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Differences in gut microbiome
between autosomal dominant
polycystic kidney disease with and
without intracranial aneurysms

Tatsumaru Fukuda?, Masatoshi Takagaki**“, Junya Kaimori2, Daisuke Motooka?,
Shota Nakamura?, Shuhei Kawabata', Hajime Nakamura?, Tomohiko Ozaki?,
Ryota Nakagawa?, Takaki Matsumura?l, Kunimasa Teranishi?, Hiroki Yamazaki?,
Yoshitaka Isaka? & Haruhiko Kishima?

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by cyst
formation in the kidneys, and is associated with an elevated risk of intracranial aneurysms (lAs).
Although a family history is a recognized risk factor for IAs in patients with ADPKD, emerging research
suggests that gut microbiome composition may influence 1A development. We investigated the
relationship between the gut microbiome and the development of 1A in patients with ADPKD. We
recruited patients with ADPKD with (IA group) and without (non-IA group) IA from Osaka University
between October 2021 and December 2023. Fecal samples were analyzed using 16S rRNA sequencing.
Data were processed using the QIIME 2 pipeline to determine microbial diversity and composition.

We included 60 patients: 26 in the 1A and 34 in the non-1A groups. There were significant differences

in microbial beta diversity between the groups. The IA group had higher abundances of Eubacterium
siraeum group, Oscillibacter, Fournierella, Negativibacillus, Colidextribacter, and Adlercreutzia. The
non-lA group had higher abundances of Bifidobacterium, Megamonas, Acidaminococcus, Megasphaera,
and Merdibacter. There was a significant association between the gut microbiome composition and the
presence of IAs in patients with ADPKD. Specific bacterial taxa were differentially abundant between
patients with ADPKD with and without |As, suggesting a potential role of the gut microbiome in the
pathogenesis of IAs in this genetically predisposed population.

Keywords Autosomal dominant polycystic kidney, Intracranial aneurysm, Gut microbiome

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder that causes cystic changes in the
kidneys and is associated with a high risk of intracranial aneurysms (IAs). Patients with ADPKD have a four
times higher prevalence of IAs than the general population, with rates ranging from 9 to 12%"2. Additionally,
subarachnoid hemorrhage (SAH) in this population occurs at median age of 43 years, approximately ten years
earlier than that in the general population®. A family history of IAs is a widely known risk factor for ADPKD
aneurysms, and some reports have suggested an association with total kidney volume (TKV) and kidney
unction*-°. However, no association with environmental factors has been identified, and there is no means of
preventing the development of IAs in this population.

Recently, several reports have investigated the relationship between the gut microbiome and the occurrence
of 1As or SAH’~!3. The gut microbiome is a potential intervening environmental factor that could lead to the
establishment of preventive treatments for the development and rupture of IAs. However, there have been no
reports on the association between the gut microbiome and IAs specifically in patients with ADPKD.

We hypothesized that the gut microbiome may influence the development of IAs even in patients with ADPKD,
who are genetically predisposed to develop IAs. In addition, we also hypothesized that studies in populations
at high risk of developing IAs are best suited to identify the types of gut microbiome that are associated with
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IAs, which could lead to the discovery of future therapies, including those in the general population. Therefore,
we aimed to determine the impact of the gut microbiome on the development of IAs in patients with ADPKD.

Results

Patients’ characteristics

A total of 60 patients were recruited between October 2021 and December 2023. Consequently, 26 patients
in the IA group and 34 in the non-IA group were included in this study (Fig. 1). Three patients, two in the
IA group and one in the non-IA group, were from the same family. The characteristics of the patients and
aneurysms are summarized in Table 1 and Supplementary Table S1. Patient characteristics, including age, sex,
dyslipidemia, diabetes status, renal function (estimated glomerular filtration rate, blood urea nitrogen, chronic
kidney disease stage, and TKV), ischemic heart disease, smoking, alcohol consumption, body mass index, and
modified Rankin Scale (mRS), did not differ between patients with IAs and those without IAs. However, patients
with a family history of IAs were significantly more common in the IA group (p=0.0032), as were patients with
hypertension (HT, P=0.0044). The 26 patients in the IA group had 39 aneurysms. The average aneurysm size
was 3.82 mm, and the most common location was the middle cerebral artery. Four patients had a history of SAH.
Of the 39 aneurysms, eight underwent clipping, four underwent coil embolization, and the remaining 27 were
untreated and followed up. Regarding medication history, the use of calcium-channel blockers (P=0.0299) and
spironolactone (P=0.0076) was significantly higher in the IA group (Supplementary Table S2).

