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Ultrasound microscopy is the only technique that has the ability to monitor live-cell morphology over
a long period of time without causing any damage to the cells, but its longer wavelength prevents one
from obtaining high-resolution cell images. Here, we propose a deep-learning (DL) method for generating
high-resolution acoustic images. By preparing datasets consisting of many pairs of acoustic and optical-
microscope images for the same cells and training them, a high-resolution image comparable to optical
microscopy is generated from an acoustic image. Importantly, the most accurate images are generated when
three-layer (RGB) images containing not only high-frequency (approximately 180 MHz) images but also
lower-frequency (approximately 100 MHz) images are used as the input images, which is attributed to
enhanced acoustic absorption in the nucleus because the nucleus resonates in this low-frequency band. The
DL scheme with the tri-frequency image input is applied to human mesenchymal stem cells and human
induced pluripotent stem cells, and the high image-generation capability is demonstrated. As a result, high-
resolution acoustic microscopy images are obtained for the same cells for over 24 h, without the typical cell
damage encountered using optical imaging.

DOI: 10.1103/PhysRevX.15.021015 Subject Areas: Acoustics, Biological Physics,
Computational Physics

I. INTRODUCTION

Cell imaging is crucial for assessing morphology, micro-
structure, and cellular status, and various techniques have
been accordingly used, including optical microscopy [1],
atomic-force microscopy [2], and electron microscopy [3].
Especially, live-cell imaging, which dynamically observes
changes in the morphology and internal structure of live
cells, has been one of the challenging tasks in under-
standing the biological complexity of cells. For this
purpose, optical-microscopic techniques such as wide-field
microscopy [4], light-sheet microscopy [5], and super-
resolution microscopy [6] have been adopted, but they
require long-time and high-intensity light exposure to
obtain high-resolution images with a sufficient signal-to-
noise ratio [1,7–9]. However, light irradiation is known to
damage cells, because intercellular organic molecules such
as flavins absorb visible light [10] and react with oxygen.
This process produces reactive oxygen species, including

radicals and hydrogen peroxide, which oxide proteins and
DNA, resulting in degradation of cell functions [7,11–15].
Much research appeared to reduce the photoinvasiveness to
cells, including optimization of light irradiation [12,16,17],
use of highly sensitive CCD camera for detecting weak
fluorescent signals [18], and addition of cell-protective
reagents [19].
In recent years, deep-learning (DL) achieves dramatic

improvements in live-cell imaging [20,21]. Noise removal
[22,23], restoration [24–26], and label-free imaging [27,28]
using DL realized high-resolution images with short
exposure times. These efforts have reduced some of the
damage to cells caused by light irradiation, but, as long as
light irradiation is involved, the fundamental issue remains
unresolved. As a result, continuous (or high-frame-rate)
and high-resolution observation of the same cell for
approximately 24 h or longer has remained difficult.
On the other hand, scanning acoustic microscopy (SAM)

is essentially capable of solving the problems mentioned
above, because it creates images using acoustic properties
without light irradiation, labeling, and mechanical contact
to the cell. However, its spatial resolution is considerably
poorer than that of optical microscopy because of longer
ultrasound wavelength. In addition, because it has been
difficult to incorporate the specialized equipment of SAM
within a stable culture environment, SAM has been limited
to observation of cells outside the culture environment.
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Therefore, SAM has been used for a short-time meas-
urement of mechanical properties and three-dimensional
shapes of cells [29–31] and not for a long-time monitor-
ing of changes in the morphology and microstructure of
cells in culture.
To overcome these problems and demonstrate the

