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Data-Driven Morphological
Exploration and Shape
Optimization for Turbulent
Pipe Systems

Optimal arrangements of turbulent pipe systems strongly depend on branch patterns, and
turbulence fields typically cause involved multimodality in the solution space. These fea-
tures hinder gradient-based structural optimization frameworks from finding promising
solutions for turbulent pipe systems. In this article, we propose a multi-stage framework
that integrates data-driven morphological exploration and evolutionary shape optimization
to address the challenges posed by the complexity of turbulent pipe systems. Our framework
begins with data-driven morphological exploration, aiming to find promising morphologies.
It results in the shapes for selecting a reasonable number of candidates for the next shape
refinement stage. Herein, we employ data-driven topology design, a gradient-free, and
multi-objective optimization methodology incorporating a deep generative model and the
concept of evolutionary algorithms to generate promising arrangements. Subsequently, a
deep clustering strategy extracts representative shapes. The final stage involves refining
these shapes through shape optimization using a genetic algorithm. Applying the framework
to a two-dimensional turbulent pipe system with a minimax objective shows its effectiveness
in delivering high-performance solutions for the turbulent flow optimization problem with
branching. [DOI: 10.1115/1.4068984]

Keywords: data-driven topology design, turbulence problem, deep clustering, shape
optimization, data-driven design, design optimization, generative design, multi-objective

optimization, structural optimization, topology optimization

1 Introduction

Pipe systems, whose representative example is flow distributors
in air conditioners, are the equipment that divide the inflow into
several paths and merge them into the outflow. Considering an opti-
mization problem for designing such pipe systems, the solution
space becomes complex because the branch pattern depends on a
combination of multiple levels, the number of branches, and the
number of paths after branching. Each branch pattern has its inher-
ent optimal coordinates of branch points, and the optimum shape is
determined based on each branch pattern and its branch points.
Therefore, the solution space of an optimization problem for a
pipe system is affected by a complexity derived from combinations
of branching. Moreover, turbulence fields are the typical state in
most fluids from the engineering viewpoint, so it is essential to con-
sider turbulent flow fields when designing fluid devices practically.
On the other hand, turbulence fields also typically cause multi-
modality, where multiple local optima exist in the solution space
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of their optimization problem. Hence, an optimization problem
for turbulent pipe systems is strongly affected by involved multi-
modality derived from combinations of branching and turbulent
flow fields. Conventional gradient-based structural optimization
frameworks face challenges when applied to a design problem
under turbulence depending on the degree of design freedom [1].

Gradient-free optimization, such as evolutionary algorithms
(EAs), could effectively design shapes under turbulent flow fields.
Many studies have shown that evolutionary shape optimization
could be applied to turbulent design problems [2-5]. The solution
space of a shape optimization problem is, however, limited since
only boundary moving is possible during the optimization process
in general. Optimization results via this framework strongly
depend on the initial guess. It is impractical to apply this framework
to all of the enormous variety of branch patterns and select a supe-
rior optimized design among them.

Topology optimization [6] has the highest degree of design
freedom in structural optimization as it is capable of searching
not only for arrangements in terms of material distribution but
also for shapes. As an attractive feature, the issue of how to
arrange initial guesses in topology optimization is not critical com-
pared with shape optimization. In exchange for its high degree of
design freedom, topology optimization might be impractical in
finding promising solutions due to the multimodality, where multi-
ple local optima exist in the solution space of the optimization
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problem [7]. It tends to be strongly affected by the issue when
dealing with complex problems such as turbulent pipe systems.
This is because topology optimization is typically based on a
gradient-based approach to realize its high degree of design
freedom. Although there has been a part of progressive research
on gradient-based topology optimization for turbulent problems
[8—10], their scope of application is limited to relatively simple tur-
bulence fields due to the complexity of the problems.

In view of the features of shape and topology optimization
methods, it could be identified that a two-stage approach is promis-
ing: (1) topology optimization under tractable analysis models is
used for generating an initial guess, and (2) the topology-optimized
candidate is finalized by shape optimization. Several works have
proved such a two-stage approach could be an effective method
to design structures with high performance in several areas such
as structural problems [11,12], fluid problems [13], acoustics
[14], and micro electro mechanical systems [15]. Since applicable
problems are limited due to the multimodality in a solution space
of a topology optimization problem, it should be noted that the
applicability of the two-stage approach is also limited to relatively
simple problems. Gradient-free topology optimization is promising
as the first stage to remove the gap over the second stage. Still, it
typically needs to lose its advantage, namely, a high degree of
design freedom, due to the curse of dimensionality [16]. Introducing
a gradient-free topology optimization method that has the potential
to avoid the curse of dimensionality is an effective strategy to fill the
gap over the second stage in the two-stage approach.

