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A B S T R A C T

Objective: The aim of this study was to inversely predict the topological features underlying SEM images from 
arbitrary biaxial flexural strengths of glass-ceramics by Materials Informatics (MI) approach.
Methods: The scanning electron microscopic (SEM) image and in vitro biaxial flexural strength of 10 commer
cially available/experimental glass-ceramics were collected. The total of 200 SEM images were prepared as input 
data. Topological features underlying the SEM images were extracted using persistent homology analysis and 
compressed using principal component analysis. Gaussian mixture regression was employed to develop a ma
chine learning model for predicting biaxial flexural strength based on the topological features. Arbitrary biaxial 
flexural strengths (390, 411, 442, 478, 515, 564, 597, 610, and 640 MPa) were defined, and an inverse analysis 
was conducted with the constructed machine learning model to overlay topological features onto SEM images.
Results: The topological features were compressed into 18 principal components. The machine learning model 
was selected and optimized based on the Bayesian Information Criterion. Using the constructed machine learning 
model, the biaxial flexural strengths were predicted with a test score of 72 % (Root Mean Squared Error: 53.5, 
Mean Absolute Error: 40.3). From the arbitrary biaxial flexural strengths, topological features were inversely 
predicted and overlaid onto SEM images.
Conclusion: The inverse analysis established in this study successfully predicted the topological features on SEM 
images of glass-ceramics from the biaxial flexural strengths. The MI approach with the inverse analysis promises 
to make the process to develop glassceramics more time-efficient than the conventional in vitro approach

1. Introduction

New generation of lithium disilicate glass-ceramics, IPS e.max CAD, 
has been introduced to facilitate the computer-aided design/computer- 
aided manufacturing (CAD/CAM) milling process since 2006 [1]. In 
recent years, these lithium disilicate glass-ceramics have been widely 
used for veneers, inlays, onlays, and single crowns due to their superior 
translucency, wide range of color shades, and ease of fabrication [2–4]. 
However, their flexural strengths (210 ± 35–624 ± 106 MPa [4]) are 
still not enough compared to those of zirconia (467.5 ± 97.5 MPa ~ 
898.0 ± 188.5 MPa [5]). Enhancing the flexural strength of these ce
ramics could potentially expand clinical applications.

Lithium disilicate glass-ceramics consist of two phases: a crystalline 
phase containing approximately 65 % lithium disilicate and a glass 

matrix [4]. Enhancing the mechanical properties of these materials is 
influenced by various factors, with microstructure playing a particularly 
significant role [3,6]. The conventional experimental approach to 
modifying the microstructure involves controlling the compositions of 
different phases and optimizing the heating process to achieve the 
desired crystallinity [7]. By adjusting these parameters, experimental 
blocks are fabricated and subsequently subjected to mechanical testing. 
ISO 6872: 2015 standard recommends conducting biaxial flexural 
strength test. However, these ceramics tend to have surface flaws and 
cracks during fabrication, including machining damage from CAD/CAM 
process [8,9]. Thus, the conventional experimental approach, which 
relies on repetitive testing, is time-consuming due to the challenges 
associated with specimen preparation.

In recent years, the demand for accelerating materials modification 
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and development has driven significant advancements in materials 
informatics (MI), which is defined as the application of computational 
methodologies to address challenges inherent in materials science [10]. 
The integration of machine learning (ML) with experimental datasets 
has transformed the traditional trial-and-error approach into a 
data-driven paradigm [11]. A typical workflow for integrating ML into 
materials research consists of three key components: a well-organized 
materials dataset, an appropriate ML algorithm, and a clearly defined 
research problem involving target materials that can benefit from ML 
techniques. A crucial step in this process is preprocessing the raw ma
terials database into a format compatible with the ML model’s input 
structure, such as vectors, while effectively capturing the essential fea
tures of the materials. This preprocessing phase requires expertise in 
materials science along with a strong understanding of ML models to 
ensure high accuracy and efficiency in addressing complex materials 
challenges [12]. The importance of MI has steadily grown to predict 
material properties across various materials such as organic, inorganic, 
and composite materials [13–15].