effectiveness of SAM for live-cell imaging, we propose
a DL method to generate a high-resolution image from an
acoustic image. Various studies have been proposed to
improve the resolution of the acoustic image with DL
[32–34], but no research has achieved the creation of cell
images with resolution comparable to those of optical
microscopy. We here propose using a three-layer (RGB)
acoustic image as an input, which is composed of the
spectroscopic acoustic images at three different frequen-
cies. After the SAM measurement, we obtain the corre-
sponding optical image for the same cell as the answer
image. We, thus, prepare many input-output pairs (dataset)
and train them with our original convolutional neural
network (CNN). Importantly, we find that an RGB image
composed not only of images of higher frequencies
(approximately 180 MHz), but also of lower frequencies
(approximately 100 MHz) can most accurately produce the
cell structure including the nucleus, because the nucleus
is acoustically stained near 100 MHz due to the nucleus
resonance [35]. By investigating the combinations of the
frequency images to be used in the RGB image, we identify
ideal frequency combinations to generate high-resolution
images, focusing on the nucleus and cell shape. We adopt
our DL method to the long-time monitoring of human
mesenchymal stem cells (MSCs) and human induced pluri-
potent stem cells (iPSCs) without interrupting cell culturing.

II. EXPERIMENTAL SECTION

A. Scanning-acoustic-microscopy system
for live-cell imaging

The details of our SAM system are given in the previous
paper [35], and we briefly present it. The cell-culture
environment is realized in an acrylic container, where the gas
is filled with air containing 5%CO2, and the temperature and
humidity are maintained at 37 °C and 100%, respectively.
A cell-culture dish is placed in the container to culture cells
for longer than 24 h. There is a hole on the top surface of
the container, through which the acoustic lens of the SAM
comes into contact with the culture medium in the culture
dish, and the focused ultrasound is transmitted through the
culture medium to the cell. The gap between the acoustic
lens and the hole is sealed by a flexible rubber film to prevent
contamination from the outside environment.
The longitudinal-wave pulse with a center frequency of

180 MHz is launched from the acoustic lens, focused and
propagated inside the cell, reflected on the culture surface,
and then detected by the same acoustic lens. By performing
the fast-Fourier-transformation procedure for the echo from

the culture surface, we obtain the amplitude spectrum as
shown in the left figure in Fig. 1(a). (The center frequency
of the detected echoes decrease from 180 to 100 MHz. This
is because high-frequency components of the ultrasound
are attenuated in the culture medium.) Acquiring the
spectra by scanning the cell with the acoustic probe, we
construct eight-bit images of specific frequencies (spectro-
scopic images) as shown in the middle figure in Fig. 1(a).

B. Cell preparation

MSCs derived from umbilical cord are used in this study,
which were approved by the ethical committee of Hyogo
Medical University (202308-020). The cell-culture method
and the reagents used are the same as in the previous
study [35].
In preparing the images for the dataset, the cells are fixed

by applying a 4% paraformaldehyde solution (Fujifilm
Wako Pure Chemical Corp., Japan) when the confluence
reaches 70%, incubated for 10 min at room temperature,
and rinsed with phosphate buffered saline solution.
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FIG. 1. (a) Construction of the spectroscopic acoustic images
for preparing the datasets. (b) Representative optical and the
spectroscopic acoustic images of MSCs and iPSCs. Yellow
broken lines in MSCs images indicate nuclei. (c) The CNN
scheme developed for generating MSCs images.
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The optical-microscopy observation is then performed,
followed by the acoustic spectroscopic measurement for
obtaining optical and acoustical images for the same cells.
iPSCs (1383D2 cell line) are from the Center for iPS

Cell Research and Application at Kyoto University [36].
A 35-mm-diameter culture dish (ibidi GmbH, Germany)
coated with laminin-511 E8 fragments (Nippi, Inc.,
Japan) is used, in which the single cells are seeded as
2.5 × 103 cells=cm2 with 10 μM Rho-associated protein
kinase inhibitor (Fujifilm Wako Pure Chemical Corp.,
Japan). A 1% antibiotic-antimycotic agent (ThermoFisher
Scientific, Japan) is added after 72 h from the cell seeding.
In preparing the dataset images, the cells are fixed by the
same method described above, followed by the optical and
then SAM observations.