Deep generative models [17], which can reduce the dimensional-
ity of the design space, have been attracting significant attention.
Several frameworks integrating a topology optimization method
and a deep generative model on engineering design problems
have been proposed to address the issues of the curse of dimension-
ality [18,19]. Guo et al. [20] have proposed pioneering work that
introduces a variational autoencoder (VAE) [21], one of the
representative deep generative models, in topology optimization
framework to generate initial guess of topology optimization effec-
tively. Oh et al. [22] have employed a generative adversarial
network (GAN) [23] to generate promising material distributions
from topologically optimized structures.

Based on the idea of a data-driven approach and EAs, Yamasaki
et al. [24] proposed data-driven topology design (DDTD), which is
a gradient-free and multi-objective topology optimization method.
The concept of DDTD is that a dataset composed of design
candidates, including various topologies, is updated during the opti-
mization process [22]. In this method, a deep generative model,
VAE [21], is used to correspond to the role of crossover, which is

an operation to generate a new solution by two parent solutions,
in the process of EAs. Deep generative models can extract features
from high-dimensional data into a low-dimensional space and gen-
erate data that inherit their features by sampling in the aforemen-
tioned space. In other words, a high degree of design freedom can
be handled with a small number of variables. Consequently, this
framework has been successfully applied to a feasible methodology
for the optimization problems that are hard to solve with gradient-
based topology optimization, e.g., turbulent problems [25],
minimax problems [26,27], and latent heat storage problems [28].
The two-stage approach discussed above is a natural extension for
DDTD that can deal with involved problems for conventional topol-
ogy optimization in the first stage.

In this article, we propose a multi-stage optimal design framework
composed of DDTD and evolutionary shape optimization and apply
it to a design problem for a turbulent pipe system. The main idea of
the proposed framework is as follows. First, we generate various
arrangements through DDTD under a bi-objective problem,
namely, the pressure drop and uniformity of the pipe system. After
getting promising arrangements in the sense of Pareto optima, we
divide those arrangements into several clusters using deep cluster-
ing—variational deep embedding (VaDE) [29]—and acquire repre-
sentative shapes from the clusters. These procedures are interpreted
as data-driven morphological exploration, which enables exploring
topologies as well as shapes by a data-driven approach with cyclo-
pedic data and aims at selecting a reasonable number of candidates
for the next shape refinement stage. In the finalizing stage, we refine
the representative shapes from the previous step using evolutionary
shape optimization. In this study, we use the Bezier curve to repre-
sent the shapes of the pipe system and optimize the control points by
areal-coded genetic algorithm [30]. We demonstrate the efficacy of
the proposed framework through a design problem for a two-
dimensional pipe system under turbulence.

2 Framework

In this section, we describe the overview of the proposed frame-
work shown in Fig. 1. This framework is built from two major com-
partments: data-driven morphological exploration and shape
refinement. The detailed procedures of those two compartments
are described in Sec. 4.

A two-stage approach, which utilizes topology optimization for
generating an initial guess and shape optimization for shape refine-
ment on the topology-optimized candidate, is promising. Despite
the prospectivity of this approach, the applicability of the first

Stepwise determination of
arrangements and shapes

Narrowing down the target

1. Assume various
arrangements

Data-driven morphological

of exploration

Cyclopedic arrangements
Generate cyclopedic
arrangements with various
branch patterns

exploration

2. Extract promising
arrangements

Promising arrangements
Comprehensive exploration
of arrangements

Shape of promising

3. Shape refinement \

. arrangements
Refine shapes of promising
N arrangements

Fig. 1 Overview of proposed framework
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stage, topology optimization, is limited. Regarding turbulent pipe
systems, each branch pattern is expected to have its optimal
branch points and shape. Moreover, turbulence fields cause a multi-
modality in the solution space of an optimization problem. There-
fore, a structural optimization problem for turbulent pipe systems
is complex. This complexity arose from a huge number of combina-
tions derived from branching and turbulence narrows the range of
applications of conventional topology optimization methods. For
this reason, we propose a multi-stage optimal design framework
to tackle problems with such complexities, e.g., an optimization
problem for turbulent pipe systems.