In the field of dental materials, literatures on the application of MI 
are still limited. The MI approach has been applied to predict the flexural 
strength of CAD/CAM resin composites [16] and performance outcomes 
of direct resin composites [17]. However, this study primarily focuses on 
the direct analysis or prediction of the target properties, using compo
sitional or structural information as inputs and material properties as the 
outputs [18]. Through this forward process, although optimal designs 
that surpass those in the training dataset can be proposed, it is not 
feasible to identify specific optimal designs or regions that fall within the 
predefined boundary conditions, such as strength [19]. To overcome 
this limitation, an inverse ML framework may be useful. Unlike forward 
ML, inverse analysis aims to predict internal structural information 
based on the desired properties.

Scanning electron microscopy (SEM) has been widely used as char
acterization method for observing and analyzing the internal structures 
of ceramics. However, quantifying these differences remains challenging 
due to variations in crystal sizes, shapes, and distributions among 
different products. Recently, a suite of techniques known as topological 
data analysis (TDA) has shown significant potential for extracting 
meaningful information from such complex images. TDA examines to
pological invariants, which are global intrinsic structure properties such 
as connected components, circles, rings, loops, channels, cavities, and 
voids [20,21]. TDA encompasses a range of methods inspired by alge
braic topology, with persistent homology (PH) serving as a fundamental 
tool. While geometric approaches to data analysis have historical roots, 
TDA has established itself as a distinct field, largely due to the pio
neering works of Edelsbrunner et al. and Zomorodian and Carlsson in PH 
[22,23]. PH enables the topological simplification of complex data 
across different spatial resolutions, allowing intrinsic topological in
variants to be extracted from images. It represents these extracted to
pological features using a persistent diagram. This technique has already 
been applied in various fields such as the extraction of multiscale to
pological features from biomolecular structures, the analysis of CT 
image data to identify crack formation trigger sites in iron, and the 
investigation of structural variations in isotropic and anisotropic sodium 
silicate glasses, among other applications [21,24,25].

The aim of this study was to develop a framework utilizing a MI 
approach to both directly predict the biaxial flexural strengths of lithium 
disilicate glass-ceramics from SEM images and inversely predict the 
internal topological features underlying these SEM images based on 
predefined biaxial flexural strength values.

2. Materials and methods

2.1. Experimental and commercial lithium disilicate glass-ceramics

Nine commercially available lithium disilicate glass-ceramics and 
one experimental lithium disilicate glass-ceramic were considered: 

Celtra Duo (Lot: 16001012, Dentsply Sirona, Charlotte, NC, USA), 
CEREC Tessera (Lot: 16009642, Dentsply Sirona), IPS e.max CAD (Lot: 
Y08938, Ivoclar, Schaan, Liechtenstein, Switzerland), IPS e.max Press 
(Lot: X49004, Ivoclar), Initial LiSi Block (Lot: 2010121, GC Corp., 
Bunkyo, Tokyo, Japan), Initial LiSi Press (Lot: 1806021, GC Corp.), N!ce 
(Lot: NJ372, Straumann, Basel, Switzerland), Vita Sprinity (Lot: 36211, 
Vita Zahnfabrik, Bad Säckingen, Germany), Vintage Prime Press (Lot: 
0521101, Shofu, Kyoto, Japan), and LH052 (Lot: 211222, GC R&D 
Corp., Itabashi, Tokyo).

2.2. Specimen preparation

Disk-shaped specimens with a diameter of 12 mm were fabricated 
using a milling machine (Aadva LW-I, GC Corp., Japan) and sectioned to 
a thickness of 2.4 mm using a diamond-coated precision sectioning blade 
(ISOMET2000, Buehler, Illinois, USA). CEREC Tessera specimens un
derwent heat treatment in a furnace according to the manufacturer’s 
recommendation, while IPS e.max CAD specimens were crystallized 
using a furnace following the manufacturer’s guidelines. All specimens 
were then polished to a final thickness of 1.2 ± 0.2 mm. For the LiSi 
block, N!ce, Celtra Duo, and LH052, polishing was performed after 
milling without additional heat treatment or crystallization. The CAD/ 
CAM glass-ceramics were tested with a sample size of n = 6, while the 
pressed ceramics were tested with n = 12.