Differences in gut microbiome between the IA and non-IA groups

The datasets for the IA and non-IA groups comprised 4882 features that classified 266 genera, 91 families, 48
orders, 23 classes, and 12 phyla. No difference was observed in alpha diversity between the IA and non-IA
groups, including the observed species, Shannon index, evenness, and phylogenetic diversity of the microbial
community (Fig. 2A). However, a significant difference in beta diversity was observed between the weighted
(p=0.033) and unweighted UniFrac distances (P=0.012) (Fig. 2B).

The dominant phyla in all the patients were Firmicutes and Bacteroidetes (Table 2, Fig. 3A,B). Although
significant differences in the relative abundance of Bacteroidota and Actinobacteriota were observed at the
phylum level in univariate analysis, these differences did not remain significant in multivariate analysis or after
correction for false discovery rate.

Patients with ADPKD by medical record (2000~)

n=263

Examined with MR imaging (2017~)
n=96

Consent obtained (2021.10~2023.12)
n=65

Sample collection failure
n=5

Included in analysis
n=60

IA group (UIA, post-SAH) non-IA group
n=26(22, 4) n=34

Fig. 1. Flow diagram for the screening of patients with ADPKD. IA; intracranial aneurysm, UIA; unruptured
intracranial aneurysm, ADPKD; autosomal dominant polycystic kidney disease.
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1A non-1A

Characteristics n=26 n=34 P-value
Patient

Age 756.9+12.6 54.0+12.3 0.37
Sex, female 19 (73.1) 19 (55.9) 0.17
Family history of aneurysm | 14 (53.9) 6(17.7) 0.0032*
HT 26 (100.0) 25(73.5) 0.0044*
DL 7 (26.9) 4(11.8) 0.13
DM 2(7.7) 2(5.9) 0.78
eGFR 41.9+5.3 49.9+4.6 0.26
BUN, mL/min/1.73 m? 28.8+3.8 22.9+25 0.19
CKD 3-5 15(57.7) 15 (44.1) 0.30
TKV, mL 1764.4£309.9 | 1524.1+251.6 | 0.36
IHD 0(0.0) 0(0.0) NA
Smoking 8(30.8) 9(26.5) 0.71
Drinking alcohol 14 (53.9) 22 (64.7) 0.39
BMI 22.4+0.49 22.4+0.69 0.64
mRS 0.19+0.16 0.12+0.07 091

Table 1. Patients’ characteristics. *Statistically significant. Bold text indicates statistical significance.
fContinuous variables are presented as mean + SD, and categorical variables are presented as n (%). *IA,
intracranial aneurysm; HT, hypertension; DL, dyslipidemia; DM, diabetes mellitus; eGFR, estimated
glomerular filtration rate; BUN, blood urea nitrogen; CKD, chronic kidney disease; TKV, total kidney volume;
IHD, ischemic heart disease; BMI, body mass index; mRS, modified Rankin Scale; SD, standard deviation.

Via linear discriminant analysis (LDA) and effect size (LEfSe), we identified two bacterial phyla, three classes,
five orders, five families, and 16 genera that had significantly different relative abundances between the IA and
non-IA groups (Fig. 4). Among these, the bacteria that could be classified at the genus level were Eubacterium
siraeum group, Oscillibacter, Fournierella, Negativibacillus, Colidextribacter, and Adlercreutzia in the IA group,
and Bifidobacterium, Megamonas, Acidaminococcus, Megasphaera, and Merdibacter in the non-IA group.

Discussion

In this study, we compared the gut microbiome of patients with ADPKD classified into the IA group and non-
IA group and found significant differences at the genus level. The IA group had higher levels of E. siraeum,
Oscillibacter, Fournierella, Negativibacillus, Colidextribacter, and Adlercreutzia, whereas the non-IA group
had higher levels of Bifidobacterium, Megamonas, Acidaminococcus, Megasphaera, Merdibacter Megasphaera,
Merdibacter, and Bifidobacterium. There are no reports showing the relationship between IAs and the gut
microbiome in patients with ADPKD; thus, this study is the first.

