 1

)︄
(s + ρ2)3

}︄

× sup 
τ∈(0,min{t1+2c1ρ

2,Tmax})
∥n(τ)∥2i

Li (Bρ2 (x0))
+ ρ4

i
∥n0∥2i

L2i (Bρ2 (x0))
,

where C = C(γ,Q,λ,∥n0∥L1,p).
Choosing p ≥ 6, we find that 3p−2

p−2 ≤ 4 and 4p 
p−2 ≤ 6. Furthermore, noting that s ∈

(0, min{t1 + 2c1ρ
2, Tmax}), it follows that:

0 < s < min{t1 + 2c1ρ
2, Tmax}) =

{︄
t1 + 2c1ρ

2 when 2c1ρ
2 < Tmax − t1,

Tmax when 2c1ρ
2 ≥ Tmax − t1,

≤ t1 + 2c1ρ
2 ≤ 4c1ρ

2.

Therefore, we deduce:

(s + ρ2)2

i

∫︂
Bρ1 (x0)

n2i (x, s) dx ≤ 1

i

∫︂
R2

n2i (x, s)ϕ2(x, s) dx

≤ C

{︃
(s + ρ2) + i4

(︃
1 

(ρ2 − ρ1)4 + 1 
(ρ2 − ρ1)21 + 1

)︃
(s + ρ2)3

}︃
× sup 

τ∈(0,min{t1+2c1ρ
2,Tmax})

∥n(τ)∥2i
Li (Bρ2 (x0))

+ ρ4

i
∥n0∥2i

L2i (Bρ2 (x0))

≤ Ci4

(ρ2 − ρ1)21

(︂
(s + ρ2) + (s + ρ2)3

)︂
sup 

τ∈(0,min{t1+2c1ρ
2,Tmax})

∥n(τ)∥2i
Li (Bρ2 (x0))

+ ρ4

i
∥n0∥2i

L2i (Bρ2 (x0))
,

where C = C(γ,Q,λ,∥n0∥L1,p). This leads to the following inequality:
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∥n(s)∥2i
L2i (Bρ1 (x0))

≤ Ci5

(ρ2 − ρ1)21

(︂ 1 
s + ρ2 + s + ρ2

)︂
sup 

τ∈(0,min{t1+2c1ρ
2,Tmax})

∥n(τ)∥2i
Li (Bρ2(x0))

+ ρ4

(s + ρ2)2 ∥n0∥2i
L2i (Bρ2 (x0))

≤ Ci5

(ρ2 − ρ1)21 · 1 
ρ2 sup 

τ∈(0,min{t1+2c1ρ
2,Tmax})

∥n(τ)∥2i
Li (Bρ2 (x0))

+ ∥n0∥2i
L2i (Bρ2 (x0))

for all s ∈ (0,min{t + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1). Hence, we conclude:

∥n(s)∥L2i (Bρ1 (x0))

≤
(︂ Ci 

(ρ2 − ρ1)
21
5 

)︂ 5 
2i

(︃
1 
ρ

)︃ 1
i

sup 
τ∈(0,min{t1+2c1ρ

2,Tmax})
∥n(τ)∥Li(Bρ2 (x0))

+ ∥n0∥L2i (Bρ2 (x0))

for all s ∈ (0,min{t + 2c1ρ
2, Tmax}), where C = C(γ,Q,λ,∥n0∥L1,p). This establishes the 

desired estimate.

Step 4. In this step, we complete the proof of Theorem 2.2. To achieve this, we assume that 
(2.15) holds for some x0 ∈ R2, 0 < ρ ≤ 1, and 0 < t < Tmax. Furthermore, let m∗ and c1 denote 
the constants given in Proposition 5.1, where the explicit expression for c1 is provided in (5.5) of 
Remark 11.

Proof of Theorem 2.2. (i). If 2c1ρ
2 < Tmax and 2c1ρ

2 ≤ t1 < Tmax, Proposition 5.4 with i ≥ 2
provides a local Li-estimate of n on:

Bρ(x0) × (︁
t1 − c1ρ

2, min{t1 + 2c1ρ
2, Tmax}

)︁
.

Combining this with the reverse Hölder-type inequality in Proposition 5.4, and starting from 
this inequality, we apply Moser’s iteration (cf. [23, p. 3079--3082], [22, Proof of Theorem 2.2]). 
Iterating with i ↦→ 2i ↦→ 4i ↦→ · · · and letting i → ∞, we obtain:

sup 
s∈(t1−c1ρ

2, min{t1+2c1ρ
2,Tmax})

∥n(s)∥
L∞(︂

B ρ
4 
(x0)

)︂ ≤ C,

where C = C(γ,Q,λ,∥n0∥L1, ρ). This proves (2.16).

(ii). If 2c1ρ
2 < Tmax and 0 ≤ t1 < 2c1ρ

2, Proposition 5.4 with i ≥ 2 yields the weighted inequal
ity:

s
1− 1 

2i
+ (i−1)ε

4i ∥n(s)∥L2i (Bρ1 (x0))

≤
(︂ Ci 

(ρ2 − ρ1)3

)︂ 5 
2i sup 

τ∈(0, min{t1+2c1ρ
2,Tmax})

τ
1− 1

i
+ (i−2)ε

4i ∥n(τ)∥Li(Bρ2 (x0))
.
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Applying the same Moser’s iteration as in (i) and letting i → ∞, we obtain:

sup 
s∈(0, min{t1+2c1ρ

2,Tmax})
s

1+ ε
4 ∥n(s)∥

L∞(︂
B ρ

4 
(x0)

)︂ ≤ C,

where C = C(γ,Q,λ,∥n0∥L1, ρ, ε). This proves (2.17).

(iii). If 2c1ρ
2 ≥ Tmax and 0 ≤ t1 < Tmax, Proposition 5.4 with i ≥ 2 provides a local Li -estimate 

for n, including additional terms depending on the initial data, on:

Bρ(x0) × (︁
0, min{t1 + 2c1ρ

2, Tmax}
)︁
.

Together with the reverse Hölder inequality in Proposition 5.4, performing the same Moser’s 
iteration as above and letting i → ∞ gives:

sup 
s∈(0, min{t1+2c1ρ

2,Tmax})
∥n(s)∥

L∞(︂
B ρ

4 
(x0)

)︂ ≤ C,

where C = C(γ,Q,λ,∥n0∥L1 ,∥n0∥L∞
loc

, ρ). This proves (2.18). This completes the proof of The
orem 2.2. □
6. Proof of Theorem 2.4

6.1. Proof of Theorem 2.4 (I): maximal existence time estimate

Let T ∗ be positive time defined in (2.24), and let ε0 be given in (2.22). We define G(ε0, T
∗)

as in (2.26) in Remark 6. The constant ℓ0 in the definition of G(ε0, T
∗) will be determined later, 

so that:

ℓ0 >
δ

2
, (6.1)

where, δ denotes the parameter in assumption (ii) concerning ϕ in Theorem 2.4. In addition, we 
assume |a| ≥ G(ε0, T

∗).
Using Lemma 3.6, we introduce the cut-off function ψ with ρ1 = ℓ0 and ρ2 = 2ℓ0. To derive 

an upper bound for the blow-up time Tmax, we multiply the first equation of (KSF) by |x −
a|2ψ(x − a). This yields:

d

dt

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx

=
∫︂
R2

Δn(x, t)|x − a|2ψ(x − a) dx −
∫︂
R2

∇ · ((n∇v)(x, t))|x − a|2ψ(x − a) dx

−
∫︂
R2

∇ · ((u(x)n(x, t))|x − a|2ψ(x − a) dx

=: I + J + K. (6.2)
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Since the following identity holds:

Δ
(︁|x − a|2ψ(x − a)

)︁= 4ψ(x − a) + 4(x − a) · ∇ψ(x − a) + |x − a|2Δψ(x − a),

we estimate I as:

I ≤ 4
∫︂
R2

n(x, t)ψ(x − a) dx + 4
∫︂

B2ℓ0 (a)\Bℓ0 (a)

n(x, t)|x − a||∇ψ(x − a)| dx

+
∫︂

B2ℓ0 (a)\Bℓ0 (a)

n(x, t)|x − a|2|Δψ(x − a)| dx

≤ 4
∫︂
R2

n(x, t)ψ(x − a) dx + 16(
√

2 + 6)

∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x) dx. (6.3)

Next, we consider J . By integrating by parts, it follows:

