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We introduce multiobject operational tasks for measurement incompatibility in the form of multiobject quan-
tum subchannel discrimination and exclusion games with prior information, where a player can simultaneously
harness the resources contained within both a quantum state and a set of measurements. We show that any fully
or partially resourceful pair of objects is useful for a suitably chosen multiobject subchannel discrimination
and exclusion game with prior information. The advantage provided by a fully or partially resourceful object
against all possible fully free objects in such a game can be quantified in a multiplicative manner by the resource
quantifiers of generalized robustness and the weight of a resource for discrimination and exclusion games,
respectively. These results hold for arbitrary properties of quantum states as well as for arbitrary properties
of sets of measurements closed under classical pre- and postprocessing and, consequently, include measurement
incompatibility as a particular case. We furthermore show that these results are not exclusive to quantum theory,
but can also be extended to the realm of general probabilistic theories.

DOI: 10.1103/m7ln-tb1s

I. INTRODUCTION

The theoretical framework of quantum resource theories
(QRTs) [1] has consolidated itself during the past two decades
as a fruitful approach to quantum information where quantum
properties of physical systems are harnessed for the bene-
fit of operational tasks. A quantum resource theory can be
specified by first defining a quantum object of interest, fol-
lowed by one property of such objects to be exploited as a
resource [1]. The two most explored QRTs are arguably those
of quantum states [2,3] and measurements [4–6]. QRTs of
states explore desirable properties such as: entanglement [3],
coherence [7], asymmetry [7], superposition [8], purity [9],
magic [10], among many others [11–16]. Similarly, QRTs of
measurements explore properties such as: entanglement [5],
coherence [5], informativeness [17–19], and nonprojective
simulability [20]. There exist, however, additional desirable
resources contained within more general types of objects
such as: sets of measurements [21,22], behaviors or boxes
[23,24], steering assemblages [25], teleportation assemblages
[26], and channels [27–30], among many others [1,31–34].
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In this work, we focus on QRTs of sets of measurements,
with the resource of measurement incompatibility in par-
ticular. Measurement incompatibility [21,22] is a property
lying at the foundations of quantum mechanics that acts as
a parent resource for the properties of Bell-nonlocality [35]
and EPR-steering [36,37] and, as a consequence of this,
acts as a prerequisite for practical applications relying on
fully device-independent as well as semi-device-independent
protocols [38–43].

A broad research area of interest within QRTs concerns
the development of operational tasks harnessing the resources
contained within quantum objects. There are several results
quantifying the advantage provided by resources contained
within quantum measurements, many of which address this
quantification in terms of advantage ratios and connecting
this to resource measures. Three specific approaches in this
regard are the following. First, in the particular case of the
QRT of incompatible sets of measurements, it has been found
that incompatibility serves as fuel for single-object quan-
tum state discrimination tasks [44–49]. Second, operational
tasks for QRTs of single measurements have been explored
for general resources as well as explored more broadly
within general probabilistic theories (GPTs) [50]. Third, it
has also been pointed out that there exist operational tasks
that can simultaneously exploit the resources contained within
multiple objects, or multiobject operational tasks for short,
when considering composite QRTs of states and individual
measurements [51–54]. Despite the relevance of these three
approaches for the development of QRTs of measurements,
they still contain various shortcomings from the point of view
of QRTs of POVM sets with general resources. In particular,
a major shortcoming concerns with the fact that current multi-

2643-1564/2025/7(3)/033050(22) 033050-1 Published by the American Physical Society

https://orcid.org/0000-0002-8548-5371
https://orcid.org/0000-0001-5469-1503
https://orcid.org/0009-0001-6609-6979
https://orcid.org/0000-0003-4178-6102
https://ror.org/0589kgd85
https://ror.org/02kpeqv85
https://ror.org/0589kgd85
https://ror.org/02kpeqv85
https://ror.org/035t8zc32
https://ror.org/035t8zc32
https://ror.org/04nmbd607
https://crossmark.crossref.org/dialog/?doi=10.1103/m7ln-tb1s&domain=pdf&date_stamp=2025-07-11
https://doi.org/10.1103/m7ln-tb1s
https://creativecommons.org/licenses/by/4.0/


DUCUARA, TAKAKURA, HERNANDEZ, AND SUSA PHYSICAL REVIEW RESEARCH 7, 033050 (2025)

TABLE I. Comparison between this work (last column) and
Refs. [44–47,50,51], in terms of the following five features pertaining
to the quantification of advantage ratios in quantum resource theories
of measurements. As a first feature, we ask whether the statement
deals with POVM sets. Second, we ask if the statement is proven
for general resources represented by closed convex cones. Third,
whether the statement allows for the simultaneous implementation of
various quantum objects (multiobject). Fourth, whether the statement
is proven to hold for GPTs. Fifth, whether an exclusion dual of the
discrimination case is proven.

���������Features
Reference

Refs. This work
[44–47] Ref. [50] Ref. [51] (Result 3)

1 POVM sets
√

✗ ✗
√

2 General resources ✗
√ √ √

3 Multiobject ✗ ✗
√ √

4 GPT-extension ✗
√

✗
√

5 Exclusion dual ✗ ✗
√ √

object tasks are specifically tailored to exploit the resources
contained within states and individual measurements and,
consequently, they currently do not accommodate for desir-
able properties of sets of measurements such as measurement
incompatibility.

In this work we resolve these shortcomings by introducing
multiobject operational tasks for general resources of POVM
sets (including incompatibility) in the form of multiobject
quantum subchannel discrimination and exclusion games with
prior information. We characterize the advantage provided by
resourceful sets of measurements when playing these opera-
tional tasks in terms of resource quantifiers, and furthermore
extend these results to the framework of GPTs [55–61].
The construction in this paper simultaneously extends the
previously described three approaches, thus resolving the
shortcomings present in them. In Table I, we compare these
approaches and shortcomings thereof, and we further describe
this in what follows.

In order to compare these approaches, it is useful to in-
troduce the following five features as points of comparison.
First, a statement deals with POVM sets, whenever it addresses
properties of sets of measurements, such as incompatibility,
as opposed to single-POVM QRTs, where only one POVM is
considered at a given time. Second, a statement deals with
general resources, whenever the operational task in ques-
tion can potentially harness general resources represented by
closed convex cones, sometimes addressed in the literature
simply as convex resources, for short. Third, a statement
is multiobject, whenever the operational task allows for the
resources contained within multiple quantum objects to be
harnessed simultaneously. Fourth, a statement allows for a
GPT-extension, whenever a similar statement can be derived
more generally within the formalism of GPTs. Fifth and
finally, a statement involving a discrimination task has an
exclusion dual, whenever there exists a dual result, which now
connects the measure of weight of resource to the respective
exclusion task opposite to the discrimination case under con-
sideration. In Table I we use these five features to provide a
comparison between the results in this work and various other

results in the literature that also explore the quantification of
advantage ratios in QRTs of measurements.

Having introduced these five features, we now compare
Refs. [44–47,50,51], and the present work. First, the results in
[44–47] quantify the advantage provided by measurement in-
compatibility in the operational tasks of discrimination games
with prior information. These works clearly deal with sets
of measurements, but do not address any of the other four
features described above. Second, the results in [50] address:
QRTs of single measurements, general resources, extensions
to GPTs, but do not explore either the multiobject approach or
the discrimination-exclusion duality. Third, the results in [51]
address: QRTs of quantum states and single measurements,
multiobject operational tasks, the discrimination-exclusion
duality, but do not address situations either involving multiple
POVMs, or extensions of these connections to GPTs. Finally,
the results in the present paper incorporate these five features,
and it can therefore be seen as a generalization (unification) of
either (all) of the three approaches under consideration.

This paper is organized as follows. We first address
measurement incompatibility and classical pre- and postpro-
cessing. We then introduce multiobject operational tasks for
states and sets of measurements. We then introduce multi-
object operational tasks in the form of discrimination games,
exclusion games, and furthermore extend these results to the
realm of general probabilistic theories. We end up with con-
clusions and perspectives.

II. MEASUREMENT INCOMPATIBILITY AND CLASSICAL
PRE-AND POSTPROCESSING

Let L(H), LS (H), and L+
S (H), be the sets of all bounded,

self-adjoint, and positive semidefinite operators, respectively,
on a finite-dimensional complex Hilbert space H. A quantum
state, or density operator, is a trace one positive semidefinite
operator. The set of all states is denoted as D(H) := {ρ ∈
L+

S (H) | Tr[ρ] = 1}. A quantum measurement or normalized
positive operator-valued measure (POVM) is a set of posi-
tive semidefinite operators {Ma}l

a=1 satisfying
∑

a∈A Ma = 1,
with A = {1, . . . , l}, and 1 the identity operator on H. More
formally, a measurement M can be stated to be a map from
a σ -algebra on an outcome set A = {1, . . . , l} to L+

S (H),
and so M = {Ma}l

a=1. The operator Ma = M({a}) ∈ L+
S (H)

is denoted as the POVM element or effect corresponding
to the specific outcome a ∈ A. A POVM set is a set of
POVMs {Mx}κx=1, with each POVM having the same outcome
space A and so, for convenience, we write {Mx}κx=1 ≡ MA|X =
{Ma|x}a,x, where Ma|x = Mx({a}), and thus

∑
a∈A Ma|x = 1,

∀x ∈ {1, . . . , κ}. We will use the further simplified notation
{Ma|x} ≡ {Ma|x}a,x.

Let us also invoke the following notation from probability
theory. Let (X, G, . . .) be random variables on a finite alphabet
X , and the probability mass function (PMF) of a random vari-
able X represented as pX satisfying: pX (x) � 0, ∀x ∈ X , and∑

x∈X pX (x) = 1. For simplicity, we address pX (x) as p(x)
when evaluating, and omit the alphabet when summing. Joint
and conditional PMFs are denoted as pXG, pG|X , respectively.
With this notation in place, let us now address the property
of incompatibility of POVM sets. A POVM set MA|X = {Ma|x}
is compatible whenever there exist a parent POVM G = {Gλ}
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FIG. 1. Classical preprocessing (CPreP) and postprocessing
(CPosP) of the POVM set MA|X = {Ma|x} into a new POVM set
NB|Y = {Nb|y} with each Nb|y as in (2). A random variable z is gen-
erated according to the PMF qZ . The preprocessing stage consists
of choosing a classical input x according to a PMF that depends
on the classical input y and z as rX |Y Z . The postprocessing consists
of processing the measurement outcome a according to a PMF that
depends on y and z as sB|AY Z . We obtain the pre- and postprocessed
set of measurements NB|Y = {Nb|y}.

and a PMF pA|X� such that

Ma|x =
∑

λ

p(a|x, λ) Gλ, ∀a, x, (1)

and it is called incompatible otherwise. This property of
POVM sets is commonly also refereed to as measurement
compatibility or joint measurability. For simplicity, in this
work we stick to measurement (in)compatibility or simply
(in)compatibility. It will be useful to introduce the operation
of simulability of POVM sets. We say that a POVM set
NB|Y = {Nb|y}, b ∈ {1, . . . , m}, y ∈ {1, . . . , τ } is simulable by
the POVM set MA|X = {Ma|x}, a ∈ {1, . . . , l}, x ∈ {1, . . . , κ}
whenever there exist a triplet of PMFs qZ , rX |Y Z , and sB|AY Z

such that [20]

Nb|y =
∑
a,x,z

s(b|a, y, z) Ma|x r(x|y, z) q(z), ∀b, y. (2)

