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Quantum algorithms for scientific computing and their applications have been actively studied. In this paper,
we propose a quantum algorithm for estimating the first eigenvalue of a differential operator L on Rd and
its application to cosmic inflation theory. A common approach for this eigenvalue problem involves applying
the finite-difference discretization to L and computing the eigenvalues of the resulting matrix, but this method
suffers from the curse of dimensionality, namely, the exponential complexity with respect to d . Our first
contribution is the development of a quantum algorithm for this task, leveraging recent quantum singular value
transformation-based methods. Given a trial function that overlaps well with the eigenfunction, our method runs
with query complexity scaling as Õ(d3/ε2) with d and estimation accuracy ε, which is polynomial in d and shows
improvement over existing quantum algorithms. Then, we consider the application of our method to a problem in
a theoretical framework for cosmic inflation known as stochastic inflation, specifically calculating the eigenvalue
of the adjoint Fokker–Planck operator, which is related to the decay rate of the tail of the probability distribution
for the primordial density perturbation. We numerically see that, in some cases, simple trial functions overlap
well with the first eigenfunction, indicating our method is promising for this problem.

DOI: 10.1103/wpnm-rlrl

I. INTRODUCTION

Today, we are witnessing the rapid development of quan-
tum computing. Although it may take decades for us to
obtain large-scale fault-tolerant quantum computers, to pre-
pare for such a future, the search for applications of quantum
algorithms to practical numerical problems across various
fields has increasingly gained momentum in recent years. In
this paper, we consider a quantum algorithm for calculating
eigenvalues of differential operators and its application to a
problem in cosmology.

With the Sturm–Liouville problem as a representative
example, the calculation of eigenvalues of linear partial dif-
ferential operators, especially the first (that is, smallest)
eigenvalue, is one of the major topics in the field of nu-
merical analysis for partial differential equations (PDEs) (see
Ref. [1] as a textbook). As is the case for many problems in
numerical analysis, this problem suffers from the so-called
curse of dimensionality. To calculate the eigenvalues of a
linear partial differential operator L acting on functions on
Rd , a straightforward approach is the finite difference approx-
imation: setting grid points in Rd , we approximate partial
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derivatives with difference quotients. This converts L to a
matrix L with finite size, and then we can apply some numer-
ical method for matrix eigenvalue calculation to L (see, e.g.,
Ref. [2]). However, the size of L becomes exponentially large
with respect to the dimension d , that is, nd

gr × nd
gr, where ngr

is the number of the grids in one dimension. Since classical
algorithms to calculate eigenvalues of a n × n matrix gen-
erally have the complexity scaling as O(poly(n)), the above
approach does not work for large d in classical computing.

Quantum computers may provide a solution to this issue.
Represented by the monumental Harrow–Hassidim–Lloyd al-
gorithm for solving linear equation systems [3], quantum
algorithms for various linear algebra problems have been de-
vised. Algorithms for eigenvalue calculation are among them
[4–11]. They achieve an exponential speedup compared to
the classical ones: their complexities scale as O(polylog(n)).
Therefore, we are motivated to apply these quantum algo-
rithms to the aforementioned finite difference approach for
differential operator eigenvalue problems. In fact, such quan-
tum methods have already been considered in previous papers
[12–14]. However, to the best of our knowledge, quantum
algorithms for differential operator eigenvalue problems have
been studied only in the above papers in the 2000s, and among
them, only Ref. [12] considered the multidimensional setting
and evaluated the complexity of their algorithm in it. Thus,
recent developments in quantum algorithms have not been
reflected in this problem yet.

In this paper, we first construct a quantum algorithm for
calculating differential operator eigenvalues in a modern way.
Concretely, we utilize the quantum algorithm for calculat-
ing matrix eigenvalues devised in Ref. [9]. This algorithm is
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based on the recent techniques of block-encoding and quan-
tum singular value transformation (QSVT) [6,7,10,15,16],
which have been foundations of various quantum algorithms.
We then combine this algorithm with the finite difference
approach for differential operator eigenvalues. Given a test
function that overlaps the first eigenfunction well, a quantum
circuit to generate the quantum state encoding that functions
and circuits to calculate the coefficients in L, our algorithm
outputs an estimate of the first eigenvalue, where the above
circuits are queried a number of times, scaling polynomi-
ally with respect to d and as Õ(1/ε2)1 with respect to the
estimation accuracy ε. Our quantum algorithm achieves an
exponential speedup with respect to d compared to classical
algorithms and improvement with respect to ε compared to
the method in Ref. [12], whose query complexity is Õ(1/ε3).

As the second contribution, we consider a problem in
cosmology: the estimation of the decay rate of the tail of
the probability distribution of the perturbation in stochastic
inflation. Cosmic inflation [17–22], the accelerated expan-
sion of the early universe, was introduced as a solution to
some problems in the big bang cosmology and is a standard
paradigm today. It is considered that the quantum fluctuation
of inflatons, the scalar fields that induced inflation, leads to the
primordial density perturbation, which is the seed of today’s
rich structures of the universe such as galaxies. Stochastic
inflation [23–32] is the formalism to analyze the inflationary
perturbation in a probabilistic way. In stochastic inflation,
the fluctuations of the inflatons are associated with a PDE
called the adjoint Fokker-Planck (FP) PDE, and the eigen-
values of the differential operator in it determine the decay
rate of the tail of the perturbation distribution. In particular,
as an interesting scenario, if there are small eigenvalues, the
tail becomes fat, and primordial black holes, a candidate for
dark matter, are produced abundantly, which motivates us to
estimate the first eigenvalue. Our quantum algorithm may thus
be useful for this task, especially in multifield inflation, where
the number of inflatons is large and the differential operator is
high-dimensional.

Since we do not have fault-tolerant quantum computers yet,
we cannot run our algorithm for the above problem. Instead,
to see that our algorithm is promising, we numerically check
that the overlap condition holds. That is, for some cases with
a small enough number of inflatons to be classically dealt
with in the finite difference approach, we observe that the first
eigenfunction has a considerable overlap with a simple test
function of Gaussian shape. This result implies that we can
prepare the inputs of our algorithm for the stochastic inflation
problem and thus run it on future fault-tolerant quantum com-
puters.

This paper is organized as follows. Section II is a prelimi-
nary one, where we present the basics of the finite difference
method for calculating eigenvalues of differential operators
and some quantum algorithms used as building blocks in this
paper. In Sec. III, we present our algorithm for estimating
differential operator eigenvalues and evaluate its query com-
plexity. Section IV is devoted to the numerical demonstration
concerning the application of our algorithm to the eigenvalue

1Õ(·) hides the logarithmic factors in Landau’s big-O notation.

estimation in stochastic inflation. After we present the basics
of stochastic inflation, we see the considerable overlap be-
tween the eigenfunctions and the test functions in some cases.
This paper ends with the summary in Sec. V.

II. PRELIMINARY

A. Notation

R+ denotes the set of all non-negative real numbers: R+ :=
{x ∈ R | x > 0}.

For n ∈ N, we define [n] := {1, . . . , n} and [n]0 :=
{0, 1, . . . , n − 1}.

We label entries in a vector and rows and columns
in a matrix with integers starting from 0. That is, we
write v ∈ Cn as v = (v0, . . . , vn−1)T and A ∈ Cm×n as A =(

a0,0 · · · a0,n−1
...

. . .
...

am−1,0 · · · am−1,n−1

)
entrywise.

For n ∈ N, In denotes the n × n identity matrix. We may
omit the subscript n if there is no ambiguity.

For v ∈ Cn, ‖v‖ denotes its Euclidean norm. For an (un-
normalized) quantum state |ψ〉 on a multiqubit system, ‖ |ψ〉 ‖
denotes the Euclidean norm of its state vector. For A ∈ Cm×n,
‖A‖ denotes its spectral norm. ‖v‖max (respectively, ‖A‖max)
denotes the max norm of v (respectively, A), which means the
maximum of the absolute values of its entries.

For ε > 0, we say that x′ ∈ R is an ε approximation of x ∈
R, if |x′ − x| � ε holds. We also say that x′ is ε close to x.

If A ∈ Cm×n has at most s nonzero entries in each row and
column, we say that A is s sparse and the sparsity of A is s.

For a function f : � → R on � ∈ Rd and α =
(α1, . . . , αd ) ∈ Nd , we define

|α| := α1 + · · ·αd (1)

and

Dα f := ∂ |α| f

∂xα1
1 · · · ∂xαd

d

. (2)

We denote by 1C the indicator function, which takes 1 if
the condition C is satisfied and 0 otherwise.

B. Approximating eigenvalues of a differential operator
by the finite difference method

We now formulate the eigenvalue problem for a differential
operator, focusing on the Sturm–Liouville type, to which the
eigenvalue problem in stochastic inflation also boils down.

Problem 1. Consider

L = −
d∑

i=1

∂

∂xi

(
ai

∂

∂xi

)
+ a0 (3)

a linear second-order self-adjoint elliptic differential operator
on D := (L,U ) × · · · × (L,U ) ⊂ Rd , where a0, a1, . . . , ad :
D → R+ are four times continuously differentiable on D.
We consider the eigenvalue problem for L with the Dirichlet
boundary condition: We aim to find real numbers λ1 � λ2 �
· · · , each of which satisfies

L fk (x) = λk fk (x); for x ∈ D
fk (x) = 0; for x ∈ ∂D (4)
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for some function fk : D → R, especially the smallest
one λ1.