J =
∫︂
R2

(n∇v)(x, t) · ∇(︁|x − a|2ψ(x − a)
)︁
dx

= 2
∫︂
R2

(n∇v)(x, t) · (x − a)ψ(x − a)dx +
∫︂

B2ℓ0 (a)\Bℓ0 (a)

(n∇v)(x, t) · |x − a|2∇ψ(x − a) dx

= 2
∫︂
R2

(n∇v)(x, t) · (x − a)ψ(x − a)ψ(y − a) dx

+ 2
∫︂
R2

(n∇v)(x, t) · (x − a)ψ(x − a)(1 − ψ(y − a)) dx

+
∫︂

B2ℓ0 (a)\Bℓ0 (a)

(n∇v)(x, t) · |x − a|2∇ψ(x − a) dx

=: J1 + J2 + J3. (6.4)

Let R be a sufficiently small positive real number, to be determined later. Since ∇v = ∇Gγ ∗
n, it follows from the symmetry of ∇xGγ (x − y) · (x − y) and (3.5):

J1 =
∫︂ ∫︂

R2×R2

n(x, t)n(y, t)∇Gγ (x − y) · {︁(x − a) − (y − a)
}︁
ψ(x − a)ψ(y − a) dxdy

≤ − 1 
2π

∫︂ ∫︂
2 2

n(x, t)n(y, t)e−√
γ |x−y|ψ(x − a)ψ(y − a) dxdy
R ×R
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≤ −e−√
γR

2π 

∫︂ ∫︂
|x−y|≤R

n(x, t)n(y, t)ψ(x − a)ψ(y − a) dxdy

= −e−√
γR

2π 

∫︂ ∫︂
R2×R2

n(x, t)n(y, t)ψ(x − a)ψ(y − a) dxdy

+ e−√
γR

2π 

∫︂ ∫︂
|x−y|≥R

n(x, t)n(y, t)ψ(x − a)ψ(y − a) dxdy

≤ −e−√
γR

2π 

⎛⎜⎝∫︂
R2

n(x, t)ψ(x − a) dx

⎞⎟⎠
2

+ e−√
γR

2π 

∫︂ ∫︂
|x−y|≥R

n(x, t)n(y, t)ψ(x − a)ψ(y − a)
2 

R2 (|x − a|2 + |y − a|2) dxdy

≤ −e−√
γR

2π 

⎛⎜⎝∫︂
R2

n(x, t)ψ(x − a) dx

⎞⎟⎠
2

+ 2e−√
γR

πR2 ∥n0∥L1

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx.

(6.5)

We now consider J2. Let L be a positive real number, to be determined later. Then, the fol
lowing holds:

J2 = 2
∫︂

R2\Bℓ0 (a)

∫︂
B2ℓ0 (a)

n(x, t)n(y, t)∇Gγ (x − y) · (x − a)ψ(x − a)(1 − ψ(y − a)) dxdy

= 2
∫︂

R2\B2ℓ0+L(a)

∫︂
B2ℓ0 (a)

n(x, t)n(y, t)∇Gγ (x − y) · (x − a)ψ(x − a)(1 − ψ(y − a)) dxdy

+ 2
∫︂

B2ℓ0+L(a)\Bℓ0 (a)

∫︂
B2ℓ0 (a)

n(x, t)n(y, t)∇Gγ (x − y) · (x − a)ψ(x − a)(1 − ψ(y − a)) dxdy

=: J 1
2 + J 2

2 . (6.6)

As for J 1
2 , since |x − y| ≥ L and |x − a| ≤ 2ℓ0, it follows from (3.6):

|J 1
2 | ≤ 2

∫︂
R2\B2ℓ0+L(a)

∫︂
B2ℓ0 (a)

n(x, t)n(y, t)|∇Gγ (x − y)||x − a|ψ(x − a)(1 − ψ(y − a)) dxdy

≤ 2 
L

∫︂
R2\B (a)

∫︂
B2ℓ (a)

n(x, t)n(y, t)|∇Gγ (x − y)||x − y| 2ℓ0 dxdy
2ℓ0+L 0
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≤ 4ℓ0

L 
· 1 
π

(︂√
2

e
+ 1

)︂ ∫︂
R2\B2ℓ0+L(a)

∫︂
B2ℓ0 (a)

n(x, t)n(y, t) dxdy

≤ 4ℓ0

L 
· 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥2

L1 . (6.7)

We define Dℓ0 as:

Dℓ0 :=
{︃
x ∈ R2

⃓⃓⃓
ℓ0

2 
≤ |x − a| ≤ 2ℓ0 + L

}︃
. (6.8)

Regarding J 2
2 , since ψ(x − a) = 0 for 2ℓ0 ≤ |x − a| ≤ 2ℓ0 + L and 1 − ψ(y − a) = 0 for 

ℓ0
2 ≤ |y − a| ≤ ℓ0, it holds:

J 2
2 = 2

∫︂
B2ℓ0+L(a)\Bℓ0 (a)

∫︂
B2ℓ0+L(a)

n(x, t)n(y, t)∇Gγ (x − y) · (x − a)ψ(x − a)(1 − ψ(y − a)) dxdy

= 2
∫︂

Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)∇Gγ (x − y) · (x − a)ψ(x − a)(1 − ψ(y − a)) dxdy

+ 2
∫︂

B2ℓ0+L(a)\Bℓ0 (a)

∫︂
B ℓ0

2 
(a)

n(x, t)n(y, t)∇Gγ (x − y) · (x − a)ψ(x − a)(1 − ψ(y − a)) dxdy

=: J 2,1
2 + J

2,2
2 . (6.9)

We estimate J 2,1
2 and J 2,2

2 . For J 2,1
2 , using the symmetry of ∇xGγ (x − y) · (x − y), it follows:

J
2,1
2 =

∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)∇Gγ

·
(︂
(x − a)ψ(x − a)(1 − ψ(y − a)) − (y − a)ψ(y − a)(1 − ψ(x − a))

)︂
dxdy.

(6.10)

Using the following identity transformation:

(x − a)ψ(x − a)(1 − ψ(y − a)) − (y − a)ψ(y − a)(1 − ψ(x − a))

= −ψ(x − a)ψ(y − a)(x − y) + (x − a)ψ(x − a) − (y − a)ψ(y − a)

= −ψ(x − a)ψ(y − a)(x − y) + (x − a)(ψ(x − a) − ψ(y − a)) + (x − y)ψ(y − a)

= (x − y)(1 − ψ(x − a))ψ(y − a) + (x − a)(ψ(x − a) − ψ(y − a)), (6.11)

it follows from (6.10), (6.11), (3.6), (3.24), and the fundamental theorem of calculus:
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|J 2,1
2 | ≤

∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)||x − y|(1 − ψ(x − a))ψ(y − a) dxdy

+
∫︂

Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)||x − a||ψ(x − a) − ψ(y − a)| dxdy

≤ 1 
π

(︂√
2

e
+ 1

)︂ ∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t) dxdy

+
∫︂

Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)| (2ℓ0 + L) 
2
√

2

ℓ0
|x − y| dxdy

≤ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

(︃
1 + 2

√
2

(︃
2 + L 

ℓ0

)︃)︃ ∫︂
Dℓ0

n(x, t) dx. (6.12)

As for J 2,2
2 , since |x − y| ≥ ℓ0

2 , it follows from (3.6):

|J 2,2
2 | ≤ 2 

∫︂
B2ℓ0+L(a)\Bℓ0 (a)

∫︂
B ℓ0

2 
(a)

n(x, t)n(y, t)|∇Gγ (x − y)||x − a| ψ(x − a)(1 − ψ(y − a)) dxdy

≤ 2
∫︂

B2ℓ0+L(a)\Bℓ0 (a)

∫︂
B ℓ0

2 
(a)

n(x, t)n(y, t)|∇Gγ (x − y)| 2|x − y|
ℓ0

ℓ0

2 
dxdy

≤ 2 · 1 
π

(︂√
2

e
+ 1

)︂ ∫︂
B2ℓ0+L(a)\Bℓ0 (a)

∫︂
B ℓ0

2 
(a)

n(x, t)n(y, t) dxdy

≤ 2 · 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

∫︂
Dℓ0

n(x, t) dx. (6.13)

Thus, combining (6.9), (6.12) and (6.13), we have:

|J 2
2 | ≤ 1 

π

(︂√
2

e
+ 1

)︂
∥n0∥L1

(︃
3 + 2

√
2
(︂

2 + L 
ℓ0

)︂)︃ ∫︂
Dℓ0

n(x) dx. (6.14)

At this point, substituting (6.7) and (6.14) into (6.6), we obtain:

J2 ≤ |J 1| + |J 2|
2 2
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≤ 4ℓ0

L 
· 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥2

L1 + 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

(︃
3 + 2

√
2
(︂

2 + L 
ℓ0

)︂)︃ ∫︂
Dℓ0

n(x, t) dx.