First, we assume various arrangements, including a wide range of
branch patterns, as initial solutions, unlike a conventional topology
optimization method using such as a homogenization method and
density method, which generally derives an optimized design
from uniform material distribution. Then, promising arrangements
are squeezed through a comprehensive exploration of arrangements
by the scheme combining an evolutional strategy and generation of
new data with features of the previous ones based on a deep gener-
ative model. After squeezing promising arrangements, we deter-
mine representative shapes that can show high performance from
them. These procedures are interpreted as data-driven morphologi-
cal exploration, which aims to explore topologies as well as shapes
and determine several promising candidates for the next stage,
shape refinement. Finally, we refine the boundaries of representa-
tive ones.

This framework enables dealing with complex design problems
for which conventional structural optimization methods cannot
find promising solutions by limiting the scope of exploration for
the solution space strategically and incrementally.

3 Problem Settings

This study deals with a two-dimensional design problem under
turbulent flow fields with branching. The dimensions and boundary
conditions are shown in Fig. 2. Design domains of this problem are
assumed to be square areas between the inlet and five paths, and five
paths and the outlet.

3.1 Governing Equations. First, we describe the governing
equation and boundary conditions. We assume steady and incom-
pressible turbulent flow fields in this problem. The flow fields are
simulated by solving the Reynolds-averaged Navier—Stokes
(RANS) equation with k—¢ model. We applied the equation of con-
tinuity, RANS equation, and transport equations of turbulence
kinetic energy and dissipation rate. The governing equations are
written as follows:

V.u=0 N

p-Vyu=V-[-pl + (u+ pp)(Vu + Vu')] ®)

p(u«V)k:V-[<ﬂ+’§>w}+Pk—ps 3)
k

Hr € &
pu-Vye=V.||u+—|)Ve +Clezpk_C2€p_ 4)

o, k
k2
Hr = pC;t - (5)
&
Py =pr[Vu: (Vu+Vu')] (©)

where u(x) and p(x) are time-averaged flow velocity vector and
time-averaged pressure at x as position in analysis domains. p, u,
ur, and Py are, respectively, the density, the viscosity coefficient,
the coefficient of eddy viscosity, and the generation term of
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turbulence kinetic energy. oy, o, Ci¢, Ca, and C, are model con-
stants. Uniform flowrate as uy, and poy is applied at the inlet and
outlet boundaries, and the wall function is applied at other bound-
aries as boundary conditions.

3.2 Formulation of Optimization Problem. Considering the
pressure drop between the inlet and outlet, and the difference in
the flowrate of five paths as performance indicators, objective func-
tions of this problem are formulated as follows:

Ji = Pin — Pout = [ pds — j pds @)
Tin T

out

Jr = max<j n- uds) - min(j n- uds) )
€ I, ¢ T

where Iy, Iou, I's, and n are inlet boundary, outlet boundary, and
boundaries in five paths, and a downward unit normal vector of ;.
The objective function J; corresponds to the pressure drop through
the whole pipe system and is formulated as the boundary integral
difference between the inlet static pressure py, and the outlet static
pressure poy. The objective function J, corresponds to the differ-
ence in flowrate among five paths in the straight tubes part and is
formulated as the difference between the maximum and minimum
flow velocities of five paths. It should be noted that the proposed
method can directly solve the minimax problem, which cannot be
directly solved without any relaxation techniques such as the
p-norm function [31] in the design problem for conventional topol-
ogy optimization because of its indifferentiability.

4 Procedures

In this section, we divide the proposed framework into two steps
and describe each of them in detail.
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4.1 Data-Driven Morphological Exploration. First, we
explore arrangements with superior performance using DDTD,
which is a methodology that enables gradient-free and multi-
objective optimization. In this method, candidate arrangements
are updated iteratively on the basis of EA strategy and deep gener-
ative model. The schematic flowchart of this method is shown in
Fig. 3, and each operation is described in the following. In this
article, candidate arrangements are represented as grayscale
bitmap images, and the top and bottom half of images stand for
the inlet-side and outlet-side parts of the design domain, respec-
tively as indicated in the top right part of Fig. 3. Every pixel in
the image has a continuous value from O to 1, and flow paths are
constructed by taking the contour on an arbitrary value.

4.1.1 Generation of Initial Data. Various arrangements,
including a wide range of structures, are necessary to explore com-
prehensive solution space. In this study, we prepare various
arrangements according to Fig. 4 and the following procedure:

(1) Determine the branch pattern corresponding to the inlet-side
and outlet-side parts of the design domain from Fig. 5.

