
Title
Which instrument should play here? Decoding
predicted musical timbre from EEG signals during
omission

Author(s) Ishida, Kai; Ishida, Tomomi; Nittono, Hiroshi

Citation Cortex. 2025, 192, p. 64-77

Version Type VoR

URL https://hdl.handle.net/11094/102879

rights
This article is licensed under a Creative
Commons Attribution-NonCommercial 4.0
International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Research report

Which instrument should play here? Decoding 

predicted musical timbre from EEG signals during 

omission

Kai Ishida *, Tomomi Ishida and Hiroshi Nittono

Graduate School of Human Sciences, The University of Osaka, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan

a r t i c l e  i n f o  

Article history: 

Received 15 February 2025 

Revised 27 August 2025 

Accepted 28 August 2025 

Action editor Sascha Frühholz 

Published online 8 September 2025

Keywords: 

Predictive coding 

Omitted stimulus potential 

Decoding 

Musical timbre 

Prediction error 

Heartbeat evoked potential

a b s t r a c t

The human brain predicts various musical features such as harmony, melody, and rhythm 

during music perception. A previous electroencephalographic (EEG) study showed that the 

accuracy of pitch decoding during tone omission was greater when the pitch of the melody 

was highly predictable than when it was less predictable, reflecting that predictive infor

mation of a specific pitch is contained in the EEG signal. However, the specificity of pre

diction for other musical features has not been fully addressed. The present study 

investigated whether predicted instruments are decoded from the EEG signal during 

omission to examine the specificity of prediction in the timbre dimension. Thirty-five 

participants listened to unfamiliar melodies with simple (high predictability) or complex 

(low predictability) timbre change rules while watching a silent movie. The EEG was 

recorded when a tone expected to be played by one of four specific timbres (celesta, electric 

piano, marimba, organ) was omitted. The results showed that the amplitude of an omitted 

stimulus potential, oN1, did not differ between high and low predictability conditions. 

However, the support vector machine was able to decode the type of musical timbre during 

omission better than random chance in the high predictability condition but not in the low 

predictability condition. These results suggest that EEG signals contain information about 

which instrument should be played during omission, but this information is not man

ifested in traditional event-related potentials. The brain may specifically predict not only 

the pitch but also other musical dimensions, such as the timbre, of the upcoming tone.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC 

BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

The human brain predicts the timing and content of incoming 

sounds (Denham & Winkler, 2020). In the music domain, the 

presence of prediction is widely accepted, and music percep

tion has been studied in terms of predictive coding (Vuust 

et al., 2022). In predictive coding, humans actively perceive 

an external input with a prediction, and the prediction error 

between the prediction and the sensory input is minimized to 
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explain the sensory input (Friston, 2005, 2010a, 2010b). The 

prediction is sent as a top-down signal and the prediction 

error is sent as a bottom-up signal in a hierarchical message 

passing (Friston & Kiebel, 2009). Following this prediction 

framework, previous studies have examined various types of 

predictions, such as chord (Li et al., 2021; Ono et al., 2024), 

pitch (Ishida & Nittono, 2024c; Quiroga-Martinez et al., 2019), 

and rhythm (Vuust et al., 2009; Zanto et al., 2006) during music 

perception (for reviews, see Koelsch et al., 2019; Rohrmeier & 
Koelsch, 2012; Vuust et al., 2018, 2022; Vuust & Witek, 2014). 

Although previous studies have demonstrated the presence of 

prediction, the feature specificity of prediction has not been 

fully investigated. For the pitch feature, previous studies have 

shown the specificity of pitch prediction in the simple tone 

sequence (Chouiter et al., 2015; Demarchi et al., 2019; 

Hauswald et al., 2024) and musical melody (Ishida et al., 

2024). However, it is unclear whether the content prediction 

of musical timbres (instruments) is also feature specific. 

Therefore, the present study investigated whether the human 

brain generates a neural signal specific to the particular 

musical timbre while listening to musical melodies.

Direct evidence for the presence of prediction is the neural 

omission response to unexpected omissions (Bendixen et al., 

2014; Korka et al., 2020; SanMiguel, Saupe, & Schr€oger, 2013; 

van Laarhoven et al., 2017; for review, see Bendixen et al., 

2012; Schr€oger et al., 2015). Neural activation during omis

sion can be a mirror of a top-down predictive signal because 

there is no external input (SanMiguel, Saupe, & Schr€oger, 2013; 

Schr€oger et al., 2015). Electroencephalographic (EEG) studies 

have measured the neural omission response through the 

event-related potential (ERP) recorded during the omission of 

sensory input in various sensory modalities (visual: Ishida & 
Nittono, 2024a; Nittono, 2005; Stange et al., 2023; auditory: 

Dercksen et al., 2020; Horv�ath et al., 2010; Jongsma et al., 

2004; Korka et al., 2020; Stekelenburg & Vroomen, 2015; so

matosensory: Dercksen et al., 2024; Hernando-Hern�andez & 
Hern�andez-S�anchez, 2017). This ERP is called omitted stim

ulus potentials (OSPs) or omitted stimulus response (Bullock 

et al., 1994; Busse and Woldorff, 2003; Hernando-Hern�andez 

& Hern�andez-;S�anchez, 2017; Ishida & Nittono, 2024a, 

2024b). In the auditory domain, the first OSP is omission N1 

(oN1), which appears with a latency of approximately 

50—100 msec after omission onset (Ishida & Nittono, 2024a; 

SanMiguel, Saupe, & Schr€oger, 2013; SanMiguel, Widmann, 

et al., 2013; van Laarhoven et al., 2017, 2020). The amplitude 

of oN1 was larger when the timing and content of the tone 

were predictable than when they were unpredictable 

(Dercksen et al., 2020; Ishida et al., 2024; SanMiguel, Saupe, & 
Schr€oger, 2013; van Laarhoven et al., 2017). Ishida et al. (2024)

discussed that oN1 reflects the precision-weighted prediction 

error of the unexpected omission, and that its amplitude 

modulation is driven by the precision of the sensory input due 

to predictability (certainty).

In the auditory domain, previous studies have shown that 

neural omission responses reflect predictive information for 

specific pitch features using decoding methods that predict 

mental states from neural activity using statistical or machine 

learning techniques. For example, Demarchi et al. (2019)

showed that the accuracy of pitch decoding from magneto

encephalographic responses during tone omission and before 

tone presentation in a tone sequence increases with predict

ability due to sequential regularity, suggesting that pitch ex

pectations generated in auditory prediction become more 

specific as predictability increases. Hauswald et al. (2024)

further demonstrated that the frequency-specific neural 

pattern during omission was not affected by the prediction of 

omission positions using the same multivariate pattern 

analysis decoding. Therefore, the content of tones is specif

ically predicted, regardless of the position of the omission.