We call each λk an eigenvalue of L and fk the eigenfunction
of L corresponding to λk . We denote by FL the space of
functions spanned by eigenfunctions of L.

For this problem, we take a finite difference-based ap-
proach. We start by setting grid points in D. We take an integer
ngr ∈ N, which means the number of grid points in each of
the d dimensions, and denote by Ngr := nd

gr the total number
of grid points in D. We set the grid point interval h := (U −
L)/(ngr + 1). We take the grid point set Dngr , which consists of
the points xgr

j ∈ D labeled by j = ( j1, . . . , jd )T ∈ [ngr]d
0 and

written as

xgr
j = (xgr

1, j1
, . . . , xgr

d, jd

)T
,

xgr
i, ji

= ( ji + 1)h + L for each i ∈ [d]. (5)

We label the point xgr
j also by an integer J = J (j), where

J (j) :=
d∑

i=1

ni−1
gr ji, (6)

and denote it also by xgr
J . Hereafter, we sometimes label en-

tries in a vector v ∈ CNgr and rows and columns in a matrix
A ∈ CNgr×Ngr with j ∈ [ngr]d

0 , where the one labeled by j cor-
responds to the J (j)th one: e.g., vj is the J (j)th entry in the
vector (v0, . . . , vNgr−1)T .

Using these grid points, we construct a finite difference
approximation Lngr of L. That is, we want a Ngr × Ngr real
symmetric matrix Lngr that satisfies

∣∣(Lngr v f ,ngr

)
j − L f

(
xgr

j

)∣∣ ngr→∞−−−−→ 0 (7)

for any f ∈ FL and any j ∈ [ngr]d
0 . Here, for f : D → R, we

define v f ,ngr ∈ RNgr as

v f ,ngr := ( f
(
xgr

0

)
, . . . , f

(
xgr

Ngr−1

))T
. (8)

Specifically, we take Lngr as follows: For j1, j2 ∈ [ngr]d
0 , its

(j1, j2)th entry is

(
Lngr

)
j1,j2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑d

i=1

ai (x
gr
j1

+ h
2 ei )+ai (x

gr
j1

− h
2 ei )

h2 + a0
(
xgr

j1

)
, if j1 = j2,

− ai (x
gr
j1

± h
2 ei )

h2 , if j2 = j1 ± ei for some i ∈ [d],
0, otherwise,

(9)

where ei ∈ Rd is a vector with all entries equal to 0 except for the ith entry equal to 1. In other words, for j ∈ [ngr]d
0 ,

(
Lngr v f ,ngr

)
j =

d∑
i=1

1

h2

[
−ai

(
xgr

j + h

2
ei

)
f
(
xgr

j + hei
)+
(

ai

(
xgr

j + h

2
ei

)
+ ai

(
xgr

j − h

2
ei

))
f
(
xgr

j

)
−ai

(
xgr

j − h

2
ei

)
f
(
xgr

j − hei
)]+ a0(x) f

(
xgr

j

)
. (10)

This Lngr is based on the following formula (see Sec. 6.2 in Ref. [1] ):

∂

∂xi

(
ai

∂ f

∂xi

)
(x) = 1

h2

[
ai

(
x + h

2
ei

)
f (x + hei ) −

(
ai

(
x + h

2
ei

)
+ ai

(
x − h

2
ei

))
f (x) + ai

(
x − h

2
ei

)
f (x − hei )

]
+ O(h2),

(11)

which holds for any sufficiently smooth function f .
Then, we expect that the eigenvalues of Lngr approximate

those of L for sufficiently large ngr and, in fact, this holds.
We have the following theorem by applying Theorem 5.1 in
Ref. [33] to the current case.

Theorem 1. For each k ∈ N, there exist constants
Ck
L, Dk

L ∈ R determined only by k and L such that, for
any ngr ∈ N, and the following hold:

(1)

∣∣λk
ngr

− λk

∣∣ � Ck
L

n2
gr

, (12)

where λ1
ngr

� λ2
ngr

� · · · are the eigenvalues of Lngr .

(2) For any eigenvector vk
ngr

of Lngr that corresponds to λk
ngr

and is normalized as ‖vk
ngr

‖ngr = 1, there exists an eigenfunc-

tion fk of L corresponding to λk that satisfies∥∥vk
ngr

− v fk ,ngr

∥∥
max � Dk

L
n2

gr

. (13)

Here, for v = (v0, . . . , vNgr−1) ∈ CNgr , ‖v‖ngr :=hd
∑Ngr−1

J=0

|vJ |2.
The proof is given in Appendix 1.

C. Building-block quantum algorithms

1. Arithmetic circuits

In this paper, we consider computation on the system with
multiple quantum registers. We use the fixed-point binary rep-
resentation for real numbers and, for each x ∈ R, we denote by
|x〉 the computational basis state on a quantum register where
the bit string corresponds to the binary representation of x. We
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assume that every register has a sufficient number of qubits
and thus neglect errors by finite precision representation.

We can perform arithmetic operations on numbers
represented on qubits. For example, we can imple-
ment quantum circuits for four basic arithmetic opera-
tions: addition Oadd : |a〉 |b〉 |0〉 	→ |a〉 |b〉 |a + b〉, subtrac-
tion Osub : |a〉 |b〉 |0〉 	→ |a〉 |b〉 |a − b〉, multiplication Omul :
|a〉 |b〉 |0〉 	→ |a〉 |b〉 |ab〉, and division Odiv : |a〉 |b〉 |0〉 |0〉 	→
|a〉 |b〉 |q〉 |r〉, where a, b ∈ Z and q and r are the quotient and
remainder of a/b, respectively. For concrete implementations,
see Ref. [34] and the references therein. In the finite preci-
sion binary representation, these operations are immediately
extended to those for real numbers. Moreover, using the above
circuits, we can also construct a circuit to compute an ele-
mentary function f such as an exponential as O f : |x〉 |0〉 	→
|x〉 | f (x)〉; see Ref. [35] for the details of the construction.
Hereafter, we collectively call these circuits arithmetic cir-
cuits. The gate cost of such a circuit is polynomial with respect
to the number of digits in binary representation and not related
to the parameters in the currently considered problem such
as ε, as long as a sufficient number of digits are used. Thus,
we regard their contributions as constant in the complexity
evaluation conducted later. That is, in such an evaluation, we
regard them as a unit and count the number of queries to them
and circuits constructed by their combinations [e.g., Oai in
Eq. (27)].

2. Representation of a vector as a quantum state

For a vector v = (v0, . . . , vn−1) ∈ Rn, we consider the two
ways to encode it into a quantum state. The first one is ampli-
tude encoding: We define

|v〉 := 1√∑n−1
i=0 v2

i

n−1∑
i=0

vi |i〉 . (14)

We will later consider quantum states like this for vectors
like v f ,ngr , which consists of the values of functions at grid
points. For a function written by some explicit formula, there
are various methods to generate an amplitude-encoding state
[36–43].

The second way is binary encoding: We define

|v〉bin := |v0〉 · · · |vn−1〉 . (15)

3. Block encoding

Block encoding means embedding a general matrix into the
upper-left block of a unitary matrix.

Definition 1 (Ref. [7], Definition 24). Let n, a ∈ N, A ∈
C2n×2n

, ε ∈ R+, and α � ‖A‖. We say that a unitary U on
a (n + a)-qubit system is an (α, a, ε)-block encoding of A, if

‖A − α(〈0|⊗a ⊗ I2n )U (|0〉⊗a ⊗ I2n )‖ � ε. (16)

We can efficiently construct a block encoding of a matrix
A if we have sparse access to A, that is, if A is sparse and we
can query quantum circuits that output positions and values of
nonzero entries in A.

Theorem 2 (Ref. [7], Lemma 48 in the full version, mod-
ified). Let A = (Ai j ) ∈ C2n×2n

be an s-sparse matrix. Suppose
that we have access to oracles OA

row and OA
col that act on a

two-register system as

OA
row |i〉 |k〉 = |i〉 |rik〉 , OA

col |k〉 |i〉 = |cki〉 |i〉 (17)

for any i ∈ [2n]0 and k ∈ [s], where rik (respectively, cki) is
the index of the kth nonzero entry in the ith row (respectively,
column) in A, or i + 2n if there are less than k nonzero entries.
In addition, suppose that we have access to oracle OA

ent that
acts on a three-register system as

OA
ent |i〉 | j〉 |0〉 = |i〉 | j〉 |Ai j〉 . (18)

Then, for any ε ∈ R+, there exists a (s‖A‖max, n + 3, ε)-block
encoding of A, in which OA

row and OA
col are each queried once,

OA
ent is queried twice, additional O(n + log5/2( s2‖A‖max

ε
)) one-

and two-qubit gates are used, and O( log5/2( s2‖A‖max

ε
)) ancilla

qubits are used.