DDTD

Initial Data

Generation /

GH @ﬂ

Generate initial
solutions by algorithm \

Evaluation
N
(\ SN
-
i
4
Evaluate objective Deep Generative

value of each solution Model @
. ]

Selection /'

° ° ¥
..

b i ‘. .
°
Ji

) Latent space
Select high-rank .
solutions based on Generate solutions by

elitism deep generative model

Optimized Solutions

A

performance
solutions

c s ) @] @

Representative

@ .m shapes

Optimized solutions

Latent space

Fig. 3 Process of data-driven morphological exploration
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(2) Put the points at the end points of five paths and, inlet or
outlet.

(3) Put the point at the first branch point. x coordinate of that
point is randomly determined between Xiower and Xupper-
y coordinate is set to y;.

(4) Put the points at the second branch points. x coordinates of
those points are set to the center of branch destinations. y
coordinates are set to y,.

(5) Connect those points above with the Bezier curves. The
width of curves is set to Wpqh.

(6) Prepare another inverted data and combine them.

We suppose a branch pattern for five paths in one or two levels.
Considering branching into two paths in the first level, four types
of pattern are assumed: one of these paths branches into two
paths and other branches into three, one branches three and other
branches two, one remains one path and other branches four
paths, and one branches four and one remains one path, as
showed as patterns 1, 2, 6, and 7 in Fig. 5, respectively. Taking
the case of three, four, and five branches in the first stage into
account in the same way, a total of 15 different patterns can be
assumed. Regarding the center of branch destinations in step 4,
the term “the center of branch destinations” indicates the center
of paths of the straight tubes part to be connected by the second
level of the branch. Considering branching into two paths, and
those paths are connected to the leftmost path and second leftmost
path of the straight tubes part at the second level, the center of the
branch destination is determined as the center of the leftmost path
and second leftmost path of the straight tubes part.

4.1.2  Evaluation. The governing equations (Sec. 3.1) are
solved using the finite element method and two objective functions
(Sec. 3.2) are evaluated.

In the evaluation step in data-driven morphological exploration,
the performance of the candidate solutions is evaluated by approx-
imating the contour plots of the candidate solutions represented as
bitmap images with a cubic spline curve and using it as the geom-
etry. Moreover, to avoid small curvature in bitmap images, a
smoothing technique is used [32].

4.1.3 Population Forming. According to objective values
acquired in the previous step, superior candidates are selected
according to elite strategy. Elite strategy in EAs is a rule that supe-
rior candidates are preserved for the next generation. This rule
enables the prevention of a situation where superior candidates
are extinguished and the obtaining of an optimized design with a
relatively small number of iterations. In this study, we adopt the
non-dominated sorting genetic algorithm II (NSGA-II) [33] as an
operator for population forming. This algorithm affords candidates
selection based on ranks of candidate solutions according to Pareto
dominance relation, which is a superiority relation of each solution
in the solution space.

4.1.4 Generative Model. A generative model is used to gener-
ate the next candidates from solutions formed by the process above.
We adopt a VAE in this step. In order to generate various data that

Step1 Step2 Step3 Step4
Xlower xupp&:r
q :
—_—
Step5 Step6

o3 A

Fig. 4 Procedure for generation of initial data

Transactions of the ASME

G20z Joquialdas 61 uo Jasn nyebleq eesO Aq 1pd Ge8L-vZ-PW/ZZeS LS L/V0. LB0/6/ LY LiPpd-ajoie/uBisapeolueyosw/Bio awse uoos| 0o Bipawse)/dny woly papeojumod



I vy P it i
ey a1 I 171 e

Fig.5 Assumed branch patterns corresponding to the inlet-side
and outlet-side parts of design domain

inherit features of candidates in the previous population by the gen-
erative model to proceed with the comprehensive exploration, the
generative model needs to be stable and therefore the network of
the model is desirable to be simple. GAN [23], one of the represen-
tative generative models could cause instability such as mode col-
lapse, a phenomenon that causes low diversity of output data by a
generator, in exchange for the capability of generating sharp
images. Compared to GAN, VAE is less susceptible to such insta-
bility since the network architecture of VAE is relatively simple
[34]; therefore, VAE is suitable for this method.

VAE is composed of two neural networks: an encoder and a
decoder. It can be expected that data that inherit features from
inputs will be generated since they can extract the information
that represents the structures of inputs and reduce it to a low-
dimensional manifold called the latent space. Here, we describe
the architecture of VAE. Figure 6 shows the schematic diagram
of VAE. The input layer has neurons corresponding to the
number of input dimensions. This input layer is fully connected
to the hidden layer. Then, this layer is also fully connected to the
two layers comparable to the mean value vector g and the variance
value vector ¢. The latent variable z is defined as follows:

Z=p+ocoe¢ ()]

where o is the element-wise product and € is a random vector in
accordance with the standard normal distribution. The layer of the
latent variable z is fully connected to another hidden layer as well.

