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Objective: The aim of this study was to inversely predict the topological features underlying SEM images from
arbitrary biaxial flexural strengths of glass-ceramics by Materials Informatics (MI) approach.

Methods: The scanning electron microscopic (SEM) image and in vitro biaxial flexural strength of 10 commer-
cially available/experimental glass-ceramics were collected. The total of 200 SEM images were prepared as input
data. Topological features underlying the SEM images were extracted using persistent homology analysis and
compressed using principal component analysis. Gaussian mixture regression was employed to develop a ma-
chine learning model for predicting biaxial flexural strength based on the topological features. Arbitrary biaxial
flexural strengths (390, 411, 442, 478, 515, 564, 597, 610, and 640 MPa) were defined, and an inverse analysis
was conducted with the constructed machine learning model to overlay topological features onto SEM images.
Results: The topological features were compressed into 18 principal components. The machine learning model
was selected and optimized based on the Bayesian Information Criterion. Using the constructed machine learning
model, the biaxial flexural strengths were predicted with a test score of 72 % (Root Mean Squared Error: 53.5,
Mean Absolute Error: 40.3). From the arbitrary biaxial flexural strengths, topological features were inversely
predicted and overlaid onto SEM images.

Conclusion: The inverse analysis established in this study successfully predicted the topological features on SEM
images of glass-ceramics from the biaxial flexural strengths. The MI approach with the inverse analysis promises
to make the process to develop glassceramics more time-efficient than the conventional in vitro approach

1. Introduction matrix [4]. Enhancing the mechanical properties of these materials is

influenced by various factors, with microstructure playing a particularly

New generation of lithium disilicate glass-ceramics, IPS e.max CAD,
has been introduced to facilitate the computer-aided design/computer-
aided manufacturing (CAD/CAM) milling process since 2006 [1]. In
recent years, these lithium disilicate glass-ceramics have been widely
used for veneers, inlays, onlays, and single crowns due to their superior
translucency, wide range of color shades, and ease of fabrication [2-4].
However, their flexural strengths (210 + 35-624 + 106 MPa [4]) are
still not enough compared to those of zirconia (467.5 + 97.5 MPa ~
898.0 + 188.5 MPa [5]). Enhancing the flexural strength of these ce-
ramics could potentially expand clinical applications.

Lithium disilicate glass-ceramics consist of two phases: a crystalline
phase containing approximately 65 % lithium disilicate and a glass

significant role [3,6]. The conventional experimental approach to
modifying the microstructure involves controlling the compositions of
different phases and optimizing the heating process to achieve the
desired crystallinity [7]. By adjusting these parameters, experimental
blocks are fabricated and subsequently subjected to mechanical testing.
ISO 6872: 2015 standard recommends conducting biaxial flexural
strength test. However, these ceramics tend to have surface flaws and
cracks during fabrication, including machining damage from CAD/CAM
process [8,9]. Thus, the conventional experimental approach, which
relies on repetitive testing, is time-consuming due to the challenges
associated with specimen preparation.

In recent years, the demand for accelerating materials modification
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and development has driven significant advancements in materials
informatics (MI), which is defined as the application of computational
methodologies to address challenges inherent in materials science [10].
The integration of machine learning (ML) with experimental datasets
has transformed the traditional trial-and-error approach into a
data-driven paradigm [11]. A typical workflow for integrating ML into
materials research consists of three key components: a well-organized
materials dataset, an appropriate ML algorithm, and a clearly defined
research problem involving target materials that can benefit from ML
techniques. A crucial step in this process is preprocessing the raw ma-
terials database into a format compatible with the ML model’s input
structure, such as vectors, while effectively capturing the essential fea-
tures of the materials. This preprocessing phase requires expertise in
materials science along with a strong understanding of ML models to
ensure high accuracy and efficiency in addressing complex materials
challenges [12]. The importance of MI has steadily grown to predict
material properties across various materials such as organic, inorganic,
and composite materials [13-15].