Simulability of POVM sets can be thought of as composed
of a classical preprocessing (CPreP) stage, represented by the
PMFs qZ and rX |Y Z , and a classical postprocessing (CPosP)
stage, represented by the PMF sB|AY Z . The triplet of PMFs
allowing the simulation are going to be refereed to as the
set of strategies S = {qZ , rX |Y Z , sB|AY Z}. In Fig. 1, we illus-
trate the simulability of POVM sets. One can check that the
simulability of POVM sets defines a partial order for POVM
sets and therefore, this motivates the notation NB|Y � MA|X ,
meaning that NB|Y is simulable by MA|X . It is straightfor-
ward to check that CPreP and CPosP are operations that
take compatible POVM sets into compatible POVM sets
and therefore, in this sense, we say measurement compati-
bility is closed under simulation of POVM sets. We now
move on to introducing the concept of an ensemble of in-
struments. A quantum channel is a map φ : L(H) → L(H)
that is completely positive (CP) and trace-preserving (TP).
A quantum subchannel is a map φ : L(H) → L(H) that is
completely positive (CP) and trace-nonincreasing (TNI). A
quantum instrument is a set of subchannels 	 = {φb}m

b=1 such
that

∑m
b=1 φb is a channel, φb = 	({b}), ∀b ∈ B. Instruments

are mathematical representations of quantum measurement
processes. Given an instrument 	 = {φb}m

b=1, we can con-
struct a measurement model such that the output probabilities
and postmeasurement states for a given target state ρ are
respectively {Tr[φb(ρ)]}b and {φb(ρ)/Tr[φb(ρ)]}b [62,63]. An

FIG. 2. Multiobject quantum subchannel discrimination with
prior information. Solid lines represent quantum information (states),
and double lines represent classical information. The player is in pos-
session of a fixed quantum state ρ and a POVM set MA|X = {Ma|x}.
The referee has an instrument set 	B|Y = {φb|y(·)}. The player sends
state ρ to the referee, who then implements one of the instruments
{φb|y(·)}, according to the PMF pY . The output of the instrument
is the measurement outcome b and a postmeasured state ρb|y. The
referee sends both state ρb|y and label y (prior information) back to
the player. The goal of the game is for the player to correctly guess
the output b. The player then proceeds to use both y and ρb|y, together
with his set of measurements MA|X = {Ma|x}, in order to generate a
guess index g. The player is allowed to do pre- and postprocessing
(2). The player then sends the guess g to the referee, who then checks
the winning condition (g = b).

instrument set is a set of instruments {	y}τy=1 with each in-
strument having the same outcome set B. Similarly to the case
of POVM sets, we can alternatively write an instrument set as
	B|Y = {φb|y}b,y, where φb|y = 	y({b}), and thus

∑m
b=1 φb is a

channel ∀y ∈ {1, . . . , τ }, B = {1, . . . m}. Finally, an ensemble
of instruments is a pair (pY ,	B|Y ) with 	B|Y an instrument
set and pY a PMF. We now introduce multiobject operational
tasks that are meant to be played with two quantum objects, a
quantum state and a POVM set.

III. MULTI-OBJECT OPERATIONAL TASKS
FOR STATES AND POVM SETS

We now introduce the operational task of multiobject quan-
tum subchannel discrimination game with prior information
(QScD-PI), as a generalization of the single-object state dis-
crimination tasks with prior information first introduced in
[64]. We illustrate this multiobject game in Fig. 2 and de-
scribe it as follows. The game is played by two parties, Alice
(the player) and Bob (the referee). Alice is in possession
of two quantum objects: a state ρ and a set of κ POVMs
{Mx}κx=1 ≡ MA|X = {Ma|x}. Here, all the POVMs are consid-
ered with the same outcome set A = {1, . . . , l} and Ma|x ∈
L+

S (H), ∀a, x. Bob, on the other hand is in possession of a
set of τ instruments {	y}τy=1 ≡ 	B|Y = {φb|y}. All instruments
are considered with the same outcome set B = {1, . . . , m},
and φb|y : L(H) → L(H), ∀b, y. The first step of the game
is for Alice (player) to prepare a quantum state ρ and send it
to Bob (referee). Bob then proceeds to implement one of the
instruments 	B|Y , say 	y = {φb|y}y, according to the PMF qY ,
on the set Y = {1, . . . , τ }, for which we assume that q(y) �= 0,
∀y ∈ Y . Bob then conducts the measurement associated to 	y

on ρ, observing an outcome b ∈ B and a postmeasurement
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state ρb|y := φb|y(ρ)/Tr[φb|y(ρ)]. After Bob’s measurement,
Alice is informed of Bob’s choice y (prior information), and
is also sent the state ρb|y. Alice’s goal is to correctly guess
the label b of the sub-channel φb|y. In order to do this, Alice
first generates a random variable z according to a PMF qZ ,
and uses this to determine the choice of measurement Mx

with a probability r(x|y, z). Alice then proceeds to measure
Mx = {Ma|x} on ρb|y, and observes an outcome a. Alice is
allowed to classically postprocess this measurement outcome
to generate a guess g ∈ B of b, according to s(g|a, y, z). Fi-
nally, Alice sends her guess g to Bob, and wins the game
whenever g = b. We address this task as multiobject quantum
subchannel discrimination with prior information (QScD-PI).
The maximum probability of success in such a task is given
by

PD
succ(pY ,	B|Y , ρ,MA|X ) := max

S

∑
g,a,x,μ,b,y

δg,b s(g|a, y, z)

× Tr[Ma|xφb|y(ρ)] r(x|y, z) q(z) p(y), (3)

with the maximization over all possible strategies S =
{qZ , rX |Y Z , sG|AY Z}. In a multiobject quantum subchannel ex-
clusion game with prior information (QScE-PI) on the other
hand, the goal is for Alice (player) to output a guess g ∈
{1, . . . , m} for a subchannel that did not take place, that is,
Alice succeeds at the game if g �= b and fails when g = b.
The minimum probability of error in quantum subchannel
exclusion with prior information is

PE
err (pY ,	B|Y , ρ,MA|X ) := min

S

∑
g,a,x,μ,b,y

δg,b s(g|a, y, z)

× Tr[Ma|xφb|y(ρ)] r(x|y, z) q(z) p(y), (4)

with the minimization over all possible strategies
S = {qZ , rX |Y Z , sG|AY Z}. A multiobject quantum subchannel
discrimination/exclusion game is specified by the ensemble
of instruments {pY ,	B|Y }. A key point to remark here is
that, the object of interest is now the state-POVM set pair
(ρ,MA|X ), as opposed to the POVM set alone, as is the case
in standard single-object state discrimination tasks [64]. We
now analyze these multiobject tasks from the point of view of
resource theories.

IV. ADVANTAGE PROVIDED BY RESOURCEFUL STATES
AND POVM SETS

We start by addressing quantum resource theories (QRTs)
of states and sets of measurements with arbitrary resources.
In order to do this, we need some elements from conic pro-
gramming [65,66]. In particular, we need the concept of a
closed convex cone (CCC). First, a set K ⊆ LS (H) is a cone
if λK ∈ K, ∀K ∈ K and ∀λ � 0. Second, a cone K is convex
when K1 + K2 ∈ K, ∀K1, K2 ∈ K. Third, a closed set, which
is considered as being closed under some operator topology
such as the trace norm. We note that all operator topolo-
gies are equivalent in the finite dimensional case [67,68].
Fourth, the dual of a cone K is the set defined as K◦ := {O ∈
LS (H)|〈O, K〉HS � 0,∀K ∈ K}, where 〈C, D〉HS = Tr[C†D]
is the Hilbert-Schmidt inner product in L(H). For any cone
K we have (K◦)◦ = conv(K) (the closure of the convex hull),

and so for any CCC K we have (K◦)◦ = K. We now consider
a property of quantum states defining a CCC as F (H) ⊆
L+

S (H). We will address the set of free states as the set F ≡
F(H) := {ρ ∈ F (H) | Tr[ρ] = 1}. We say a state ρ /∈ F is a
resourceful state, and free (resourceless) otherwise. Desirable
properties of quantum states regarded as resources include the
likes of entanglement, coherence, amongst others [1]. We now
similarly consider a property of measurement sets defining a
CCC and use it to introduce a free set of POVM sets and denote
it as F. We say a POVM set MA|X /∈ F is a resourceful POVM
set, and free (resourceless) otherwise. Desirable properties of
POVM sets include measurement incompatibility as a partic-
ular case [1]. We now address resource quantifiers. Consider
a QRT of a quantum object O being either a quantum state or
a POVM set. The generalized robustness of resource and the
weight of resource of O are given by

RF(O) :=
min

r � 0
OF ∈ F

OG

{r | O + rOG = (1 + r)OF }, (5)

WF(O) :=
min

w � 0
OF ∈ F

OG

{w | O = w OG + (1 − w)OF }. (6)

The generalized robustness quantifies the minimum amount
of a general quantum object OG (either a general state ρG

or a general POVM set MG
A|X ) that has to be added to the

quantum object O (either state ρ or POVM set MA|X ) to get
a free object OF (either a free state ρF or a free POVM set
MF

A|X ). The weight, on the other hand, quantifies the minimum
amount of a general object OG (either a general state ρG or a
general POVM set MG

A|X ) that has to be used for recovering the
quantum object O (either state ρ or POVM set MA|X ) from a
free object OF . It is well known that these resource quantifiers
can be written as conic programs [1,47,50,69–71]. We are
now dealing with multiple objects, so it is natural to introduce
the following notation. We say that a state-POVM set pair
(ρ,MA|X ) is: fully free when both objects are free, partially
resourceful when either is resourceful, and fully resourceful
when both are resourceful. We will be addressing, from now
on, QRTs of POVM sets for which CPreP and CPosP are
free operations, meaning that the free set of POVM sets is
closed under simulability of POVM sets. Having established
these elements from conic programming (further details in
Appendix A), we are now ready to analyze multiobject tasks
from the point of view of QRTs.

The main motivation now is to address the multiobject
quantum subchannel discrimination games introduced in the
previous section and compare the performance of a player
having access to a potentially resourceful pair (ρ,MA|X ),
against the performance of a player having access only to free
resources, (σ,NA|X ) ∈ F × F (fully free player). We want the
comparison to be fair, and so both players are compared when
playing the same game (i.e., same ensemble of instruments
{pY ,	B|Y }). We can then compare the performance of both
players by analyzing the following ratio:

PD
succ(pY ,	B|Y , ρ,MA|X )

maxσ∈F maxNA|X ∈F PD
succ(pY ,	B|Y , σ,NA|X )

. (7)
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If this ratio is larger than one, it naturally means that the pair
(ρ,MA|X ) offers an advantage over all fully free pairs, as it
leads to larger probability of winning. It is then desirable to
derive upper bounds for this ratio, and to explore how large
the ratio can get to be, meaning maximising the ratio over all
possible games, as this would represent the best case scenario
for the pair (ρ,MA|X ).

We now establish connections between robustness-based
(weight-based) resource quantifiers for states and POVM sets
and multiobject subchannel discrimination (exclusion) games
with prior information. We proceed to establish a first result
comparing the performance of a fully or partially resourceful
pair against all fully free pairs.

Result 1. Consider a player with a quantum state ρ and a
POVM set MA|X . The advantage provided by these two objects
when playing multiobject subchannel discrimination games
with prior information {pY ,	B|Y } is

max
{pY ,	B|Y }

PD
succ(pY ,	B|Y , ρ,MA|X )

max σ∈F
NA|X ∈F

PD
succ(pY ,	B|Y , σ,NA|X )

= [1 + RF(ρ)][1 + RF(MA|X )], (8)

with the maximization over all quantum subchannel discrim-
ination games and the generalized robustness of resource of
state and of POVM sets.