In a musical context, Ishida et al. (2024) reported that oN1 

was larger for omission in the familiar melody than in the 

unfamiliar melody created by shuffling the notes of familiar 

melodies, reflecting pitch predictability. Ishida et al. further 

showed that the accuracy of decoding omitted notes from the 

EEG during omission was higher in the familiar melody 

context (high predictability) than in the unfamiliar melody 

context (low predictability) using a support vector machine 

(SVM), a type of machine learning. They concluded that EEGs 

in predictable contexts contain more information about 

musical pitch expectation and that this expectation is more 

specific than in less predictable contexts. However, in their 

study, the harmonic and rhythmic structure before the 

omission was not controlled between the familiar and unfa

miliar contexts, except for the preceding one note, due to the 

random shuffling of notes. Therefore, the amplitude differ

ence in oN1 and decoding accuracy may have been influenced 

not only by predictions of specific musical pitches but also by 

overall predictability, such as harmony and rhythm.

The present study investigated whether the omission 

response reflects the various content predictions in the audi

tory domain. To this end, two aims were set. The first aim was 

to examine whether information reflecting predicted in

struments is contained in the EEG signal during omission by 

extending the results of pitch-identity decoding (Ishida et al., 

2024) to timbre-identity decoding. Several studies have shown 

that the representation of distinct timbres is reflected in 

different neural responses (Caclin et al., 2006; Seol et al., 2011; 

for a review, Wei et al., 2022). For example, a magnetoen

cephalography study by Seol et al. (2011) demonstrated a dif

ference in the auditory M50 (P50) and M100 (N1) responses 

based on timbre characteristics, suggesting that timbre is 

discriminated during early auditory processing. An ERP study 

also showed that differences in timbre imagery, manipulated 

by the spectral centroid, reflect differences in the amplitude of 

the late positive component (Tu _znik et al., 2018). Therefore, 

separate predictions would be generated for timbre identity.

The second aim was to replicate the oN1 results of Ishida 

et al. (2024) by manipulating the predictability of the target 

tone content while controlling other predictive information. 

Thus, two melodies with the same harmonic and rhythmic 

structures were composed. The tone at the target positions of 

these melodies was occasionally omitted, and its timbre was 

one of four timbres (target timbres). The timbres at positions 

other than the target were drawn from different set of four 

timbres (contextual timbres). One melody was used as a high 

predictability condition and another as a low predictability 

condition. In the high predictability condition, the contextual 

timbre was constant and the order of the target timbres was 

constant. In the low predictability condition, each position in 

the melody was played in one of four contextual timbres, and 
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the target timbres at each of the four positions were defined 

according to which contextual timbres appeared before the 

target position (see details in the Stimuli section). Thus, the 

regularity of timbre order was more complex in the low pre

dictability condition than in the high predictability condition. 

If oN1 reflects the precision-weighted prediction error, the 

oN1 amplitude would be larger in the high predictability 

condition than in the low predictability condition (H1). 

Notably, if the specificity of timbre expectations changes ac

cording to the predictability of tone content, the decoding 

accuracy of the omitted timbre would be greater in the high 

predictability condition than in the low predictability condi

tion (H2).

The present study further investigated the effect of pre

dictive processing for exteroception on interoceptive pro

cessing during omission and tone presentation by recording 

the heartbeat evoked potential (HEP). HEP is a neurophysio

logical measure of cardiac interoceptive processing and is 

extracted by aligning the HEP to the R-peak of the electro

cardiogram (ECG) (Coll et al., 2021). The HEP is larger when 

interoception is attended than when exteroception is atten

ded (Petzschner et al., 2019). One possibility is that internal 

processing, such as interoceptive and predictive processing, 

becomes more dominant during omission, whereas external 

processing, such as bottom-up sensory processing, becomes 

more dominant during tone presentation. Another possibility 

is that emotional processing also affects HEP amplitude. The 

positive HEP amplitude during the high emotional valence and 

arousal is larger than the low, at around 200—400 msec 

(Fuseda and Katayama, 2021; Luft & Bhattacharya, 2015). 

Given that the omission of the expected tone elicits the in

formatic surprise (i.e., the Shannon surprise) because it elicits 

the prediction error, the omission would cause higher valence 

and arousal than the tone. Therefore, examining HEP during 

omission was expected to provide further insight into the 

predictive nature of the omission response through the lens of 

interoception. Considering these possibilities, it was expected 

that HEP amplitude would be larger during the omission than 

during the tone presentation (H3). Moreover, the difference in 

HEP amplitude between the high and low predictability con

ditions was explored separately during tone, omission, and 

expected omission presentations.

2. Method

2.1. Participants

An effect size of dz = .73 (Ishida et al., 2024) was used to detect 

the difference in oN1 amplitude. Power analysis using 

G*power (Faul et al., 2007) resulted in a sample size of N = 17 

with α = .05 and 1− ß = .80. However, considering data exclu

sion and the small effect size on decoding accuracy, 40 par

ticipants were recruited and randomly assigned to four groups 

with different orders of high and low conditions and combi

nations of two melodies to counterbalance the order of con

ditions and the melody-specific effect (two condition 

orders × two melodies). Finally, data from 35 participants (16 

women and 19 men, 18—27 years old, M = 21.3 years) were 

used for hypothesis testing regarding the OSP analysis. Five 

participants were excluded due to excessive noise, which 

resulted in fewer than 45 artifact-free ERP trials for each 

stimulus type (180 trials in total). Of these, 33 participants 

were right-handed and two were ambidextrous, as per the 

FLANDERS handedness questionnaire (Okubo et al., 2014). 