(6.15)

We now proceed to estimate J3. The whole plane R2 is divided as follows:

R2 = Bℓ0
2 
(a) ∪ Dℓ0 ∪ Eℓ0, where Eℓ0 :=

{︂
x ∈R2 | |x − a| ≥ 2ℓ0 + L

}︂
.

It then follows:

J3 =
∫︂
R2

∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x, t)n(y, t)∇Gγ (x − y) · |x − a|2∇ψ(x − a) dxdy

=
(︃ ∫︂

B ℓ0
2 

(a)

+
∫︂

Dℓ0

+
∫︂

Eℓ0

)︃ ∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x, t)n(y, t)∇Gγ (x − y) · |x − a|2∇ψ(x − a) dxdy

=: J 1
3 + J 2

3 + J 3
3 . (6.16)

We now estimate J 3
1 and J 3

3 simultaneously. Since the support of |∇ψ | is contained in Dℓ0 , we 
deduce from (3.6) that:

|J 1
3 | + |J 3

3 | ≤
∫︂

B ℓ0
2 

(a)

∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x, t)n(y, t)|∇Gγ (x − y)||x − a|2|∇ψ(x − a)| dxdy

+
∫︂

Eℓ0

∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x, t)n(y, t)|∇Gγ (x − y)||x − a|2|∇ψ(x − a)| dxdy

≤
∫︂

B ℓ0
2 

(a)

∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x, t)n(y, t)|∇Gγ (x − y)| 2|x − y|
ℓ0

4ℓ2
0

2
√

2

ℓ0
dxdy

+
∫︂

Eℓ0

∫︂
B2ℓ0 (a)\Bℓ0 (a)

n(x, t)n(y, t)|∇Gγ (x − y)| |x − y|
L 

4ℓ2
0

2
√

2

ℓ0
dxdy

≤ 8
√

2 · 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

(︃
2 + ℓ0

L 

)︃ ∫︂
Dℓ0

n(x, t) dx. (6.17)

For J 2
3 , we have:

J 2
3 = 1

2

∫︂
D

∫︂
D

n(x, t)n(y, t)∇Gγ (x − y) ·
(︂
|x − a)|2∇ψ(x − a) − |y − a)|2∇ψ(y − a)

)︂
dxdy.
ℓ0 ℓ0
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Using the following identity:

|x − a|2∇ψ(x − a) − |y − a|2∇ψ(y − a)

= |x − a|2(∇ψ(x − a) − ∇ψ(y − a)) + (|x − a|2 − |y − a|2)∇ψ(y − a)

= |x − a|2(∇ψ(x − a) − ∇ψ(y − a)) + (|x − a| − |y − a|)(|x − a| + |y − a|)∇ψ(y − a),

it follows from (3.24), (3.6), and the fundamental theorem of calculus:

|J 2
3 | ≤ 1

2

∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)||x − a|2|∇ψ(x − a) − ∇ψ(y − a)| dxdy

+ 1

2

∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)||x − y|(|x − a| + |y − a|)|∇ψ(y − a)| dxdy

≤ 1

2

∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)| (2ℓ0 + L)2 24

ℓ2
0

|x − y| dxdy

+ 1

2

∫︂
Dℓ0

∫︂
Dℓ0

n(x, t)n(y, t)|∇Gγ (x − y)||x − y| (2(2ℓ0 + L)) 
2
√

2

ℓ0
dxdy

≤ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

[︄
12

(︃
2 + L 

ℓ0

)︃2

+ 2
√

2

(︃
2 + L 

ℓ0

)︃]︄ ∫︂
Dℓ0

n(x, t) dx. (6.18)

Thus, combining (6.16), (6.17) and (6.18), we find:

J3 ≤ 8
√

2 · 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

(︃
2 + ℓ0

L 

)︃ ∫︂
Dℓ0

n(x, t) dx

+ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

[︄
12

(︃
2 + L 

ℓ0

)︃2

+ 2
√

2

(︃
2 + L 

ℓ0

)︃]︄ ∫︂
Dℓ0

n(x, t) dx

≤ 2
√

2 · 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

[︄
4

(︃
2 + ℓ0

L 

)︃
+ 3

√
2

(︃
2 + L 

ℓ0

)︃2

+
(︃

2 + L 
ℓ0

)︃]︄ ∫︂
Dℓ0

n(x, t) dx.

(6.19)

Consequently, substituting (6.5), (6.15) and (6.19) into (6.4), we have:

J ≤ −e−√
γR

2π 

⎛⎜⎝∫︂
2

n(x, t)ψ(x − a) dx

⎞⎟⎠
2

R
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+ 2e−√
γR

πR2 ∥n0∥L1

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx + 4ℓ0

L 
· 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥2

L1

+ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

[︄
8
√

2

(︃
2 + ℓ0

L 

)︃
+ 12

(︃
2 + L 

ℓ0

)︃2

+ 4
√

2

(︃
2 + L 

ℓ0

)︃
+ 3

]︄

×
∫︂

Dℓ0

n(x, t) dx (6.20)

Let us now focus on K . By applying integration by parts, it follows:

K =
∫︂
R2

u(x)n(x, t) · ∇(︁|x − a|2ψ(x − a)
)︁
dx

= 2
∫︂

B2ℓ0 (a)

u(x)n(x, t) · (x − a)ψ(x − a) dx

+
∫︂

B2ℓ0 (a)\Bℓ0 (a)

u(x)n(x, t) · |x − a|2∇ψ(x − a) dx.

Since suppχ ⊂ Bh(b), it follows:

|K| ≤ 2|Q|τ2ℓ0,h(a,b)

∫︂
B2ℓ0 (a)∩Bh(b)

|x − a||x − b|
|x − b|2 + λ 

χ(x − b)n(x, t)ψ(x − a) dx

+ |Q|τ2ℓ0,h(a,b)

∫︂
(︁
B2ℓ0 (a)\Bℓ0 (a)

)︁∩Bh(b)

|x − a||x − b|
|x − b|2 + λ 

χ(x − b)n(x, t)|x − a||∇ψ(x − a)| dx

≤ 2|Q|τ2ℓ0,h(a,b)∥n0∥L1 + |Q|τ2ℓ0,h(a,b)

∫︂
(︁
B2ℓ0 (a)\Bℓ0 (a)

)︁∩Bh(b)

n(x, t) min{2ℓ0, h} 2
√

2

ℓ0
dx

≤ 2|Q|τ2ℓ0,h(a,b)∥n0∥L1 + 4
√

2|Q|τ2ℓ0,h(a,b)

∫︂
Dℓ0

n(x, t) dx, (6.21)

where, the function τ2ℓ0,h(a,b) is defined in (2.4). Thus, using (6.2), (6.3), (6.20) and (6.21), we 
derive:

d

dt

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx

≤ − 1 
2π

∫︂
2

n(x, t)ψ(x − a) dx

⎛⎜⎝e−√
γR

∫︂
2

n(x, t)ψ(x − a)dx − 8π

⎞⎟⎠

R R
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+ 4ℓ0

L 
· 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥2

L1 + C∗
∫︂

Dℓ0

n(x, t) dx + 2|Q|τ2ℓ0,h(a,b)∥n0∥L1

+ 2e−√
γR

πR2 ∥n0∥L1

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx, (6.22)

where C∗ is defined as follows:

C∗ := 16(
√

2 + 6) + 4
√

2|Q|τ2ℓ0,h(a,b)

+ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

[︄
8
√

2

(︃
2 + ℓ0

L 

)︃
+ 12

(︃
2 + L 

ℓ0

)︃2

+ 4
√

2

(︃
2 + L 

ℓ0

)︃
+ 3

]︄
.