Proof. (Sketch) The full proof of this result is in Ap-
pendix B. We address here a sketch of the proof. The proof
of the statement has two parts. The first part is to show that
the right hand side of (8) constitutes an upper bound. This
first part employs the primal conic program of the generalized
robustness, and it follows from relatively straightforward ar-
guments. The second part of the statement, proving that the
upper bound is achievable, is a more involved endeavor, and
so we describe it next. Given a pair (ρ,MA|X ), it is possible to
use the dual conic programs of the generalized robustness to
extract positive semidefinite operators Zρ and {ZMA|X

a|x ≡ ZM
a|x},

a ∈ {1, . . . , l}, x ∈ {1, . . . , κ}, satisfying desirable optimality
properties. Using these operators, we can define the following
subchannel discrimination game. Fix a PMF pY , and consider
the game {pY , �B|Y }, b ∈ {1, . . . , l + J}, y ∈ {1, . . . , κ}, as:

�
(ρ,MA|X ,pX ,J )
b|y (η)

:=
{

αTr[Zρη] ZM
b|y p(y)−1, b = 1, . . . , l

1
J [1 − Fy(η)]χ b = l + 1, . . . , l + J

(9)

with J � 1 an integer, χ an arbitrary quantum state, α a
coefficient, and {Fy(·)} functions that depend on (ρ,MA|X ).
These parameters are all specified in Appendix B. The next
step is to analyze the performance of a player using fully free
pairs to play this game. In Appendix B we derive the following
upper bound respected by all fully free pairs (σ,NA|X ):

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J )
B|Y , σ,NA|X

)
� α + 1

J
. (10)

The next step is to analyze the performance of a player using
now the fixed pair (ρ,MA|X ). In Appendix B we also derive

the lower bound,

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J )
B|Y , ρ,MA|X

)
� α[1 + RF(ρ)][1 + RF(MA|X )]. (11)

Taking the previous two statements with J → ∞ achieves the
claim. �

We first note that this result applies to QRTs of states with
arbitrary resources and QRTs of POVM sets with arbitrary
resources for which POVM set simulability is a free opera-
tion and therefore, it covers as particular instances, several
desirable resources for both states and POVM sets, such as
measurement incompatibility. A second point to highlight is
that the result holds for any pair (ρ,MA|X ) that is either fully
resourceful or even partially resourceful. Thirdly, this result
generalizes two sets of results from the literature: (i) the
single-object results reported in [44–47] as well as (ii) the
multiobject case of state-measurement pairs in [51]. Let us
address these cases in more detail.

First, the result in [51] can immediately be recovered from
(8) by restricting the POVM set to trivially have only one
POVM, and similarly the operational task to consist on only
one instrument from which we get

max
	

PD
succ(	,ρ,M)

max σ∈F
N∈F

PD
succ(	, σ,N)

= [1 + RF(ρ)][1 + RF(M)],

(12)

thus explicitly recovering the result for state-measurement
pairs reported in [51].

Second, let us now address how (8) also recovers the
single-object results in [44–47]. In [44–47], the player has
access only to POVM sets (with no quantum states at their
disposal), and the resource being exploited is specifically that
of measurement incompatibility. Imposing these restrictions
in our setup, our operational task reduces to that of single-
object quantum state discrimination with prior information,
and in turn the advantage is given by that of the generalized
robustness of incompatibility alone. Let us see this explicitly.
Consider the denominator in the ratio of interest,

max
σ∈F

max
NA|X ∈F

PD
succ(pY ,	B|Y , σ,NA|X ), (13)

and the free state and POVM set achieving this as (σ ∗,N∗
A|X ).

Consider now comparing the performance of a player using
such fully free pair (σ ∗,N∗

A|X ) against a player using the
partially resourceful pair (σ ∗,MA|X ). In this case, because
the state is free, the right-hand side in (8) is simply [1 +
RF(MA|X )], and so we explicitly get

max
{pY ,	B|Y }

PD
succ(pY ,	B|Y , σ ∗,MA|X )

PD
succ(pY ,	B|Y , σ ∗,N∗

A|X )
= [1 + RF(MA|X )]. (14)

The left-hand side of the latter expression can now be seen
as an ensemble of states with prior information as EB|Y :=
{ρb|y, p(y)} with ρb|y := φb|y(σ ∗), and so we get

max
EB|Y

PQSD−PI
succ (EB|Y ,MA|X )

PQSD−PI
succ (EB|Y ,N∗

A|X )
= [1 + RF(MA|X )], (15)

thus explicitly recovering the results in [44–47]. When con-
sidering subchannel discrimination games being played with
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a POVM set alone, the advantage we see becomes [1 +
RF(MA|X )] [44–47]. In the multiobject scenario considered
here we instead get [1 + RF(ρ)][1 + RF(MA|X )], which can be
larger than [1 + RF(MA|X )], whenever ρ is resourceful. This
increment can be conceptually be understood by considering
that, since we are now addressing a composite object, it is
natural to expect each object to contribute to the overall ad-
vantage. Having said this, however, it is still appealing that
the advantage can be quantified in such a straightforward
multiplicative manner.

Finally, we present a practical application of Result 1 to
the problem of noise detection. In [69], an explicit analysis
of noise detection was provided. Consider an instrument set
	B|Y = {	y}y = {φb|y}. To make the argument more intuitive,
let us assume that each instrument is a binary ensemble
of channels: 	y = {φb=1|y, φb=2|y} with φb|y = νb|yφ̂b|y, where
{νb|y}b=1,2 is a PMF and {φ̂b|y}b=1,2 are channels. Assume
also φ̂b=1|y is an ideal (noiseless) channel and interpret
the instrument 	y as composed of ideal and noisy chan-
nels {φ̂b=1|y, φ̂b=2|y} that occur probabilistically according to
{νb|y}b. The problem of noise detection is to detect the noise
(or in other words, to discriminate the noisy channel φ̂b=2|y),
for each 	y, with the help of a state and measurements.
Following [69], we take the action of the non-Clifford unitary
UNC = exp(−i π

4
X−Y√

2
) as the ideal channel φ̂b=1, and its phase-

flipped version UNCZ as the noisy channel φ̂b=2. It was shown
in [69], within the QRT of magic, that the most efficient noise
detection in the instrument 	 = {ν1φ̂b=1, ν2φ̂b=2} is achieved
when considering the magic state (T -state) |T 〉 := 1√

2
(|0〉 +

eiπ/4|1〉), together with the POVM σz = {|0〉〈0|, |1〉〈1|}. This
state-measurement pair (|T 〉, σz ) is, however, not always
the ideal pair for detecting other types of noise. In fact,
when considering the task of noise detection on the instru-
ment { 1

2UNC, 1
2UNCX }, the pair (|T 〉, M) provides a better

detection than (|T 〉, σz ), where M = {|M〉〈M|, |M̄〉〈M̄|} with
|M〉 = cos θ

2 |0〉 − sin θ
2 |1〉, θ = π

2 − arctan
√

2. This can be
checked as follows. The success probability for discriminating
{ 1

2UNC, 1
2UNCX } via (|T 〉, M) is given by

1
2 |〈M|UNC |T 〉|2 + 1

2 |〈M̄|UNCX |T 〉|2. (16)

Ignoring the coefficient 1
2 , and noting that

UNC = 1

2

( √
2 1 − i

−1 − i
√

2

)
, (17)

we get

UNC |T 〉 = |0〉,

UNCX |T 〉 = 1√
2

(|0〉 + e−π/4|1〉). (18)

With this in place, we get

|〈M|UNC |T 〉|2 + |〈M̄|UNCX |T 〉|2

= 1 + 1

2

(
1√
2

sin θ + cos θ

)
,

which attains its maximum at θ = π
2 − arctan

√
2. In particu-

lar, θ = π
2 − arctan

√
2 gives greater success probability than

θ = 0 (the σz measurement).

Taking this into account, it is thus natural to use multi-
ple measurements (i.e., a POVM set) MA|X for the sake of
more general noise detection schemes, with the performance
of each state-POVM set pair (ρ,MA|X ) evaluated similarly
by the average success probability of discriminating multiple
instruments 	B|Y . From the perspective of the noise detection
task, Result 1 then implies that using incompatible observ-
ables possibly (and definitely in certain cases) provides better
success probability of detection than using compatible observ-
ables. This also demonstrates that combining incompatibility
of POVM sets with properties of states, such as magic, can
further improve the performance in discrimination tasks, and
it moreover manifests the theoretically possible upper bound
in terms of generalized robustness.

We now proceed to show that Result 1 can also be ex-
tended to multiobject quantum subchannel exclusion games
with prior information, where it is now the weight of resource
that characterizes the advantage provided by resourceful pairs
of states and POVM sets. In this scenario, since the figure of
merit is now the probability of error when playing the game,
the ratio of interest is now

PE
err (pY ,	B|Y , ρ,MA|X )

minσ∈F minNA|X ∈F PE
err (pY ,	B|Y , σ,NA|X )

. (19)

If this ratio is smaller than one, it means the pair (ρ,MA|X )
offers an advantage over all fully free pairs, as it leads to
smaller probability of error. It is then desirable to derive lower
bounds for this ratio, and to explore how small the ratio can get
to be, meaning minimizing the ratio over all possible games,
as this would represent the best case scenario for the pair
(ρ,MA|X ).

Result 2. Consider a player with a quantum state ρ and a
POVM set MA|X , then, the advantage provided by these two
objects when playing subchannel exclusion games with prior
information {pY ,	B|Y } is given by

min
{pY ,	B|Y }

PE
err (pY ,	B|Y , ρ,MA|X )

min σ∈F
NA|X ∈F

PE
err (pY ,	B|Y , σ,NA|X )

= [1 − WF(ρ)][1 − WF(MA|X )], (20)

with the minimization over all quantum subchannel exclusion
games and the weight of resource of state and of POVM sets.

The full proof of this result is in Appendix C. Similar to
the discrimination case, this result also holds for arbitrary
resources of both quantum states and POVM sets. It is illustra-
tive to address a sketch of this proof, so in order to highlight
the differences with the case for discrimination.

Proof. (Sketch) Similar to the discrimination case, that the
right-hand side of (20) constitutes a lower bound for the ratio
of interest follows from the primal conic programs of the
weight measures. Showing that such a lower bound is achiev-
able is a more involved endeavor, and so we describe it next.
Given a pair (ρ,MA|X ), and the dual conic programs of the
weight of resource, we can extract positive semidefinite op-
erators Y ρ and {Y MA|X

a|x ≡ Y M
a|x}, a ∈ {1, . . . , l}, x ∈ {1, . . . , κ},

satisfying desirable optimality properties, so that we can
construct the following game. Fix a PMF pY , and consider
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the game {pY , �B|Y }, b ∈ {1, . . . , l + 1}, y ∈ {1, . . . , κ}, as

�
(ρ,MA|X ,pX )
b|y (η) :=

{
β Tr[Y ρη]Y M

b|y p(y)−1, b = 1, . . . , l

[1 − Gy(η)] ξ
MA|X
y , b = l + 1

(21)

with {ξMA|X
y } a set of quantum states, β a coefficient, and

{Gy(·)} functions that depend on (ρ,MA|X ). These parameters
are all specified in Appendix C. We derive the following lower
bound for all fully free pairs (σ,NA|X ):

min
σ∈F

min
NA|X ∈F

PE
err

(
pY , �

(ρ,MA|X ,pX )
b|y , σ,NA|X

)
� β. (22)

In Appendix C we also prove that for the fixed pair (ρ,MA|X )
we get the upper bound,

PE
err

(
pY , �

(ρ,MA|X ,pX )
b|y , ρ,MA|X

)
� β[1 − WF(ρ)][1 − WF(MA|X )]. (23)

These two statements together then achieve the claim. �
One technical point of comparison regarding the proofs of

Result 1 (8) and Result 2 (20) is the nature of the game sat-
urating the bound. In the discrimination case, the subchannel
game needed to achieve the upper bound contains an infinite
amount of extra subchannels J → ∞, whilst in the exclusion
case, the subchannel game needed to achieve the lower bound
requires only one extra subchannel. This difference can qual-
itatively be understood by taking into account that, the goal
when maximizing the ratio of interest is to make it difficult
for the fully free players to perform well. In the discrimi-
nation case, this can be done by increasing the amount of
objects to discriminate from (as there will be more alternatives
that are “bad” options). In the exclusion case, increasing the
amount of objects makes it instead actually easier for the
player in question to win (as there will be more alternatives
that are “good” options), and so in the exclusion case, in
order to make it difficult for the fully free players to perform
well, decreasing the amount of objects to exclude from is
desirable.