Data from 31 participants (16 women and 15 men, 18—27 years 

old, M = 21.3 years) were used for the analysis of HEP. Ten 

participants were excluded because they had fewer than 100 

artifact-free trials in total, with fewer than 50 trials from the 

high and low predictability conditions, respectively. None of 

the participants had a history of hearing impairment, neuro

logical or cardiovascular disease. The participants’ musical 

ability was assessed using the Japanese Gold-MSI question

naire (Sadakata et al., 2023) and is summarized in 

Supplementary Table S1. They had various histories of 

formal musical training, with the following distribution: 18 

participants reported 0 years of training, 2 had .5 years, 1 had 2 

years, 6 had 3—5 years, 2 had 6—9 years, and 6 had over 10 

years. The protocol of this study was approved by the 

Behavioral Research Ethics Committee of Osaka University 

School of Human Sciences, Japan (HB024-016), and written 

informed consent was obtained from all participants. Partici

pants received a cash voucher of 4,000 Japanese yen as an 

honorarium. This study was conducted after another unre

lated experiment (approximately 1 h) in which the EEG was 

recorded while participants listened to a syncopated rhythm 

while tapping in sync with the rhythm (Ishida & Nittono, 

2025). Although performing a different type of musical task 

beforehand may cause fatigue, the effect is considered mini

mal because these experiments used completely different 

musical stimuli and tasks.

2.2. Stimuli

The score of the stimulus is shown in Fig. 1. Two melodies 

with the same harmonic and rhythmic structures were 

composed, and four target positions were placed at the same 

position in each melody. The melodies were in C major and 4/4 

time signature, and the total length was 9.6 sec. All tones in 

the melodies were quarter notes with a duration of 300 msec 

(BPM = 200). This tone duration and tempo were the same as 

those used by Ishida et al. (2024), which showed successful 

decoding of predicted pitch. This enabled us to compare the 

results of pitch and timbre decoding studies. The tone in the 

target positions was always A (440 Hz) after the piano tone of 

G, and its timbre was one of celesta, organ, electric piano, or 

marimba (target timbres). Using the same pitch consistently 

as the target tone ensures that decoding was performed solely 

based on timbre differences. The timbres other than the target 

positions were those of violin, trumpet, saxophone, and horn 

(contextual timbres). A melody was used as the high predict

ability condition. In the high predictability condition, the 

contextual timbre was constant at the contextual positions 

within a melody, and the order of the target timbres was 

constant and uniquely defined by the contextual timbre. For 

example, if the contextual timbre was violin, the order of the 

target timbres at the four target positions was celes

ta—organ—electric piano—marimba (see Fig. 1A).

Another melody was used as the low predictability condi

tion. In the low predictability condition, the timbre at the 
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target position was determined by which contextual timbre 

preceded it. However, within a single melody, four contextual 

timbres were played and their order was randomized, as 

shown in the bottom panel of Fig. 1. For example, if the order 

of the contextual timbres was violin

—trumpet—horn—saxophone, the order of the target timbres 

in a trial was marimba—celesta—organ—organ. Therefore, in 

the low predictability condition, participants had to learn 

combinations of the four contextual and the four target tim

bres at each position (i.e., 16 patterns), whereas in the high 

predictability condition, they only had to learn the four orders 

of the target timbres. This means that the present study 

manipulated predictability by changing the stability of tim

bres, which made it difficult to learn timbre patterns. Because 

the present study aimed to manipulate predictability based on 

contextual timbre regularities rather than a positional pre

diction that a particular timbre would be presented at a 

particular position, all patterns of each contextual position 

were presented randomly in each condition so that all four 

timbres appeared with equal probability at each target posi

tion. Note that which of the two melodies was assigned to the 

high or low predictability condition was counterbalanced 

across participants.

At each target position, notes were omitted with a proba

bility of 50%. All melodies were presented without interstim

ulus interval. In addition to the physically identical G tone 

preceding the target tones, the same harmonic and rhythmic 

structures controlled predictability other than timbre pre

dictability. Thus, the difference in the omission response be

tween the high and low predictability conditions was 

expected to reflect the predictability of musical timbres based 

on the complexity of timbre regularity, rather than the late 

components elicited by the preceding tone before the omis

sion. The presentation of the G tone also equalized the timbre 

change at the target position between the high and low pre

dictability conditions. In addition, the expected omission, 

where the tone was never presented, was placed after the 

piano G tone to examine the difference in ERPs between the 

unexpected and expected omissions, as this difference was 

expected to reflect the effect of a tone presentation prediction.

For the melody and trigger output, a stereo audio file was 

created with the melody sequence in the first channel and the 

Fig. 1 — Timbre Regularities of High and Low Predictability Conditions 

Note. The top panel shows an example of the high predictability condition, and the bottom panel shows an example of the 

low predictability condition. Blue notes with blue numbers indicate the target positions. In the high predictability condition, 

the contextual timbre is constant at the contextual positions within a melody. In the low predictability condition, the 

contextual timbres changed randomly, as indicated by the orange, green, purple, and blue lines. The target tones were 

omitted with a probability of 50%. The occurrence probability of each target timbre (celesta, organ, electric piano, and 

marimba) at each target position was the same in the high and low predictability conditions. In both types of melodies, the 

target timbres were omitted after the piano G, which is colored green. The pink quarter rest is the expected omission where 

notes were never presented.

c o r t e x  1 9 2  ( 2 0 2 5 )  6 4 —7 7 67 



trigger sound indicating the onset of the tones and omissions 

in the second channel. These channels were output separately 

via a stereo-to-monoaural splitter cable, and the melody and 

trigger sound were completely separated. The melody channel 

was connected to left and right headphones (MDR-EX650AP; 

SONY, Tokyo, Japan) at 60 dB SPL. The trigger channel was 

connected to an auditory signal detector (StimTrak; Brain 

Products, Gilching, Germany), which immediately (<1 msec) 

sent a trigger to an EEG amplifier.

2.3. Procedure

Prior to EEG recording, participants were asked to complete 

the Japanese Gold-MSI (Sadakata et al., 2023) to assess musical 

ability and the FLANDERS handedness questionnaire (Okubo 

et al., 2014) to assess handedness. Participants responded to 

all questionnaire items using a 7-point Likert scale ranging 

from 1 = “Completely disagree” to 7 = “Completely agree” in 

the Gold-MSI.

The EEG and ECG recordings consisted of four blocks of the 

high predictability condition and four blocks of the low pre

dictability condition. The order of the high and low predict

ability conditions was counterbalanced across participants. In 

each block, the melody was repeated 32 times, and the tone 

presentation and omission resulted in a total of 16 trials for 

each target timbre. Thus, the total number of tone and 

omission trials in each condition was 256 and 256 trials, 

respectively (i.e., 64 + 64 + 64 + 64 = 256 trials). In the high 

predictability condition, all four contextual instruments were 

presented within a single block to control for the type of in

struments heard and to equalize the sensory processing as 

much as possible between the high and low predictability 

conditions. Participants were asked to ignore the melodies 

while watching a silent movie. Including the online ques

tionnaire session, electrode preparation, and short breaks 

between blocks, the entire experiment took approximately 

2.5 h.