This architecture above is trained with the same dataset for inputs
and outputs to construct the latent space using the following loss
function, Lyag : €qqLiecon + Lk, Where Liecon is the reconstruction
loss measured by the mean-squared error and Lg; is the

z=ptooe
&~ N(0,1)

\ /

Decoder

Az 6)
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1

Latent Space

/ \
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Fig. 6 Architecture of VAE
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Kullback—Leibler(KL) divergence. Lgy. is figured as follows:

N

e
LKL=—§;(1 +log(e?) — i — o7) (10)

where ¢ is the weight parameter controlling the impact of the KL
divergence to regularize the latent space to the standard normal dis-
tribution, Ny is the number of dimensions of the latent space, and y;
and o; are respectively the ith components of y and 6.

It is expected that the important features of training data are
extracted into the latent space because the dimensionality is
reduced from the input and output layers into the low-dimensional
latent space. Unlike autoencoders [35], a probabilistic sampling
with g and o enables continuous interpolation of input data in the
latent space of VAE. Based on these characteristics, we can
obtain material distributions from sampling in the latent space.
VAE assumes a standard normal distribution as the prior distribu-
tion in the latent space, we generate material distributions from
the sampling vectors comprised be uniformly distributed random
numbers in [—4, 4], which encompasses 99.7% of the data within
+40, for each latent variable. Therefore, data that are diverse and
inherit the important features of training data are generated.

4.1.5 Extraction of Representative Shapes. Representative
shapes of Pareto solutions produced by DDTD are extracted by
applying a VaDE [29]. VaDE is an unsupervised generative and
clustering model. The functionality of VaDE is explained as a
further extension of the VAE. The architecture of VaDE is repre-
sented in the same manner as VAE shown in Fig. 6, and the
latent variable z is also defined as Eq. (9).

Unlike VAE, VaDE assumes not a single Gaussian, but a
mixture-of-Gaussian as the prior distribution in the latent space.
Thus, a learned VaDE model can cluster samples based on the pos-
terior of each Gaussian. Furthermore, since a VaDE is a generative
model, representative data of each cluster can be generated by
decoding the means of a mixture-of-Gaussian. Besides, VaDE can
be applied to an extraction of the representative shapes from
Pareto solutions represented by high-dimensional design variables
due to the nature of deep learning.

4.2 Shape Refinement. Finally, representative shapes are
finalized by evolutionary shape optimization. In this study, we
apply a real-coded genetic algorithm, one of EAs since the
number of design variables in this method is fewer than that in data-
driven topology design by far due to the difference in the manner of
structural representation. This method is gradient-free and multi-
objective as well as DDTD.

4.2.1 Approximation by the Bezier Curve. Explicit geometry
expressions of shapes are essential to perform shape optimization.
However, representative shapes are represented as grayscale
bitmap images and thus have no explicit geometry expressions of
boundaries. According to the above, we replace representative
shapes with the Bezier curves as follows:

(1) Prepare the contour plot of a boundary from a representative
shape and choose a target curve from the contour.

(2) Prepare nth order Bezier curve P,. Here, coordinates of p,,
and p,, accord with end points of original shapes.

n

P,=Y .CBp; (i=0,....n) (1)
i=0

where ,C; is the binomial coefficient, ,,C;B; is the Bernstein
polynomial, and p; is a vector representing coordinates of ith
control points of the Bezier curve.

(3) Perform fitting with coordinates of the midpoint and param-
eters of the Bezier curve as design variables. This is per-
formed by minimizing the loss function fi,s: squared sum
of distances between points on the contour plot and the
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Bezier curve

m

ﬁoss = Z

j=1

2
| (ze, — 4| (12)

where Grarger, is jth vector representing points on the contour
plot, g, is jth vector representing points on the Bezier curve
corresponding to parameter £, and m is the number of points
on those shapes.

(4) If the value of loss function fiys is below the threshold value
Cihreshold, this curve is adopted as approximated curve. If the
value is over the threshold value, prepare (n+ 1)th order
Bezier curve and back to step 2. The threshold value
Cihreshold 18 formulated as follows:

HrCC 1
Cihreshold = 1- 13
threshold C ( P 1) (13)

where Cyq is the constant corresponding to the size of the
design domain and n is the number of order of the Bezier
curve.
We obtain the approximated shape of the representative one by per-
forming the above procedure for all curves of the representative
shape.

An example of the approximation is shown in Fig. 7. The most
left point represents a control point of the most left curve and the
remaining points represent control points of the most right curve,
respectively.