We assume that:

Tmax ≥
32π

∫︂
R2

ϕ(x)|x|2dx 

α(∥n0∥L1 + 16π)(
√︁

2π(∥n0∥L1 + 16π) − 8π)
:= T ∗. (6.23)

Applying Lemma 3.7 with ρ1 = ℓ0 and ρ2 = 2ℓ0, we obtain:∫︂
R2

n(x, t)ψ(x − a) dx ≥
∫︂
R2

n0(x)ψ(x − a) dx

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2∥n0∥L1

6
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ2

0

T ∗ if a = b,

−2∥n0∥L1

(︄
6
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ2

0

+
√

2|Q|max
{︁
1, 1 

λ

}︁
ℓ0

)︄
T ∗ if |a − b| ≥ 2ℓ0 + h

(6.24)

for a.e. t ∈ (0, T ∗).
We consider the first term on the right-hand side of (6.24). From (2.26) and (6.1), it holds that 

δ < 2ℓ0 < G(ε0, T
∗) ≤ |a|, which implies supp ϕ(x + a)∩ supp ψ(x − a) = ∅. Thus, we obtain:∫︂

R2

n0(x)ψ(x − a) dx =
∫︂
R2

(︁
ϕ(x − a) + ϕ(x + a)

)︁
ψ(x − a) dx

=
∫︂
R2

ϕ(x − a)ψ(x − a) dx =
∫︂

Bδ(0)

ϕ(x) dx = 8π + ε0

2 
. (6.25)

Here, the supports of n0(x) = ϕ(x − a) + ϕ(x + a) and ψ(x − a) are depicted as follows:
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x−a 0 a

Next, we choose ℓ0 = ℓ0(ε0, T
∗) sufficiently large to satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2∥n0∥L1
6
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ2

0

T ∗ ≥ −ε0

8 
if a = b,

−2∥n0∥L1

(︄
6
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ2

0

+
√

2|Q|max
{︁
1, 1 

λ

}︁
ℓ0

)︄
T ∗ ≥ −ε0

4 

if |a − b| ≥ 2ℓ0 + h.

(6.26)

Thus, combining (6.24) with (6.25) and (6.26), we deduce:∫︂
R2

n(x, t)ψ(x − a) dx ≥ 8π + ε0

2 
− ε0

4 
= 8π + ε0

4 
(6.27)

for a.e. t ∈ (0, T ∗). In addition, choosing R as follows:

R := 1 
2
√

γ
log

∥n0∥L1 + 16π

32π 
> 0, (6.28)

we obtain:

e−√
γR =

√︄
32π 

∥n0∥L1 + 16π
, 

2e−√
γR

πR2 = 8γ

π

√︄
32π 

∥n0∥L1 + 16π

(︃
log

∥n0∥L1 + 16π

32π 

)︃−2

.

(6.29)

Then, from (6.27)), we find:

e−√
γR

∫︂
R2

n(x, t)ψ(x − a) dx − 8π ≥√︁
2π(∥n0∥L1 + 16π) − 8π > 0,

which leads to:
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− 1 
2π

∫︂
R2

n(x, t)ψ(x − a) dx

⎛⎜⎝e−√
γR

∫︂
R2

n(x, t)ψ(x − a) dx − 8π

⎞⎟⎠
≤ − 1 

2π

(︂
8π + ε0

4 

)︂
(
√︁

2π(∥n0∥L1 + 16π) − 8π)

= − 1 
8π

(∥n0∥L1 + 16π)(
√︁

2π(∥n0∥L1 + 16π) − 8π) =: −ε1 < 0. (6.30)

Substituting (6.28)-(6.30) into (6.22), we find:

d

dt

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx

≤ −ε1 + 4ℓ0

L 
· 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥2

L1 + C∗
∫︂

Dℓ0

n(x, t) dx

+ 2|Q|τ2ℓ0,h(a,b)∥n0∥L1 + ˜︁C ∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx, (6.31)

where ˜︁C is defined by:

˜︁C := 8γ

π

√︄
32π 

∥n0∥L1 + 16π

(︃
log

∥n0∥L1 + 16π

32π 

)︃−2

∥n0∥L1 . (6.32)

We determine L in (6.6) based on ε1 in (6.30) as follows:

L := 16ℓ0 · 1 
π

(︁√
2

e
+ 1

)︁
ε1

∥n0∥2
L1 . (6.33)

From (2.26), we confirm:

|a| ≥ G(ε0, T
∗) = 2ℓ0 + L.

Using the identity:

L 
ℓ0

= 128
(︁√

2
e

+ 1
)︁∥n0∥2

L1

(∥n0∥L1 + 16π)(
√︁

2π(∥n0∥L1 + 16π) − 8π)
,

we observe:

C∗ := 16(
√

2 + 6) + 4
√

2|Q|τ2ℓ0,h(a,b)

+ 1 
π

(︂√
2

e
+ 1

)︂
∥n0∥L1

[︄
8
√

2

(︃
2 + (∥n0∥L1 + 16π)(

√︁
2π(∥n0∥L1 + 16π) − 8π)

128
(︁√

2 + 1
)︁∥n ∥ 1

)︃

e 0 L
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+ 48

(︃
1 + 64

(︁√
2

e
+ 1

)︁∥n0∥2
L1

(∥n0∥L1 + 16π)(
√︁

2π(∥n0∥L1 + 16π) − 8π)

)︃2

+ 8
√

2

(︃
1 + 64

(︁√
2

e
+ 1

)︁∥n0∥2
L1

(∥n0∥L1 + 16π)(
√︁

2π(∥n0∥L1 + 16π) − 8π)

)︃
+ 3

]︄
. (6.34)

Combining (6.33) with (6.31), we obtain:

d

dt

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx

≤ −ε1 + ε1

4 
+ C∗

∫︂
Dℓ0

n(x, t) dx + 2|Q|τ2ℓ0,h(a,b)∥n0∥L1

+ ˜︁C ∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx. (6.35)

On the other hand, to estimate the integral term on Dℓ0 defined in (6.8), let ρ3, ρ4, ρ5, ρ6 be 
positive numbers such that ρ3 < ρ4 < ρ5 < ρ6. Using these, we define ˜︁ζ as follows:

˜︁ζ (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ r < ρ3,
2 

(ρ4−ρ3)
2 (r − ρ3)

2 for ρ3 ≤ r <
ρ3+ρ4

2 ,

1 − 2 
(ρ4−ρ3)

2 (r − ρ4)
2 for ρ3+ρ4

2 ≤ r < ρ4,

0 for ρ4 ≤ r < ρ5,
2 

(ρ6−ρ5)
2 (r − ρ5)

2 for ρ5 ≤ r <
ρ5+ρ6

2 ,

1 − 2 
(ρ6−ρ5)

2 (r − ρ6)
2 for ρ5+ρ6

2 ≤ r < ρ6,

1 for ρ6 ≤ r

and set ζ(x) as ζ(x) :=˜︁ζ (|x|) for x ∈ R2. We choose ρ3 = L + 3
2ℓ0, ρ4 = L + 2ℓ0 − δ, ρ5 =

L + 2ℓ0 + δ, and ρ6 = L + 5
2ℓ0. Then, since ℓ0 > 2δ, we verify that ρ3 < ρ4 < ρ5 < ρ6.

Similar to Lemmas 3.6 and 3.7, we find the following:∫︂
Dℓ0

n(x, t)dx ≤
∫︂
R2

n(x, t)ζ(x − a) dx

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4∥n0∥L1

12
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
(ℓ0 − 2δ)2 T ∗, if a = b,

4∥n0∥L1

(︄
12
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
(ℓ0 − 2δ)2 +

√
2|Q|max

{︁
1, 1 

λ

}︁
ℓ0 − 2δ 

)︄
T ∗ if |a − b| ≥ 2ℓ0 + h,

(6.36)
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for a.e. t ∈ (0, T ∗). Furthermore, we choose ℓ0 = ℓ0(ε0, T
∗) sufficiently large to satisfy the 

following conditions:

48C∗∥n0∥L1

(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
(ℓ0 − 2δ)2 T ∗ ≤ ε1

8 
, 

4
√

2C∗∥n0∥L1 |Q|max
{︁
1, 1 

λ

}︁
ℓ0 − 2δ 

T ∗ ≤ ε1

8 
.