In the field of dental materials, literatures on the application of MI
are still limited. The MI approach has been applied to predict the flexural
strength of CAD/CAM resin composites [16] and performance outcomes
of direct resin composites [17]. However, this study primarily focuses on
the direct analysis or prediction of the target properties, using compo-
sitional or structural information as inputs and material properties as the
outputs [18]. Through this forward process, although optimal designs
that surpass those in the training dataset can be proposed, it is not
feasible to identify specific optimal designs or regions that fall within the
predefined boundary conditions, such as strength [19]. To overcome
this limitation, an inverse ML framework may be useful. Unlike forward
ML, inverse analysis aims to predict internal structural information
based on the desired properties.

Scanning electron microscopy (SEM) has been widely used as char-
acterization method for observing and analyzing the internal structures
of ceramics. However, quantifying these differences remains challenging
due to variations in crystal sizes, shapes, and distributions among
different products. Recently, a suite of techniques known as topological
data analysis (TDA) has shown significant potential for extracting
meaningful information from such complex images. TDA examines to-
pological invariants, which are global intrinsic structure properties such
as connected components, circles, rings, loops, channels, cavities, and
voids [20,21]. TDA encompasses a range of methods inspired by alge-
braic topology, with persistent homology (PH) serving as a fundamental
tool. While geometric approaches to data analysis have historical roots,
TDA has established itself as a distinct field, largely due to the pio-
neering works of Edelsbrunner et al. and Zomorodian and Carlsson in PH
[22,23]. PH enables the topological simplification of complex data
across different spatial resolutions, allowing intrinsic topological in-
variants to be extracted from images. It represents these extracted to-
pological features using a persistent diagram. This technique has already
been applied in various fields such as the extraction of multiscale to-
pological features from biomolecular structures, the analysis of CT
image data to identify crack formation trigger sites in iron, and the
investigation of structural variations in isotropic and anisotropic sodium
silicate glasses, among other applications [21,24,25].

The aim of this study was to develop a framework utilizing a MI
approach to both directly predict the biaxial flexural strengths of lithium
disilicate glass-ceramics from SEM images and inversely predict the
internal topological features underlying these SEM images based on
predefined biaxial flexural strength values.

2. Materials and methods
2.1. Experimental and commercial lithium disilicate glass-ceramics

Nine commercially available lithium disilicate glass-ceramics and
one experimental lithium disilicate glass-ceramic were considered:
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Celtra Duo (Lot: 16001012, Dentsply Sirona, Charlotte, NC, USA),
CEREC Tessera (Lot: 16009642, Dentsply Sirona), IPS e.max CAD (Lot:
Y08938, Ivoclar, Schaan, Liechtenstein, Switzerland), IPS e.max Press
(Lot: X49004, Ivoclar), Initial LiSi Block (Lot: 2010121, GC Corp.,
Bunkyo, Tokyo, Japan), Initial LiSi Press (Lot: 1806021, GC Corp.), N!ce
(Lot: NJ372, Straumann, Basel, Switzerland), Vita Sprinity (Lot: 36211,
Vita Zahnfabrik, Bad Sackingen, Germany), Vintage Prime Press (Lot:
0521101, Shofu, Kyoto, Japan), and LH052 (Lot: 211222, GC R&D
Corp., Itabashi, Tokyo).

2.2. Specimen preparation

Disk-shaped specimens with a diameter of 12 mm were fabricated
using a milling machine (Aadva LW-I, GC Corp., Japan) and sectioned to
a thickness of 2.4 mm using a diamond-coated precision sectioning blade
(ISOMET2000, Buehler, Illinois, USA). CEREC Tessera specimens un-
derwent heat treatment in a furnace according to the manufacturer’s
recommendation, while IPS e.max CAD specimens were crystallized
using a furnace following the manufacturer’s guidelines. All specimens
were then polished to a final thickness of 1.2 + 0.2 mm. For the LiSi
block, Nlce, Celtra Duo, and LHO52, polishing was performed after
milling without additional heat treatment or crystallization. The CAD/
CAM glass-ceramics were tested with a sample size of n = 6, while the
pressed ceramics were tested with n = 12.