4.2.2  Initial Seeding. To proceed with the exploration based on
a genetic algorithm, diverse shapes are necessary, but features of
each cluster should be kept through the process because shapes
with those features tend to show higher performance than others.
Accordingly, we generate initial shapes as follows:

Xorijk — Cseed < Xgen,k < Xorik + Cseed (14)

where Xgen  is kth design variable generated in this step, Xori 4 is kth
design variable obtained in Sec. 4.2.1, and ceeq 1S constant
respectively.

4.2.3  Evaluation and Population Forming. As for this opera-
tion, see the section on evaluation and population forming for
DDTD since this is the same as the one performed in the DDTD
above (Secs. 4.1.2 and 4.1.3).

4.2.4  Selection. As opposed to DDTD, which generates new
candidates from the latent space with features of the current popu-
lation, new candidates are created by a crossover of two solutions
from the current population in this method. In this study, we
select them with the crowded tournament selection [33]. First, we
choose a subset of solutions randomly from the current population
according to the number of tournament size. Then, we obtain two
superior solutions from them. The standard of superiority is as
follows:

(1) Having a lower rank derived from NSGA-II,
(2) Having a higher crowding distance if they have the same
rank.

Fig. 7 Example of approximation by the Bezier curve; left: rep-
resentative shape, center: contour plot, and right: approximated
curve with control points

091704-6 / Vol. 147, SEPTEMBER 2025

4.2.5 Crossover. The crossover operation is performed with
two solutions from the previous step. We adopt BLX-a [36],
which is used in a real-coded genetic algorithm to generate new
solutions. Each design variables of new solutions are randomly
selected from the interval as follows:

! - I
[xmin —ad, Xmax T ad'] (15)
where
i 1
x]min - mm(x parent,1° x1parent,2) (16)
1 _ !
xmax - max( parent,1° xparent,Z) (17)
I _
d = |x1parem,l - xlparem,Z | (18)
a, X]pmm 1> and xlpmm , are constant, /th design variables selected in

the previous step.

5 Results and Discussion

We now introduce numerical examples of a two-dimensional tur-
bulent design problem with branching and demonstrate the effec-
tiveness of the proposed framework. The simulation of flow fields
using the finite element method and the evaluation of two objective
functions employs COMSOL MULTIPHYSICS (version 6.0).

5.1 Design Settings. The problem that we address is shown in
Fig. 2, where all the constants are dimensionless values. The values
of those constants and boundary conditions are shown in Tables 1
and 2. Moreover, model constants in the governing equation are
determined according to the standard k—e model [37] as given in
Table 3.

5.2 Results for Data-Driven Morphological Exploration

5.2.1 Generation of Initial Data. This step aims to generate
multiple arrangements with various structures to explore a large
solution space of this optimization problem through DDTD. As
the dimensions of arrangements, we set Xiower» Xupper> Y1, Y2, and
Wpan are 45, 105, 80, 40, and 10, respectively according to the
image size of 120 X 120 in Sec. 4.1.1.

Table 1 Parameter settings for the geometry of design domain
and non-design domain

Symbol Value

Win
H, in
Liec
H, int
Wdev
Wdou(
H dev
Wout
Hou

—hoON—OG =

Table 2 Parameters of boundary conditions

Symbol Value

Uin 1
Pout
Re 5% 10°
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Table 3 Parameters of turbulence model

Symbol Value
C, 0.09
O 1

o¢ 1.3
Ce1 1.44
Ce 1.92

Figure 8 shows generated arrangements of the inlet-part and
outlet-part of the design domain without the straight tubes part
using the procedure shown in Fig. 4. In order to verify the diversity
of them, we focus on the types of branch patterns. 225 patterns are
assumed for the design domain in total since 15 patterns shown in
Fig. 5, are assumed in the inlet-side and outlet-side parts of it
respectively. The result shows that 178 branch patterns are gener-
ated, i.e., 80% of the total. This result confirmed that multiple
arrangements with diversity are generated.

5.2.2 Improvement of Pareto Solutions. Initial arrangements
from the previous step are the input to DDTD to produce the
Pareto solutions. The convergence criterion is set to the
maximum iteration number of 300. 512 elite solutions survive
every iteration through the optimization process. The number of
dimensions of the input layer and layer of g and ¢ in VAE is set
to 14,400 and 8, respectively.