(6.37)
Using (6.36) and (6.37), this leads to:

C∗
∫︂

Dℓ0

n(x, t) dx ≤ ε1

4 
. (6.38)

In addition, applying (2.23), we obtain:

2|Q|τ2ℓ0,h(a,b)∥n0∥L1 ≤ ε1

4 
. (6.39)

Combining (6.35), (6.38) and (6.39), and choosing ℓ0 = ℓ0(ε0, T
∗) sufficiently large to satisfy 

(6.1), (6.26) and (6.37), we deduce the following:

d

dt

∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx ≤ −ε1

4 
+ ˜︁C ∫︂

R2

n(x, t)|x − a|2ψ(x − a) dx,

which implies:∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx

≤
∫︂
R2

n0(x)|x − a|2ψ(x − a) dx +
t∫︂

0 

⎛⎜⎝−ε1

4 
+ ˜︁C ∫︂

R2

n(x, s)|x − a|2ψ(x − a) dx

⎞⎟⎠ds (6.40)

for a.e. t ∈ (0, T ∗).
We define M(t) as:

M(t) :=
∫︂
R2

n(x, t)|x − a|2ψ(x − a) dx. (6.41)

We introduce the linear function F(M) for M ≥ 0 as:

F(M) := −ε1

4 
+ ˜︁CM,

where ε1 and ˜︁C are given by (6.30) and (6.32), respectively. Then, from (6.40), we have:
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M(t) ≤ M(0) +
t∫︂

0 

F(M(s)) ds (6.42)

for t ∈ (0, T ∗). To prove (2.25), we proceed by contradiction. For this purpose, we first observe 
that F(M∗) = 0 for M∗ defined as:

M∗ := 1 
γ

· (∥n0∥L1 + 16π)
3
2 (
√︁

2π(∥n0∥L1 + 16π) − 8π)

1024
√

2π∥n0∥L1

(︃
log

∥n0∥L1 + 16π

32π 

)︃2

.

Next, we note that |a| ≥ G(ε0, T
∗) = 2ℓ0 + L > 2ℓ0 > δ by (6.1) and (6.33), which implies that 

supp ϕ(x + a) ∩ supp ψ(x − a) = ∅. Thus, for 0 < α < 1, it follows from (2.20) and (2.21):

M(0) =
∫︂
R2

n0(x)|x − a|2ψ(x − a) dx =
∫︂

Bδ(a)

ϕ(x − a)|x − a|2ψ(x − a) dx

=
∫︂

Bδ(a)

ϕ(x − a)|x − a|2dx =
∫︂
R2

ϕ(x)|x|2 dx ≤ (1 − α)M∗.

Since F is strictly increasing on [0,∞), we observe:

F(M(0)) ≤ F((1 − α)M∗) < F(M∗) = 0. (6.43)

We define H as:

H(t) := M(0) +
t∫︂

0 

F(M(τ))dτ for t ∈ (0, T ∗). (6.44)

Using (6.42), we obtain:

M(t) ≤ H(t) for t ∈ (0, T ∗). (6.45)

For the moment, we assume the following estimate for H , which will be proved later:

H(t) ≤ H(0) for t ∈ (0, T ∗). (6.46)

Then, from (6.43)-(6.46) and monotonicity of F , we have:

H ′(t) = F(M(t)) ≤ F(H(t)) ≤ F(H(0)) = F(M(0)) ≤ F((1 − α)M∗)

for t ∈ (0, T ∗). Consequently, from (6.45), we deduce:

M(t) ≤ H(t) ≤ H(0) + F((1 − α)M∗) · t = M(0) + F((1 − α)M∗) · t

for t ∈ (0, T ∗). Noting that F((1 − α)M∗) < 0, we conclude:
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M(t) ≤ 0 for t ≥ − M(0) 
F((1 − α)M∗)

, (6.47)

where:

− M(0) 
F((1 − α)M∗)

=
32π

∫︂
R2

ϕ(x)|x|2dx 

α(∥n0∥L1 + 16π)(
√︁

2π(∥n0∥L1 + 16π) − 8π)
. (6.48)

Since the strong solution n is non-negative, one must have M(t) ≥ 0 on (0, Tmax). Therefore, the 
above (6.47) contradicts (6.23), implying:

Tmax < T ∗ :=
32π

∫︂
R2

ϕ(x) |x|2 dx 

α
(︁∥n0∥L1 + 16π

)︁(︁√︁
2π(∥n0∥L1 + 16π) − 8π

)︁ ,
which is precisely the bound asserted in Theorem 2.4 (I).

It now remains to establish (6.46). To this end, we proceed by contradiction and assume that 
there exists T0 ∈ (0, T∗) such that:

H(T0) > H(0).

By (6.43), we observe:

H ′(0) = F(M(0)) < 0,

implying:

H(τ) ≤ H(0) for τ ∈ (0, T ′) with some 0 < T ′ ≤ T ∗.

We may assume:

T ′ = sup{t > 0 | H(τ) ≤ H(0) for τ ∈ (0, t)}.

Since H is a continuous function on [0, T ∗), we find that H(T ′) = H(0). By (6.43)-(6.45) and 
monotonicity of F , it follows:

H ′(T ′) = F(M(T ′)) ≤ F(H(T ′)) = F(H(0)) = F(M(0)) < 0,

which implies:

H(τ) ≤ H(0) for τ ∈ (0, T ′′)

for some T ′′ > T ′. This contradicts the definition of T ′, and thus we conclude (6.46). This com
pletes the proof of Theorem 2.4 (I). □
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6.2. Proof of Theorem 2.4 (II): blow-up configuration

First, we show that the strong solution (n, v) of (KSF) on [0, Tmax) is axis-symmetric with 
respect to both the e1- and e2-axes. We define n+ and n− as follows:

n+(x, t) := n(x1, x2, t), n−(x, t) := n(−x1, x2, t),

v+(x, t) := v(x1, x2, t), v−(x, t) := v(−x1, x2, t),

u+(x, t) := u(x1, x2, t), u−(x, t) := u(−x1, x2, t).

Since the pairs of functions (n+, v+) and (n−, v−) are strong solutions of (KSF) on [0, Tmax)

with fluid vector fields u+ and u−, respectively, we obtain:

∂t (n
+ − n−) = Δ(n+ − n−) − ∇ ·

(︂
(n+ − n−)∇v+ + n−∇(v+ − v−)

)︂
− ∇ ·

(︂
u+(n+ − n−) + (u+ − u−)n−)︂, (6.49)

where v+ and v− satisfy Δv+ − γ v+ + n+ = 0 and Δv− − γ v− + n− = 0, respectively. Let 
1 < r < ∞. Multiplying both sides of (6.49) by |n+ − n−|r−2(n+ − n−) and integrating over 
R2, we obtain:

1

r

d

dt
∥(n+ − n−)(t)∥r

Lr

≤ (r − 1)∥n−∥2
L∞
(︂
∥∇(v+ − v−)(t)∥2

Lr + ∥u+ − u−∥2
Lr

)︂
∥(n+ − n−)(t)∥r−2

Lr

+ (r − 1)
(︂
∥∇v+(t)∥2

L∞ + ∥u+∥2
L∞
)︂
∥(n+ − n−)(t)∥r

Lr .

Since u is axis-symmetric with respect to the e2-axis, it follows that u+(x) − u−(x) = 0 for 
a.e. x ∈ R2. Thus, we deduce:

1

r

d

dt
∥(n+ − n−)(t)∥r

Lr ≤ C(r − 1)
(︂
∥n−∥2

L∞ + ∥∇v+(t)∥2
L∞ + ∥u+∥2

L∞
)︂
∥(n+ − n−)(t)∥r

Lr ,

(6.50)

where C = C(γ ). Let ˆ︁T be an arbitrary number satisfying ˆ︁T ∈ (0, Tmax). By Theorem 2.1 (II), 
there exists a positive constant C = C(γ,Q,λ,ˆ︁T ,∥n0∥W 2,4(R2)) such that:

sup 
t∈(0,ˆ︁T )

∥n(t)∥W 2,4(R2) ≤ C.

Using the embedding theorem, (3.17) and (2.6), we obtain the following:

sup 
t∈(0,ˆ︁T )

∥n(t)∥L∞ ≤ C, sup 
t∈(0,ˆ︁T )

∥∇v(t)∥L∞ ≤ C sup 
t∈(0,ˆ︁T )

∥n(t)∥L∞ ≤ C,

∥u∥L∞ ≤ 2|Q|max
{︂

1,
1 
λ

}︂
,
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where C = C(γ,ˆ︁T ,∥n0∥W 2,4). Thus, choosing r = 4 in (6.50), we have:

d

dt
∥(n+ − n−)(t)∥L4 ≤ C∥(n+ − n−)(t)∥L4

for a.e. t ∈ (0,ˆ︁T ), where C = C(γ,Q,λ,ˆ︁T ,∥n0∥W 2,4).
Since n0 is also axis-symmetric with respect to the e2-axis, we find n+

0 (x) − n−
0 (x) = 0 for 

a.e. x ∈ R2. From the Gronwall inequality, it follows:

0 ≤ ∥(n+ − n−)(t)∥L4 ≤ ∥n+
0 − n−

0 ∥L4 · exp{Cˆ︁T } = 0

for a.e. t ∈ (0,ˆ︁T ). Therefore, n+(x, t) − n−(x, t) = 0 holds for a.e. (x, t) ∈ R2 × (0,ˆ︁T ), and the 
strong solution of (KSF) on the two-dimensional whole space R2, as obtained in Theorem 2.1, 
is axis-symmetric with respect to the e2-axis for a.e. t ∈ (0,ˆ︁T ).