2.3. Biaxial flexural strength test and scanning electron microscope
analysis

According to the ISO 6872: 2015 standard, a custom-made piston-on-
three-balls (P3B) biaxial fixture was prepared. Each specimen was sup-
ported by three stainless-steel ball bearings with a diameter of
4.5 + 0.1 mm, positioned 120° apart on a support circle with a diameter
of 11 mm. A flat piston with a diameter of 1.4 mm was applied at the
center of the specimen on a universal testing machine (AG-X plus, Shi-
madzu, Kyoto, Japan) at a constant crosshead speed of 1 mm/min. The
biaxial flexural strength (BFS) was then calculated.

After the BFS test, two to three large fragments (those spanning from
the center to the edge of the disc) were randomly selected from the six or
twelve total specimens, embedded in methacrylic resin (Unifast II, GC),
and subjected to argon ion milling using an HITACHI IM3000 Flat
Milling System at an accelerating voltage of 2 kV for 5 min. Following
ion milling and coating with platinum-palladium (Pt-Pd), each specimen
was observed under a field-emission scanning electron microscope (FE-
SEM; SU-70, HITACHI, Tokyo, Japan) at a magnification of 15,000 x .
SEM images were acquired from 20 randomly selected areas, avoiding
polishing marks and covering various regions of the surface.

2.4. Training data preparation

A total of 200 SEM images were obtained and binarized (crystals:
white, glass matrix: black) by using Image J software (NIH) according to
a threshold of 150. Persistent homology analysis was then performed to
extract the topological features underlying the SEM images. This anal-
ysis first involves the following steps:

1. Each binarized image was transformed into a persistent diagram
using HomCloud library (Ver. 4.6.0), where the scattered data points
in the diagram represent topological features.

2. The scattered points from each diagram were vectorized using
weight functions.

3. Since the obtained vectors were too large to serve as input data for
developing a machine learning model, principal component analysis
(PCA) was applied to reduce the dimensionality of the vectors for
each product.

After dimensionality reduction, the resulting vectors were referred to
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as principal components. Additionally, Bayesian optimization was con-
ducted to determine the appropriate number of principal components.
The selected principal components, along with biaxial flexural strength
values, were then used as input training data for the machine learning
model.

2.5. Machine learning model development and evaluation

Gaussian Mixture Regression (GMR) [26] was employed to develop a
machine learning model for predicting biaxial flexural strength. The
dataset was divided into training and testing subsets (8:2). The hyper-
parameters of the model were selected and optimized based on the
Bayesian Information Criterion (BIC). To assess the regression accuracy
of each model, the coefficient of determination (R? value), root mean
square error (RMSE), and mean absolute error (MAE) were calculated.

2.6. Inverse prediction

For inverse analysis validation, Celtra Duo (lowest BFS) and LH052
(highest BFS) were excluded. The range of 390-640 MPa was then
selected to reflect the variability among the remaining products while
ensuring representative coverage for model testing. An inverse analysis
was conducted using the constructed machine learning model. Unlike
the direct prediction of the biaxial flexural strengths, predefined biaxial
flexural strength values (390, 411, 442, 478, 515, 564, 597, 610, and
640 MPa) were used as input data. PCA was then applied to facilitate the
inverse transformation, converting input strength values into vectors
and subsequently transforming these vectors into persistent diagrams.
Following PH analysis, the projection of significant region onto SEM
images for each product was obtained as the output. The overall process
is summarized in Fig. 1.

Direct analysis

Input
(SEM images)

Persistent homology
analysis

Vectorization

Di ional compressi o
visualization
(Principal component analysis)

Regression analysis
(Gaussian Mixture Regression) -

Output
(Estimated biaxial flexural strength)

Bayesian
optimization
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3. Results

Representative SEM images of each lithium disilicate glass-ceramic
were shown in Fig. 2. The BFS values of each lithium disilicate glass-
ceramics are summarized in Table 1. The extracted topological fea-
tures were reduced ten principal components (Fig. 3). The ML model
was selected and optimized based on the BIC. The maximum BIC value of
—1086.2 was achieved at the 22nd iteration (Fig. 4). Using the con-
structed machine learning model, BFS values were predicted with a test
accuracy of 72 % (R%value: 0.909, RMSE: 30.465 MPa, MAE:
15.056 MPa) (Fig. 5).

The inversely predicted images of Celtra Duo (BFS=390 MPa) and
LHO052 (BFS=610 MPa) are shown in Fig. 6 and Fig. 7, respectively.