2.3. Biaxial flexural strength test and scanning electron microscope 
analysis

According to the ISO 6872: 2015 standard, a custom-made piston-on- 
three-balls (P3B) biaxial fixture was prepared. Each specimen was sup
ported by three stainless-steel ball bearings with a diameter of 
4.5 ± 0.1 mm, positioned 120◦ apart on a support circle with a diameter 
of 11 mm. A flat piston with a diameter of 1.4 mm was applied at the 
center of the specimen on a universal testing machine (AG-X plus, Shi
madzu, Kyoto, Japan) at a constant crosshead speed of 1 mm/min. The 
biaxial flexural strength (BFS) was then calculated.

After the BFS test, two to three large fragments (those spanning from 
the center to the edge of the disc) were randomly selected from the six or 
twelve total specimens, embedded in methacrylic resin (Unifast II, GC), 
and subjected to argon ion milling using an HITACHI IM3000 Flat 
Milling System at an accelerating voltage of 2 kV for 5 min. Following 
ion milling and coating with platinum-palladium (Pt-Pd), each specimen 
was observed under a field-emission scanning electron microscope (FE- 
SEM; SU-70, HITACHI, Tokyo, Japan) at a magnification of 15,000 × . 
SEM images were acquired from 20 randomly selected areas, avoiding 
polishing marks and covering various regions of the surface.

2.4. Training data preparation

A total of 200 SEM images were obtained and binarized (crystals: 
white, glass matrix: black) by using Image J software (NIH) according to 
a threshold of 150. Persistent homology analysis was then performed to 
extract the topological features underlying the SEM images. This anal
ysis first involves the following steps: 

1. Each binarized image was transformed into a persistent diagram 
using HomCloud library (Ver. 4.6.0), where the scattered data points 
in the diagram represent topological features.

2. The scattered points from each diagram were vectorized using 
weight functions.

3. Since the obtained vectors were too large to serve as input data for 
developing a machine learning model, principal component analysis 
(PCA) was applied to reduce the dimensionality of the vectors for 
each product.

After dimensionality reduction, the resulting vectors were referred to 
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as principal components. Additionally, Bayesian optimization was con
ducted to determine the appropriate number of principal components. 
The selected principal components, along with biaxial flexural strength 
values, were then used as input training data for the machine learning 
model.

2.5. Machine learning model development and evaluation

Gaussian Mixture Regression (GMR) [26] was employed to develop a 
machine learning model for predicting biaxial flexural strength. The 
dataset was divided into training and testing subsets (8:2). The hyper
parameters of the model were selected and optimized based on the 
Bayesian Information Criterion (BIC). To assess the regression accuracy 
of each model, the coefficient of determination (R2 value), root mean 
square error (RMSE), and mean absolute error (MAE) were calculated.

2.6. Inverse prediction

For inverse analysis validation, Celtra Duo (lowest BFS) and LH052 
(highest BFS) were excluded. The range of 390–640 MPa was then 
selected to reflect the variability among the remaining products while 
ensuring representative coverage for model testing. An inverse analysis 
was conducted using the constructed machine learning model. Unlike 
the direct prediction of the biaxial flexural strengths, predefined biaxial 
flexural strength values (390, 411, 442, 478, 515, 564, 597, 610, and 
640 MPa) were used as input data. PCA was then applied to facilitate the 
inverse transformation, converting input strength values into vectors 
and subsequently transforming these vectors into persistent diagrams. 
Following PH analysis, the projection of significant region onto SEM 
images for each product was obtained as the output. The overall process 
is summarized in Fig. 1.

3. Results

Representative SEM images of each lithium disilicate glass-ceramic 
were shown in Fig. 2. The BFS values of each lithium disilicate glass- 
ceramics are summarized in Table 1. The extracted topological fea
tures were reduced ten principal components (Fig. 3). The ML model 
was selected and optimized based on the BIC. The maximum BIC value of 
− 1086.2 was achieved at the 22nd iteration (Fig. 4). Using the con
structed machine learning model, BFS values were predicted with a test 
accuracy of 72 % (R2-value: 0.909, RMSE: 30.465 MPa, MAE: 
15.056 MPa) (Fig. 5).