4. Estimation of the smallest eigenvalue of a Hermitian

Given a block encoding of matrix A, we can use QSVT
[7,10] to construct a block encoding of another matrix Ã
obtained via transforming the singular values of A by a poly-
nomial f satisfying some conditions. For a Hermitian H ,
this corresponds to transforming its eigenvalues, and various
operations concerning the eigenvalues are possible via QSVT.
Reference [9] utilized this scheme to construct a quantum
algorithm to estimate the smallest eigenvalue of a hermitian.

Theorem 3 (Ref. [9], Theorem 8). Let H be a 2n × 2n Her-
mitian with the smallest eigenvalue λ1 and the corresponding
eigenvector |ψ1〉. Suppose that we have access to (α, a, 0)-
block encoding UH of H . Also suppose that we have access
to the unitary U|φ1〉 on an n-qubit system to generate a state
|φ1〉, that is, U|φ1〉 |0〉 = |φ1〉, where |〈φ1|ψ1〉| � γ holds with
some γ > 0. Then, for any δ ∈ (0, 1) and ε > 0, there exists a
quantum algorithm that outputs an ε approximation of λ1 with
probability at least 1 − δ, using

O

(
α

γ ε
log

(
α

ε

)
log

(
1

γ

)
log

(
log(α/ε)

δ

))
(19)

times, U|φ0〉

O

(
1

γ
log

(
α

ε

)
log

(
log(α/ε)

δ

))
(20)

times,

O

(
aα

γ ε
log

(
α

ε

)
log

(
1

γ

)
log

(
log(α/ε)

δ

))
(21)

additional one- and two-qubit gates, and

O

(
n + a + log

(
1

γ

))
(22)

qubits.
We can modify the quantum algorithm in Ref. [9], for

which the availability of an exact block encoding of H is
assumed, to an algorithm built upon sparse access to H and
thus an approximate block encoding of it.

Corollary 1. Let the assumptions in Theorem 3 hold, ex-
cept that on the (α, a, 0)-block encoding of H replaced with
the following: H is s sparse; we have access to OH

row, OH
col,

and OH
ent that act as Eqs. (17) and (18) with A = H . Then, for

023251-4



IMPROVED QUANTUM ALGORITHM FOR CALCULATING … PHYSICAL REVIEW RESEARCH 7, 023251 (2025)

any δ ∈ (0, 1) and ε > 0, there exists a quantum algorithm
EstEig(H, ε, δ) that outputs an ε approximation of λ1 with
probability at least 1 − δ, using OH

row, OH
col, and OH

ent,

O

(
s‖H‖max

γ ε
log

(
s‖H‖max

ε

)
log

(
1

γ

)
× log

(
log(s‖H‖max/ε)

δ

))
(23)

times, U|φ0〉,

O

(
1

γ
log

(
s‖H‖max

ε

)
log

(
log(s‖H‖max/ε)

δ

))
(24)

times,

O

(
s‖H‖max

γ ε
log

(
s‖H‖max

ε

)
log

(
1

γ

)
× log

(
log(s‖H‖max/ε)

δ

)

×
(

n + log5/2

(
s3‖H‖2

max log2(1/γ )

γ 2ε2

)))
(25)

additional one- and two-qubit gates, and

O

(
n + log

(
1

γ

)
+ log5/2

(
s3‖H‖2

max log2(1/γ )

γ 2ε2

))
(26)

qubits.
Proof. See Appendix 2. �

III. IMPROVED QUANTUM ALGORITHM FOR
EIGENVALUE ESTIMATION FOR DIFFERENTIAL

OPERATORS

Now, let us present our quantum algorithm for estimating
the smallest eigenvalue of a differential operator L in the form
of Eq. (3). We begin by making assumptions about access to
quantum circuits used in our algorithms. The first one is the
circuits to compute the coefficient ai in L.

Assumption 1. For each i ∈ {0, 1, . . . , d}, we have access
to a quantum circuit Oai that acts as

Oai |x〉bin |0〉 = |x〉bin |ai(x)〉 (27)

for any x ∈ D.
As long as ai is given by some explicit formula, which is

the case in the stochastic inflation case considered below, Oai

can be implemented with arithmetic circuits.
The second one is the circuit to generate the quantum state

that encodes the test function, which is chosen in advance and
assumed to overlap well with the first eigenfunction of L.

Assumption 2. Let γ ∈ (0, 1). For any ngr ∈ N, we have
access to a quantum circuit O f̃1,ngr

that acts as

O f̃1,ngr
|0〉 = ∣∣v f̃1,ngr

〉
, (28)

where f̃1 : D → R is a function on D and satisfies∣∣〈v f̃1,ngr

∣∣v f1,ngr

〉∣∣ � γ . (29)

As mentioned in Sec. II C 2, for the function f̃1 written by
an explicit formula, there are various proposals on the way to

generate the state |v f̃1,ngr
〉, and we now assume that some of

them are available.
Then, we present the main theorem on our quantum algo-

rithm.
Theorem 4. Consider Problem 1 under Assumptions 1 and

2. Let ε ∈ R and δ ∈ (0, 1). Then, there exists a quantum algo-
rithm that outputs an ε-approximation of λ1 with probability
at least 1 − δ, making

O

(
dξ

γ
log ξ log

(
1

γ

)
log

(
log ξ

δ

))
(30)

uses of Oa0 , . . . , Oad and arithmetic circuits and

O

(
1

γ
log ξ log

(
log ξ

δ

))
(31)

uses of O f̃1,ngr
with

ngr =
⎡⎢⎢⎢max

⎧⎨⎩
√

2C1
L

ε
,

√
2D1

L
1 − η(γ )

(U − L)d/4

⎫⎬⎭
⎤⎥⎥⎥. (32)

Here,

ξ :=
d

ε

(
damax

(U − L)2
× max

{
C1
L
ε

,
D1

L(U − L)
d
2

1 − η(γ )

}
+ a0,max

)
,

(33)

amax := max
i∈[d]
x∈D

ai(x), a0,max := max
x∈D

a0(x) (34)

and, for x ∈ (0, 1),

η(x) := 1
2 (x2 +

√
4 − 5x2 + x4). (35)

Proof. Here, we just present the quantum algorithm and
postpone the rest of the proof, that is, presenting how to

construct O
Lngr
row , O

Lngr

col , and O
Lngr

ent , estimating the accuracy of the
output and the query complexity estimation, to Appendix 3.

ALGORITHM 1. Estimation of the first eigenvalue λ1 of L.

Input: Accuracy ε ∈ R, success probability 1 − δ ∈ (0, 1).
1: Set ngr as Eq. (32).

2: Construct the oracles O
Lngr
row , O

Lngr
col , and O

Lngr
ent .

3: Run EstEig(Lngr ,
ε

2 , δ) to get an ε

2 -approximation 
̃ of the
smallest eigenvalue of Lngr .

4: Output 
̃.

�
Assuming that we can take a good function f̃1 with γ =

�(1), we take only the leading part with respect to 1
ε

to
simplify Eq. (30) as

Õ

(
d3amaxC1

L
(U − L)2ε2

)
. (36)

This evaluation can be decomposed into the following contri-
butions. For Lngr , the sparsity is s = O(d ), and the max norm
is, as seen in Appendix 3, ‖Lngr ‖max = O(damaxC1

L/(U −
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L)2ε) for small ε. Plugging these into Eq. (23) and not-

ing that O
Lngr
row , O

Lngr

col , and O
Lngr

ent are implemented by O(d )
uses of Oa0 , . . . , Oad and arithmetic circuits as shown in Ap-
pendix A 3, we reach Eq. (36).

Let us comment on the improvement of the complexity in
our algorithm compared to the previous algorithm in Ref. [12].
That algorithm also takes a kind of finite difference approx-
imation L′ for L, which is different from Eq. (9), but the
estimation of the eigenvalue of L′ is done by the Abrams-
Lloyd algorithm [4]. It is the combination of the Hamiltonian
simulation with H = L′, which means applying the time evo-
lution operator exp(−iL′t ) to quantum states and the quantum
Fourier transform. Ref. [12] did not present any complexity
upper bound of their algorithm that shows the scaling on all
the parameters collectively but only stated the scaling of the
complexity on the accuracy ε. According to it, their algorithm
applied to the current problem has the complexity of order
Õ(1/ε3). This complexity is affected by that of the Hamilto-
nian simulation method adopted in Ref. [12], which is a kind
of Suzuki-Trotter decomposition and not the state-of-the-art
method based on QSVT. Compared to this, our algorithm
uses the eigenvalue estimation method in Ref. [9], which does
not involve the Hamiltonian simulation but is a binary search
algorithm utilizing the QSVT-based eigenvalue thresholding.
Thus, our algorithm improves the complexity as in Eq. (36).

IV. APPLICATION TO ESTIMATING THE DECAY RATE
OF THE PERTURBATION DISTRIBUTION TAIL IN

STOCHASTIC INFLATION

We exemplify an application of the quantum algorithm
we showed to cosmic inflation as physical interest. Cosmic
inflation [17–22] is the hypothetical phase of accelerated
expansion in the early universe. Not only can it make our uni-
verse statistically homogeneous and isotropic from a global
perspective, but inflation can also bring primordial fluctu-
ations in energy density or the spacetime metric from the
quantum vacuum fluctuation. Such primordial perturbations
can be seeds of the current cosmological structures such as
galaxies and clusters, and these observations support the exis-
tence of inflation (see, e.g., Ref. [44]).