V. EXTENSION TO GENERAL
PROBABILISTIC THEORIES

Our main results (8) and (20) can be extended to general
probabilistic theories (GPTs) [72–74]. Let V be a finite-
dimensional Euclidean space and V ∗ be its dual. We often
identify V ∗ with V and the action f (x) of f ∈ V ∗ on x ∈ V
with the Euclidean inner product 〈 f , x〉 of two vectors f , x ∈
V (by means of the Riesz representation theorem [75]). A
GPT is a pair of sets (�,E ) such that � is a compact convex
subset of V with its affine hull satisfying a f f (�) �� 0 and
linear hull satisfying lin(�) = V , and E = {e ∈ V ∗ | e(∀ω) ∈
[0, 1]}. The sets � and E are called the state space and
effect space, and their elements are called states and effects

respectively. We remark that, in this paper, we assume the no-
restriction hypothesis [59]. Clearly, GPTs are generalizations
of quantum theory: taking LS (H) as V and D(H) as �, we
can recover the description of quantum states. It is also easy
to see that effects are generalizations of POVM elements,
and the Euclidean inner product 〈e, ω〉 = e(ω) (ω ∈ �, e ∈
E ) generalizes the Hilbert-Schmidt inner product 〈M, ρ〉HS =
Tr[Mρ] (ρ ∈ D(H), M ∈ L+

S (H)) for quantum theory. In par-
ticular, the unit effect u ∈ E defined via u(ω) = 1(∀ω ∈ �)
corresponds to the identity operator 1. With similar nota-
tions to the quantum case, we define a measurement with
an outcome set A = {1, . . . , l} as a set of effects {ea}l

a=1
such that

∑
a∈A ea = u. A measurement set EA|X = {ea|x}a,x

is also introduced as a generalization of a POVM set. The
notion of (in)compatibility and simulability for POVMs can
be extended naturally to measurements in GPTs by rephrasing
(1) and (2) in terms of effects instead of POVM elements.
It allows us to use the expression NB|Y � EA|X for two mea-
surement sets NB|Y and EA|X in GPTs, meaning that NB|Y is
simulable by EA|X . It is also clear that measurement compati-
bility is closed under simulation in GPTs.

For a GPT (�,E ) whose underlying vector space is V ,
we define the positive cone V+ ⊂ V by V+ = cone(�) and
the dual cone V ◦

+ ⊂ V ∗ by V ◦
+ = cone(E ) = { f ∈ V ∗ | f (x) �

0,∀x ∈ V+}, where cone(·) is the conic hull of the set. For the
quantum case, these cones correspond to the set of positive
semidefinite operators L+

S (H). A linear map ξ : V → V is
called positive if ξ (V+) ⊂ V+. A positive map ξ is called a
channel if it satisfies 〈u, ξ (ω)〉 = 1,∀ω ∈ �, and a subchan-
nel if 〈u, ξ (ω)〉 � 1,∀ω ∈ �. An instrument � is defined as a
set of subchannels � = {ξb}m

b=1 such that
∑m

b=1 ξb is a channel,
and we also introduce an instrument set �B|Y = {�y}τy=1 =
{ξb|y}b,y in the same way as the quantum case. We remark that
here we do not require complete positivity for (sub)channels
due to the difficulty in determining composite systems for
GPTs [76]. It seems that quantum description for channels
is not recovered, but such inconsistency can be overcome
by restricting ourselves to a (convex) subset of the set of all
channels in GPTs.

Now we are in position to present our third main result.
We consider general-probabilistic multiobject subchannel
discrimination game with prior information (GPScD-PI) as
natural extension of QScD-PI to GPTs. The scenario of
GPScD-PI is the same as QScD-PI: replacing a quantum
state ρ ∈ D(H), a POVM set MA|X = {Ma|x}, and a quantum
instrument set 	B|Y with a state ω ∈ �, a measurement set
EA|X = {ea|x}, and an instrument set �B|Y for a GPT (�,E ).
The maximum success probability is given in the same way as
(3) by

PGPD
succ (pY , �B|Y , ω,EA|X ) := max

S

∑
g,a,x,μ,b,y

δg,b s(g|a, y, z)

× 〈ea|x, ξb|y(ω)〉r(x|y, z) q(z) p(y) (24)

with the maximization over all possible strategies S =
{qZ , rX |Y Z , sG|AY Z}. Similarly, we can consider general-
probabilistic multiobject subchannel exclusion game with
prior information (GPScE-PI) generalizing the QScE-PI and
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(4), and the minimum error probability is

PGPE
err (pY , �B|Y , ω,EA|X ) := min

S

∑
g,a,x,μ,b,y

δg,b s(g|a, y, z)

× 〈
ea|x, ξb|y(ω)

〉
r(x|y, z) q(z) p(y) (25)

with the minimization over all possible strategies S =
{qZ , rX |Y Z , sG|AY Z}. The last step we need is to introduce the
notion of resourceful sets in GPTs, and this can be also
done by generalizing quantum concepts straightforwardly. In
fact, with a CCC F ⊆ V+ (closed with respect to, e.g., the
Euclidean topology in V ), we can introduce free states as
elements of the set F = {ω ∈ F | 〈u, ω〉 = 1} and resourceful
states as � \ F. A set F of free measurement sets is similarly
extended, and MA|X /∈ F is called resourceful. We can also in-
troduce the generalized robustness of resource and the weight
of resource of an object O (either a state or a measurement set)
in the GPT (�,E ) as

RGP
F (O) :=

min
r � 0

OF ∈ F
OG

{r | O + rOG = (1 + r)OF }, (26)

WGP
F (O) :=

min
w � 0
OF ∈ F

OG

{w |O = w OG + (1 − w)OF }. (27)

These quantities are associated with conic programs with the
positive cone V+ and dual cones V ◦

+ generated respectively by
� and E . Now we can generalize the results from the quantum
domain (8) and (20) to GPTs:

Result 3. Consider a player with a state ω and a measure-
ment set EA|X of a GPT (�,E ). The advantage provided by
these two objects when playing general-probabilistic multiob-
ject subchannel discrimination and exclusion games with prior
information {pY , �B|Y } is

max
{pY ,�B|Y }

PGPD
succ (pY , �B|Y , ω,EA|X )

max σ∈F
NA|X ∈F

PGPD
succ (pY , �B|Y , σ,NA|X )

= [
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
, (28)

and

min
{pY ,�B|Y }

PGPE
err (pY , �B|Y , ω,EA|X )

min σ∈F
NA|X ∈F

PGPE
err (pY , �B|Y , σ,NA|X )

= [
1 − WGP

F (ω)
][

1 − WGP
F (EA|X )

]
, (29)

respectively. With the maximization (minimization) over all
general-probabilistic subchannel discrimination (exclusion)
games and the generalized robustness (weight) of resource of
state and of measurement sets.

The full proof of this result is in Appendix D. These proofs
proceed in a similar way as the previous ones by appropriately
extending the quantum objects to their counterparts in GPTs.
Some examples of this include using the Euclidean inner
product and the order unit norm instead of the Hilbert-Schmidt
inner product and the operator norm respectively. Finally, we
remark that from the standpoint of GPTs, incompatibility is
a genuine nonclassical feature: Any pair of observables are

compatible if and only if the theory is classical [77]. Our
results then reinforce the value of incompatibility as a non-
classical resource from a higher-level perspective.

VI. CONCLUSIONS

In this work, we have introduced multiobject operational
tasks for general resources of POVM sets (including mea-
surement incompatibility) in the form of multiobject quantum
subchannel discrimination and exclusion games with prior
information, where the player can simultaneously harness the
resources contained within two quantum objects; a quantum
state, and a set of measurements (POVM set). Specifically,
we have shown that any fully or partially resourceful pair
(state, POVM set) is useful for a suitably chosen multiobject
subchannel discrimination and exclusion game with prior in-
formation. We have found that, when compared to the best
possible strategy using fully free state-POVM set pairs, the
advantage provided by a pair state-POVM set can be quan-
tified, in a multiplicative manner, by the resource quantifiers
of generalized robustness and weight of resource of the state
and the POVM set, for discrimination and exclusion games
respectively. These results hold true for arbitrary resources
of quantum states and for resources of POVM sets closed
under classical pre- and postprocessing. The results presented
here are therefore telling us that all sets of incompatible
measurement can be useful for multiobject operational tasks.
As described in Table I, these results also happen to gen-
eralize various previous results in the literature. First, they
generalize the results reported in [44–47], where single-object
operational tasks for measurement incompatibility were char-
acterized. Second, they also generalize the operational tasks
for state-measurement pairs introduced in [51]. Third and
finally, they generalize the single-object results for GPTs re-
ported in [50], now to the multiobject regime.

There are various different directions where to further ex-
plore these findings. First, quantum resource theories have
recently been explored beyond the realm of convexity and so,
it would be interesting to explore multiobject operational tasks
in such regimes [54,78–80]. Second, whilst we have explored
both discrimination and exclusion games, it is also known that
these games can be considered more generally as quantum
state betting games [81,82], from the point of view of expected
utility theory, and so it would be interesting to explore such
betting games using the multiobject perspective employed in
this paper. Third, it would be interesting to explore these
findings from the point of view of cooperative game theory,
akin to the setting being explored for multiresource tasks in
[54]. Fourth, it could also be relevant to explore multiobject
tasks for more general scenarios involving the incompatibility
of sets of instruments [83–91].
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APPENDIX A: PRELIMINARIES

Consider a set of POVMs MA|X := {Ma|x}, Ma|x � 0, ∀a, x,∑
a Ma|x = 1, ∀x, x = 1, . . . , κ , with each POVM having el-

ements a = 1, . . . , l , a set of subchannels 	B|Y := {	b|y(·)},
	b|y(·) a completely positive (CP) trace-nonincreasing map
∀b, y,

∑
b 	b|y(·) = 	y(·) a trace-preserving (TP) map ∀y,

y = 1, . . . , m, b = 1, . . . , n, and a quantum state ρ, ρ � 0,
Tr(ρ) = 1. We start by rewriting the probability of success
in quantum subchannel discrimination (QScD) with prior in-
formation [64] as

PD
succ(pY ,	B|Y , ρ,MA|X ) := max

S

∑
g,a,x,z,b,y

δg,b s(g|a, y, z)Tr[Ma|x	b|y(ρ)] r(x|y, z) q(z) p(y) (A1)

= max
S

∑
a,x,z,b,y

s(b|a, y, z)Tr[Ma|x	b|y(ρ)] r(x|y, z) q(z) p(y) (A2)

= max
S

∑
b,y

Tr

⎡
⎣
⎛
⎝∑

a,x,z

s(b|a, y, z) Ma|x r(x|y, z) q(z)

⎞
⎠	b|y(ρ)

⎤
⎦p(y) (A3)

= max
NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(ρ)]p(y), (A4)

with the set of strategies S = {qZ , pX |Y Z , pB|AY Z} and the simulability of POVM sets NB|Y � MA|X defined as

Nb|y =
∑
a,x,z

s(b|a, y, z) Ma|x r(x|y, z) q(z). (A5)

Lemma A1. (Dual conic programs for the generalized robustness of state and POVM sets) The generalized robustness of
resource of a state ρ and a POVM set M = {Ma|x}, x ∈ {1, . . . , κ}, a ∈ {1, . . . , l} is given by

RF(ρ) = max
Z

Tr[Zρ] − 1, (A6a)

s.t. Z � 0, (A6b)

Tr[Zσ ] � 1, ∀σ ∈ F, (A6c)

and

RF(MA|X ) = max
{Za,x}

κ∑
x=1

l∑
a=1

Tr[Za,xMa|x] − 1, (A7a)

s.t. Za,x � 0, ∀a, x, (A7b)