The inversely predicted images of Celtra Duo (BFS=390 MPa) and 
LH052 (BFS=610 MPa) are shown in Fig. 6 and Fig. 7, respectively.

4. Discussion

The MI approach, an AI-driven materials design method, was 
employed to predict the BFS value of lithium disilicate glass-ceramics 
from SEM images. Additionally, geometrically significant regions were 
successfully overlaid onto SEM images based on predefined biaxial 
flexural strength values.

Through ion milling treatment, nearly perfectly planar cross-sections 
of the samples were obtained. If the centroid positions of the crystals 
within these cross-sections can be accurately extracted using AI tech
niques of the instance segmentation such as YOLACT [27] or 
YOLACT++ [28], it is anticipated that topologically invariant features 
can be identified at least within the two-dimensional plane using PH 
analysis.

In this study, binarized SEM images were used as input data for PH 
analysis, ensuring the accessibility of the accumulated data. If SEM 
imaging is performed repeatedly along the depth direction after ion 
milling treatment, enabling the three-dimensional reconstruction of 
crystal morphology and the accurate extraction of crystal centroid po
sitions, it is expected that topologically invariant features could also be 

Fig. 1. Flowchart from direct analysis to inverse analysis.
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identified in three dimensions.
A GMR model was deployed, and the regression plot obtained from 

the test data showed larger errors, particularly on the high-intensity 
side. This discrepancy could be attributed to the limited availability of 
high-intensity data in the input dataset used to train the regression 
model [26]. These errors are expected to be reduced by incorporating 

additional high-intensity data. This can be achieved by refining the 

Fig. 2. Representative SEM images of each lithium disilicate glass-ceramic. (a) Celtra Duo, (b) CEREC Tessera, (c) IPS e.max CAD, (d), IPS e.max Press, (e) LH052, (f) 
Initial LiSi Block, (g) Initial LiSi Press, (h) N!ce, (i) Sprinity, (j) Vintage Prime Press.

Table 1 
In vitro biaxial flexural strengths of ten commercially available/experimental 
lithium disilicate glass-ceramics.

No. Glass ceramics Lot Shade BFS (MPa)

1 Celtra Duo 16001012 CT-A3 298 ± 93
2 CEREC Tessera 16009642 MT-A2 543 ± 81
3 IPS e.max CAD Y08938 LT A3 495 ± 67
4 IPS e.max Press X49004 LT A2 438 ± 37
5 LH052 211222 n/a 690 ± 92
6 Initial LiSi Block 2010121 A2HT 408 ± 49
7 Initial LiSi Press 1806021 LT A2 508 ± 55
8 N!ce NJ372 LT A1 432 ± 35
9 Sprinity 36211 A2-T 354 ± 46
10 Vintage Prime Press 521101 HT-A2 542 ± 70

Fig. 3. Cumulative contribution rate by principal component analysis.

Fig. 4. Bayesian information criterion (BIC).

Fig. 5. Regression plot between experimental biaxial flexural strength and 
estimated biaxial flexural strength (MPa).

S. Yamaguchi et al.                                                                                                                                                                                                                             Dental Materials 42 (2026) 16–22 

19 



selection of the next prototype candidates based on the regression 
model’s proposed phase-geometrically invariant features, which are 
designed to achieve the desired material properties identified through 
inverse analysis.

The inverse analysis of the regression model developed in this study 
revealed that the boundaries between crystals, as well as those between 
crystals and the glass matrix, play a crucial role in the development of 
high-strength lithium disilicate glass-ceramics. This could enable more 
conservative preparations, reduce the need for opaque substructures, 

and simplify laboratory workflows, ultimately benefiting both clinicians 
and patients. Observing these boundaries using atomic force microscopy 
or transmission electron microscopy is expected to provide novel in
sights, facilitating the development of entirely new lithium disilicate 
glass-ceramics. Apel et al. clarified that microcracks in lithium disilicate 
glass-ceramics propagate exclusively within the glassy matrix (intra
granular), whereas in leucite and apatite glass-ceramics, crack propa
gation occurs transgranularly and along grain boundaries, respectively 
[29]. Their findings suggest that a chemical concentration gradient may 

Fig. 6. Persistent diagram illustrated from arbitrary biaxial flexural strength of 390 MPa and topological features (red dots) overlaid onto binarized SEM images 
(Celtra Duo).