4. Discussion

The MI approach, an Al-driven materials design method, was
employed to predict the BFS value of lithium disilicate glass-ceramics
from SEM images. Additionally, geometrically significant regions were
successfully overlaid onto SEM images based on predefined biaxial
flexural strength values.

Through ion milling treatment, nearly perfectly planar cross-sections
of the samples were obtained. If the centroid positions of the crystals
within these cross-sections can be accurately extracted using Al tech-
niques of the instance segmentation such as YOLACT [27] or
YOLACT++ [28], it is anticipated that topologically invariant features
can be identified at least within the two-dimensional plane using PH
analysis.

In this study, binarized SEM images were used as input data for PH
analysis, ensuring the accessibility of the accumulated data. If SEM
imaging is performed repeatedly along the depth direction after ion
milling treatment, enabling the three-dimensional reconstruction of
crystal morphology and the accurate extraction of crystal centroid po-
sitions, it is expected that topologically invariant features could also be

Inverse analysis

Output
(Projection of an important
region on SEM images)

Persistent homology
analysis

Persistent diagram

Inverse transformation
Principal components -> vectors
(Principal component analysis)

Inverse analysis
(Gaussian Mixture Regression)

Input
(Arbitrary biaxial flexural strength)

Fig. 1. Flowchart from direct analysis to inverse analysis.
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Fig. 2. Representative SEM images of each lithium disilicate glass-ceramic. (a) Celtra Duo, (b) CEREC Tessera, (c) IPS e.max CAD, (d), IPS e.max Press, (e) LHO52, (f)
Initial LiSi Block, (g) Initial LiSi Press, (h) Nlce, (i) Sprinity, (j) Vintage Prime Press.

Table 1
In vitro biaxial flexural strengths of ten commercially available/experimental 60
lithium disilicate glass-ceramics.
No. Glass ceramics Lot Shade BFS (MPa)
1 Celtra Duo 16001012 CT-A3 298 + 93
2 CEREC Tessera 16009642 MT-A2 543 £ 81
3 IPS e.max CAD Y08938 LT A3 495 + 67
4 IPS e.max Press X49004 LT A2 438 + 37
5 LHO052 211222 n/a 690 + 92
6 Initial LiSi Block 2010121 A2HT 408 + 49
7 Initial LiSi Press 1806021 LT A2 508 £ 55
8 Nlce NJ372 LT Al 432 + 35
9 Sprinity 36211 A2-T 354 + 46
10 Vintage Prime Press 521101 HT-A2 542 + 70
0.50 Number of reputation
0.45 Fig. 4. Bayesian information criterion (BIC).
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Fig. 3. Cumulative contribution rate by principal component analysis. 200 300 400 500 600 700 200
identified in three dimensions. Experimental biaxial flexural strength (MPa)
A GMR model was deployed, and the regression plot obtained from Fig. 5. Regression plot between experimental biaxial flexural strength and
the test data showed larger errors, particularly on the high-intensity estimated biaxial flexural strength (MPa).

side. This discrepancy could be attributed to the limited availability of
high-intensity data in the input dataset used to train the regression additional high-intensity data. This can be achieved by refining the
model [26]. These errors are expected to be reduced by incorporating
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Celtra Duo

Fig. 6. Persistent diagram illustrated from arbitrary biaxial flexural strength of 390 MPa and topological features (red dots) overlaid onto binarized SEM images

(Celtra Duo).

|

o

Birth: -2~2
Death: 43~47

© » 1) o

Biaxial flexural strength = 610 MPa

Red circle: Birth

Fig. 7. Persistent diagram illustrated from arbitrary biaxial flexural strength of 610 MPa and topological features (red dots) overlaid onto binarized SEM im-

ages (LH052).

selection of the next prototype candidates based on the regression
model’s proposed phase-geometrically invariant features, which are
designed to achieve the desired material properties identified through
inverse analysis.