κ∑
x=1

l∑
a=1

Tr[Za,xNa|x] � 1, ∀NA|X = {Na|x} ∈ F. (A7c)

These are the dual conic formulations of the generalized robustnesses for states and POVM sets, respectively.
Proof. The dual version of the generalized robustness of resource of a state is a known and well-reported case in the literature

(see for instance [69,92]), and so we only address here the case for POVM sets. This proof follows similar techniques to that of

states, and we present it below for completeness. For simplicity, we use a symbol
x,a⊕K to represent the direct sum of the identical

subset (or element) K of the linear space LS (H), i.e.,
x,a⊕K = ⊕κ

x=1 ⊕l
a=1 K = K ⊕ K ⊕ · · · ⊕ K . A POVM set MA|X = {Ma|x}

(x ∈ {1, . . . , κ}, a ∈ {1, . . . , l}) is naturally an element of the direct sum
x,a⊕LS (H), and the generalized robustness of resource of

M = {Ma|x} is given as

RF(MA|X ) :=
min

r � 0
MF

A|X ∈ F
MG

A|X

{
r
∣∣MA|X + rMG

A|X = (1 + r)MF
A|X
}
. (A8)
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Let us choose an arbitrary ρ0 ∈ D(H) to construct
x,a⊕ρ0 ∈ x,a⊕L(H). The direct sum

x,a⊕L(H) equips an inner product 〈·, ·〉 induced

naturally by the Hilbert-Schmidt inner product 〈·, ·〉HS on L(H). Since 〈MF
A|X ,

x,a⊕ρ0〉 = ∑
x,a〈MF

a|x, ρ0〉HS = κ holds, we can
rewrite (A8) as a conic program with primal variables OA|X := (1 + r)MF

A|X ,

1 + RF(MA|X ) = min
OA|X

〈
OA|X ,

1

κ

x,a⊕ ρ0

〉
(A9)

s.t. MA|X �x,a⊕L+
S

OA|X , (A10)

OA|X ∈ F(H), (A11)

where we defined MF
A|X �x,a⊕L+

S

OA|X by OA|X − MA|X ∈ x,a⊕L+
S and F(H) := cone(F). Expressing OA|X = {Oa|x}, we explicitly

have

1 + RF(MA|X ) = min
OA|X

1

κ

∑
a,x

Tr[Oa|xρ0], (A12)

s.t. Ma|x � Oa|x, ∀a, x, (A13)

OA|X ∈ F(H). (A14)

The primal constraints can alternatively be written as (i) Oa|x − Ma|x � 0, ∀a, x, and (ii) Tr[Oa|xQa|x] � 0, ∀a, x, ∀QA|X ∈ F(H)◦.

Consider now a set of dual variables ZA|X := {Za|x} ∈ x,a⊕L(H) with a first dual constraint (i) ZA|X �x,a⊕L+
S (H)

0. Similarly, for the

second primal constraints consider g(QA|X ) � 0, ∀QA|X ∈ F(H)◦. Let us now construct the Lagrangian,

L(OA|X , ZA|X ,MA|X ) := 1

κ
〈OA|X ,

x,a⊕ρ0〉 − 〈(OA|X − MA|X ), ZA|X 〉 −
∫

QA|X ∈F(H)◦
dQ g(QA|X )〈OA|X , QA|X 〉 (A15)

= 〈MA|X , ZA|X 〉 +
〈
OA|X ,

(
1

κ

x,a⊕ ρ0 − ZA|X − Q′
A|X

)〉
, Q′

A|X :=
∫

QA|X ∈F(H)◦
dQ g(QA|X )QA|X (A16)

=
∑
a,x

Tr
[
Ma|xZa|x

]+
∑
a,x

Tr

[
Oa|x

(
1

κ
ρ0 − Za|x − Q′

a|x

)]
. (A17)

We have that Q′
A|X := {Q′

a|x} ∈ F(H)◦ because QA|X ∈ F(H)◦ and F(H)◦ is a convex cone. By construction, the Lagrangian
satisfies L(OA|X , ZA|X ,MA|X ) � 1 + RF(MA|X ). We can now eliminate the Lagrangian dependence on the primal variables by

imposing suitable constraints on the dual variables as ii) 1
κ

x,a⊕ ρ0 − ZA|X − Q′
A|X = 0 (i.e., 1

κ
ρ0 − Za|x − Q′

a|x = 0, ∀a, x) We can
then multiply these second dual constraints with NA|X = {Na|x} ∈ F to get 1 = 〈ZA|X , NA|X 〉 + 〈Q′

A|X , NA|X 〉. The last term in the
r.h.s is non-negative [since Q′

A|X ∈ F(H)◦ and NA|X ∈ F(H)] and so we get 1 � 〈ZA|X , NA|X 〉. Maximising the Lagrangian over the
dual variables subject to the dual constraints achieves the upper bound because of strong duality. Strong duality in turn follows
from Slatter’s condition, since there exists a strictly feasible choice for ZA|X , take for instance Za|x = 1

2dκ
, ∀a, x. This choice

satisfies (i) Za|x > 0, ∀a, x, and (ii) 〈ZA|X , NA|X 〉 = ∑
a,x Tr[Za|xNa|x] = 1

dκ

∑
a,x Tr[Na|x] = 1

2dκ

∑
x Tr[1] = 1

2 < 1. Overall, the
dual conic program reads

1 + RF(MA|X ) = max
ZA|X

〈Ma|x, Za|x〉,

s.t. ZA|X �x,a⊕L+
S

0,

〈ZA|X ,NA|X 〉 � 1, ∀NA|X ∈ F,

or

1 + RF(MA|X ) = max
ZA|X

∑
a,x

Tr[Ma|xZa|x],

s.t. Za|x � 0, ∀a, x,∑
a,x

Tr[Za|xNa|x] � 1, ∀NA|X ∈ F,

and thus achieving the claim. �
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Lemma A 1 can be also rewritten for the exclusion scenario. In short, it reads:
Lemma A2. (Dual conic programs for the weight of resource of states and POVM sets) The weight of resource of a state ρ

and a POVM set M = {Ma|x} for x ∈ {1, . . . , κ}, a ∈ {1, . . . , l} can be written as

WF(ρ) = max
Y

Tr[(−Y )ρ] + 1,

s.t. Y � 0,

Tr[Y σ ] � 1, ∀σ ∈ F, (A18)

and

WF(Ma|x ) = max
{Ya,x}

κ∑
x=1

l∑
a=1

Tr[(−Ya,x )Ma|x] + 1,

s.t. Ya,x � 0, ∀a, x,

κ∑
x=1

l∑
a=1

Tr[Ya,xNa|x] � 1, ∀NA|X = {Na|x} ∈ F, (A19)

respectively.

APPENDIX B: PROOF OF RESULT 1

Consider a set of free states F and a set of free POVM assemblages F. The statement we want to prove is

max
{pY ,	B|Y }

PD
succ(pY ,	B|Y , ρ,MA|X )

max σ∈F
NA|X ∈F

PD
succ(pY ,	B|Y , σ,NA|X )

= [1 + RF(ρ)][1 + RF(MA|X )], (B1)

with the maximization over all sets of subchannels. We start by proving the upper bond.
Proof. (Upper bound) Given any game (pY ,	B|Y ) and any pair (ρ,MA|X ), we have

PD
succ(pY ,	B|Y , ρ,MA|X ) = max

NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(ρ)] p(y)

� [1 + RF(ρ)] max
NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(σ ∗)] p(y)

� [1 + RF(ρ)] max
σ∈F

max
NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(σ )]p(y)

= [1 + RF(ρ)] max
σ∈F

max
S

∑
b,y

Tr

⎡
⎣
⎛
⎝∑

a,x,μ

p(b|a, y, μ) p(x|y, μ) p(μ) Ma|x

⎞
⎠	b|y(σ )

⎤
⎦p(y)

� [1 + RF(ρ)][1 + RF(MA|X )] max
σ∈F

max
S

∑
b,y

Tr

⎡
⎣
⎛
⎝∑

a,x

p(b|a, y, μ) p(x|y, μ) p(μ) Ma|xÑ∗
a|x

⎞
⎠	b|y(σ )

⎤
⎦p(y)

= [1 + RF(ρ)][1 + RF(MA|X )] max
σ∈F

max
N≈

B|Y � Ñ∗
A|X

∑
b,y

Tr[
≈
Nb|y	b|y(σ )]p(y)

� [1 + RF(ρ)][1 + RF(MA|X )] max
σ∈F

max
ÑA|X ∈F

max
≈
NB|Y

� ÑA|X

∑
b,y

Tr[
≈
Nb|y	b|y(σ )]p(y)

= [1 + RF(ρ)][1 + RF(MA|X )] max
σ∈F

max
ÑA|X ∈F

PD
succ(pY ,	B|Y , σ, ÑA|X ). (B2)

In the first inequality we use 	b|y(ρ) � [1 + RF(ρ)]	b|y(σ ∗), ∀x, which follows from ρ � [1 + RF(ρ)]σ ∗ (σ ∗ the free state
from the definition of the generalized robustness) and 	b|y(·) being positive ∀b, y. In the second inequality we maximize over
all free states. In the third inequality, we use Ma|x � [1 + RF(MA|X )]Ñ∗

a|x, ∀a, x, N∗
A|X the free measurement assemblage from the

definition of the generalized robustness. In the fourth inequality we maximize over all free measurement assemblages. �
We now prove the upper bound is achievable by using the dual conic programs. We also use the following CPosP operation.

Given an arbitrary POVM N = {Na} with a ∈ {1, . . . , K + N}, N and K integers, we then construct the POVM Ñ = {Ñx} with K
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elements as

Ñx := Nx, x ∈ {1, . . . , K − 1},

ÑK := Nk +
K+N∑

y=K+1

Ny. (B3)

This constitutes a POVM and the operation transforming N into Ñ is a CPP operation on the initial measurement N. In short,
that any outcome of N greater or equal than K is now declared as outcome K .

Proof. (Achievability) We start by considering a pair (ρ,MA|X ). Using the dual conic formulations, there exist an operator Zρ

satisfying the conditions (A6a), (A6b), (A6c) and a set of operators {ZMA|X
a|x }, x = 1, . . . , κ , a = 1, . . . , l , satisfying (A7a), (A7b),

and (A7c). Consider also any PMF pX . We now define a set of maps {	(ρ,MA|X ,pX )
a|x (·)} such that for any state η,

	
(ρ,MA|X ,pX )
a|x (η) := α(ρ,MA|X ,pX )Tr[Zρη]ZMA|X

a|x p(x)−1,

α(ρ,MA|X ,pX ) := 1

‖Zρ‖opTr[ZMA|X ]
, ZMA|X :=

k∑
x=1

l∑
a=1

ZMA|X
a|x p(x)−1,

with ‖ · ‖op the operator norm. For simplicity, we use the notation α ≡ α(ρ,MA|X ,pX ). We can check that these maps are completely
positive, linear, and that they satisfy that ∀η, ∀x,

Fx(η) := Tr

[
l∑

a=1

	
(ρ,MA|X ,pX )
a|x (η)

]
= Tr[Zρη]

‖Zρ‖op

Tr
[∑l

a=1 ZMA|X
a|x p(x)−1

]
Tr[ZMA|X ]

� 1. (B4)

The inequality follows from the variational characterization of the operator norm ‖C‖op = maxρ∈D(H){|Tr[Cρ]|} for any
Hermitian operator C [93]. We now define an instrument set as follows. Given a pair (ρ,MA|X ), MA|X = {Ma|x}, x = 1, . . . , κ ,

a = 1, . . . , l , and an integer J � 1, we define the set of subchannels given by � (ρ,MA|X ,pX ,J ) = {� (ρ,MA|X ,pX ,J )
b|y (·)}, y = 1, . . . , κ ,

b = 1, . . . , l + J , as

�
(ρ,MA|X ,pX J )
b|y (η) :=

{
αTr[Zρη]ZMA|X

b|y p(y)−1, b = 1, . . . , l
1
J [1 − Fy(η)]χ, b = l + 1, . . . , l + J

(B5)

with χ begin an arbitrary quantum state χ � 0, Tr[χ ] = 1. We can check that this is a well-defined set of subchannels because
they add up to a CPTP linear map as follows. We have that ∀J,∀η,∀y,

Tr

[
l+J∑
b=1

�
(ρ,MA|X ,pX ,J )
b|y (η)

]
= Tr

[
l∑

b=1

�
(ρ,MA|X ,pX ,J )
b|y (η)

]
+ Tr

⎡
⎣ l+J∑

b=l+1

�
(ρ,MA|X ,pX ,J )
b|y (η)

⎤
⎦,

= Tr

[
l∑

b=1

αTr[Zρη]ZMA|X
b|y p(y)−1

]
+ Tr

⎡
⎣ l+J∑

b=l+1

1

J
[1 − Fy(η)]χ

⎤
⎦,

= αTr[Zρη]Tr

[
l∑

b=1

ZMA|X
b|y p(y)−1

]
+ 1

J
[1 − Fy(η)]

l+J∑
b=l+1

Tr[χ ],

= αTr[Zρη]Tr

[
l∑

b=1

ZMA|X
b|y p(y)−1

]
+ [1 − Fy(η)],

= Fy(η) + [1 − Fy(η)],

= 1.