2.4. Data recording

EEG and ECG data were recorded using QuickAmp (Brain 

Products, Germany) with Ag/AgCl electrodes. Thirty-four 

scalp electrodes were placed according to the 10—20 system 

(Fp1/2, F3/4, F7/8, Fz, FC1/2, FC5/6, FT9/10, C3/4, T7/8, Cz, CP1/ 

2, CP5/6, TP9/10, P3/4, P7/8, Pz, O1/2, Oz, PO9/10). Additional 

electrodes were placed on the left and right mastoids, the left 

and right outer canthi of the eyes, and above and below the 

right eye. The data were referenced offline to the algebraic 

mean of the left and right mastoid electrodes. The sampling 

rate was 1000 Hz. The online filter was DC—200 Hz. Electrode 

impedances were kept below 10 kΩ. The ECG was recorded 

bipolarly using two Ag/AgCl electrodes placed on the left 

lower rib and the right mastoid sites (as an alternative to the 

right clavicle electrode).

2.5. Data processing

EEG data were analyzed using EEGLAB (Delorme & Makeig, 

2004; version 2024.2.1) and ERPLAB (Lopez-Calderon & Luck, 

2014; version 12.00) on MATLAB R2023a (The MathWorks 

Inc., Natick, MA). To calculate OSP waveforms, a digital filter 

composed of a .5-Hz high-pass filter and a 25-Hz low-pass 

filter was first applied to the data (Ishida et al., 2024; 

SanMiguel, Widmann, et al., 2013). Then, ocular artifact 

correction based on independent component analysis was 

applied. A period of 500 msec (200 msec before and 300 msec 

after the omissions and tones) was averaged after removing 

trials with voltages exceeding ±80 μV in any channel, as per 

Ishida et al. (2024). Baseline correction was applied by sub

tracting the mean amplitude of the 200 msec pre-stimulus 

period from each point of the waveform. The ERP waveform 

was calculated by averaging the fronto-central electrodes (Fz, 

Cz, FC1, FC2) as in Ishida et al. (2024), because the oN1 

distributed around that region.

For the statistical evaluation of oN1, the grand mean 

waveforms of the omissions in the high and low predictability 

conditions were averaged (averaged grand mean waveforms). 

The peak of oN1 was then detected in the interval of 

60—120 msec of the averaged grand mean waveforms of the 

omissions in the high and low predictability conditions, and 

the interval ±10 msec from the negative peak was defined as 

the oN1 interval. This extraction method was preliminary 

determined based on the results of Ishida et al. (2024: oN1 time 

window was 99—119 msec). Finally, a period of 94—114 msec 

was defined as the oN1 interval, and the mean ERP amplitudes 

of tone, omission, and expected omission were calculated 

from this interval. The number of epochs is summarized in 

Supplementary Table S2.

To calculate HEP waveforms, R-peaks were automatically 

detected using HEPLAB (Perakakis, 2019; version 1.0.1), and 

peaks that were misidentified or not properly detected were 

manually corrected. R-peaks occurring during tone, omission, 

and expected omission (i.e., 300 msec duration) were used as 

triggers for HEP onset. After the detection of R-peaks, a digital 

filter composed of a .1-Hz high-pass filter and a 30-Hz low- 

pass filter was applied to the data as in Tanaka et al. (2023), 

who examined HEP with tone presentation. Independent 

component analysis was used to remove ocular, muscular, 

and cardiac field artifacts. An 800 msec period (200 msec 

before and 600 msec after the R-peak) was averaged after 

removing trials with voltages exceeding ±80 μV in any chan

nel. Baseline correction was applied by subtracting the mean 

amplitude of the − 200 msec to − 50 msec period from each 

point of the waveform. The − 50—0 msec were not included in 

the baseline because this interval was expected to contain an 

R-wave deflection (Coll et al., 2021). Because the HEP was 

prominent, the fronto-central electrodes (Fz, Cz, FC1, FC2) 

were used to calculate the ERP waveform.

For the statistical evaluation of HEP, the grand mean 

waveforms of the HEP in the tone, omission, and expected 

omission were averaged. The positive peak was observed 

around 300—400 msec. The peak was detected in this time 

window, and the interval ±20 msec from the peak was used to 

calculate the averaged ERP amplitude (348—388 msec). More

over, to examine the difference in the predictability of timbre 

in HEP amplitude, the difference waveforms were calculated 

by subtracting the HEP of the low predictability condition from 

the HEP of the high predictability condition in tone, omission, 

and expected omission. The grand mean waveforms of all 

three difference waveforms were averaged. Because the 
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positive deflection was found around 50—150 msec, the posi

tive peak was detected in this time window and the interval 

±20 msec from the peak was used to calculate the averaged 

ERP amplitude (77—97 msec). The number of epochs is sum

marized in Supplementary Table S2.

2.6. Decoding

Similar to Ishida et al. (2024), a participant-based approach to 

decoding was performed using linear SVM with error- 

correcting output codes (ECOC). The templateSVM function, a 

MATLAB function, was used to standardize the data, and the 

linear SVM with ECOC was run using the fitecoc function. The 

SVM was run separately for each participant at each time 

point of the OSP waveforms. The features input to the classi

fier were the scalp electrode potentials from all 34 channels. 

Before data input, the number of trials was balanced across all 

classes. That is, for individual-level decoding, the classifier 

was trained using an equal number of trials by matching the 

count to the category with the fewest trials within participant. 

At each time point, a threefold cross-validation was con

ducted to assess the generalizability of the model. In the 

threefold cross-validation, all trials of each timbre category 

were randomly divided into three blocks. Two of the three 

blocks were used for training, and the remaining block was 

used for testing the classifier to calculate the decoding accu

racy. This process was repeated three times until all three 

blocks were used as the test block. Then, the averaged 

decoding accuracy over three test datasets was calculated. For 

each time point, threefold cross-validation was repeated 10 

times (iteration) and the averaged decoding accuracy was 

calculated. Decoding was performed for the full range of 

− 200—300 msec after the onset of tone, omission, and ex

pected omission, and the full range of − 200—600 msec after 

the onset of the R-peak. The decoding accuracy waveform was 

compared to the chance level to test whether the accuracy 

significantly exceeded it using a cluster-based permutation 

test (see 2.7. Statistical Analysis for details).