C. Optical-microscopic measurement

After fixing the cells, the optical-microscopy images
are obtained by using a phase contrast microscope with a
10× objective lens.
Figure 1(b) shows examples of the acoustic spectro-

scopic images for MSCs and iPSCs at three different
frequencies and their corresponding optical-microscopy
images.

III. DEEP-LEARNING SCHEME

We prepare 109 824 sets of acoustic spectroscopic
images and corresponding optical-microscopic images
for MSCs and 55 396 sets for iPSCs. Image sizes are
512 pixels square for MSCs and 224 pixels square for
iPSCs. As the input acoustic image, we use the mono-
chrome image at a specific frequency and the RGB image
composed of acoustic images of three frequencies and
examine the quality of the generated images by changing
the frequency in the monochrome image and the combi-
nation of the three frequencies in the RGB image. These
datasets are trained using the CNN shown in Fig. 1(c) by
Deep Learning Toolbox of MATLAB (version R2024a).
It is based on U-Net [37], but we increase the number of
the convolution-ReLU (rectified linear unit) sequence
from two to four in both the contracting and expansive
pathways. In addition, we use a deeper network. These
modification considerably improves the quality of the
generated images.
This network is trained using the adaptive-moment-

estimation (Adam) optimizer. More than 95% of the dataset
is used for training and the remainder for validation. Since a
variety of input acoustic images are examined, the corre-
sponding dataset for each is prepared and independently
trained. The normalized root-mean-squared error for each
pixel (0–1) after training is about 0.05 and 0.15 for MSCs
and iPSCs, respectively. The training procedure takes
nearly three days in the case of our desktop PC [CPU,
Intel Core i9-14900K (24 cores, 3.2 GHz, 2.4 GHz); RAM,

Crucial DDR5 48 GB × 2 (3200 MHz); GPU, Nvidia
Geforce RTX 4090 (RAM 24 GB)].

IV. RESULTS AND DISCUSSION

A. Generation of MSC image

Figure 2 compares output (generated) images from
various spectroscopic acoustic images (inputs) that are
not included in the dataset for training and validation.
(Other examples are shown in Supplemental Fig. S1 [38].)

(a1)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

(f1) (f2) (f3)

(a2)

Optical image

Input images Output images Comparison

nuclei

FIG. 2. The optical (answer) image, spectroscopic acoustic
images as inputs (left line), output (generated) images (middle
line), and comparison images from the answer image (right line)
of MSCs. The yellow broken line shows the cell shape of the
optical image (a2), and red arrows indicate nuclei in each image.
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The resolution of the generated images is greatly improved
compared to that of the original acoustic images, and it is
comparable to that of the optical image, demonstrating that
the DL scheme developed in this study is highly effective.
The high-frequency (180 MHz) monochrome image is
able to reproduce the cell’s contour shape [Fig. 2(d2)] as
expected owing to the shorter wavelength. However, it
often fails to reproduce the nucleus as shown in Fig. 2(d3)
and Supplemental Fig. S1(a) [38]. On the other hand,
lower-frequency (< ∼100 MHz) acoustic images have
superior ability to reproduce the cell nucleus [Figs. 2(b2)
and 2(b3) and Supplemental Fig. S1 [38]].
We attribute this to the mechanical resonance of the