We now analyze the multiobject subchannel discrimination game with prior information given by �
(ρ,MA|X ,pX ,J )
B|Y and a PMF pY

that we specify as pY = pX , which can be done since |Y | = |X | = κ . We start by analyzing the best fully free player,

max
σ∈F

NA|X ∈F

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J )
B|Y , σ,NA|X

) = max
σ∈F

NA|X ∈F
ÑB|Y �NA|X

κ∑
y=1

l+J∑
b=1

Tr
[
Ñb|y�

(ρ,MA|X ,pX ,J )
b|y (σ )

]
p(y).
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We are considering QRTs of POVM sets closed under CProP, so the optimal set {Ñb|y} is a free object. Let us now consider,
without loss of generality, that this maximization is achieved by the fully free pair (σ ∗,N∗

B|Y ). We have

max
σ∈FNA|X ∈F

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J )
B|Y , σ,NA|X

) =
κ∑

y=1

l+J∑
b=1

Tr
[
N∗

b|y�
(ρ,MA|X ,pX ,J )
b|y (σ ∗)

]
p(y), (B6)

= αTr[Zρσ ∗]
κ∑

y=1

l∑
b=1

Tr
[
N∗

b|yZMA|X
b|y

]+
κ∑

y=1

l+J∑
b=l+1

1

J
[1 − Fy(σ ∗)]Tr[N∗

b|yχ ]p(y). (B7)

In the second equality we have replaced the subchannel game (B5). The first term can be upper bounded as

κ∑
y=1

l∑
b=1

Tr
[
N∗

b|yZMA|X
b|y

]
�

κ∑
y=1

l∑
b=1

Tr
[
Ñ∗

b|yZMA|B
b|y

]
� 1,

with the POVM Ñ∗
y (with l outcomes) constructed from the POVM N∗

y (which has l + J outcomes), ∀y = 1, . . . , κ , as defined in
(B3). The first inequality follows from the definition of the POVMs Ñ∗

y (B3). In the second inequality we use the fact that Ñ∗
B|Y is

a free set of POVMs (because it was constructed from a free set of POVMs N∗
B|Y and a CPP operation) and therefore we can use

the conic program condition (A7c). We now also use the fact that 1 − Fy(η) � 1, ∀η, ∀y, as well as (A6c) and so equation (B7)
becomes

max
σ∈F

NA|X ∈F

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J )
B|Y , σ,NA|X

)
� α + 1

J

κ∑
y=1

p(y)
l+J∑

b=l+1

Tr[N∗
b|yχ ].

The second term in the latter expression can now be upper bounded as

l+J∑
b=l+1

Tr[N∗
b|yχ ] �

l+J∑
b=1

Tr[N∗
b|yχ ] = Tr

[(
l+J∑
b=1

N∗
b|y

)
χ

]
= 1, ∀y.

The inequality follows because we added l non-negative terms and the last equality follows from N∗
y being a POVM,

∑l+J
b=1 N∗

b|y =
1, ∀y, and χ being a quantum state. We then get

max
σ∈F

NA|X ∈F

PD
succ(pY , � (ρ,MA|X ,pX ,J ), σ,NA|X ) � α + 1

J
.

We now choose the subchannel game given by � (ρ,MA|X ,pX ,J→∞) and therefore we get

max
σ∈F

NA|X ∈F

PD
succ(pY , � (ρ,MA|X ,pX ,J→∞), σ,NA|X ) � α. (B8)

We now analyze the probability of success of a player using the fully resourceful pair (ρ,MA|X ),

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J )
B|Y , ρ,MA|X

) = max
NB|Y �MA|X

κ∑
y=1

l+J∑
b=1

Tr
[
Nb|y�

(ρ,MA|X ,pX ,J )
b|y (ρ)

]
p(y)

�
κ∑

y=1

l∑
b=1

Tr
[
Mb|y�

(ρ,MA|X ,pX ,J )
b|y (ρ)

]
p(y)

= αTr[Zρρ]
κ∑

y=1

l∑
b=1

Tr
[
Mb|yZMA|X

b|y
]

= α[1 + RF(ρ)][1 + RF(MA|X )]. (B9)

The inequality follows because one can choose to simulate the specific measurement, i.e., Nb|y = Mb|y for b � l and Nb|y = 0 for
l < b < J . We have replaced the subchannel discrimination game with (B5). The last line follows from (A6a) and (A7a). We
now choose the subchannel game given by � (ρ,MA|X ,pX ,J→∞) and have

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J→∞)
B|Y , ρ,MA|X

)
� max

σ∈F
NA|X ∈F

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J→∞)
B|Y , σ,NA|X

)
[1 + RF(ρ)][1 + RF(MA|X )]. (B10)
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Putting together (B10) and (B2) achieves

PD
succ

(
pY , �

(ρ,MA|X ,pX ,J→∞)
B|Y , ρ,MA|X

)
max σ∈F

NA|X ∈F
PD

succ

(
pY , �

(ρ,MA|X ,pX ,J→∞)
B|Y , σ,NA|X

) = [1 + RF(ρ)][1 + RF(MA|X )].

This shows the upper bound is achievable thus completing the proof. �

APPENDIX C: PROOF OF RESULT 2

Following the same line of reasoning as in Appendix B and the preliminaries as in Appendix A, here we prove the lower
bound and the achievability of the statement in Result 2 [Eq. (20)],

min
{pY ,	B|Y }

PE
err (pY ,	B|Y , ρ,MA|X )

min σ∈F
NA|X ∈F

PE
err (pY ,	B|Y , σ,NA|X )

= [1 − WF(ρ)][1 − WF(MA|X )],

where the probability of error in quantum subchannel exclusion with prior information reads

PE
err (pY ,	B|Y , ρ,MA|X ) := min

S

∑
g,a,x,z,b,y

δg,b s(g|a, y, z)Tr[Ma|x	b|y(ρ)]r(x|y, z) q(z) p(y) (C1)

= min
NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(ρ)]p(y), (C2)

with the minimization over all the possible strategies S and POVM sets NB|Y simulable by MA|X , respectively.
Proof. (Lower bound) Given any game (pY ,	B|Y ) and any pair (ρ,MA|X ), we have

PE
err (pY ,	B|Y , ρ,MA|X ) = min

NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(ρ)]p(y)

� [1 − WF(ρ)] min
σ∈F

min
NB|Y �MA|X

∑
b,y

Tr[Nb|y	b|y(σ )]p(y),

= [1 − WF(ρ)] min
σ∈F

min
S

∑
b,y

Tr

⎡
⎣∑

a,x,z

s(b|a, y, z) Ma|xr(x|y, z) q(z) 	b|y(σ )

⎤
⎦p(y)

� [1 − WF(ρ)][1 − WF(MA|X )] min
σ∈F

min
ÑA|X ∈F

min
S

∑
b,y

Tr

⎡
⎣∑

a,x,z

s(b|a, y, z) Ña|x r(x|y, z) q(z) 	b|y(σ )

⎤
⎦p(y)

= [1 − WF(ρ)][1 − WF(MA|X )] min
σ∈F

min
ÑA|X∈F

min
˜̃NB|Y �ÑA|X

∑
b,y

Tr[ ˜̃Nb|y	b|y(σ )]p(y)

= [1 − WF(ρ)][1 − WF(MA|X )] min
σ∈F

min
ÑA|X∈F

PE
err (pY ,	B|Y , σ, ÑA|X ). (C3)

From the definition of the weight of the resource [Eq. (6)] for quantum states and we have ρ = WF(ρ)ρG + (1 − WF(ρ))σ ∗
for WF(ρ) and σ ∗ ∈ F satisfying the minimum in the above definition. The positivity of 	b|y then implies 	b|y(ρ) � (1 −
WF(ρ))	b|y(σ ∗), which shows the first inequality. The equivalent definition of weight for POVM sets leads to the inequality
Ma|x � (1 − WF(MA|X ))Ñ∗

a|x for WF(MA|X ) and Ñ∗
A|X = {Ñ∗

a|x} ∈ F that satisfies the minimum weight. Thus the second inequality
is proved. �

Proof. (Achievability) For a pair (ρ,MA|X ), the dual cone formulations assures the existence of an operator Y ρ satisfying

conditions (A18) and a set of operators {Y MA|X
a|x } (x = 1, . . . , κ , a = 1, . . . , l) satisfying (A19). We define a set of subchannels

{	(ρ,MA|X ,pX )
a|x }a,x such that for any state η,

	
(ρ,MA|X ,pX )
a|x (η) := β (ρ,MA|X ,pX ) Tr[Y ρη]Y MA|X

a|x p(x)−1,

β ≡ β (ρ,MA|X ,pX ) := 1

2‖Y ρ‖op Tr[Y MA|X ]
, Y MA|X :=

κ∑
x=1

l∑
a=1

Y MA|X
a|x p(x)−1.

We can verify that these maps are completely positive and linear, and that they satisfy

Gx(η) := Tr

[
l∑

a=1

	
(ρ,MA|X ,pX )
a|x (η)

]
= Tr[Y ρρ]

2‖Y ρ‖op

Tr
[∑l

a=1 Y MA|X
a|x p(x)−1

]
Tr[Y MA|X ]

� 1

2
, ∀ η, x. (C4)

033050-14



MULTIOBJECT OPERATIONAL TASKS FOR MEASUREMENT … PHYSICAL REVIEW RESEARCH 7, 033050 (2025)

Given a pair (ρ,MA|X ), where MA|X = {Ma|x}, x = 1, . . . , κ, a = 1, . . . , l , we now define an instrument set �
(ρ,MA|X ,pX )
B|Y =

{� (ρ,MA|X ,pX )
b|y (·)}, y = 1, . . . , κ, b = 1, . . . , l + 1, as

�
(ρ,MA|X ,pX )
b|y (η) :=

{
β Tr[Y ρη]Y MA|X

b|y p(y)−1, b = 1, . . . , l

[1 − Gy(η)]ξMA|X
y , b = l + 1

, ξ
MB|Y
y :=

∑l
b=1 p(b|y)Y MA|X

b|y∑l
b=1 p(b|y)Tr

[
Y MA|X

b|y
] , (C5)

with {p(b|y)}b,y an arbitrary conditional PMF. We can verify that this is a well-defined instrument set because they sum up to a
CPTP map as follows, ∀η, ∀y,

Tr

[
l+1∑
b=1

�
(ρ,MA|X ,pX )
b|y (η)

]
= Tr

[
l∑

b=1

�
(ρ,MA|X ,pX )
b|y (η)

]
+ Tr

[
�

(ρ,MA|X ,pX )
(l+1)|y (η)

]

= Tr

[
l∑

b=1

	
(ρ,MA|X ,pX )
b|y (η)

]
+ Tr

[
(1 − Gy(η))ξMA|X

y
]

= Gy(η) + [1 − Gy(η)]Tr
[
ξ

MA|X
y

]
= 1.