2.7. Statistical analysis

To statistically evaluate ERP amplitudes and decoding accu

racy, both classical (frequentist) and Bayesian analyses were 

performed using JASP .19.2 (JASP Team, 2024). The type I error 

rate (α) was set at .05. Bayes factors were calculated to assess 

the absence (null hypothesis) or presence (alternative hy

pothesis) of the difference between conditions. In the 

Bayesian t-test, the prior distribution for the effect δ was a 

Cauchy distribution (scale parameter r of .707). A Bayes factor 

greater than 3 was considered moderate evidence for the 

alternative and null hypotheses, respectively, as per 

Sch€onbrodt and Wagenmakers (2018).

To examine the difference in omissions with and without 

prediction, the oN1 amplitude of the omission and expected 

omission were compared using a paired t-test (one-sided) and 

its Bayesian version. Then, a paired t-test (two-sided) and its 

Bayesian version were performed on the oN1 amplitude to 

compare the difference in the high and low predictability 

conditions. The same t-tests (two-sided) were performed on 

the N1 and oN1 amplitude of tone and expected omission. The 

Bayes factor was expressed as BF− 0 for the one-sided test and 

BF10 for the two-sided test.

The decoding results were statistically analyzed using a 

cluster-based permutation test (Maris & Oostenveld, 2007). 

First, the decoding accuracy in classifying the omission and 

expected omission in the high and low conditions was 

compared to chance level (p = .50), separately, to examine 

whether the omission with and without prediction was 

different. Second, the accuracy of decoding using the OSP and 

ERP of tone in classifying the four timbres was compared to 

chance level (p = .25) in the high and low conditions sepa

rately. The chance level was determined by dividing 100% by 

the number of categories, as with previous studies that used a 

similar SVM decoding method (Bae & Luck, 2019; Ishida et al., 

2024; Tautvydait _e & Burra, 2024). The decoding accuracy of 

timbre classification was compared between the high and low 

conditions for tone and omission decoding separately.

The positive HEP amplitude was compared between the 

three stimuli (tone, omission, and expected omission), using 

one-way analysis of variance (ANOVA) and its Bayesian 

version. Spherical correction was performed to modify the 

degrees of freedom using Greenhouse-Geisser ε. For multiple 

comparisons, Bonferroni correction was applied to control for 

type I error rate (α). Furthermore, the decoding accuracy in 

classifying the HEPs of the three stimuli was compared to 

chance level (p = .33) using a cluster-based permutation test. 

Finally, the difference in HEP amplitudes (high minus low 

conditions) in the three stimuli was compared to zero using a 

one-sample t-test and its Bayesian version.

The electrical sources of the ERP and HEP were estimated 

using the standardized low-resolution brain electromagnetic 

tomography analysis (sLORETA) method (Pascual-Marqui, 

2002). sLORETA was applied to the mean voltages of oN1, N1, 

and positive HEP. Three-dimensional current density magni

tudes (sLORETA—xyz values) were compared to zero and 

within conditions and stimuli using voxel-wise paired t-tests. 

For the multiple comparison, corrected critical values for 

significant differences (p < .05) were determined using the 

nonparametric permutation test. Materials and dataset for 

replicating the analysis are available from https://osf.io/ 

awx7e/.

3. Results

3.1. Difference in OSP waveforms between omission and 

expected omission

Fig. 2 shows the ERP responses to tones and omissions and 

their source localization by sLORETA with decoding results. 

Similar ERP waveforms were obtained for the omission and 

the expected omission. To verify that the ERP amplitude 

around the oN1 time window was larger in the omission than 

in the expected omission, the amplitude was compared after 

collapsing the high and low conditions. The ERP amplitude of 

the omission (M = − 2.00 μV, SD = 1.03) was significantly larger 

than that of the expected omission (M = − 1.64 μV, SD = 1.05), t 

(34) = − 2.96, p = .003, dz = − .50, BF10 = 14.10, suggesting that 

the differential ERP response was due to the oN1 component 

elicited by the unexpected omission.
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The right panel of Fig. 2a shows the source localization of 

the ERP around the oN1 time window (i.e., the mean voltage of 

the 94—114 msec interval) using sLORETA. The results show 

that both the omission and the expected omission activated 

around the superior temporal gyrus (STG) compared to zero. 

When omission and expected omission were compared, the 

STG was more activated during the omission than during the 

expected omission. These results suggest that the oN1 

response originates in the auditory cortex and that the 

stronger STG activation may reflect the violation of the tone 

presentation prediction, overlapping with unspecified late ERP 

components elicited by the preceding tones.

The left panel of Fig. 2c shows the SVM results of the 

omission and expected omission classification in the high and 

low predictability conditions. The cluster-based permutation 

test revealed that the decoding accuracy was significantly 

above chance level (p = .50) in both the high, 77—128 msec 

cluster tsum = 123.52, p = .010, and the low, 87—253 msec 

Fig. 2 — ERP Responses and Decoding Results 

Note. (a) Grand ERP waveforms of the omission and expected omission when averaging the high and low predictability 

conditions. The gray area indicates the oN1 interval (94—114 msec) defined as the peak ±10 msec. The topographic 

distribution shows the mean ERP amplitude of the oN1 interval. The right panel shows the estimated cortical sources of the 

omission and the expected omission. (b) The ERP responses to tone, omission, and expected omission. The topographic 

distribution shows the mean ERP amplitude at 94—114 msec, indicated by the gray area in the waveform panels. The bottom 

panel shows the estimated cortical sources of each stimulus in the high and low predictability conditions. (c) Decoding 

accuracy for the omission and expected omission classifications and for the classification of the four timbres using tone and 

omission. For all panels, the ERP waveforms were calculated by averaging the frontal-central electrodes (Fz, FC1, FC2, and 

Cz). The light-colored bands on the ERP and decoding accuracy waveforms indicate a 95% confidence interval. For sLORETA 

results, only voxels with statistically significant activities exceeding the critical t-values (tcrit) according to nonparametric t- 

tests (p < .05) are colored.
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cluster, tsum = 520.20, p < .001, predictability conditions. The 

difference between omission and expected omission reflects 

the difference between the presence and absence of an 

expectation for the tone presentation.

3.2. Comparison of ERP between the high and low 

predictability conditions

Fig. 2b shows the ERP responses to omission, tone, and ex

pected omission with topographic distribution and its source 

localization by sLORETA. Table 1 shows the ERP amplitude and 

the results of the statistical analysis comparing the amplitude 

between the high and low predictability conditions. The re

sults show that the oN1 amplitude of the omissions and the 

N1 amplitude of the tone were not significantly different be

tween the high and low predictability conditions.