Only one study has examined the gut microbiome of patients with ADPKD!“; however, its association with IAs
remains uninvestigated. In our study, the most common bacteria in the IA group were E. siraeum, Oscillibacter,
Fournierella, Negativibacillus, Colidextribacter, and Adlercreutzia. Of these, Fournierella and Adlercreutzia have
been reported to be associated with IAs in the general population!®!2. Fournierella has been reported to be
more common in symptomatic unruptured IAs presenting with oculomotor nerve palsy or headache!’, and
Adlercreutzia is positively associated with the risk of unruptured IAs'2. However, there are no reports suggesting
an association between E. siraeum, Oscillibacter, Negativibacillus, and Colidextribacter and IAs. These bacteria
may also be involved in the development of IAs. Other studies that focused on IAs in non-ADPKD patients
reported that Campylobacter is associated with rupture of IAs” or that Hungatella hathewayi is associated with
the development of IAs®, but these microorganisms were not identified in our study.

Bifidobacteria, Megamonas, Acidaminococcus, Megasphaera, and Merdibacter were commonly found in the
non-IA group. Bifidobacterium is a major component of the gut microbiome in humans, which exhibits anti-
inflammatory activity and plays a role in immune regulation'®. In vascular lesions, Bifidobacterium is significantly
less abundant in patients with abdominal aortic aneurysms'¢. The other bacteria common to the non-IA group
belonged to the phylum Firmicutes. The phylum Firmicutes has also been reported to possess anti-inflammatory
properties’”. In summary, many bacteria reported to be associated with IAs in the general population were
identified in the IA group. However, some bacteria were newly identified. In the non-IA group of patients with
ADPKD, many bacteria were reported to be involved in anti-inflammatory processes. In ADPKD, a reduction in
anti-inflammatory bacteria has been shown to be involved in the formation of IAs, which may also be applicable
to aneurysms in the general population.

Increased expression of NFkB in vascular endothelial cells from ADPKD patients has been reported to be
significantly higher than that in those from non-ADPKD patients, suggesting the involvement of inflammation in
vascular lesions!®. Furthermore, studies have indicated a link among ADPKD, immunity, and inflammation'>%.
The gut microbiome has been shown to regulate systemic inflammation?'-2%, and its relationship with NF«xB
has been reported?*?. In this study, some bacteria detected in high abundance in the IA group may alter
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Fig. 2. Comparison of microbial diversity analysis between IA and non-IA groups. (A) No significant
differences were found in alpha diversity based on the observed Shannon, evenness, and faith indices (p >0.05).
(B) Principal coordinate analysis illustrating the grouping patterns of IA and non-IA groups based on weighted
and unweighted UniFrac distances. Red points; IA group, and green points; non-IA group. There were
significant differences in beta diversity between the weighted (p=0.033) and unweighted (p =0.012) UniFrac

distances.
Relative abundance | *IA non-IA P-value
Firmicutes, % 752.62+2.18 55.98+1.84 0.21
Bacteroidota, % 38.14+1.76 3331+1.71 0.035*
Actionobacteriota, % | 4.27+0.85 6.90+0.93 0.037*
Proteobacteria, % 3.55+0.97 2.79+0.46 0.56
Fusobacteriota, % 0.94+0.51 0.68+0.28 0.69
Desulfobacteriota, % | 0.39+0.12 0.29+0.044 0.42
Verrucomicrobiota, % | 0.058+0.021 0.039+0.028 0.25
Cyanobacteria, % 0.011+0.0082 | 0.0040+0.0026 | 0.70
Spirochaetota, % 0.0061+0.0044 | 0.0032+0.0028 | 0.77
Synergistota, % 0.0078£0.0040 | 0.0017+0.0017 | 0.090
Campylobacterota, % | 0.0027+0.0027 | 0.0013+0.0013 | 0.85
Patescibacteria, % 0.0027+0.0012 | 0.0015+0.00073 | 0.44