The fluctuating dynamics of inflation is often described in
the stochastic formalism of inflation, also known as stochastic
inflation (see Refs. [23–32] for early works and also Ref. [45]
for a recent review). It is understood as an effective theory
of fields coarse-grained on a superHubble scale. We suppose
that inflation is driven by d canonical real scalar fields φ =
(φ1, φ2, · · · φd ) called inflatons. Then, in stochastic inflation,
the inflaton fields at each spatial point behave as almost inde-
pendent stochastic processes. In the so-called slow-roll limit,
the stochastic differential equation which the inflatons follow
at each spatial point is exhibited as (see, e.g., Ref. [46])

dφ(N )=−M2
Pl

∇φv(φ(N ))

v(φ(N ))
dN +

√
2v(φ(N ))dW (N ), (37)

where MPl is the reduced Planck mass, v = V/(24π2M4
Pl ) :

Rd → R is the reduced potential of the inflatons, the e-folding
number N is the time variable normalized by the Hubble
parameter, and W (N ) is the d-dimensional Wiener process

independent over the Hubble distance.2 We omitted the spatial
label x as hereafter we only deal with the one-point dynamics
in this paper.

Due to their stochastic behavior, inflation continues for dif-
ferent times at each spatial point even if the inflaton fields have
the same initial value φ0. Supposing that inflation happens in
a certain subset of the target manifold � ⊂ RI and ends at
its boundary ∂�, the inflation duration is given by the first
passage time denoted N (φ0) from φ0 to ∂�. According to
the δN formalism [51–57], the fluctuation in this first passage
time is understood as the conserved curvature perturbation ζ

(fluctuation in the spatial curvature), which is converted to
the energy density contrast in the later universe. Its correla-
tion functions over different spatial points, though we do not
explicitly calculate them in this paper, are calculated by the
probability density function (PDF) of N (φ0) and its depen-
dence on φ0 known as the stochastic-δN technique [46,58–
62]. Hence, the problem of interest reduces to solving the PDF
of N from each field value φ ∈ �, omitting the subscript 0
here and hereafter for simplicity.

The PDF P(φ | N ) of the inflatons φ at a certain time N
follows the FP equation equivalent to the original stochastic
differential equation (37) as

∂N P(φ | N ) = LFPP(φ | N )

:= M2
Pl

[∑
i

∂φi

(
vi(φ)

v(φ)
P(φ | N )

)

+
∑

i

∂2
φi

(v(φ)P(φ | N ))

]
, (38)

where vi = ∂φiv. On the other hand, the PDF of the first
passage time PFPT(N | φ) is known to follow the adjoint one
[46]:

∂N PFPT(N | φ) = L†
FPPFPT(N | φ), (39)

with the adjoint FP operator

1

M2
Pl

L†
FP = −

∑
i

vi

v
∂φi + v

∑
i

∂2
φi
, (40)

associated with the inner product,

〈 f (φ)|g(φ)〉 :=
∫

dφ f (φ)g(φ), (41)

that is, 〈 f (φ)|LFPg(φ)〉 = 〈L†
FP f (φ)|g(φ)〉. The eigenvalues

of L†
FP are negative in the set of functions valid as a PDF

of the first passage time [63], and we hereafter consider the
eigenvalues of −L†

FP, which are positive. Though L†
FP is not

Hermite (not self-adjoint; L†
FP �= LFP), one can Hermitise it

2The stochastic term should be understood as the Itô integral
[47,48]. However, the Itô integral breaks the covariance under the
general coordinate transformation on the inflatons’ target manifold if
it is not Euclidean Rd but a more general one M [49]. In such a case,
the inflatons’ derivative dφi should be replaced by the Itô-covariant
one. See Ref. [50] for details.
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by defining the following Hermitian operator [63]:

L̃FP := w1/2(φ)L†
FPw

−1/2(φ), (42)

where

w(φ) = e1/v(φ)/v(φ). (43)

They share the same eigenvalues, while the corresponding
eigenfunctions are different by the w−1/2 factor:

−L̃FP�n(φ) = 
n�n(φ) ⇔ −L†
FP�̃n(φ) = 
n�̃n(φ),

(44)

where

�̃n(φ) = w−1/2(φ)�n(φ). (45)

By some calculations, we see that

− L̃FP

M2
Pl

=
∑

i

[
− ∂φi

(
v∂φi

)
− 2v2(1 + v)vii − (1 + 4v + v2)v2

i

4v3

]
, (46)

where vii := ∂2
φi
v, and thus L̃FP takes the form of Eq. (3).

The eigensystem of the adjoint FP operator has a physically
interesting implication. The adjoint FP equation (39) can for-
mally be solved as

PFPT(N | φ) = exp[(N − ε)L†
FP]PFPT(N = ε | φ), (47)

with a certain positive parameter ε. Expanding PFPT(N = ε |
φ) by the eigensystem as3

PFPT(N = ε | φ) =
∑

n

α(ε)
n �̃n(φ) (48)

leads to the solution

PFPT(N | φ) =
∑

n

α(ε)
n �̃n(φ)e−
n (N−ε). (49)

One may take the limit ε → 0 as

PFPT(N | φ) =
∑

n

αn�̃n(φ)e−
nN , (50)

where αn = limε→0 α(ε)
n . The functional form of Eq. (50)

suggests that the PDF of N (and hence the primordial pertur-
bation) has an exponentially heavy tail [63–65] in contrast to
the naïve expectation that the physical perturbations are well
described by the Gaussian distribution. In particular, the first
eigenvalue, especially if it is of order unity, can exhibit a sig-
nificant effect on the large-N (and hence large perturbation)
probability and drastically change the abundance of astro-
physical objects. This is why we want the method to calculate
the first eigenvalue and the corresponding eigenfunction of the
adjoint FP operator (or equivalently the Hermite FP operator
L̃FP). However, this is a challenging computational task in
classical computing, especially when the number of fields d
is much larger than 1, and our quantum eigenvalue-finding
algorithm proposed in Sec. III may be beneficial.

3If the target space � is noncompact, the spectrum of the eigensys-
tem is not discrete in general.

Let us briefly discuss the behavior of the Hermite FP
operator before moving to specific examples. First, because
PFPT(N > 0 | φ ∈ ∂�) = 0 by definition of N and ∂�,4 the
boundary condition for the eigenfunctions is given by

�̃n(φ ∈ ∂�) = 0 ⇔ �n(φ ∈ ∂�) = 0. (51)

In a single-field model, d = 1 (and φ denotes φ1 for brevity),
the eigenvalue equation (44) reduces to(

∂2
φ + v′

v
∂φ + ω2

n

)
�n(φ) = 0, (52)

with

ω2
n � −1 − 2
nPζ − 2ηsto

2M2
PlvPζ

. (53)

Here, we define Pζ := 2v3/(v′2M2
Pl ) > 0 and ηsto :=

v2v′′/v′2, and we suppose 0 < v � 1 for the inflation energy
scale to be well below the Planck scale. Pζ is related to the
amplitude of the curvature perturbation ζ in the perturbative
evaluation. ηsto is called the stochasticity parameter, which
indicates the magnitude of the stochastic correction to
the perturbative evaluation [46]. It is decomposed as
ηsto = ηVPζ /2 where ηV := M2

Plv
′′/v2 is known as the

second slow-roll parameter and supposed to be small for
single-field slow-roll inflation. Therefore, if the dynamics
is well perturbative as Pζ � 1, ηsto is also small, and then
for 
n ∼ O(1), ω2

n becomes negative, which means that
the eigenfunction is not normalizable. That is, unless the
perturbativity is broken as Pζ � 1 in some region of the target
space, L̃FP have no order-unity eigenvalue, and thus there
is no interesting physics caused by the large-N probability.
Though this condition can be relaxed in multifield cases,
the above discussion motivates us to seek the situation with
Pζ � 1. Then, we below focus on models with a flat point
v′ = 0 at which Pζ can be divergent.

Although we would like to run our quantum algorithm
for concrete problems including those with many fields, it is
impossible today since there is no large-scale fault-tolerant
quantum computer. Instead, to see if our method is promising
for the eigenvalue problem in stochastic inflation, we take
some classically (or even analytically) tractable cases with
a few fields and check that we can take a test function f̃1

overlapping with the true first eigenfunction well. With this
condition satisfied, it is expected that our quantum algorithm
finds the first eigenvalue efficiently. Specifically, expecting
that the first eigenfunction has a simple functional shape with
a single bump and no node in many cases, we take Gaussian
test functions, which seem to work at least in the examined
cases below.