Fig. 7. Persistent diagram illustrated from arbitrary biaxial flexural strength of 610 MPa and topological features (red dots) overlaid onto binarized SEM im
ages (LH052).
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potentially be present at the interface between lithium disilicate crystals 
and the surrounding glass matrix. The distinct interface revealed by 
hydrofluoric acid etching implies compositional differences between the 
lithium disilicate crystals and the surrounding glass matrix, which may 
reflect an underlying chemical concentration gradient [30,31].

To further improve the fracture resistance of lithium disilicate glass- 
ceramics, several strategies may be considered. Tailoring the chemical 
composition near the crystal–glass interface could enhance crack 
deflection mechanisms by amplifying compositional gradients that 
hinder crack propagation. This may be achieved through controlled 
diffusion of mobile ions such as Li⁺, K⁺, or P⁵⁺ during nucleation and 
crystallization stages [30,32]. Increasing the degree of crystal inter
locking by optimizing the aspect ratio and orientation of lithium dis
ilicate crystals may promote a more tortuous crack path, thereby 
increasing the energy required for fracture [33]. Engineering residual 
compressive stresses at the interface through thermal expansion 
mismatch or phase transformation can act as a barrier to crack 
advancement [34,35]. Incorporation of nanocrystalline secondary pha
ses or interface modifiers, such as ZrO₂ or Al₂O₃, could serve to reinforce 
the boundary regions and further suppress crack initiation [32,33]. 
Collectively, these approaches aim to enhance the structural integrity of 
lithium disilicate glass-ceramics while maintaining their excellent 
esthetic and processing properties. These findings have significant 
clinical implications. Enhancing the flexural strength of lithium dis
ilicate glass-ceramics can expand their applications beyond anterior and 
single-unit restorations to include posterior crowns, implant-supported 
prostheses, and even fixed partial dentures, which are currently domi
nated by zirconia-based ceramics due to their superior mechanical 
properties [4]. By improving crack resistance through microstructural 
and interfacial engineering—such as grain boundary optimization and 
topological design strategies—lithium disilicate ceramics may provide a 
viable esthetic alternative in high-stress clinical scenarios [3,4].

In the future, instead of binarized SEM images, the instance seg
mentation is expected to be utilized to accurately extract the centroid 
positions of individual crystals. This approach would improve the per
formance of PH analysis, enabling the capture of truly topologically 
invariant features with greater fidelity. Persistent homology analysis 
combined with machine learning successfully distinguished between the 
glassy and liquid phases by capturing subtle but significant differences 
in the three-dimensional atomic arrangements during glass formation 
[36]. In this regard, by extracting the centroid positions of each crystal 
not only from two-dimensional SEM images but also from a 
three-dimensional volume model reconstructed from images obtained 
through iterative ion milling in the depth direction, the identification of 
genuinely topologically invariant features is anticipated.

This extension to 3D not only enhances the topological fidelity but 
also opens the possibility of correlating specific spatial config
urations—such as interfacial curvature, grain boundary networks, and 
crystal connectivity—with mechanical outcomes [37]. Persistent ho
mology applied to 3D reconstructed volumes may allow for the identi
fication of structural motifs that are otherwise invisible in 2D sections 
[38]. These motifs, once correlated with mechanical performance 
through inverse machine learning, can guide the design of new lithium 
disilicate formulations with targeted strength characteristics [39]. For 
example, identifying regions of high interfacial tortuosity or dense 
crystal clustering may inform compositional or thermal processing 
strategies that promote such features in practice.

5. Conclusion

The inverse analysis established in this study successfully predicted 
the topological features on SEM images of lithium disilicate glass- 
ceramics based on biaxial flexural strength values. The ML approach, 
combined with the inverse analysis, has the potential to significantly 
enhance the efficiency of developing lithium disilicate glass-ceramics, 
enabling a more time-efficient method than the traditional 

experimental approaches.
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