nucleus [35]. The optical-microscopy observation indicates
that the diameter of the nucleus of MSC is about 20 μm
[Supplemental Fig. S2(a) [38] ], which yields the resonance
frequency of the breathing mode to be 77 MHz assuming
the longitudinal-wave and shear-wave velocities of the
nucleus to be 1550 and 80 m=s, respectively [39].
Although the nucleus diameter evaluated from the 2D
observation is expected to be larger than the effective 3D
diameter for the cells on the culture dish, suggesting a
higher resonant frequency, the resonant vibration of the
nucleus should be accompanied by a greater dissipation of
acoustic energy in the liquid, which lowers the resonance
frequency and greatly increases the peak width. Thus,
small frequency deviations from the resonance can be
considered equivalent to the resonant state due to the
broadness of the peak width. Actually, the absorption of
the acoustic energy by nucleus at 80 MHz can be clearly
confirmed in Fig. 2(b1) and Supplemental Fig. S1 [38].
Furthermore, this suggests that the nucleus fails to absorb
the acoustic energy at this low-frequency band when the
nucleus membrane is disassembled. Figure 3 supports this
view: It shows two cells that happen to be observed during
cell division. They are considered to be in the state
when the nuclear membrane is temporarily disassembled
during the early to middle stage of cell division. At higher
frequencies, the presence of materials constituting the
nucleus clearly appears. However, at 80 MHz, there is
almost no acoustic absorption, because the nucleus cannot
resonate any more without its membrane, and its wave-
length is too long to sense them.
These findings given by the monochrome-image inputs

inspire the strategy of involving higher and lower frequen-
cies in the input acoustic image. We, therefore, construct

the three-layer (RGB) input images consisting of various
frequency images and trained them [Fig. 1(a)]. As a result,
it is found that the RGB image composed of 80, 110, and
180 MHz frequency images can accurately generate both
the contour shape and nucleus as shown in Fig. 2 and
Supplemental Fig. S1 [38] for a variety of cell morphol-
ogies. Figure 4 shows intersection over union (IoU) values
for cell shape and nucleus of MSCs between the generated
and optical (answer) images. IoU is a metric to evaluate the
accuracy of the predicted image, and it is defined as the
ratio of the overlapping area between the area of the target
in the generated image and that in the ground-truth image
(i.e., optical image) to the area of their union obtained by
summing their areas and then subtracting the overlapping
area. It takes from 0 to 1, and a higher IoU value indicates a
better prediction.
As shown in Fig. 4(a), the IoU for the cell shape is about

0.6, except for the 80-MHz monochrome-image input,
which deteriorates it to approximately 0.4 due to the longer
wavelength. Comparison of the IoU values for the same
cells reveals that the IoU values of the RGB acoustic inputs
are significantly higher than those of the monochrome
frequency inputs, especially for the RGB input of 80, 110,
and 180 MHz frequency image. Furthermore, this trend
becomes more remarkable in the IoU for the nucleus
generation as shown in Fig. 4(b). Thus, using this RGB
acoustic image, it is possible to construct high-resolution
live-cell images without damaging the cells. Supplemental
Movie S1 [38] demonstrates this. The SAM is used to
obtain the acoustic image for 24 h with the system
described in Sec. II A. The left movie in Movie S1 [38]
consists of the standard acoustic images at the highest echo

Optical image
Acoustic images

FIG. 3. Optical and spectroscopic acoustic images for MSCs in
the early to middle state of cell division.

(a) (b)

FIG. 4. IoU values for (a) cell shape and (b) nucleus region for
MSCs for various acoustic image inputs (gray bars), which are
calculated from the pairs of the generated and the ground-truth
(optical) images from 30 randomly selected pairs. The error bars
indicate the standard deviation. The black bars show the differ-
ence in the IoU values with respect to that for the 80=110=
180 MHz input for the same images (ΔIoU ¼ IoU−
IoU80=110=180 MHz). The p values for the paired data are calculated
with the one-side t test. (*, p < 0.05; ***, p < 0.001.).
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amplitude, and the right movie is generated by the DL
method using the 80=110=180 MHz RGB input. The latter
shows more clearly the filopodia at the edge of the cell that
extends as the cells migrate and the movement of the
nucleus within the cell, indicating a significant improve-
ment in resolution compared to the original movie.