A. Quantum well toy model

Let us first see the simplest single-field quantum well
model as a toy example, reviewing Refs. [63,64]. As a zeroth
order approximation of hilltop inflation [20,21], we suppose

4PFPT(N | φ ∈ ∂�) = δ(N ) according to the conservation of the
probability.
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FIG. 1. Left: The absolute values squared of the inner product (58) as functions of the r parameter of the Gaussian test function f̃1. The
inner product of n = 1 is maximized at r = rmax ∼ 0.52 shown by the vertical thin line and reaches ∼0.99. Right: The inner product for each
n at r = rmax.

that the inflaton potential has constant and compact support
and is bounded by the absorbing (i.e., Dirichlet) boundaries:

v(φ ∈ �) = v0, � = [−φf , φf ], ∂� = {−φf , φf}, (54)

where v0 and φf are positive parameters. In this simplest setup,
the normalized (i.e., 〈�n|�m〉 = δnm) eigenfunctions are
easily obtained as

�n(φ) = 1√
φf

sin

[
nπ

φ + φf

2φf

]
, n = 1, 2, 3, . . . , (55)

with the eigenvalues


n = n2π2M2
Plv0

4φ2
f

. (56)

If one chooses the normalized Gaussian

f̃1(φ) =
(√

πrφf erf

(
1

r

))−1/2

exp

(
− φ2

2r2φ2
f

)
(57)

with a parameter r > 0 as the test function, its inner products
with the eigenfunctions, which lead to the γ parameter in
Eq. (29), are given by

〈 f̃1|�n〉 � π1/4√r√
2 erf(1/r)

e− π
8 (4i(n−1)+n2πr2 )

×
(

erf

(
2 − inπr2

2
√

2r

)
+ erf

(
2 + inπr2

2
√

2r

))
(58)

for odd n or otherwise zero. erf (x) = (2/
√

π )
∫ x

0 e−t2
dt is

the error function. The r dependence of their absolute values
squared is shown in the left panel of Fig. 1. The lowest state
n = 1 dominates the higher modes, taking its maximal value
∼0.99 at r = rmax ∼ 0.52 shown by the vertical thin line. The
n dependence at r = rmax up to a higher value of n is exhibited
in the right panel. One sees that the Gaussian test function can
pick up the first eigenmode with the highest probability.

The flat inflection model (see, e.g., Refs. [66–69]) can also
be simulated in the quantum well model just by changing
the one boundary condition (we choose φ = φf without loss
of generality) from the absorbing to the reflective (i.e., Neu-

mann) one. The eigenfunctions are then given by

�n(φ) = 1√
φf

sin

[(
n − 1

2

)
π

φ + φf

2φf

]
, n = 1, 2, 3, · · · ,

(59)

with the eigenvalues


n = (n − 1/2)2π2M2
Plv0

4φ2
f

. (60)

Its inner product with the Gaussian test function

f̃1(φ) �
(√

π

2
rφf erf

(
2

r

))−1

exp

(
− (φ − φf )2

2r2φ2
f

)
(61)

reads

〈 f̃1|�n〉 = − (−1)nπ1/4√r

2
√

erf (2/r)
e− (2n−1)2π2r2

32

×
(

erf

(
8 + (2n − 1)iπr2

4
√

2r

)
+ erf

(
8 − (2n − 1)iπr2

4
√

2r

))
. (62)

It is demonstrated in Fig. 2. The Gaussian test function can
again pick up the lowest mode well.

Note that the reflective boundary is not compatible with
our quantum algorithm. However, the eigenfunctions (59) are
practically well reproduced by extending the calculation re-
gion slightly outside the quantum well, φ > φf , with a steep
ascent potential and imposing the absorbing boundary con-
dition because ω2

n in Eq. (53) becomes negative for a steep
potential and the eigenfunction rapidly damps outside the
quantum well.

B. Hybrid inflation

Let us also see a two-field generalization called hybrid
inflation [70]. There, the φ field rolls down along its potential
Vφ (φ) with the support potential of the so-called waterfall
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FIG. 2. The same plot as Fig. 1 but for the inner product (62) instead of (58). The vertical thin line in the left panel indicates r = rmax � 1.04
which maximizes the inner product for n = 1.

field ψ as

V (φ,ψ ) = Vφ (φ) + V0

[(
1 −

(
ψ

M

)2
)

+ 2

(
φψ

φcM

)2
]
,

(63)

where V0, M, and φc are the model parameters. Only positive
values of φ are often considered and V ′

φ (φ) is chosen to be
positive so φ rolls from a larger value to a smaller value.
ψ is stabilized to ψ = 0 during φ > φc due to the coupling
with φ, while ψ = 0 is destabilized when φ < φc and ψ rolls
down to either potential minima ψ = ±M. The ψ’s fluctua-
tions around φ = φc determine which minima ψ falls to. The
whole dynamics is hence stochastic, which makes the model
nontrivial.

In the paper, we choose the inflaton potential to have a flat
inflection:

Vφ (φ) = V0β

M3
Pl

(φ − φc)3, (64)

with a parameter β, which not in hybrid inflation but as a
single-field model, have been considered in a previous study
[63]. Then, we numerically find the eigenvalues and eigen-
functions of L̃FP, adopting the following parameter values:

V0 = 10−15M4
Pl, M = 1016 GeV, φc =

√
2M, β = 104.

(65)
We take the rectangular absorbing boundary.5 [φmin, φmax],
the range of φ, is set so that |φ − φc|/MPl � β−1/3, following
Ref. [63]. ψmin and ψmax, the endpoints of ψ , are set so that
at the points, the second slow-roll parameter M2

Pl|∂2
ψv/v| for

ψ is 1, which means that the inflation ends, with φ = φc.
It is important to sufficiently resolve the region near the in-
flection point, where the stochasticity is significant. Thus, in
φ, we set 1000 equally spaced grid points in [φsto,−, φsto,+]

5Although the reflective condition is usually set on the high-
potential side, whether we set the absorbing or reflective condition
has almost no effect on the low eigenvalues and eigenfunctions
because of the steep potential away from the inflection point, as
mentioned in Sec. IV A.

and 500 points each in [φmin, φsto,−] and [φsto,+, φmax] so that
log |φ − φc| is equally spaced. Here, φsto,+ is the value of φ >

φc at which the stochasticity parameter ηsto,φ for φ becomes
0.1 with ψ = 0 and φsto,− = φc − (φsto,+ − φc). Similarly, in
ψ , we set 1000 equally spaced grid points in [ψsto,−, ψsto,+],
and 500 points each in [ψmin, ψsto,−] and [ψsto,+, ψmax] so
that log |ψ | is equally spaced, where ψsto,+ > 0 is set so that
ηsto,ψ = 0.1 at (φ,ψ ) = (φsto,+, ψsto,+) and ψsto,− = −ψsto,+.
Although such grid points that are not equally spaced in linear
scale do not match the setting in our quantum algorithm, it
does not matter for our current objective to see the overlap be-
tween the test function and the eigenfunctions: It is calculated
as ∣∣∑

k,l f̃1
(
φ

gr
k , ψ

gr
l

)
�n
(
φ

gr
k , ψ

gr
l

)
�φk�ψl

∣∣2∑
k,l

∣∣ f̃1
(
φ

gr
k , ψ

gr
l

)∣∣2�φk�ψl×
∑

k,l

∣∣�n
(
φ

gr
k , ψ

gr
l

)∣∣2�φk�ψl

,

(66)

where φ
gr
k (respctively, ψ

gr
k ) is the kth grid point in φ (respec-

tively, ψ) and �φk = φ
gr
k+1 − φ

gr
k and �ψk = ψ

gr
k+1 − ψ

gr
k .

We will consider extending our quantum algorithm so that
nonequidistant grid points can be dealt with in future works.

By using eigs in SciPy [71], we find the first ten eigen-
values and eigenfunctions, which are shown in Figs. 3 and 4,
respectively. Noting that the eigenfunctions have peaks in the

FIG. 3. The first ten eigenvalues of L̃FP with V in Eqs. (63) and
(64) for the parameters in Eq. (65).
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× ×

××

× ×

× ×

FIG. 4. The first four eigenfunctions of the same L̃FP as Fig. 3.

high-stochasticity region, we take the following Gaussian test
function:

f̃1(φ,ψ ) ∝ exp

(
− (φ − φc)2

2(φsto,+ − φc)2
− ψ2

2ψ2
sto,+

)
. (67)

The overlaps between this and the eigenfunctions are shown
in Fig. 5. One sees that the overlap is significant for the first

FIG. 5. The squared inner products between the quantum states
encoding the Gaussian test function f̃1 in Eq. (67) and those encoding
nth eigenfunctions of the same L̃FP as Fig. 3.

eigenfunction, which implies that with this test function, our
quantum algorithm will also work well in this model.

V. SUMMARY

In this paper, we considered a quantum algorithm for cal-
culating the first eigenvalue of differential operators. Under
the finite difference approximation of a given operator, this
problem boils down to the matrix eigenvalue problem, but
in multidimensional cases it is computationally demanding
because of the exponential increase of the size of the approx-
imating matrix. Then, we proposed a quantum algorithm for
this task, leveraging the QSVT-based quantum algorithm for
finding the first eigenvalue of matrices in Ref. [9]. Our quan-
tum algorithm has the query complexity scaling as Õ(1/ε2)
on the accuracy ε in the eigenvalue, which shows the im-
provement compared to the existing quantum algorithm for
the same task with complexity of order Õ(1/ε3).