Table 2. Relative abundance at the phylum level. *Statistically significant. Bold text indicates statistical
significance. fContinuous variables are shown as mean + SD. *IA, intracranial aneurysm; SD, standard

deviation.
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Fig. 3. Comparison of microbiome composition at the phylum level between IA and non-IA groups. (A, B)
Distribution of the relative abundance of bacteria at the phylum level. The relative abundance of Firmicutes,
Bacteroidota and Actinobacteriota did not differ significantly between the groups.

inflammation in the blood vessels of ADPKD patients; it is not clear whether these bacteria are solely involved
in inflammation. Additionally, many bacterial species with anti-inflammatory properties were detected in the
non-IA group, suggesting that probiotics promoting the growth of these bacteria may reduce the incidence of IA
in patients with ADPKD. This could also lead to a reduction in the incidence of IAs in the general population.
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Fig. 4. Discriminative taxa between IA and non-IA groups. (A) Discriminative taxa between the IA and
non-IA groups were determined using linear discriminant analysis effect size (LEfSe). LEfSe revealed that two
bacterial phyla, classes, orders, families, and genera were significantly different between the IA and non-IA
groups. The green bar represents the bacteria that were more abundant in the non-IA group, and the red bar
represents the bacteria that were more abundant in the IA group. (B) The cladograms report the taxa showing
different abundance values according to LEfSe.

ADPKD is caused by mutations in the PKDI (16p13.3) and PKD2 (4q21) genes, and lesions of the vascular
system have been attributed to decreased protein levels of polycystin 1 or 2 in vascular endothelial cells and
vascular smooth muscle cells>?. The most well-known association between the incidence of IAs and ADPKD is
a family history of IAs!. Other risk factors for [As in patients with ADPKD include female sex and HT, as well
as in the general population*®. More recently, worsening renal function and increased TKV were associated
with the presence of As*S, suggesting that ADPKD disease status may be related to the development of 1As.
Although our study had a small sample size, family history of IAs and HT were correlated with the incidence of
IA, but renal function and TKV were not (Table 1).

Medications administered at the time patients’ stool samples were collected were also investigated
(Supplementary Table 2). This is because drugs other than antibiotics are known to alter the composition of
the gut microbiome?”. Calcium-channel blockers and spironolactone were more frequently administered in
the IA group, possibly because of the significantly higher number of patients with HT in this IA. However,
there are no reports of calcium-channel blockers and spironolactone altering the composition of the gut
microbiome, and no significant differences were observed for other drugs that affect the gut microbiome, as
previously described?’. In addition, tolvaptan, the only approved medication for slowing the progression of
rapidly progressive ADPKD, showed no significant difference between the groups in this study (Supplementary
Table S2). However, this mechanism of action involves inhibiting the abnormal elevation of intracellular cyclic
adenosine monophosphate levels in cystic epithelial cells?, which may contribute to inflammation suppression
and could potentially influence the incidence of intracranial aneurysms in the future.

This study has certain limitations. First, the IA group included a mix of patients with unruptured aneurysms,
ruptured aneurysms except those in the acute phase, and patients who underwent various therapeutic
interventions. Thus, the differences in the gut microbiome revealed in this study are clearly related to the presence
of TAs; however, a relationship with IA rupture cannot be demonstrated. Second, we were unable to assess the
dietary habits that are thought to have the greatest impact on the gut microbiome. Third, we did not examine
metabolites in this study, nor did we analyze bacteria at the species level. Further studies using metagenomic
analysis or other methods are warranted. Additionally, no genetic analysis was performed in this study. As there
was a significant difference in the family history of IAs between the IA and non-IA groups, the possibility that
differences in genetic background may have influenced the results cannot be ruled out. Genetic variants are
associated with IA formation®. However, the composition of the gut microbiome is similar in families®, and
factors thought to be genetic may actually be influenced by the gut microbiome.
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In conclusion, even in patients with ADPKD, which is thought to have a strong genetic component, the gut
microbiome—an environmental factor—is related to the presence of IAs. This result may also be applicable
to aneurysms in the general population. Further research may allow therapeutic intervention for the gut
microbiome to reduce the incidence of IAs in patients with ADPKD.

Methods

Standard protocol approvals, registrations, and patient consent

The investigators obtained approval from the Ethical Review Board of Osaka University Hospital (no. 22310)
before initiating the case-control study. Each patient was fully informed of the study and provided written
informed consent prior to participation. All methods were performed in accordance with the relevant guidelines
and regulations.