@RUEAO OO @
CDRUADNSB Y

QOQ@URY WD @
OO GITAG D
QADRVREOQ
@RARYQUAUNE
@ITQAD DD D

Figure 9 shows the values of objective functions on elite solu-
tions at the initial, iteration of 100, 200, and optimized results.
This result confirmed that the optimized solutions completely dom-
inate the initial solutions. DDTD can work for an optimization
problem for a turbulence pipe system with a minimax function.

Figure 10 shows arrangements of the inlet-part and outlet-part
without the straight tubes part in the final results. We can classify
them into three types of branch patterns based on the visual inspec-
tion and those patterns are seen in initial arrangements. This result
emphasizes that the optimized arrangements generated by DDTD
are greatly affected by the diversity of initial arrangements. Consid-
ering this result and input arrangements shown in Fig. 8, it can be
expected that DDTD achieves the exploration for a large solution
space of this optimization problem successfully due to the diversity
of the input.

Figure 11 shows the comparison of velocity and pressure distri-
bution between optimized and initial arrangements (hereinafter,
those arrangements are called “Arrangement 1” to “Arrangement
6” from left to right). Two objective values of every arrangement
are shown in Table 4. In this figure, six arrangements: three of
them from optimized ones and the same number of them that
have corresponding branch patterns from initial ones are selected.
Arrangement 1 and 2 have the highest flow uniformity and the
lowest pressure drop, respectively. Arrangement 3 has a relatively
low pressure drop compared to other optimized ones.

The key factor to achieve high flow uniformity is the wall shape
between the first and second paths from the right. The velocity dis-
tribution of Arrangement 3, 4, and 6 indicate that the flow from the
inlet tends to rush into paths at the center or the left side, and it is

=
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@
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Fig. 8 Generated initial arrangements of inlet-side and outlet-side parts of design domain

without straight tubes part
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Fig. 9 Improvement of Pareto front by DDTD

difficult to direct it to paths on the right side. On the other hand, only
Arrangement 1 intercepts inflow and directs it into the rightmost
path by such a wall shape to achieve high flow uniformity.

From the perspective of the pressure drop, simplicity of the flow
is the key factor for high performance. The flow in Arrangement 2
and 3 is uncomplicated in comparison with the sinuous flow in
Arrangement 4, 5, and 6 caused by undulating paths. Sinuous
flow causes an increase in the pressure drop since that in a bent
flow is evaluated with its curvature. Besides, flexibility on the thick-
ness of paths is one of the major reasons for decreasing pressure
drop. The major factor of pressure drop in a straight flow path is
the diameter of the paths. Low pressure drop is achieved by broad-
ening paths in the process.

5.2.3 Results for Extraction of Representative Shapes. A
VaDE model is trained by 512 arrangements shown in Fig. 10 to
extract representative shapes. The learned VaDE compresses each
solution represented as a 64 X 64 grayscale bitmap image into the
five-dimensional latent space and simultaneously clusters them
into five groups. This study sets the latent dimension to five
based on the reconstruction loss of the learned VaDE model and
the number of clusters to five experimentally.

Figure 12 shows representative shapes of five clusters generated
by decoding the center of each cluster in the latent space. Intrigu-
ingly, representative shapes from Cluster 1, 2, and 5 are classified
as the other cluster but they look like the same branch pattern visu-
ally. This result indicates that promising arrangements derived from
the DDTD are clustered without relying on the visual inspection and
representative shapes of each cluster are extracted.

5.3 Results for Shape Refinement. Finally, we perform shape
optimization using a real-coded genetic algorithm to refine five rep-
resentative shapes extracted in the previous step. We set m in
Eq. (12) and Cyq in Eq. (13) to 9 and H... The convergence criterion
is set to the maximum iteration number of 150. 256 elite solutions
survive every iteration through this optimization process. The a for
crossover, BLX-a, is set to 0.2. The tournament size is set to 5.

Figure 13(a) shows the comparison of objective values of opti-
mized solutions between DDTD and shape optimization. This result
confirmed that the optimized solutions by the shape refinement over-
take those by DDTD in terms of objective values. Additionally, to
elucidate the effectiveness of data-driven morphological exploration,
we apply shape optimization to the input of DDTD shown in Fig. 8
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Fig. 10 Optimized arrangements of inlet-side and outlet-side parts of design domain without

straight tubes part by DDTD
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Fig. 11 Comparison of velocity and pressure distribution between optimized and initial arrangements for DDTD
Table 4 Obijective values for optimized and initial arrangements for DDTD
Arrangement 1 Arrangement 2 Arrangement 3 Arrangement 4 Arrangement 5 Arrangement 6
Ji 0.3115 0.2279 0.2295 0.4137 0.3795 0.3187
J 0.007386 0.3349 0.4297 0.4488 0.5824 0.4671
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
81 data 158 data 229 data 4 data 40 data
Fig. 12 Representative shapes by VaDE
(a) (b)
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Fig. 13 Comparison of Pareto fronts by DDTD and shape optimization: (a) optimized solutions by DDTD and shape optimization
and (b) shape optimization on optimized and initial arrangements for DDTD
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Fig. 14 Velocity and pressure distribution of optimized shapes

as well and compare to the final results of shape optimization for
representative ones shown in Fig. 13(a). We choose three arrange-
ments, which have the same branch pattern as three patterns seen
in optimized arrangements visually, from the input of DDTD.