As a potential application target for our algorithm, we
considered a problem in cosmology, finding the eigenvalue of
the adjoint FP operator L†

FP in stochastic inflation, which is
related to the tail shape of the PDF of the primordial pertur-
bation. Although we cannot run our algorithm for concrete
instances of this problem now because of the absence of
large-scale fault-tolerant quantum computers, we conducted
numerical demonstrations for some problem instances in
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shochastic inflation to show that our method is promising.
We take Gaussian functions as test functions, expecting the
first eigenfunctions to have a single-bump shape, and saw that
they in fact overlap with the first eigenfunctions well in the
considered problems, which implies that one of the conditions
for our method to work would be satisfied.

Nevertheless, refining the way to set the test function
should be considered in future works, since it is not obvious
that the current approach will also work in more compli-
cated problems, such as higher-dimensional ones. Preparing
the test function is an issue also in ground energy esti-
mation in condensed matter physics and chemistry, where
various approaches have been proposed: e.g., the adiabatic
state preparation considered in Ref. [72]. It will be interesting
and significant to explore applications of such advanced state
preparation methods to differential operator eigenproblems,
learning from existing studies in other fields.
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APPENDIX: PROOFS

1. Proof of Theorem 1

Before the proof, we introduce some kinds of norms and
smoothness classes of functions. Let � ⊂ Rd be a bounded
region. For a function g : � → R, we define

|g|0,� := sup
x∈�

|g(x)| (A1)

and

|g|a,� :=
∑

|α|��a�−1

|Dαg(x)|0,�

+
∑

|α|=�a�−1

sup
x,y∈�

|Dαg(x) − Dαg(y)|
‖x − y‖a−�a�+1

, (A2)

with a ∈ R+. We say that g ∈ Ca(�) if |g|a,� < ∞ and that
g ∈ Ca(�) if g ∈ Ca(O) for every O ⊂ �. Obviously, any
function in Ca(�) needs to be (�a� − 1)-times differentiable.
We can easily see that any �a� times continuously differen-
tiable function on � is in Ca(�) ∩ Ca(�).

Then, the proof of Theorem 1 is as follows.
Proof of Theorem 1. Theorem 1 is obtained by just applying

Theorem 5.1 in Ref. [33] to Problem 1 with the finite differ-
ence approximation in Eq. (9). Now, we just check that the
conditions for applying Theorem 6.4 in [33] are satisfied.

(1) Lngr acts locally, that is, any entry (Lngr )j1,j2 correspond-
ing to the grid points xgr

j1
and xgr

j2
such that ‖xgr

j1
− xgr

j2
‖ > h

is 0.
(2) Lngr is symmetric.
(3) Condition (i) (see Ref. [33] for details; the same ap-

plies below).
In the grid point set Dngr given in Sec. II B, for any adjacent

point pair (xgr
j1

, xgr
j2

), where j1 = j2 ± ei for some i ∈ [d], the

corresponding entry (Lngr )j1,j2 in Lngr is nonzero. Besides, for
any xgr

j , xgr
j′ ∈ Dngr , we can move from xgr

j to xgr
j′ by some

sequence of transitions to an adjacent point. Combining these
observations, we see that the condition (i) is satisfied.

(4) Condition (ii).
We have ∑

j′∈Dngr

j′ �=j

∣∣h2
(
Lngr

)
j,j′
∣∣ � 2damax,

1

h2
∣∣(Lngr

)
j,j

∣∣ � 1

2damin
, (A3)

∑
j′∈Dngr

j′ �=j

∣∣∣∣∣
(
Lngr

)
j,j′(

Lngr

)
j,j

∣∣∣∣∣ � 1

for any j ∈ [ngr]d
0 , where amin := mini∈[d]

x∈D
ai(x). This means

that condition (ii) is satisfied,6

(5) Condition (iii).
It is obvious that

∑
j′∈Dngr

j′ �=j

|(Lngr )j,j′ | � (Lngr )j,j for any j :=
[ngr]d

0 , which means that the first part of this condition is
satisfied. The second part is irrelevant in the current case,
since now D∗

ngr
:= Dngr − D′

ngr
is empty.7 Here, D′

ngr
:= {x ∈

Dngr | infx′∈∂D ‖x − x′‖ � h}, which is now equal to Dngr .
(6) Condition (iv).
This is also irrelevant in the current case since D∗

ngr
= ∅.

(7) Condition (v).
It is obvious that (Lngr )j,j′ � 0 for any j, j′ ∈ [ngr]d

0 such
that j �= j′, which means this condition is satisfied.

(8) Let us check that, in the words of Ref. [33] , Lngr is
consistent of order 2 with L in Dngr , that is, there exists a
constant C independent of h such that∣∣L f

(
xgr

j

)− (Lngr v f ,ngr

)
j

∣∣ � Chμ| f |μ+2,Sh,j∩D (A4)

holds for any μ ∈ (0, 2], j ∈ [ngr]d
0 and f ∈ Cμ+2(Sh,j ∩ D).

Here, Sh,j := {x ∈ Rd | ‖x − xgr
j ‖ < h} is the sphere of radius

h centered at xgr
j . f ∈ Cμ+2(Sh,j ∩ D) implies the following.

First, f is μ̃ times differentiable, where μ̃ = �μ + 2� − 1 and,
thus, as we can see using Taylor’s theorem,

f
(
xgr

j + δei
) =

μ̃−1∑
n=0

1

n!

∂n f

∂xn
i

(
xgr

j

)
δn + 1

μ̃!

∂μ̃ f

∂xμ̃
i

(
xgr

j + δ′ei
)
δμ̃

(A5)

6Note that, in our definition, Lngr has no entry corresponding to a
point in ∂D. Even if we make it have such entries as in Ref. [33],
they are zero because of the Dirichlet boundary condition and thus
have nothing to do with the condition (ii).

7Note the differences of the notations in this paper and Ref. [33].
D′

ngr
and D∗

ngr
correspond to �′

h and �∗
h in Ref. [33], respectively.
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holds for any j ∈ [ngr]d
0 , i ∈ [d], and δ ∈ [−h, h], with some real number δ′ that is between 0 and δ and dependent on i, xgr

j and
δ. Second, for any x, y ∈ Sh,j ∩ D and i ∈ [d],∣∣∣∣∣∂μ̃ f

∂xμ̃
i

(x) − ∂μ̃ f

∂xμ̃
i

(y)

∣∣∣∣∣ � | f |μ+2,Sh,j∩D‖x − y‖μ+2−�μ+2�+1 (A6)

holds. Combining Eqs. (A5) and (A6), we have

f
(
xgr

j + δei
) =

μ̃∑
n=0

1

n!

∂n f

∂xn
i

(
xgr

j

)
δn + R, (A7)

with the residual term R bounded as

|R| � 1

μ̃!
| f |μ+2,Sh,j∩D|δ|μ+2. (A8)

For ai, since it is four times continuously differentiable on D and μ̃ � 3, Taylor’s theorem implies that, for any n ∈ [μ̃],

ai
(
xgr

j + δei
) =

n∑
m=0

1

m!

∂mai

∂xm
i

(
xgr

j

)
δm + 1

(n + 1)!

∂n+1ai

∂xn+1
i

(
xgr

j + δ′′ei
)
δn+1 (A9)

holds with some real number δ′′ that is between 0 and δ and dependent on i, n, xgr
j and δ. By using Eqs. (A7) and (A9) with

δ = ±h and δ = ± h
2 in Eq. (10), we obtain

(
Lngr v f ,ngr

)
j =

d∑
i=1

(
∂ai

∂xi

(
xgr

j

) ∂ f

∂xi

(
xgr

j

)+ ai
(
xgr

j

)∂2 f

∂x2
i

(
xgr

j

))+ a0
(
xgr

j

)
f
(
xgr

j

)+ R′. (A10)

Here, the residual term R′ is bounded as

|R′| �
d∑

i=1

μ̃∑
n=0

1

2μ̃−n(μ̃ − n + 1)!n!
a(μ̃−n+1)

max

∣∣∣∣∂n f

∂xn
i

∣∣∣∣
0,Sh,j∩D

hμ̃−1 + 2d

μ̃!
| f |μ+2,Sh,j∩Dhμ, (A11)

where, for n ∈ N, a(n)
max := maxi∈[d] | ∂nai

∂xn
i
|0,D. This implies that Eq. (A4) holds with C

C := max
n∈[μ̃+1]0

a(μ̃−n+1)
max

2μ̃−n(μ̃ − n + 1)!n!
× (U − L)�μ+2�−μ−2 + 2d

μ̃!
. (A12)

(9) Lastly, let us check that the each eigenfunction fk of L is in C4(D). Since a0, . . . , ad are now four times continuously
differentiable and thus twice continuously differentiable, they are in C2(D) ∩ C2(D). Then, Theorem 6.3 in [33] implies that fk

is in C4(D) ∩ C4(D). �

2. Proof of Corollary 1

Proof of Corollary 1. Note that, given (α, a, 0)-block encoding UH of H , the quantum algorithm in Ref. [9] relies on a unitary
PROJ (μ, ε