We now analyse the multiobject subchannel exclusion game with prior information given by �
(ρ,MA|X ,pX )
B|Y and a PMF pY = pX ,

which can be done because |Y | = |X | = κ . We start by addressing the best fully free player,

min
σ∈F

min
NA|X ∈F

PE
err

(
pY , �

(ρ,MA|X ,pX )
B|Y , σ,NA|X

) = min
σ∈F

NA|X ∈F
ÑB|Y �NA|X

κ∑
y=1

l+1∑
b=1

Tr
[
Ñb|y�

(ρ,MA|X ,pX )
b|y (σ )

]
p(y). (C6)

Let us consider that the minimum in the right hand side is achieved with the fully free pair (σ = σ ∗, ÑB|Y = N∗
B|Y ). This can be

done because the free set F is assumed to be closed under simulability of POVM sets. We then can write this as

min
σ∈F

min
NA|X ∈F

PE
err

(
pY , �

(ρ,MA|X ,pX )
B|Y , σ,NA|X

) =
κ∑

y=1

l+1∑
b=1

Tr
[
N∗

b|y�
(ρ,MA|X ,pX )
b|y (σ ∗)

]
p(y) (C7)

= β Tr[Y ρσ ∗]Tr[
κ∑

y=1

l∑
b=1

N∗
b|yY

MA|X
b|y ] +

κ∑
y=1

[1 − Gy(σ ∗)]Tr
[
N∗

(l+1)|y ξ
MA|X
y

]
p(y). (C8)

We now introduce the POVM set Ñ∗
B|Y = {Ñ∗

b|y} (y = 1, . . . , κ, b = 1, . . . , l) with Ñ∗
b|y := N∗

b|y + p(b|y)N∗
(l+1)|y via a

CPosP of {N∗
b|y}, where {p(b|y)} is the PMF from the state in (C5). We now add and subtract the term

βTr[Y ρσ ∗]
∑κ

y=1

∑l
b=1 Tr[p(b|y)N∗

(l+1)|yY
MA|X

b|y ], and so (C8) can be rewritten as

min
σ∈F

min
NA|X ∈F

PE
err

(
pY , �

(ρ,MA|X ,pX )
B|Y , σ,NA|X

) = β Tr[Y ρσ ∗]Tr

⎡
⎣ κ∑

y=1

l∑
b=1

Ñ∗
b|yY

MA|X
b|y

⎤
⎦+

κ∑
y=1

[1 − Gy(σ ∗)]Tr
[
N∗

(l+1)|y ξ
MA|X
y

]
p(y)

− βTr[Y ρσ ∗]
κ∑

y=1

l∑
b=1

p(b|y)Tr
[
N∗

(l+1)|y Y MA|X
b|y

]
. (C9)

The first term in (C9) can be lower bounded by β because Tr[Y ρσ ∗] � 1 and
∑κ

y=1

∑l
b=1 Tr[Y MA|X

b|y Ñ∗
b|y] � 1 for the positive

semidefinite operators Y ρ and {Y MA|X
b|y } [as per (A19)]. Thus, we have

min
σ∈F

min
NA|X ∈F

PE
err

(
pY , �

(ρ,MA|X ,pX )
B|Y , σ,NA|X

)
� β +

κ∑
y=1

[1 − Gy(σ ∗)]Tr
[
N∗

(l+1)|y ξ
MA|X
y

]
p(y)

− βTr[Y ρσ ∗]
κ∑

y=1

l∑
b=1

p(b|y)Tr
[
N∗

(l+1)|y Y MA|X
b|y

]
. (C10)
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Let us now prove that the last two terms add up to a non-negative value. The last two terms can be written as

κ∑
y=1

[1 − Gy(σ ∗)]Tr
[
N∗

(l+1)|y ξ
MA|X
y

]
p(y) − βTr[Y ρσ ∗]

κ∑
y=1

l∑
b=1

p(b|y)Tr
[
N∗

(l+1)|yY
MA|X

b|y
]

= Tr

⎡
⎣ κ∑

y=1

N∗
(l+1)|y

(
[1 − Gy(σ ∗)]ξMA|X

y p(y) − βTr[Y ρσ ∗]
l∑

b=1

p(b|y)Y MA|X
b|y

)⎤⎦. (C11)

Let us check the operator inside the brackets is positive semidefinite for all y. Let us write

[1 − Gy(σ ∗)]ξMA|X
y p(y) − βTr[Y ρσ ∗]

l∑
b=1

p(b|y)Y MA|X
b|y

= [1 − Gy(σ ∗)]

∑l
b′=1 p(b′|y)Y MA|X

b′|y∑l
b′=1 p(b′|y)Tr

[
Y MA|X

b′|y
] p(y) − βTr[Y ρσ ∗]

l∑
b=1

p(b|y)Y MA|X
b|y .

Multiplying by the positive term Ay := ∑l
b′=1 p(b′|y)Tr[Y MA|X

b′|y ], we get

[1 − Gy(σ ∗)]

([
l∑

b′=1

p(b′|y)Y MA|X
b′ |y

])
p(y) − βTr[Y ρσ ∗]

([
l∑

b=1

p(b|y)Y MA|X
b|y

])
Ay

1= ([1 − Gy(σ ∗)]p(y) − βTr[Y ρσ ∗]Ay)

([
l∑

b=1

p(b|y)Y MA|X
b|y

])

We now analyze the coefficient inside the first brackets,

[1 − Gy(σ ∗)]p(y) − βTr[Y ρσ ∗]Ay
1= [1 − Gy(σ ∗)]p(y) − βTr[Y ρσ ∗]

(
l∑

b′=1

p(b′|y)Tr
[
Y MA|X

b′|y
])

(C12)

2= p(y) − β Tr[Y ρσ ∗]Tr

[
l∑

b=1

Y MA|X
b|y

]
p(y)−1 p(y) − βTr[Y ρσ ∗]

(
l∑

b′=1

p(b′|y)Tr
[
Y MA|X

b′|y
])

(C13)

3= p(y) − β Tr[Y ρσ ∗]Tr

[
l∑

b=1

Y MA|X
b|y

]
− βTr[Y ρσ ∗]

(
l∑

b′=1

p(b′|y)Tr
[
Y MA|X

b′|y
])

(C14)

� p(y) − 2β Tr[Y ρσ ∗]Tr

[
l∑

b=1

Y MA|X
b|y

]
. (C15)

In the first equality we replace Ay. In the second equality we replace Gy(σ ∗). In the third equality we reorganize. Finally, the
inequality is due to the fact that we are subtracting a larger quantity. We now continue,

p(y) − 2β Tr[Y ρσ ∗]
l∑

b=1

Tr
[
Y MA|X

b|y
] 1= p(y) − Tr[Y ρσ ∗]

‖Y ρ‖op

∑l
b=1 Tr

[
Y MA|X

b|y
]

Tr[Y MA|X ]

2= p(y) − Tr[Y ρσ ∗]

‖Y ρ‖op

∑l
b=1 Tr

[
Y MA|X

b|y
]

∑κ
y′=1

∑l
b=1 Tr

[
Y MA|X

b|y′ p(y′)−1
]

3
� p(y) − Tr[Y ρσ ∗]

‖Y ρ‖op

p(y)
∑κ

y′=1

∑l
b=1 Tr

[
Y MA|X

b|y′ p(y′)−1
]

∑κ
y′=1

∑l
b=1 Tr

[
Y MA|X

b|y′ p(y′)−1
]

4= p(y)

(
1 − Tr[Y ρσ ∗]

‖Y ρ‖op

)
5
� 0.

In the first line we replace β. In the second line we replace Y MA|X . The inequality in the third line follows because∑κ
y′=1

∑l
b=1 Tr[Y MA|X

b|y′ p(y′)−1] � ∑l
b=1 Tr[Y MA|X

b|y p(y)−1], ∀y, and so p(y)
∑κ

y′=1

∑l
b=1 Tr[Y MA|X

b|y′ p(y′)−1] � ∑l
b=1 Tr[Y MA|X

b|y ], ∀y. In
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the fourth line we reorganize. The inequality in the fifth line follows because Tr[Y ρσ ∗]
‖Y ρ‖op

� 1. This then ultimately implies that

min
σ∈F

min
NA|X ∈F

PE
err

(
pY , �

(ρ,MA|X ,pX )
B|Y , σ,NA|X

)
� β. (C16)

To complete the proof, let us analyze the exclusion game (pY , �
(ρ,MA|X ,pX )
B|Y ) with a fully resourceful pair (ρ,MA|X ). The probability

of error is given by

PE
err

(
pY , �

(ρ,MA|X ,pX )
B|Y , ρ,MA|X

) = min
NB|Y �MA|X

κ∑
y=1

l+1∑
b=1

Tr
[
Nb|y�

(ρ,MA|X ,pX )
b|y (ρ)

]
p(y)

�
κ∑

y=1

l+1∑
b=1

Tr
[
M̃b|y�

(ρ,MA|X ,pX )
b|y (ρ)

]
p(y)

= β Tr[Y ρρ]
κ∑

y=1

l∑
b=1

Tr
[
Mb|yY

MA|X
b|y

]
p(y)−1 p(y)

= β Tr[Y ρρ]
κ∑

y=1

l∑
b=1

Tr
[
Mb|yY

MA|X
b|y

]
.

The inequality is due to the choice of NB|Y = {Nb|y} = {M̃b|y} (y = 1, . . . , κ, b = 1, . . . , l + 1) with

M̃b|y =
{

Mb|y (b = 1, . . . , l )
0 (b = l + 1),

which is a CProP of MA|X = {Ma|x}. Since Tr[Y ρρ] = 1 − WF(ρ) and
∑κ

y=1

∑l
b=1 Tr[Mb|yY

MA|X
b|y ] = 1 − WF(MA|X ) hold for the

positive operators Y ρ and {Y MA|X
b|y }, respectively, we obtain

PE
err

(
pY , �

(ρ,MA|X ,pX )
b|y , ρ,MB|Y

)
� β[1 − WF(ρ)][1 − WF(MA|X )]. (C17)

It follows from (C16) and (C17) that the ratio of interest is upper bounded as

PE
err

(
pY , �

(ρ,MA|X ,pX )
b|y , ρ,MB|Y

)
minσ∈F minNA|X ∈F PE

err

(
pY , �

(ρ,MA|X ,pX )
b|y , σ,NA|X

) � β[1 − WF(ρ)][1 − WF(MA|X )]

minσ∈F minNA|X ∈F PE
err

(
pY , �

(ρ,MA|X ,pX )
b|y , σ,NA|X

)
� β[1 − WF(ρ)][1 − WF(MA|X )]

β

= [1 − WF(ρ)][1 − WF(MA|X )]. (C18)

Putting together (C3) and (C18), we finally prove Result 2 (20). �

APPENDIX D: PROOF OF RESULT 3 (GPTs)

In this Appendix, we prove (28) in Result 3 following the proof for the quantum case in Appendix B. We will omit the proof
of (29), but it is given similarly by generalizing the argument in Appendix C. We first rephrase Lemma A 1 in terms of GPTs:

Lemma D1. Let V+ be the positive cone generated by the state space � and V ◦
+ be the dual cone. We can regard V+ and V ◦