Since ˆ︁T is an arbitrary positive number, the strong solution n(t) is axis-symmetric with respect 
to the e2-axis for a.e. t ∈ (0, Tmax). Furthermore, since both the initial data n0 and the fluid vector 
fields are also symmetric with respect to the e1-axis, a similar argument shows that the strong 
solution n(t) is axis-symmetric with respect to both the e1- and e2-axes for a.e. t ∈ (0, Tmax).

Here, let m∗ be the constant satisfying (2.15), and choose G(ε0, T
∗) such that G(ε0, T

∗) >

2ℓ0 ≥ δ + ℓ0, where ℓ0 = ℓ0(ε0, T
∗) satisfies:

ℓ0 > max

⎧⎨⎩4

√︄
6∥n0∥L1

(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
T ∗

m∗
,

8
√

2∥n0∥L1 |Q|max
{︁
1, 1 

λ

}︁
T ∗

m∗

⎫⎬⎭ . (6.51)

Applying Lemmas 3.6 and 3.7 with ρ1 = ℓ0
2 and ρ2 = ℓ0, and noting that supp n0 ∩ Bℓ0(0) = ∅, 

we obtain:∫︂
B ℓ0

2 
(0)

n(x, t) dx ≤
∫︂
R2

n(x, t)ψ(x) dx

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4∥n0∥L1

12
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ2

0

T∗, if a = b,

4∥n0∥L1

(︄
12
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ0

2 +
√

2|Q|max
{︁
1, 1 

λ

}︁
ℓ0

)︄
T ∗ if |a − b| ≥ 2ℓ0 + h,

(6.52)

for a.e. t ∈ (0, Tmax). Here, we note that Tmax < T ∗, as shown in Theorem 2.4 (I).
Furthermore, by (6.51), we have:

4∥n0∥L1

(︄
12
(︁
2 + 1 

π

(︁√
2

e
+ 1

)︁∥n0∥L1

)︁
ℓ0

2 +
√

2|Q|max
{︁
1, 1 

λ

}︁
ℓ0

)︄
T ∗ <

m∗
2 

+ m∗
2 

= m∗. (6.53)

Thus, combining (6.52) and (6.53), we conclude:
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∫︂
B ℓ0

2 
(0)

n(x, t) dx < m∗ (6.54)

for a.e. t ∈ (0, Tmax). Applying Theorem 2.2 together with (6.54), often referred to as the 
ε-regularity theorem, we conclude that the origin cannot be a blow-up point. Since n(t) re
mains axis-symmetric for a.e. t ∈ (0, Tmax), the blow-up points of n(t) at the blow-up time Tb

(=Tmax) consist of points x1, . . . , xm, . . . , x2m, where 2m is even and each pair xj and xm+j (for 
j = 1, . . . ,m) is symmetrically located with respect to e2-axis. Since the strong solution n(t)

is symmetric with respect to both the e1- and e2-axes up to Tmax, this implies that all blow-up 
points lie on one of these axes. This completes the proof of Theorem 2.4 (II). □
7. Proof of Theorem 2.5 and 2.6

7.1. Proof of Theorem 2.5: finiteness of the blow-up points

First, let us take an integer k ∈N such that:

km∗ > ∥n0∥L1(R2), (7.1)

where m∗ is the constant obtained in Theorem 2.2.
From (2.13) in Theorem 2.1 (II), it follows that n ∈ C([0, Tmax);C(Ω)) for every bounded 

subset Ω ⊂ R2. Here, Tmax is the maximal existence time of the strong solution (n, v) constructed 
in Theorem 2.1 (I) and (II). Moreover, by applying (2.12) in Theorem 2.1 (II), we deduce Tmax =
Tb , which implies n ∈ C([0, Tb);C(Ω)), where Tb represents the blow-up time of n as defined in 
(2.8) of Definition 2.3.

We suppose there exist infinitely many blow-up points {xi}∞i=1. Then we can choose ℓ > 0 and 
k blow-up points {x1, x2, . . . , xk} ⊂ {xi}∞i=1 such that:

B2ℓ(xi) ∩ B2ℓ(xj ) = ∅ for all i, j = 1,2, . . . , k with i ≠ j. (7.2)

For these ℓ and {xi}ki=1, it follows from (2.19) in Theorem 2.3:

sup 
t∈(0,Tb)

∫︂
Bℓ(xi )

n(x, t) dx ≥ m∗ for all i = 1,2, . . . , k. (7.3)

Since Theorem 2.1 (III) ensures that supt∈(0,Tb)
∥n(t)∥L1 = ∥n0∥L1 , combining the results from 

(7.1) through (7.3), we obtain:

km∗ <

k∑︂
i=1 

sup 
t∈(0,Tb)

∫︂
Bℓ(xi )

n(x, t) dx = sup 
t∈(0,Tb)

k∑︂
i=1 

∫︂
Bℓ(xi )

n(x, t) dx

≤ sup 
t∈(0,Tb)

∥n(t)∥L1 = ∥n0∥L1 < km∗,

which is a contradiction. □
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7.2. Proof of Theorem 2.6: δ-function singularity

The following lemma ensures that evaluating the solution against any smooth, compactly sup
ported test function yields a time-continuous mapping on the entire interval up to and including 
the blow-up time Tb.

Lemma 7.1. Let all assumptions in Theorem 2.6 hold. Then, for every ψ ∈ C∞
c (R2), the map

ping:

t ↦→
∫︂
R2

n(x, t)ψ(x) dx

is continuous on [0, Tb].

Proof of Lemma 7.1. Using the first equation of (KSF), we have:∫︂
R2

n(x, t)ψ(x) dx = f1(t) + f2(t) + f3(t) +
∫︂
R2

n0(x)ψ(x) dx (7.4)

for all t ∈ (0, Tb) and all ψ ∈ C∞
c (R2), where:

f1(t) :=
t∫︂

0 

∫︂
R2

nΔψ dxds, f2(t) :=
t∫︂

0 

∫︂
R2

(n∇v · ∇ψ) dxds, f3(t) :=
t∫︂

0 

∫︂
R2

(un · ∇ψ) dxds.

(7.5)

As for f1 and f3, we obtain from (2.6):

|f1(t) − f1(s)| ≤ ∥Δψ∥L∞

t∫︂
s

∥n(τ)∥L1(suppψ) dτ

and:

|f3(t) − f3(s)| ≤ 2|Q|max
{︂

1,
1 
λ

}︂
∥∇ψ∥L∞

t∫︂
s

∥n(τ)∥L1(suppψ) dτ

for all 0 ≤ s < t ≤ Tb . Since n ∈ L1(0, Tb;B) for all balls B , we deduce:

f1, f3 ∈ C([0, Tb]). (7.6)

Next, we establish that f2 ∈ C([0, Tb]). Choose a ball B such that suppψ ⊂ B . Let us choose 

p = 2p′
1′ . Since 1 < p1 < 2, we have 1 < p < ∞ with:
p1+2
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1 
p′ = 1 

p1
− 1

2
.

Hence, by Lemma 3.5, it holds:

∥∇v∥
Lp′

(B)
≤ C∥n∥Lp1 (R2), (7.7)

where C = C(γ,p).
According to Theorem 2.1, it holds by d = 2:

n ∈ W
2,1
4 (𝒬Tmax) ∩ L∞(0, Tmax;L1(R2)).

This implies:

n ∈ L1(0, Tmax;L 6
5 (B)) ∩ L∞(0, Tmax;L 3

2 (R2)).