2α
, ε′) constructed with UH , where μ ∈ R is any real number, ε′ is set to ε′ = γ /2, and∥∥∥∥(〈0|⊗(a+3) ⊗ I2n )PROJ

(
μ,

ε

2α
, ε′
)

|0〉⊗(a+3) |φ1〉
∥∥∥∥{� γ − ε′

2 ; if λ1 � μ − ε

� ε′
2 ; if λ1 � μ + ε

(A13)

holds. UH is used only in this unitary and, thus, if we can construct a unitary ˜PROJ(μ, ε
2α

, ε′) that has the same property
as Eq. (A13) using OH

row, OH
col, and OH

ent instead of UH , we can run the quantum algorithm replacing PROJ(μ, ε
2α

, ε′) with
˜PROJ(μ, ε

2α
, ε′). In particular, it suffices that we have ˜PROJ(μ, ε

2α
, ε′) such that∥∥∥∥(〈0|⊗(a+3) ⊗ I2n ) ˜PROJ

(
μ,

ε

2α
, ε′
)

(|0〉⊗(a+3) ⊗ I2n ) − (〈0|⊗(a+3) ⊗ I2n )PROJ

(
μ,

ε

2α
,
ε′

2

)
(|0〉⊗(a+3) ⊗ I2n )

∥∥∥∥ � ε′

4
, (A14)

which, as we can see by simple algebra, leads to ˜PROJ(μ, ε
2α

, ε′) satisfying the property like Eq. (A13).

Then, let us consider how to construct such ˜PROJ(μ, ε
2α

, ε′), fixing α to α̃ := s‖H‖max and a to ã := n + 3. On the one hand,
we note that

PROJ

(
μ,

ε

2α̃
,
ε′

2

)
= (Had ⊗ I2n+ã+3 ) ⊗

(
|0〉 〈0| ⊗ I2n+ã+3 + |1〉 〈1| ⊗ REF

(
μ,

ε

2α̃
,
ε′

2

))
⊗ (Had ⊗ I2n+ã+3 ) (A15)
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by the definition in Ref. [9]. Here, Had is a Hadamard gate and REF(μ, ε
2α̃

, ε′
2 ) is a (α̃, ã + 2, 0)-block-encoding of

−S( H−μI
α̃+|μ| ;

ε
2α̃

, ε′
2 ) with S(·; ε

2α̃
, ε′

2 ) being some polynomial of degree dα̃,ε,ε′ = O( α̃
ε

log( 1
ε′ )) (see [9] for the details). On the other

hand, because of Theorem 2, we can construct a (α̃, ã, ε̃)-block-encoding ŨH of H with OH
row, OH

col, and OH
ent, where

ε̃ :=
(

ε′

8dα̃,ε,ε′

)2

α̃. (A16)

ŨH can be regarded as a (α̃, ã, 0)-block encoding of some matrix H̃ ∈ C2n×2n
such that ‖H̃ − H‖ � ε̃. Thus, because of Lemma

22 in the full version of Ref. [7], replacing UH in REF(μ, ε
2α̃

, ε′
2 ) with ŨH yields a (α̃, ã + 2, 0)-block encoding R̃EF of S̃ ∈

C2n×2n
such that∥∥∥∥S̃ −

(
−S

(
H − μI

α̃ + |μ| ;
ε

2α̃
,
ε′

2

))∥∥∥∥ � 4dα̃,ε,ε′

√∥∥∥∥H − μI

α̃ + |μ| − H̃ − μI

α̃ + |μ|
∥∥∥∥ � 4dα̃,ε,ε′√

α̃

√
‖H − H̃‖ � ε′

2
. (A17)

Consequently, replacing UH in PROJ(μ, ε
2α̃

, ε′
2 ) with ŨH yields ˜PROJ(μ, ε

2α̃
, ε′

2 ), satisfying∥∥∥∥(〈0|⊗(ã+3) ⊗ I2n ) ˜PROJ
(
μ,

ε

2α
, ε′
)

(|0〉⊗(ã+3) ⊗ I2n ) − (〈0|⊗(ã+3) ⊗ I2n )PROJ

(
μ,

ε

2α
,
ε′

2

)
(|0〉⊗(ã+3) ⊗ I2n )

∥∥∥∥
=
∥∥∥∥(〈+| 〈0|ã+2 ⊗ I2n )

(
|1〉 〈1| ⊗

(
R̃EF − REF

(
μ,

ε

2α̃
,
ε′

2

)))
(|+〉 |0〉⊗(ã+2) ⊗ I2n )

∥∥∥∥
= 1

2

∥∥∥∥(〈0|ã+2 ⊗ I2n )

(
R̃EF − REF

(
μ,

ε

2α̃
,
ε′

2

))
(|0〉⊗(ã+2) ⊗ I2n )

∥∥∥∥
= 1

2

∥∥∥∥S̃ −
(

−S

(
H − μI

α̃ + |μ| ;
ε

2α̃
,
ε′

2

))∥∥∥∥ � ε′

4
, (A18)

namely, Eq. (A14). Here, at the first equality, we have
used Eq. (A15) and the similar relationship between
˜PROJ(μ, ε

2α
, ε′

2 ) and R̃EF.
Lastly, let us evaluate the number of uses of OH

row, OH
col, OH

ent
and elementary gates and the number of qubits in the quantum
algorithm. As said above, we replace PROJ(μ, ε

2α̃
, ε′) in the

original algorithm in Ref. [9] with ˜PROJ(μ, ε
2α̃

, ε′), which
is yielded by replacing UH in PROJ(μ, ε

2α̃
, ε′

2 ) with ŨH . If
we use UH , the number of calls to it, the number of uses of
other one- and two -qubit gates, and the number of qubits in
PROJ(μ, ε

2α̃
, ε′) and PROJ(μ, ε

2α̃
, ε′

2 ) are of the same order.
Since we use OH

row, OH
col, and OH

ent in ŨH only O(1) times,
we get the evaluation (23) on the number of queries to these
by simply replacing α in Eq. (19) with α̃. In ŨH , we use
O(n + log5/2( s2‖H‖max

ε̃
)) additional one- and two -qubit gates,

and multiplying this evaluation by the number of queries to
ŨH and adding Eq. (21) yields the total gate number evaluation
in Eq. (25). O(log5/2( s2‖H‖max

ε̃
)) ancilla qubits are used in ŨH ,

and summing up this and Eq. (22) with a = ã yields the total
qubit number evaluation in Eq. (26). Since U|φ0〉 is outside
˜PROJ(μ, ε

2α̃
, ε′), we get the evaluation (24) on the number of

queries to this by simply replacing α in Eq. (20) with α̃. �

3. Proof of Theorem 4

Before presenting the rest of the proof, we give some
lemmas.

Lemma A1. Let u=(u0, . . ., uNgr−1), v = (v0, . . . , vNgr−1)
∈ RNgr . Suppose that ‖vngr ‖ngr = 1 and that ‖u − v‖max � ε

with some ε ∈ R. Then,

〈u|v〉 � 1 − 2(U − L)d/2ε. (A19)

Proof. ‖u − v‖max � ε implies that

ui − ε � vi � ui + ε (A20)

for each i ∈ [Ngr]0, and that

‖u‖ � ‖v‖ − ‖u − v‖ � ‖v‖ −√Ngrε. (A21)

In addition, the Cauchy-Schwarz inequality implies that

Ngr−1∑
i=0

|ui| �
√

Ngr‖u‖. (A22)

Furthermore, by the definition of ‖ · ‖ngr ,

hd/2‖v‖ = ‖v‖ngr = 1 (A23)

holds. Combining these, we have

〈u|v〉 =
∑Ngr−1

i=0 uivi

‖u‖‖v‖

�
∑Ngr−1

i=0 ui(ui − sgn(ui ) × ε)

‖u‖‖v‖

= ‖u‖
‖v‖ − ε

∑Ngr−1
i=0 |ui|

‖u‖‖v‖

� 1 − 2
√

Ngrε

‖v‖
� 1 − 2(U − L)d/2ε, (A24)

where we use Eq. (A20) at the first inequality, Eqs. (A21)
and (A22) at the second inequality, and Eq. (A23) at the last
equality. �
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ALGORITHM 2. J−1.

Input: K ∈ [Ngr]0

Output: k1, . . . , kd such that K =∑d
i=1 ni−1

gr ki

1: Set Kd = K .
2: for i = d, . . . , 2 do
3: Divide Ki by ni−1

gr , and let the quotient and remainder be ki and Ki−1, respectively.
4: end for
5: Divide K1 by ngr, and let the quotient and remainder be k2 and k1, respectively.