Source estimation of sLORETA showed significant activa

tion mainly in the right temporal cortex (i.e., middle temporal 

gyrus: MTG, STG) and right frontal cortex (inferior frontal 

gyrus: IFG) in omission, tone, and expected omission when the 

activation of each predictability condition of the stimuli was 

compared to zero. However, the difference between the high 

and low predictability conditions for tone, omission, and ex

pected omission was not statistically significant. Activation in 

the MTG and posterior STG was significantly different be

tween the oN1 for omission and the N1 for tone.

3.3. SVM decoding from ERP response

The timbres were decoded using the OSP waveforms in the 

high and low predictability conditions separately. Decoding 

accuracy was significantly above chance level (p = .25) only in 

the high predictability condition, at around 64—86 msec, tsum

= 64.51, p = .023, but not in the low predictability condition, 

the largest cluster being detected was around 154—171 msec, 

tsum = 48.26, p = .082. However, decoding accuracy was not 

significantly different between the two conditions, despite the 

largest cluster being detected around 72—82 msec, tsum = 64.51, 

p = .392. The mean accuracy in this cluster was M = 25.91% 

(SD = 1.61) for the high predictability condition and M = 24.88% 

(SD = 1.67) for the low predictability condition, suggesting that 

not all participants’ data showed successful decoding, even in 

the high predictability condition. These results suggest a 

qualitative difference in the prediction of timbre content be

tween the high and low predictability conditions. Specifically, 

decodable content prediction was present in the ERP of the 

high predictability condition, but not in the low predictability 

condition.

The same timbre decoding was performed using the ERP 

waveforms elicited by the tone in the high and low predict

ability conditions separately. Decoding accuracy was signifi

cantly above chance level (p = .25) in both the high, 

68—300 msec cluster, tsum = 1513.53, p < .001, and low, 

60—300 msec cluster, tsum = 1656.88, p < .001, predictability 

conditions. Decoding accuracy was not significantly different 

between the two conditions (high: M = 27.42%, SD = 2.35; low: 

M = 28.63%, SD = 2.74), the largest cluster was around 

118—120 msec, tsum = − 6.80, p = .960.

3.4. HEP difference in stimuli and timbre predictability

Fig. 3 shows the HEP and accuracy waveforms from decoding 

the HEPs of the three stimuli. The positive HEP waveforms 

(348—388 msec interval) of the three stimuli (i.e., tone, omis

sion, and expected omission), calculated by averaging the high 

and low predictability conditions, are shown in the left panel 

of Fig. 3a. A one-way ANOVA revealed a significant main effect 

of stimulus type (tone, omission, and expected omission), F(2, 

60) = 18.74, p < .001, ηp
2 = .384, Greenhouse-Geisser ε = .931, 

BFincl = 37207.66. The post-hoc t-tests revealed that the posi

tive HEP was significantly larger during omission and ex

pected omission than during tone, corrected ps < .001. The 

positive HEP was not statistically significant between omis

sion and expected omission, corrected p = .535. SVM decoding 

was performed to classify the HEPs of the three stimuli. The 

peak of decoding accuracy was found around the positive HEP, 

and the cluster-based permutation test revealed that the 

167—485 msec cluster was significantly above chance level, 

tsum = 1396.33, p < .001. These results indicate that the HEPs of 

the three stimuli were dissociable.

The sLORETA results of the source estimation of the posi

tive HEP are shown in Fig. 3b. The source was detected around 

the insula in both the omission and expected omission when 

compared to zero, but not in the tone. When the activation 

was compared between omission and tone, and between ex

pected omission and tone, the activation of the insula was 

significantly stronger for omissions than for tone. However, 

the significant difference between omission and expected 

omission was not observed.

Fig. 3c shows the comparison of the HEP response between 

the two conditions during each stimulus type. To examine the 

difference in the HEP amplitude between the high and low 

predictability conditions, the difference HEP amplitudes (high 

minus low) at the 77—97 msec interval was compared to zero 

using one-sample t-test. No significant differences were found 

for tone, M = − .16 μV (SD = 1.17), t(30) = − .76, p = .452, 

dz = − .14, BF10 = .25, omission, M = .56 μV (SD = 1.73), t 

(30) = 1.82, p = .079, dz = .33, BF10 = .82, or expected omission, 

M = − .04 μV (SD = 1.41), t(30) = − .15, p = .879, dz = − .03, 

BF10 = .19. Predictability had no effect on HEP amplitude.

4. Discussion

The present study examined whether decoding accuracy 

changes according to timbre predictability and whether oN1 

amplitude differs between contexts with different timbre 

predictability. The oN1 amplitude did not differ significantly 

Table 1 — Comparison of the mean ERP amplitude between 

high and low conditions.

N = 35 High 

M (SD)

Low 

M (SD)

t 

df = 34

p dz BF10

oN1 (omission) − 1.93 (1.13) − 2.07 (1.19) .76 .453 .13 .24

N1 (tone) − 4.15 (2.22) − 4.34 (2.24) .96 .343 .16 .28

ERP (expected 

omission)

− 1.67 (1.14) − 1.61 (1.13) − .38 .706 − .06 .19

Note. Results of paired t-test and Bayesian paired t-test are shown.
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between the high and low predictability conditions (not sup

porting H1). Although decoding accuracy was not quantita

tively different between the high and low predictability 

conditions, decoding accuracy was above chance level only in 

the high predictability condition, reflecting a qualitative dif

ference (partially supporting H2). These results suggest that 

the EEG during omission contains feature-specific predictive 

information only in the high predictability condition. The 

source of oN1 and N1 responses was estimated around the 

STG and MTG, suggesting the computation of prediction error 

in the auditory cortex. The HEP amplitude was significantly 

greater during tone omission (expected and unexpected 

omission) than during tone (supporting H3). The results of OSP 

and HEP are discussed in terms of predictive processing.