B. Generation of iPSC colony image

It is more challenging to generate high-quality images
for iPSCs in culture, because they gather together to form a
colony, within which proliferation and migration of cells
proceed [40–43], so that the cells are often overcrowded
and not easily distinguished even by an optical microscopy.
For iPSCs, it is more important to evaluate the properties of
a colony than to reproduce the position of each individual
cell in the colony, and accurate evaluation of the total
number of cells and cell density in the colony is required.
Therefore, we focus on predicting the number of cells in the
colony and the colony size.
Figure 5 compares the optical image and generated

images with various acoustic inputs for a part of iPSC
colony. Unlike for the MSCs case, little contrast of cells
within colony is obtained at the 80 MHz ultrasound as
shown in Fig. 5(b2). This may be attributed to the fact that
nuclei of iPSCs are smaller than those of MSCs as seen in
Supplemental Fig. S2 [38]. Using the nucleus diameter
of iPSCs of about 14 μm obtained from Supplemental
Fig. S2(b) [38], the resonance frequency of the nucleus is
expected to exceed 100 MHz. Therefore, we use spectro-
scopic acoustic images of frequencies higher than 100MHz
for constructing the RGB inputs. After examining various
frequency combinations, we find that the RGB acoustic
images composed at frequencies of 100, 150, and 180 MHz
yield favorable results as shown in Fig. 5(d) and
Supplemental Fig. S3 [38], allowing estimation of the
number of cells in the colony as shown in Fig. 5(d3).
Supplemental Movie S2 [38] compares the standard

acoustic images and those generated by the DL method
using the RGB input for iPSC colonies. The generated
movie again much more clearly shows changes of cell
behavior inside the colonies, and we count the number of
regions within each colony that appear to be cells. Figure 6
shows evolutions of the number of cells, colony area, and
cell-number density for three colonies evaluated from
the generated images in Supplemental Movie S2 [38].

Optical image

Input images Output images

(a)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(d3)

FIG. 5. The optical (answer) image (top), spectroscopic acous-
tic images as inputs (left line), and output (generated) images
(right line) for iPSC colony. Red lines in (d3) indicate individual
cells in the generated image.

(a)

Colony 1
Colony 2
Colony 3

Colony 1
Colony 2
Colony 3

Colony 1
Colony 2
Colony 3

(b) (c)

FIG. 6. Changes in (a) cell number in each colony, (b) colony
area, and (c) cell-number density evaluated by the generated
images (right movie in Supplemental Movie S2 [38]). Colonies 1,
2, and 3 denote top-right, left, and bottom-right colonies,
respectively, in Movie S2.
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Because both the number of cells and the area of colony
increase with time, the number density of cells remains
nearly constant at 4–5 × 103 cells=mm2. This trend is
consistent with previous reports [41]. Furthermore, the
cell-density value obtained here is in good agreement with
those reported. For example, Wakao et al. [44] showed that
the cell density in iPSC colonies becomes approximately
6 × 103 cells=mm2. Suga et al. [41] found the value to
be 2.3–6.5 × 103 cells=mm2, depending on the cell line,
culture conditions, colony morphology, and so on. This
concordance of qualitative and quantitative evaluations
strongly supports the utility of the DL method constructed
in this paper.

V. CONCLUSIONS

We proposed a deep-learning methodology for generat-
ing high-resolution images from images obtained by
scanning acoustic microscopy. By preparing the dataset
consisting of many spectroscopic acoustic images and
corresponding optical-microscopy images and training it,
the resolution of the generated images was comparable with
that of the optical microscopy. The key was to use a three-
layer RGB input and to involve not only high-frequency
acoustic image, but also (or more importantly) low-
frequency acoustic images in the RGB input, because
the cell nucleus can absorb the acoustic energy of lower
frequencies through its mechanical resonance. This DL
method was successfully applied to MSCs and iPSCs. The
cell density in the iPSC colony evaluated in this method
well agrees with those reported.
Because SAM is virtually noninvasive and does not

damage cells, it allows live-cell observation of the same
cell for a very long time with a high frame rate. The only
drawback of SAM is its low resolution, but the tri-
frequency RGB method proposed in this paper greatly
improved this drawback. Further improvement of the
network structure and training of the dataset with stained
high-resolution images will make it possible to achieve
even higher resolution, which will be our future work.
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