Applying (7.7) with p = 6
5 and p1 = 3

2 , we have p′ = 6 and p′
1 = 3, which yields:

|f2(t) − f2(s)| ≤ ∥∇ψ∥L∞(B)

t∫︂
s

∫︂
B

|n∇v| dxdτ

≤ ∥∇ψ∥L∞(B)

t∫︂
s

∥n(τ)∥
L

6
5 (B)

∥∇v(τ)∥L6(B) dτ

≤ C∥∇ψ∥L∞(B)

t∫︂
s

∥n(τ)∥
L

6
5 (B)

∥n(τ)∥
L

3
2 (R2)

dτ

≤ C∥∇ψ∥L∞(B)∥n∥
L1(s,t;L 6

5 (B))
∥n∥

L∞(s,t;L 3
2 (R2))

, (7.8)

for all 0 ≤ s < t ≤ Tb .
Combining (2.12) in Theorem 2.1 and (7.8) with the absolute continuity of the integral, we 

conclude:

f2 ∈ C([0, Tb]). (7.9)

Thus, applying (7.4)--(7.6) and (7.9), we obtain the desired continuity. This completes the 
proof of Lemma 7.1. □
Proof of Theorem 2.6. By Theorem 2.5, we may assume that n blows up at exactly k distinct 
points x1, . . . , xk .

For each 1 ≤ i ≤ k and r > 0, we define:

Mi,r := lim 
t→Tb

∫︂
n(x, t) ηi(x) dx, (7.10)
Br(xi )
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where ηi ∈ C∞
c (R2) is a cut-off function chosen so that:

ηi(x) =
⎧⎨⎩1 if |x − xi | ≤ r

2 ,

0 if |x − xi | ≥ r.
(7.11)

It follows from Lemma 7.1 that the limit in (7.10) exists. Moreover, for each i = 1,2, . . . , k, 
the quantity Mi,r is monotonically decreasing in r and bounded below by m∗. Therefore, the 
limit as r → 0 exists, and we define Mi as:

Mi := lim 
r→0

Mi,r < ∞ for all i = 1,2, . . . , k. (7.12)

In the following lemma, we identify and characterize the regular part f (x) of n(x, t): that is, 
the limit to which n(x, t) converges almost everywhere, excluding potential blow-up points.

Lemma 7.2. We suppose that the assumptions of Theorem 2.6 hold. Then, there exists a sequence 
{tm}∞m=1 with tm → Tb as m → ∞ such that:

lim 
m→∞n(x, tm) =: f (x) < ∞ for a.e. x ∈ R2. (7.13)

Furthermore, f belongs to L1(R2).

Proof of Lemma 7.2. We divide the proof into two steps. First, we define the sets Ωr and Ωr ′
by:

Ωr := R2 \
k⋃︂

i=1

Br(xi), Ωr ′ := R2 \
k⋃︂

i=1

Br
2
(xi), (7.14)

where 0 < r < ρ is chosen sufficiently small so that:

Br(xi) ∩ Br(xj ) = ∅ for all i, j = 1,2, . . . , k with i ≠ j.

For such r , there exist ℓ points x∗
1 , . . . , x∗

ℓ ∈ Ωr and positive constants ρ0 and δ with 0 < δ <

ρ0 < ρ such that:

Ωr ⊂
ℓ ⋃︂

i=1

Bρ0(x
∗
i ) ⊂

ℓ ⋃︂
i=1

Bρ0+δ(x
∗
i ) ⊂ Ωr ′ . (7.15)

Step 1. We establish (7.13). By (2.13) in Theorem 2.1 (II), we have:

n ∈ C
(︁[0, Tb);C(Ω)

)︁
for any bounded subset Ω ⊂ R2. Here, Tb is the blow-up time of n specified by (2.8) (see Defi
nition 2.3). Consequently, there exist a function fr ∈ L2(Ωr) and a sequence {tm}∞m=1 ⊂ (0, Tb)

with tm → Tb as m → ∞, such that:
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n(x, tm) → fr(x) for a.e. x ∈ Ωr as m → ∞.

Let {rj }∞j=1 be a sequence with r1 > r2 > · · · > rj → 0 as j → ∞. For each x ∈ R2 \⋃︁k
i=1{xi}, there is an integer ℓ such that x ∈ Ωrℓ . We define f (x) on R2 \ ⋃︁k

i=1{xi} by 
f (x) := frℓ(x). It is straightforward to verify that f (x) is well-defined on R2 \⋃︁k

i=1{xi}, since 
frℓ(x) = frp (x) for all p ≥ ℓ.

By a standard diagonal argument, we can extract a subsequence {tm}∞m=1 with limm→∞ tm =
Tb such that:

n(x, tm) → f (x) for a.e. x ∈R2 \
k⋃︂

i=1

{xi} as m → ∞.

This yields (7.13) for a.e. x ∈R2 \⋃︁k
i=1{xi} as m → ∞.

Step 2. We now establish:

f ∈ L1(R2). (7.16)

By choosing r sufficiently small as in the proof of Lemma 7.2 and applying the Lebesgue domi
nated convergence theorem, we obtain:∫︂

Ωr

f (x) dx = lim 
m→∞

∫︂
Ωr

n(x, tm) dx ≤ ∥n0∥L1 for all 0 < r < ρ, (7.17)

since n(x, tm) ≤ sup0<t<Tb
n(x, t) for all x ∈ Ωr , and sup0<t<Tb

n(·, t) is bounded on R2 \⋃︁k
i=1 Br(xi). Letting r → 0 in (7.17), we deduce:∫︂

R2

f (x) dx ≤ ∥n0∥L1 ,

which verifies (7.16). This completes the proof of Lemma 7.2. □
Continuation of the proof of Theorem 2.6. We now prove:

lim 
m→∞

∫︂
R2

n(x, tm) ψ(x) dx =
k∑︂

i=1 
Mi ψ(xi) +

∫︂
R2

f (x) ψ(x) dx,

for all ψ ∈ C∞
c (R2). Let ηi(x), i = 1, . . . , k, be the cut-off functions introduced in (7.11). Since 

1 − ηi(x) = 0 for x ∈ Br
2
(xi), a straightforward calculation shows:

∫︂
2

n(x, t)ψ(x) dx −
k∑︂

i=1 
Miψ(xi) −

∫︂
2

f (x)ψ(x) dx
R R
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=
∫︂

R2\⋃︁k
i=1 Br (xi )

(︁
n(x, t) − f (x)

)︁
ψ(x) dx −

k∑︂
i=1 

∫︂
Br (xi )

f (x)ψ(x) dx

+
k∑︂

i=1 

∫︂
Br (xi )

n(x, t)ηi(x) dx · ψ(xi) −
k∑︂

i=1 
Miψ(xi)

−
k∑︂

i=1 

∫︂
Br (xi )

n(x, t)ηi(x) dx · ψ(xi) +
k∑︂

i=1 

∫︂
Br(xi )

n(x, t)ψ(x) dx

=
∫︂

R2\⋃︁k
i=1 Br (xi )

(︁
n(x, t) − f (x)

)︁
ψ(x) dx −

k∑︂
i=1 

∫︂
Br (xi )

f (x)ψ(x) dx

+
k∑︂

i=1 

(︃ ∫︂
Br(xi )

n(x, t)ηi(x) dx − Mi

)︃
ψ(xi)

+
k∑︂

i=1 

∫︂
Br (xi )\B r

2
(xi )

(︁
n(x, t) − f (x)

)︁
ψ(x) · (1 − ηi(x)) dx

+
k∑︂

i=1 

∫︂
Br (xi )\B r

2
(xi )

f (x)ψ(x) · (1 − ηi(x)) dx

+
k∑︂

i=1 

∫︂
Br (xi )

n(x, t)ηi(x) · (︁ψ(x) − ψ(xi)
)︁
dx. (7.18)

Similarly to (7.17), we use the definition of the function f to obtain:

⃓⃓⃓⃓ ∫︂
R2\⋃︁k

i=1 Br(xi )

(︁
n(x, tm) − f (x)

)︁
ψ(x) dx

⃓⃓⃓⃓
→ 0,

k∑︂
i=1 

⃓⃓⃓⃓ ∫︂
Br (xi )\B r

2
(xi )

(︁
n(x, tm) − f (x)

)︁
ψ(x) · (1 − ηi(x)) dx

⃓⃓⃓⃓
→ 0 as m → ∞.

Substituting t = tm in (7.18) and then letting m → ∞, we obtain from (7.10):

lim sup
n→∞ 

⃓⃓⃓⃓ ∫︂
2

n(x, tm)ψ(x) dx −
k∑︂

i=1 
Miψ(xi) −

∫︂
2

f (x)ψ(x) dx

⃓⃓⃓⃓

R R
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≤
k∑︂

i=1 

∫︂
Br (xi )

f (x) dx · max 
x∈R2

|ψ(x)| +
k∑︂

i=1 
|Mi,r − Mi ||ψ(xi)|

+
k∑︂

i=1 

∫︂
Br (xi )

f (x) dx · max 
x∈R2

|ψ(x)| +
k∑︂

i=1 
∥n0∥L1 · max 

x∈Br (xi )
|ψ(x) − ψ(xi)|

=: F(r). (7.19)

Since ψ ∈ C∞
c (R2), we obtain from (7.12) and (7.16) that limr→0 F(r) = 0. Since the left-hand 

side of (7.19) is independent of r , we conclude:

⃓⃓⃓⃓
lim 

m→∞

∫︂
R2

n(x, tm)ψ(x) dx −
k∑︂

i=1 
Miψ(xi) −

∫︂
R2

f (x)ψ(x) dx

⃓⃓⃓⃓
= 0.