The ERP responses to the omission and the expected 

omission were similar. This is unexpected, since the OSPs 

should not be observed at the expected omission position 

because the participants knew that no tone would be pre

sented. One possibility is that the ERP responses to both the 

omission and the expected omission contained a late ERP 

component elicited by the preceding tone. The preceding tone 

was physically the same for both omissions, and this may 

have led to similar late ERP components contaminating the 

ERPs observed during both. Nevertheless, the ERP amplitude 

around the oN1 time window and activation of the STG were 

significantly greater in the omission than in the expected 

omission. Prete et al. (2022) interpreted the negative compo

nent, calculated by subtracting the ERP of the expected 

Fig. 3 — HEP Responses to Tones and Omissions with its Source Localization Estimated by sLORETA 

Note. (a) Grand HEP waveforms of tone, omission, and expected omission when averaging the high and low predictability 

conditions. The gray area indicates the positive HEP interval (348—388 msec) defined as the peak ±20 msec. The topographic 

distribution shows the mean ERP amplitude of the positive HEP interval. The right panel shows the waveform of the 

decoding accuracy of the HEPs during the three stimuli. (b) The estimated cortical sources of tone, omission, and expected 

omission with the comparison results of the stimuli. Only voxels that showed statistically significant activities exceeding 

the critical t-values (tcrit) according to nonparametric t-tests (p < .05) are colored. (c) The grand difference HEP waveforms to 

tone, omission, and expected omission. The topographic distribution shows the mean ERP amplitude at 77—97 msec, 

indicated by the gray area in the waveform panels. The right panel shows the topographic distribution of HEP in the gray 

area. For all panels, the HEP waveforms were calculated by averaging the frontal-central electrodes (Fz, FC1, FC2, and Cz). 

The light-colored bands on the ERP and accuracy waveforms indicate a 95% confidence interval.
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omission from the unexpected omission, as a reflection of 

prediction error. Similarly, in the present study, the enhanced 

ERP response around the oN1 time window for the omission 

compared to the expected omission is attributable to the 

prediction error elicited by the omission. Moreover, the suc

cessful decoding of the omission and the expected omission 

supports the difference between two omissions. Therefore, 

the difference in the ERP amplitude around the oN1 time 

window indicates the presence of prediction-related activity 

(i.e., OSP).

The oN1 amplitude was not different between the high and 

low predictability conditions. The present study strictly 

manipulated content predictability while controlling for the 

other possible predictabilities, in contrast to Ishida et al. 

(2024), where the modulation of oN1 amplitude may have 

been influenced by the overall predictability, such as the pitch 

alignment, harmony, and rhythm of the melodies, rather than 

solely by the content predictability of the target tone. More

over, because the present study used an unfamiliar melody in 

both conditions, participants had to learn pitch and timbre 

patterns simultaneously to form predictions in an inattentive 

state. It may also be challenging for participants to learn 

timbre regularity with the current procedure, where all four 

contextual instruments were presented within a single block, 

even in the high predictability condition. Thus, one possible 

explanation for the current results is that subtle differences in 

predictability arise due to the complexity of the regularity and 

difficulties in learning, which may have prevented a clear 

distinction between the high and low predictability 

conditions.

The degree of difference in predictability may be an 

important factor in oN1 modulation. Previous studies that 

observed amplitude differences in oN1 (Dercksen et al., 2020; 

SanMiguel, Saupe, & Schr€oger, 2013) compared content pre

dictability between identical, where the same tone was always 

presented, and random, where 48 tones were presented 

randomly and the tone content was unpredictable. In 

contrast, the present study compared high and low predict

ability conditions, where predictions were able to form in both 

conditions, although the predictability was different. If pre

diction is present in both conditions and the difference in 

predictability is small (i.e., there is no clear distinction be

tween predictable and unpredictable conditions), the differ

ence in oN1 amplitude may not be observed. Supporting this 

possibility, in the visual domain, Kimura and Takeda (2018)

showed that the amplitude of omission P3 was significantly 

larger in the one-stimulus condition, in which bars with 

identical slopes were always presented, than in the two-, four- 

, and eight-stimulus conditions, in which bars with two, four, 

or eight different slopes were presented, respectively, but did 

not differ between the two-, four-, and eight-stimulus condi

tions. Therefore, a clear difference in predictability would be 

required to observe the difference in OSP amplitude.

The neural source of oN1 was estimated to be around the 

temporal lobe, similar to the N1 response of tone. The acti

vation of the STG and MTG during omission is consistent with 

previous studies that reported the source of oN1 in the STG 

and MTG (Ishida & Nittono, 2024a; SanMiguel Saupe et al., 

2013; Stekelenburg & Vroomen, 2015). The source similarity 

of oN1 and N1 suggests that oN1 is a modality-specific 

omission response, as reported in Ishida and Nittono (2024a). 

However, in contrast to tone, which dominantly activated the 

anterior temporal gyrus, omission dominantly activated the 

middle and posterior areas of the temporal gyri, such as MTG 

and STG. These results are similar to those of Cho et al. (2023), 

who reported the dominance of high-frequency EEG power in 

the posterior and middle STG for syllable omission using an 

electrocorticogram. The activation of the posterior STG for 

omission may be due to higher salience, considering the re

sults of Downar et al. (2002), who reported greater activation 

of the temporo-parietal junction for novel than for familiar 

stimuli in auditory, visual, and tactile modalities as discussed 

in Cho et al. (2023). Therefore, oN1 and N1 do not fully share 

neural pathways. However, due to the low spatial resolution 

of EEG, these sLORETA results should be replicated in an MEG 

or fMRI study to verify the current interpretation of the source 

localization.

Timbre decoding accuracy exceeded chance level only in 

the high predictability condition, although accuracy was not 

quantitatively different between the high and low predict

ability conditions. This result suggests that the prediction of 

musical tone was feature specific not only in the pitch domain 

but also in the timbre domain when the timbre was highly 

predictable. In the high predictability condition, the cluster 

latency (64—86 msec), which was significantly above chance 

level, was similar to Ishida et al. (2024), who found a signifi

cant difference in decoding accuracy between the high pre

dictability (familiar) and low predictability (unfamiliar) 

conditions of around 58—83 msec. The qualitative difference 

in decoding accuracy between the two conditions suggests 

that the predictive information was contained only in the high 

predictability condition. The multivariate decoding method 

could be a powerful tool to detect the subtle difference in 

predictability that was not observed in the rough amplitude 

indices. Similar to previous studies that used omission re

sponses to decode predicted tone features (Demarchi e al., 

2019; Hauswald et al., 2024; Ishida et al., 2024), the present 

study successfully decoded feature-specific predictions dur

ing music perception and extended the pitch domain to the 

timbre domain. The timbres were selected to ensure partici

pants could clearly identify the instruments. Even though it is 

difficult to determine whether the current decoding results 

reflect predictions related to specific timbre features like the 

spectral centroid due to the instrument selection, the current 

results still support that the decoding was due to the broad 

difference of the musical instruments.

It should be noted that the decoding accuracy in the cur

rent high predictability condition (peak accuracy was 26.14%) 

was low compared to the familiar melody condition (peak 

accuracy was 31.08%) in Ishida et al. (2024). This may be due to 

the reduction of predictive information in the present study 

compared to Ishida et al. (2024) because the possible predictive 

information that would be used to infer the target tone was 

strictly controlled to manipulate content predictability only. 