Figure 13(b) shows the comparison results of shape optimization
for generated shapes via data-driven morphological exploration and
initial arrangements on DDTD. Compared to the results of shape
optimization for initial arrangements, shapes with superior perfor-
mance are incidental to data-driven morphological exploration in
the proposed framework.

The velocity and pressure distribution of optimized shapes by
shape optimization are shown in Fig. 14. In this figure, a
rank-one solution from each Pareto front shown in Fig. 13(b) is
listed. Compared to the shapes of the optimized solution by
DDTD, the wavy shapes of walls are restrained by using the
Bezier curves to represent geometries. The wall shapes between
the inlet and the most left path, and the most right path and the
outlet of the result for initial arrangements of DDTD are undulating
in comparison to the result for representative shapes. This is
because the Bezier curves of initial arrangements have more
control points on the curve and a higher degrees-of-freedom than
representative shapes. On the other hand, this result indicates
that the high degrees-of-freedom does not necessarily affect the
high performance. With respect to the objective values, a similar
trend is seen; flow uniformity of the optimized shapes of Cluster
1 and 5 tends to be high, and the pressure drop of Cluster 3 and
4 is relatively low. This indicates that the factor for each objective
function of DDTD, the wall shape between the first and second
paths from the right for flow uniformity, and simplicity of the
flow for pressure drop, is key for the result of shape optimization
as well. To achieve high flow uniformity, more control points on
the wall shape between the first and second paths from the right
in the inlet-side design domain need to be placed. In spite of
that shapes classified as Cluster 2 look like representative shapes
of Cluster 1 and 5, there are more solutions with relatively low
flow uniformity in the Pareto front of Cluster 2, than Cluster 1
and 5. This is caused by the low accuracy of approximation by
the Bezier curves. The wall shape between the first and second
paths from the right in the inlet-side design domain of the represen-
tative shape of Cluster 2 is narrower than the shape of the represen-
tative shapes of Cluster 1 and 5, so the approximation process
shown in Sec. 4.2.1 does not accurately represent this wall shape
of the representative shape of Cluster 2. Considering the above,
the appropriate allocation of control points on the Bezier curves

091704-10 / Vol. 147, SEPTEMBER 2025

is achieved in the representative shapes of Cluster 1, 3, 4, and 5
through the process of DDTD.

These results proved that the proposed multi-stage framework is
effective for designing a high-performance turbulent pipe system.

6 Conclusion

In this article, we propose a multi-stage framework for designing
turbulent shapes with branching, which is impractical in finding
promising solutions with conventional gradient-based topology
optimization due to the complexity of the combination of branches
and turbulence. This framework consists of data-driven morpholog-
ical exploration by DDTD and VaDE, and shape optimization based
on a real-coded genetic algorithm and enables dealing with complex
design problems rationally incorporating the stepwise determina-
tion of arrangements and shapes. In order to verify the effectiveness
of this framework, we demonstrate its application to a two-
dimensional turbulent pipe system with a minimax objective. We
found that objective values of optimized solutions by DDTD
completely dominate those of the initial ones and optimized solu-
tions. Then, those solutions are classified into several clusters
without relying on the visual inspection and representative solutions
of each cluster are generated by VaDE. Finally, we perform shape
optimization based on a real-coded genetic algorithm for generated
shapes via data-driven morphological exploration and initial
arrangements for DDTD and compare the objective values of opti-
mized solutions. The result shows that optimized solutions of shape
refinement for generated shapes via data-driven morphological
exploration are superior to those for initial arrangements.

We demonstrate that our proposed framework is favorable for
generating promising solutions for a two-dimensional turbulent
pipe system. On the other hand, additional considerations, such as
three-dimensional problem settings, are necessary to address practi-
cal problems. By considering the possibility of further combinations
of branching and the computational cost with a three-dimensional
problem setting, our proposed method is expected to show signifi-
cant potential for application in three-dimensional turbulent pipe
systems.
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