This completes the proof of Theorem 2.6. □
Acknowledgments

Y. Sugiyama was supported by JST CREST (Grant No. JPMJCR2013). Y. Seki was partly 
supported by Grant-in-Aid for Scientific Research (22K03387).

The authors are deeply grateful to Juan José López Velázquez for providing the authors with 
his valuable insights. They also acknowledge that the discussions during Y. Seki’s postdoctoral 
stay and Y. Sugiyama’s visits on many occasions to Madrid and Bonn were highly fruitful and 
beneficial to this study. They are also grateful for his kind hospitality.

Data availability

No data was used for the research described in the article.

References

[1] H. Amann, Linear and Quasilinear Parabolic Problems, vol. 1: Abstract Linear Theory, Birkhäuser, Basel, 1995.
[2] S. Childress, J.K. Percus, Nonlinear aspects of Chemotaxis, Math. Biosci. 56 (1981) 217--237.
[3] D.S. Freed, K.K. Uhlenbeck, Instantons and Four-Manifolds, Mathematical Sciences Research Institute Publica

tions, vol. 1, Springer-Verlag, New York, 1984.
[4] L. Grafakos, Classical Fourier Analysis, 3rd ed., Graduate Texts in Mathematics, Springer, New York, 2010.
[5] L. Grafakos, Modern Fourier Analysis, 3rd ed., Graduate Texts in Mathematics, Springer, New York, 2014.
[6] M.A. Herrero, J.J.L. Velázquez, Singularity patterns in a Chemotaxis model, Math. Ann. 306 (1996) 583--623.
[7] M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a Chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. 

Sci. (4) 24 (1997) 633--683.
[8] H. Kozono, M. Miura, Y. Sugiyama, Existence and uniqueness theorem on mild solutions to the Keller–Segel system 

coupled with the Navier–Stokes fluid, J. Funct. Anal. 270 (2016) 1663--1683.
[9] H. Kozono, M. Miura, Y. Sugiyama, Time global existence and finite time blow-up criterion for solutions to the 

Keller-Segel system coupled with the Navier-Stokes fluid, J. Differ. Equ. 267 (2019) 5410.

[10] H. Kozono, Y. Sugiyama, Keller-Segel system of parabolic-parabolic type with initial data in weak L
n
2 (Rn) and its 

application to self-similar solutions, Indiana Univ. Math. J. 57 (2008) 1467--1500.
[11] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasi-Linear Equations of Parabolic Type, 

Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1968.
88 

http://refhub.elsevier.com/S0022-0396(25)00772-7/bib62A7557F30C6208E6FE8042B4230ADB1s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib3509AFCB72C92FC90BD4B28070A0B2BCs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibD3E8E1377FDBC7340F0F1373FFA615CAs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibD3E8E1377FDBC7340F0F1373FFA615CAs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib952B76B4DC6EAC1701103D32028FDBEDs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibFB5BCDCD2D90BD130A7547B4C065102As1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib33B094642F3488F126AD02C5FC87CA99s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib8B6EFA65661E98B20754CA6BBDDE88ABs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib8B6EFA65661E98B20754CA6BBDDE88ABs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE13D7F9B3118E0381879C2E804B604E2s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE13D7F9B3118E0381879C2E804B604E2s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibF23753CC0C236E6ACA52284CD1AB2058s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibF23753CC0C236E6ACA52284CD1AB2058s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib7C38BFDAC89606A7B15827A4C9EA7DDAs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib7C38BFDAC89606A7B15827A4C9EA7DDAs1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibA4042D053252E80EBCFBA618D3004C18s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibA4042D053252E80EBCFBA618D3004C18s1


Y. Seki, K. Shibata and Y. Sugiyama Journal of Differential Equations 450 (2026) 113745 
[12] S. Luckhaus, Y. Sukhagiyama, J.J.L. Velázquez, Measure valued solutions of the 2D Keller–Segel system, Arch. 
Ration. Mech. Anal. 206 (1) (2012) 31--80.

[13] T. Nagai, T. Senba, T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima 
Math. J. 30 (2000) 463--497.

[14] T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of Chemotaxis, 
Funkc. Ekvacioj 40 (1997) 411--433.

[15] V. Nanjundiah, Chemotaxis signal relaying and aggregation morphology, J. Theor. Biol. 42 (1973) 63--105.
[16] C.B. Morrey, The problem of Plateau on a Riemannian manifold, Ann. Math. 49 (4) (1948) 807--851.
[17] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, J. Differ. Geom. 17 (2) (1982) 307--335.
[18] Y. Seki, Y. Sugiyama, J.J.L. Velázquez, Multiple peak aggregations for the Keller–Segel system, Nonlinearity 26 

(2013) 319--352.
[19] Y. Seki, Y. Sugiyama, J.J.L. Velázquez, Multiple points blow-up for the Keller-Segel system, RIMS Kôkyûroku 

1892 (2014) 21--28.
[20] T. Senba, T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differ. Equ. 

6 (2001) 21--50.
[21] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., vol. 30, Princeton 

University Press, Princeton, NJ, 1970.
[22] Y. Sugiyama, Partial regularity and blow-up asymptotics of weak solutions to degenerate parabolic systems of 

porous medium type, Manuscr. Math. 147 (2015) 311--363.
[23] Y. Sugiyama, Y. Yahagi, Extinction, decay and blow-up for Keller–Segel systems of fast diffusion type, J. Differ. 

Equ. 250 (2011) 3047--3087.
[24] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (3--4) (1977) 219--240.
89 

http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE200DABC0D58E20FB16BF4641E58683As1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE200DABC0D58E20FB16BF4641E58683As1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibFEB28A7A1791843D3C3107531727F7F5s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibFEB28A7A1791843D3C3107531727F7F5s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibC3C978EF115E53D932E865651080DB36s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibC3C978EF115E53D932E865651080DB36s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib0657038008EE10DF1A7DC9E8B25E59A0s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib3B7ECB14A0A2DE2412378869E4F3C4A9s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibD9D1919663F8B343B5074BDFCA2ABF91s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib170473C0D1591209CEB6C1C5F7564036s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib170473C0D1591209CEB6C1C5F7564036s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib67E6D348F756B572C07AEC9D5578567As1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib67E6D348F756B572C07AEC9D5578567As1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE9193505246130ADDE76CB910EBD5B74s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE9193505246130ADDE76CB910EBD5B74s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibCC0722B733E25829ED9DE9E93AC97BE5s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibCC0722B733E25829ED9DE9E93AC97BE5s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib6F811E33D4E4F157D6BA01DAABFB5EF4s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib6F811E33D4E4F157D6BA01DAABFB5EF4s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE9C0E75338E7F56D3F5517C405DE6676s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bibE9C0E75338E7F56D3F5517C405DE6676s1
http://refhub.elsevier.com/S0022-0396(25)00772-7/bib706D73EF15EB4DA5E30E13F99EB28DFFs1

	Existence of axis-symmetric blow-up solution with multiple peak aggregations for the 2-D Keller-Segel systems coupled bipol...
	1 Introduction
	2 Results
	3 Preliminaries
	4 Proof of Theorem 2.1
	4.1 Proof of Theorem 2.1 (I): existence of time local solution
	4.2 Proof of Theorem 2.1 (II): extension criterion
	4.3 Proof of Theorem 2.1 (III): mass conservation law

	5 Proof of Theorem 2.2: ε-regularity theorem
	6 Proof of Theorem 2.4
	6.1 Proof of Theorem 2.4 (I): maximal existence time estimate
	6.2 Proof of Theorem 2.4 (II): blow-up configuration

	7 Proof of Theorem 2.5 and 2.6
	7.1 Proof of Theorem 2.5: finiteness of the blow-up points
	7.2 Proof of Theorem 2.6: δ-function singularity

	Acknowledgments
	Data availability
	References