The inverse analysis of the regression model developed in this study
revealed that the boundaries between crystals, as well as those between
crystals and the glass matrix, play a crucial role in the development of
high-strength lithium disilicate glass-ceramics. This could enable more
conservative preparations, reduce the need for opaque substructures,

20

and simplify laboratory workflows, ultimately benefiting both clinicians
and patients. Observing these boundaries using atomic force microscopy
or transmission electron microscopy is expected to provide novel in-
sights, facilitating the development of entirely new lithium disilicate
glass-ceramics. Apel et al. clarified that microcracks in lithium disilicate
glass-ceramics propagate exclusively within the glassy matrix (intra-
granular), whereas in leucite and apatite glass-ceramics, crack propa-
gation occurs transgranularly and along grain boundaries, respectively
[29]. Their findings suggest that a chemical concentration gradient may
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potentially be present at the interface between lithium disilicate crystals
and the surrounding glass matrix. The distinct interface revealed by
hydrofluoric acid etching implies compositional differences between the
lithium disilicate crystals and the surrounding glass matrix, which may
reflect an underlying chemical concentration gradient [30,31].

To further improve the fracture resistance of lithium disilicate glass-
ceramics, several strategies may be considered. Tailoring the chemical
composition near the crystal-glass interface could enhance crack
deflection mechanisms by amplifying compositional gradients that
hinder crack propagation. This may be achieved through controlled
diffusion of mobile ions such as Li*, K*, or P** during nucleation and
crystallization stages [30,32]. Increasing the degree of crystal inter-
locking by optimizing the aspect ratio and orientation of lithium dis-
ilicate crystals may promote a more tortuous crack path, thereby
increasing the energy required for fracture [33]. Engineering residual
compressive stresses at the interface through thermal expansion
mismatch or phase transformation can act as a barrier to crack
advancement [34,35]. Incorporation of nanocrystalline secondary pha-
ses or interface modifiers, such as ZrO2 or Al=0s, could serve to reinforce
the boundary regions and further suppress crack initiation [32,33].
Collectively, these approaches aim to enhance the structural integrity of
lithium disilicate glass-ceramics while maintaining their excellent
esthetic and processing properties. These findings have significant
clinical implications. Enhancing the flexural strength of lithium dis-
ilicate glass-ceramics can expand their applications beyond anterior and
single-unit restorations to include posterior crowns, implant-supported
prostheses, and even fixed partial dentures, which are currently domi-
nated by zirconia-based ceramics due to their superior mechanical
properties [4]. By improving crack resistance through microstructural
and interfacial engineering—such as grain boundary optimization and
topological design strategies—lithium disilicate ceramics may provide a
viable esthetic alternative in high-stress clinical scenarios [3,4].

In the future, instead of binarized SEM images, the instance seg-
mentation is expected to be utilized to accurately extract the centroid
positions of individual crystals. This approach would improve the per-
formance of PH analysis, enabling the capture of truly topologically
invariant features with greater fidelity. Persistent homology analysis
combined with machine learning successfully distinguished between the
glassy and liquid phases by capturing subtle but significant differences
in the three-dimensional atomic arrangements during glass formation
[36]. In this regard, by extracting the centroid positions of each crystal
not only from two-dimensional SEM images but also from a
three-dimensional volume model reconstructed from images obtained
through iterative ion milling in the depth direction, the identification of
genuinely topologically invariant features is anticipated.

This extension to 3D not only enhances the topological fidelity but
also opens the possibility of correlating specific spatial config-
urations—such as interfacial curvature, grain boundary networks, and
crystal connectivity—with mechanical outcomes [37]. Persistent ho-
mology applied to 3D reconstructed volumes may allow for the identi-
fication of structural motifs that are otherwise invisible in 2D sections
[38]. These motifs, once correlated with mechanical performance
through inverse machine learning, can guide the design of new lithium
disilicate formulations with targeted strength characteristics [39]. For
example, identifying regions of high interfacial tortuosity or dense
crystal clustering may inform compositional or thermal processing
strategies that promote such features in practice.

5. Conclusion

The inverse analysis established in this study successfully predicted
the topological features on SEM images of lithium disilicate glass-
ceramics based on biaxial flexural strength values. The ML approach,
combined with the inverse analysis, has the potential to significantly
enhance the efficiency of developing lithium disilicate glass-ceramics,
enabling a more time-efficient method than the traditional
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experimental approaches.
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