+
as CCCs in V = lin(�), and they define orderings �V+ and �V ◦+ in V through x �V+ y ⇐⇒

def
y − x ∈ V+ and x �V ◦+ y ⇐⇒

def
y − x ∈ V ◦

+ respectively. The generalized robustness of resource of a state ω ∈ � and a measurement set EA|X = {ea|x} (x ∈
{1, . . . , κ}, a ∈ {1, . . . , l}) are given by

RGP
F (ω) = max

z
〈z, ω〉 − 1, (D1a)

s.t. z �V ◦+ 0, (D1b)

〈z, σ 〉 � 1 (∀σ ∈ F), (D1c)
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and

RGP
F (EA|X ) = max

{za,x}

κ∑
x=1

l∑
a=1

〈ea|x, za,x〉 − 1, (D2a)

s.t. za,x �V+ 0 (∀a, x), (D2b)

κ∑
x=1

l∑
a=1

〈Na|x, za,x〉 � 1 (∀N = {Na|x} ∈ F). (D2c)

These are the dual conic formulations of the generalized robustnesses for states and measurement sets.
Proof. The proof proceeds in a similar way as Lemma A 1. In fact, instead of the vector space LS (H), the Hilbert-Schmidt

inner product 〈·, ·〉HS, and the cone L+
S (H), here we use V , 〈·, ·〉, and V ◦

+, respectively [remember that (V ◦
+)◦ = V+ holds]. It

is easy to see that the same argument in the proof of Lemma A 1 can be developed also in this case. The strong duality is
verified by the fact that the positive cone V+ is generating (lin(V+) = V , which is satisfied in the present setting) if and only
if there is an interior point z0 ∈ int(V+). Multiplying z0 by small λ > 0, we can construct a strictly feasible solution {za,x} with
za,x = λz0 (∀a, x) for (D1b) and (D1c), and thus the strong duality holds. �

Proof. (Upper bound) For any GPScD-PI (pY , �B|Y , ω,EA|X ), we have

PGPD
succ (pY , �B|Y , ω,EA|X ) = max

NB|Y �EA|X

∑
b,y

〈Nb|y, ξb|y(ω)〉 p(y)

�
[
1 + RGP

F (ω)
]

max
NB|Y �EA|X

∑
b,y

〈
Nb|y, ξb|y(σ ∗)

〉
p(y)

�
[
1 + RGP

F (ω)
]

max
σ∈F

max
NB|Y �EA|X

∑
b,y

〈Nb|y, ξb|y(σ )〉p(y)

= [
1 + RGP

F (ω)
]

max
σ∈F

max
S

∑
b,y

〈⎛⎝∑
a,x,μ

p(b|a, y, μ) p(x|y, μ) p(μ) ea|x

⎞
⎠, ξb|y(σ )

〉
p(y)

�
[
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
max
σ∈F

max
S

∑
b,y

〈⎛⎝∑
a,x

p(b|a, y, μ) p(x|y, μ) p(μ) Ñ∗
a|x

⎞
⎠, ξb|y(σ )

〉
p(y)

= [
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
max
σ∈F

max
N≈

B|Y � Ñ∗
A|X

∑
b,y

〈 ≈
Nb|y, ξb|y(σ )〉p(y)

�
[
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
max
σ∈F

max
ÑA|X ∈F

max
≈
NB|Y

� ÑA|X

∑
b,y

〈 ≈
Nb|y, ξb|y(σ )〉p(y)

= [
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
max
σ∈F

max
NA|X ∈F

PGPD
succ (pY , �B|Y , σ,NA|X ). (D3)

In the first inequality we use ξb|y(ω) �V+ [1 + RGP
F (ω)]ξb|y(σ ∗), ∀x, which follows from ω �V+ [1 + RGP

F (ω)]σ ∗ (σ ∗ the free
state from the definition of the generalized robustness) and ξb|y(·) being positive ∀b, y. In the second inequality we maximize
over all free states. In the third inequality, we use ea|x �V ◦+ [1 + RGP

F (EA|X )]Ñ∗
a|x, ∀a, x, N∗

A|X the free measurement set from the
definition of the generalized robustness. In the fourth inequality we maximize over all free measurement sets. �

Proof. (Achievability) Let (ω,EA|X ) be a pair of a state and a measurement set of a GPT (�,E ). As we have seen in

Lemma D 1, there exist an element zω ∈ V ◦
+ satisfying the conditions (D1a), (D1b), (D1c) and a set of elements {zEA|X

a|x } ⊂ V+
(x = 1, . . . , κ, a = 1, . . . , l) satisfying (D2a), (D2b), and (D2c). Let pX be a PMF with p(x) > 0 (∀x). We define a set of maps
{ξ (ω,EA|X ,pX )

a|x (·)} such that for any state η ∈ �,

ξ
(ω,EA|X ,pX )
a|x (η) := α(ω,EA|X )〈zω, η〉zEA|X

a|x p(x)−1,

α ≡ α(ω,EA|X ) := 1

‖zω‖u〈u, zEA|X 〉 , zEA|X :=
κ∑

x=1

l∑
a=1

zEA|X
a|x p(x)−1.

(D4)

In the equations, u ∈ E is the unit effect, and ‖ · ‖u is the order unit norm [94] in V defined as

‖z‖u := inf{λ � 0 | −λu �V ◦+ z �V ◦+ λu}
= sup{|〈z, ω〉| | ω ∈ �}. (D5)
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The order unit norm is clearly a natural generalization of the operator norm for quantum formulation, where u = 1 and � =
D(H). We can check that these maps are linear and positive, i.e., ξ

(ω,EA|X ,pX )
a|x : V+ → V+ (∀a, x). Also, they satisfy ∀η, ∀x,

Fx(η) :=
〈

u,

l∑
a=1

ξ
(ω,EA|X )
a|x (η)

〉
= 〈zω, η〉

‖zω‖u

〈
u,
(∑l

a=1 zEA|X
a|x p(x)−1

)〉
〈
u, zEA|X

〉 � 1.

because 〈zω, η〉 � ‖zω‖u and 〈u, (
∑l

a=1 zEA|X
a|x p(x)−1)〉 � 〈u, zEA|X 〉 from the definitions (D5) and (D4), respectively. We now

construct an instrument set that realizes the maximum in (28) as follows. Given a pair (ω,EA|X ) (x = 1, . . . , κ, a = 1, . . . , l)

and an integer J � 1, we define �
(ω,EA|X ,pX ,J )
B|Y = {ξ (ω,EA|X ,pX ,J )

b|y } (y = 1, . . . , κ, b = 1, . . . , l + J) by

ξ
(ω,EA|X ,pX ,J )
b|y (η) :=

{
α〈zω, η〉zEA|X

b|y p(y)−1 (b = 1, . . . , l )
1
J [1 − Fy(η)]χ (b = l + 1, . . . , l + J )

(D6)

with an arbitrary state χ ∈ �. This is a well-defined instrument set: they are positive and add up to a channel because〈
u,

l+J∑
b=1

ξ
(ω,EA|X ,pX ,J )
b|y (η)

〉
=
〈

u,

l∑
b=1

ξ
(ω,EA|X ,pX ,J )
b|y (η)

〉
+
〈

u,

l+J∑
b=l+1

ξ
(ω,EA|X ,pX ,J )
b|y (η)

〉

=
〈

u,

l∑
b=1

α〈zω, η〉zEA|X
b|y p(y)−1

〉
+
〈

u,

l+J∑
b=l+1

1

J
[1 − Fy(η)]χ

〉

= Fy(η) + [1 − Fy(η)]

= 1 (∀y).

We note that for each y the instrument �y = {ξ (ω,EA|X ,pX ,J )
b|y }l+J

b=1 expresses a measure-and-prepare channel and such channel is

“completely positive” also in the framework of GPTs [73]. Let us analyze the GPScD-PI given by �
(ω,EA|X ,pX ,J )
B|Y and a PMF pY

that we specify as pY = pX (B = {1, . . . , l + J}, Y = {1, . . . , κ}). For fully free cases, we have

max
σ∈F

NA|X ∈F

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J )
B|Y , σ,NA|X

) = max
σ∈F

NA|X ∈F
ÑB|Y �NA|X

κ∑
y=1

l+J∑
b=1

〈
Ñb|y, ξ

(ω,EA|X ,pX ,J )
b|y (σ )

〉
p(y).

Because of the compactness, we can assume that this maximization is achieved by the fully free pair (σ ∗,N∗
B|Y ). We then have

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J )
B|Y , σ ∗,N∗) =

κ∑
y=1

l+J∑
b=1

〈
N∗

b|y, ξ
(ω,N,pX ,J )
b|y (σ ∗)

〉
p(y) (D7)

= α〈zω, σ ∗〉
κ∑

y=1

l∑
b=1

〈
N∗

b|y, zEA|B
b|y
〉+ 1

J

κ∑
y=1

l+J∑
b=l+1

[1 − Fy(σ ∗)]〈N∗
b|y, χ〉p(y). (D8)

To evaluate the first term, we introduce a set of l-outcome measurements Ñ = {Ñ∗
y } = {Ñ∗

b′ |y} constructed from N∗
B|Y as

Ñ∗
b′ |y := N∗

b′ |y, b′ ∈ {1, . . . , l − 1},

Ñ∗
l|y := N∗

l|y +
l+J∑

b=l+1

N∗
b|y. (D9)

We have

κ∑
y=1

l∑
b=1

〈
N∗

b|y, zEA|X
b|y

〉
�

κ∑
y=1

l∑
b=1

〈
Ñ∗

b|y, zEA|X
b|y

〉
� 1.

The first inequality is straightforward, and the second inequality follows from the fact that the construction (D9) of Ñ is a CPosP
of N∗

B|Y and thus Ñ � N∗
B|Y , which enables us to use (D2c). For the second term of (D8), we use 1 − Fy(η) � 1 (∀η, ∀y). The
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relation (D8) becomes

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J )
B|Y , σ,NA|X

)
� α + 1

J

κ∑
y=1

l+J∑
b=l+1

p(y)〈N∗
b|y, χ〉.

The right-hand side can be upper bounded as

κ∑
y=1

l+J∑
b=l+1

p(y)〈N∗
b|y, χ〉 �

κ∑
y=1

l+J∑
b=1

p(y)〈N∗
b|y, χ〉 =

κ∑
y=1

p(y) = 1 (∀y),

and thus

max
σ∈F

NA|X ∈F

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J )
B|Y , σ,NA|X

)
� α + 1

J
.

With J → ∞, we obtain

max
σ∈F

NA|X ∈F

PGPD
succ

(
pY , �(ω,EA|X ,pX ,J→∞), σ,NA|X

)
� α. (D10)

We next investigate the fully resourceful (ω,EA|X ). It holds from (D1a) and (D2a) that

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J )
B|Y , ω,EA|X

) = max
NB|Y �MA|X

κ∑
y=1

l+J∑
b=1

〈
Nb|y, ξ

(ω,EA|X ,pX ,J )
b|y (ω)

〉
p(y)

�
κ∑

y=1

l∑
b=1

〈
eb|y, ξ

(ω,EA|X ,pX ,J )
b|y (ω)

〉
p(y)

= α〈zω, ω〉
κ∑

y=1

l∑
b=1

〈
eb|y, zEA|X

b|y
〉

= α
[
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
. (D11)

With J → ∞, the relations (D10) and (D11) imply

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J→∞)
B|Y , ω,EA|X

)
� max

σ∈F
NA|X ∈F

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J→∞)
B|Y , σ,NA|X

)[
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
. (D12)

We can conclude from (D3) and (D12)

PGPD
succ

(
pY , �

(ω,EA|X ,pX ,J→∞)
B|Y , ω,EA|X

)
max σ∈F

NA|X ∈F
PGPD

succ

(
pY , �

(ω,EA|X ,pX ,J→∞)
B|Y , σ,NA|X

) = [
1 + RGP

F (ω)
][

1 + RGP
F (EA|X )

]
,

which completes the proof. �
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