Study population
Participants with IA (IA group) and those without IA (non-IA group) were prospectively recruited between
October 2021 and December 2023 from Osaka University.

In principle, all patients with ADPKD at our institution underwent head MRI examination, and the inclusion
criteria for each group were as follows: patients meeting the diagnostic criteria for ADPKD?!-3* with or without an
IA confirmed by head magnetic resonance imaging (MRI) in 2017 or later. We excluded patients aged < 20 years,
those with any other associated genetic predisposition known to contribute to IA formation (e.g., Ehlers-Danlos
syndrome Type 4), those who developed SAH within 1 year, or those who used antibiotics within 1 month prior
to fecal sampling. The IA group included patients with unruptured IAs and a history of SAH. The non-IA group
included patients who underwent head MRI in 2017 or later and there was no detection of an IA.

Fecal sample collection
Fecal samples were collected at home and packed into frozen gel packs in insulated containers. Within 24 h, the
sample collection kits were returned and stored at -80 °C until processing.

Bacterial DNA extraction and 16S rRNA sequencing

DNA was extracted from the fecal samples using an automated DNA extraction machine (GENE PREP STAR
PI-480, Kurabo Industries, Osaka, Japan) following the manufacturer’s protocol. The V1-V2 region of the 16S
rRNA gene was amplified using the forward primer (16S_27Fmod: TCG TCG GCA GCG TCA GAT GTG TAT
AAG AGA CAG AGR GTT TGA TYM TGG CTC AG) and the reverse primer (16S_338R: GTC TCG TGG
GCT CGG AGA TGT GTA TAA GAG ACA GTG CTG CCT CCC GTA GGA GT) using the KAPA HiFi Hot
Start Ready Mix (Kapa Biosystems, Wilmington, MA)*%.

To sequence the 16S amplicons using the Illumina MiSeq platform (Illumina, San Diego, CA), dual-index
adapters were attached using the Nextera XT Index kit (Illumina). Libraries were prepared according to the
Mumina 16S library preparation protocol. Libraries were sequenced using the MiSeq Reagent Kit v2 (500 cycles)
and 250 bp paired-end reads.

Microbiome bioinformatics

The generated FASTQ files were imported, demultiplexed, and processed using the Quantitative Insights
into Microbial Ecology 2 (QIIME 2) pipeline®. First, partial 16S rRNA bacterial sequences were qualitatively
trimmed, and the reads were truncated into operational taxonomic units (OTUs) using the software package
Divisive Amplicon Denoising Algorithm 2 in QIIME2 v2023.2. Taxonomy was assigned based on the Silva
138 database release at the 99% OTU level. A phylogenetic tree was created to generate phylogenetic diversity
measures using the q2-phylogeny plugin in QIIME2.

To detect the alpha diversity, including the observed species, Shannon index, evenness, and phylogenetic
diversity between groups, we processed the output files generated in the previous steps using GraphPad Prism
version 10.2.0 (GraphPad Software, San Diego, CA). Beta diversity was calculated using a phylogenetic tree
in weighted and unweighted UniFrac software. Permutational multivariate analysis of variance was used in
GraphPad Prism to assess the statistical differences in beta diversity metrics between groups.

LEfSe was performed to identify significantly different taxa between groups®. The LDA score was then used
to estimate the effect size of each differentially abundant feature. The threshold of the LDA score was defined
as+2.0 when comparing the relative taxa abundances between the two groups.

Statistical analysis

The distribution of each continuous variable was assessed using the Shapiro-Wilk W test. Normally distributed
parametric data were analyzed using unpaired Student’s t-tests, and the non-normally distributed nonparametric
data were analyzed using the Wilcoxon test. Categorical variables were analyzed using the chi-squared test or
Fisher’s exact test as appropriate. False discovery rate correction using the Benjamin-Hochberg procedure
was performed when multiple comparisons were made to evaluate differences between 2 groups. Multivariate
analysis for relative abundance at the phylum level was performed by logistic regression analysis. Values of
P <0.05 or false discovery rate q<0.05 were considered significant. Statistical analyses were performed using
JMP software, version 17.1.0 (SAS Institute, Cary, NC).

Data availability
The sequencing data have been deposited in the DDB]J BioProject database under accession number PR-
JDB20223.
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