Lemma A2. Let |φ〉, |ψ〉, |ζ 〉 be quantum states on an ngr-qubit register. Suppose that |〈φ|ψ〉| � γ for γ ∈ (0, 1). Then,
|〈φ|ζ 〉| � γ

2 holds if

|〈ψ |ζ 〉| � η(γ ). (A25)

Proof. We can write

|φ〉 = α |ψ〉 + β |ψ⊥〉 (A26)

with α, β ∈ C such that |α| � γ and |β| �
√

1 − γ 2, and a quantum state |ψ⊥〉 orthogonal to |ψ〉. Besides, Eq. (A25) implies
that

|〈ζ |ψ⊥〉| �
√

1 − η2(γ ). (A27)

Then, we have

|〈φ|ζ 〉| � |α| × |〈ζ |ψ〉| − |β| × |〈ζ |ψ⊥〉| � γ η(γ ) −
√

1 − γ 2
√

1 − η2(γ ). (A28)

By some algebra, we see that the last line is greater than or equal to γ

2 . �
Then, the rest of the proof of Theorem 4 is as follows.
Rest of the proof of Theorem 4.

How to construct O
Lngr
row ,O

Lngr

col , and O
Lngr

ent .

Let us start from O
Lngr
row . For Lngr , whose sparsity is 2d + 1, rik is given as8

rik = J (J−1(i) + di,k ). (A29)

Here, di,k ∈ Rd is defined as

di,k =
⎧⎨⎩−ek if k = 1, . . . , d

0 if k = d + 1
ek−d−1 if k = d + 2, . . . , 2d + 1,

(A30)

where 0 is the d-dimensional zero vector. J : [ngr]d
0 → [Ngr]0 is the map in Eq. (6), which is implemented by some additions and

multiplications. J−1 is its inverse, which is implemented by a sequence of divisions shown in Algorithm 2. Therefore, we see

that we can implement O
Lngr
row using O(d ) arithmetic circuits.

O
Lngr

col is implemented similarly.

Next, let us consider the implementation of O
Lngr

ent . For K, K ′ ∈ [Ngr]0, we can perform the following operation:

|K〉 |K ′〉 |0〉⊗(4d+5)

→ |K〉 |K ′〉 |k〉bin |k′〉bin |0〉⊗(4d+3)

→ |K〉 |K ′〉 |k〉bin |k′〉bin

∣∣a0
(
xgr

k

)〉∣∣∣∣a1

(
xgr

k + h

2
e1

)〉∣∣∣∣a1

(
xgr

k − h

2
e1

)〉
· · ·
∣∣∣∣ad

(
xgr

k + h

2
ed

)〉∣∣∣∣ad

(
xgr

k − h

2
ed

)〉
⊗ |0〉⊗(2d+2)

→ |K〉 |K ′〉 |k〉bin |k′〉bin

∣∣a0
(
xgr

k

)〉∣∣∣∣a1

(
xgr

k + h

2
e1

)〉∣∣∣∣a1

(
xgr

k − h

2
e1

)〉
· · ·
∣∣∣∣ad

(
xgr

k + h

2
ed

)〉∣∣∣∣ad

(
xgr

k − h

2
ed

)〉
⊗ |1k′−k=0〉

∣∣1k′−k=e1

〉 ∣∣1k′−k=−e1

〉 · · · ∣∣1k′−k=ed

〉 ∣∣1k′−k=−ed

〉 |0〉

= |K〉 |K ′〉 |k〉bin |k′〉bin

∣∣a0
(
xgr

k

)〉∣∣∣∣a1

(
xgr

k + h

2
e1

)〉∣∣∣∣a1

(
xgr

k − h

2
e1

)〉
· · ·
∣∣∣∣ad

(
xgr

k + h

2
ed

)〉∣∣∣∣ad

(
xgr

k − h

2
ed

)〉

8Strictly speaking, this expression for rik holds for only i such that none of the entries of σ−1(i) is 0 or ngr − 1, and otherwise the expression
is slightly modified. However, such a handling is straightforward and thus we do not show the complete expression here for conciseness.
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⊗ (1k′−k �=0,±e1,...,±ed |0〉⊗(2d+1) |0〉 + 1k′−k=0 |1〉 |0〉⊗2d |0〉
+ 1k′−k=e1 |0〉 |1〉 |0〉 |0〉⊗(2d−2) |0〉 + 1k′−k=−e1 |0〉 |0〉 |1〉 |0〉⊗(2d−2) |0〉 + · · ·
+1k′−k=ed |0〉 |0〉⊗(2d−2) |1〉 |0〉 |0〉 + 1k′−k=−ed |0〉 |0〉⊗(2d−2) |0〉 |1〉 |0〉)

→ |K〉 |K ′〉 |k〉bin |k′〉bin

∣∣a0
(
xgr

k

)〉∣∣∣∣a1

(
xgr

k + h

2
e1

)〉∣∣∣∣a1

(
xgr

k − h

2
e1

)〉
· · ·
∣∣∣∣ad

(
xgr

k + h

2
ed

)〉∣∣∣∣ad

(
xgr

k − h

2
ed

)〉
⊗ (1k′−k �=0,±e1,...,±ed |0〉⊗(2d+1) |0〉 + 1k′−k=0 |1〉 |0〉⊗2d

∣∣(Lngr

)
K,K ′
〉

+ 1k′−k=e1 |0〉 |1〉 |0〉 |0〉⊗(2d−2)
∣∣(Lngr

)
K,K ′
〉+ 1k′−k=−e1 |0〉 |0〉 |1〉 |0〉⊗(2d−2)

∣∣(Lngr

)
K,K ′
〉+ · · ·

+ 1k′−k=ed |0〉 |0〉⊗(2d−2) |1〉 |0〉 ∣∣(Lngr

)
K,K ′
〉+ 1k′−k=−ed |0〉 |0〉⊗(2d−2) |0〉 |1〉 ∣∣(Lngr

)
K,K ′
〉)

= |K〉 |K ′〉 |k〉bin |k′〉bin

∣∣a0
(
xgr

k

)〉∣∣∣∣a1

(
xgr

k + h

2
e1

)〉∣∣∣∣a1

(
xgr

k − h

2
e1

)〉
· · ·
∣∣∣∣ad

(
xgr

k + h

2
ed

)〉∣∣∣∣ad

(
xgr

k − h

2
ed

)〉
⊗ ∣∣1k′−k=0

〉 ∣∣1k′−k=e1

〉 ∣∣1k′−k=−e1

〉 · · · ∣∣1k′−k=ed

〉 ∣∣1k′−k=−ed

〉 ∣∣(Lngr

)
K,K ′
〉

→ |K〉 |K ′〉 |0〉⊗(4d+5)
∣∣(Lngr

)
K,K ′
〉
. (A31)

Here, the transformation at the first arrow is done by the circuit for J−1, where k = J−1(K ) and k′ = J−1(K ′). At the second
arrow, we make O(d ) uses of Oa0 , . . . , Oad . At the third arrow, we use O(d ) arithmetic circuits, and at the fourth arrow we use
controlled versions of arithmetic circuits to compute the entries of Lngr with the values of a0, . . . , ad computed in the previous
step according to Eq. (9). The last arrow in Eq. (A31) is uncomputation of the first and second ones. Note that the circuit for the

operation in Eq. (A31) is nothing but O
Lngr

ent .

Lastly, let us count the number of the queries to Oa0 , . . . , Oad and arithmetic circuits in O
Lngr
row , O

Lngr

col , and O
Lngr

ent . In O
Lngr
row and

O
Lngr

col , we use O(d ) arithmetic circuits. In O
Lngr

ent , we make O(d ) uses of Oa0 , . . . , Oad and (controlled) arithmetic circuits.
Accuracy
Because of Theorem 1, for ngr in (32), λ1

ngr
is ε

2 -close to λ1. Besides, the output of EstEig(Lngr ,
ε
2 , δ) is a ε

2 -approximation of

λ1
ngr

. Therefore, the output of Algorithm 1 is an ε approximation of λ1.
Query complexity
The sparsity of Lngr is

s = O(d ). (A32)

Its max norm is bounded as

∥∥Lngr

∥∥
max � 2damax

h2
+ a0,max = O

(
damax

(U − L)2
× max

{
C1
L
ε

,
D1

L(U − L)
d
2

1 − η(γ )

}
+ a0,max

)
(A33)

for ngr in Eq. (32).
Let us evaluate the overlap between |v f̃1,ngr

〉 and |v1
ngr

〉. Because of Theorem 1,

∥∥v1
ngr

− v f1,ngr

∥∥
max � 1 − η(γ )

2(U − L)d/2
(A34)

holds for ngr in Eq. (32). Because of Lemma A 1, this leads to∣∣ 〈v1
ngr

∣∣v f1,ngr

〉 ∣∣ � η(γ ). (A35)

Then, because of Lemma A 2, combining this and Eq. (29) leads to

∣∣ 〈v1
ngr

∣∣v f̃1,ngr

〉 ∣∣ � γ

2
. (A36)

Let us incorporate the above observations into Corollary 1. By using Eqs. (A32) and (A33) in Eqs. (23) and (24) and replacing

γ with γ

2 , we obtain estimations of the numbers of queries to O
Lngr
row , O

Lngr

col , O
Lngr

ent , and O f̃1,ngr
in EstEig(Lngr ,

ε
2 , δ) in Algorithm 1,

and, noting that O
Lngr
row , O

Lngr

col , and O
Lngr

ent consist of O(d ) uses of Oa0 , . . . , Oad and arithmetic circuits, we get the query complexity
estimations in Eqs. (30) and (31). �
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