Alternatively, a slower tempo would be required to sufficiently 

encode timbre regularity compared to pitch, because the 

processing of the timbre dimension relies on more complex 

spectrotemporal information (Town & Bizley, 2013; Wei et al., 

2022). It is known that the theoretical chance level, which is 

calculated by dividing 100% by the number of classes, can be 

c o r t e x  1 9 2  ( 2 0 2 5 )  6 4 —7 7 73 



exceeded by chance, especially when the sample size is small 

(Combrisson & Jerbi, 2015). Although the current decoding 

accuracy only slightly exceeded the theoretical chance level, 

the latency of the significant cluster was similar to the cluster 

that significantly exceeded the chance level in a previous 

decoding study of EEG signals during omission (Ishida et al., 

2024). This replicability suggests that the current decoding 

result is not entirely due to a false positive.

The peak latency of decoding accuracy differed between 

the omission and the tone. The decoding accuracy waveform 

shows the two peaks around the peaks of N1 and P2, which are 

the auditory evoked potentials (Eggermont & Ponton, 2002; 

Picton et al., 1974). However, the peak accuracy of the high 

predictability condition was earlier than the N1 and oN1 peaks 

when decoding was performed using omission. Similarly, 

Ishida et al. (2024) reported peak accuracy of decoding before 

the N1 and oN1 peaks. Previous studies (Bendixen et al., 2009; 

Ishida et al., 2024; SanMiguel Widmann et al., 2013) have dis

cussed that the sensory template for the expected sound is 

generated until it is interrupted by omission detection in the 

early latency range (approximately 50—100 msec after omis

sion). The scalp-recorded ERP is thought to largely reflect the 

superficial pyramidal cell (Jackson & Bolger, 2014), whose 

activation reflects the forward transmission of prediction er

rors (Friston & Kiebel, 2009), although top-down prediction 

signals may partially contribute to the scalp-recorded ERP 

(Schr€oger et al., 2015). For this reason, it is difficult to disso

ciate prediction signals from prediction error signals. The oN1 

response is a prediction error even if it mirrors a prediction 

(SanMiguel, Saupe, & Schr€oger, 2013; Schr€oger et al., 2015). 

Therefore, in the case of an omission, the prediction signal 

can be reflected in the EEG because no neural activations 

caused by sensory input contaminate until the omission 

deviant is detected and the prediction signal is superimposed 

by the prediction error signal as recorded in oN1. This may 

lead to successful decoding before the oN1 peak. The current 

results further support that the early part of the OSP contains 

the sensory template for the expected tone content.

The positive HEP was larger during omission compared to 

tone. The neural generators of the positive HEP of the omis

sion and the expected omission were estimated in the right 

insula. Moreover, activation of the insula was significantly 

stronger during the omission and expected omission pre

sentations compared to the tone presentation. HEP amplitude 

is larger when participants attend to the interoceptive signal 

than when they attend to the exteroceptive signal (Petzschner 

et al., 2019), even during tone omission (Banellis and Cruse, 

2020). Thus, the most parsimonious explanation is that the 

enhancement of HEP amplitude during omissions was due to 

switching between interoceptive and exteroceptive process

ing and focused attention on interoception. However, due to 

the low spatial resolution of sLORETA, further research using 

imaging techniques is necessary to definitively conclude these 

interpretations, especially when estimating the source to the 

insula, which is located within the lateral sulcus. Another 

possibility is that the positive HEP was due to increased 

arousal to the unexpected omission. The positive HEP 

becomes more pronounced around 200—400 msec when 

stimuli with high emotional valence and arousal occur 

(Fuseda and Katayama, 2021; Luft & Bhattacharya, 2015). In 

the present study, the expected omission, in addition to the 

omission, may have caused some surprise. This is because the 

expected omission was inserted in the middle of a melody 

where quarter notes were constantly presented, specifically in 

a non-attending situation. Therefore, the informatic surprise 

(i.e., the Shannon surprise) of the omission may have 

increased arousal, and positive HEP was more pronounced 

during the omission than during the tone presentation.

Decoding of the three HEPs during tone, omission, and 

expected omission exceeded chance level at approximately 

167—485 msec. This suggests that HEP differs not only be

tween the tone and the omissions but also between the 

omission and the expected omission, although this difference 

was subtle and did not differ significantly in the HEP wave

form. The difference in HEP between omissions may reflect 

the difference in prediction. HEP amplitude is modulated by 

the prediction of external stimuli, such as tones synchronized 

to the heartbeat (Banellis and Cruse, 2020) and expected facial 

expressions (Gentsch et al., 2019). Moreover, Ono et al. (2024)

reported that the current source density (CSD) of HEP was 

more positive for the harmonic chord than the non-harmonic 

chord in the frontal region around 300—500 msec. In their 

study, the CSD-transformed HEP amplitude was positively 

correlated with subjective ratings of uncertainty, suggesting 

that HEP reflects the predictability of the chord. The omission 

and the expected omission in the current study differed only 

in content prediction, and the latency at which decoding ac

curacy exceeded chance level was similar to the HEP latency 

that was statistically significant in Ono et al. (2024). Therefore, 

the HEP difference between omissions may also reflect the 

difference between the presence and absence of content 

prediction of the external tone. However, the amplitude dif

ference was not observed between the high and low predict

ability conditions for all three stimuli. The present study 

exploratorily examined HEP during omission and timbre pre

dictability. In future research, with a sufficient number of 

trials and sample size, it will be possible to test whether the 

predictability of exteroceptive signals influences interoceptive 

signal processing.

In summary, the present study showed that the decoding 

accuracy of the timbres was significantly above chance only in 

the high predictability condition but not in the low predict

ability condition, reflecting that the EEG during omission 

contained predictive information about the specific timbre. 

However, the oN1 amplitude did not differ between the high 

and low predictability conditions. These results suggest that 

the EEG during omission may contain predictive information 

about the specific timbre that is not reflected in the traditional 

ERP amplitude. The present study provides further evidence 

that the brain's prediction is not only feature specific in the 

pitch domain but also in the timbre domain. Moreover, the 

enhancement of the positive HEP response during omission 

and expected omission compared to tone may reflect the 

difference in interoceptive or internal predictive processing. 
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The effect of the predictability of the external signal on the 

interoceptive processing reflected in the HEP is a topic for 

future research.
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