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Deciphering state-dependent immune 
features from multi-layer omics data at 
single-cell resolution
 

Current molecular quantitative trait locus catalogs are mostly at bulk 
resolution and centered on Europeans. Here, we constructed an immune 
cell atlas with single-cell transcriptomics of >1.5 million peripheral 
blood mononuclear cells, host genetics, plasma proteomics and gut 
metagenomics from 235 Japanese persons, including patients with 
coronavirus disease 2019 (COVID-19) and healthy individuals. We mapped 
germline genetic effects on gene expression within immune cell types and 
across cell states. We elucidated cell type- and context-specific human 
leukocyte antigen (HLA) and genome-wide associations with T and B cell 
receptor repertoires. Colocalization using dynamic genetic regulation 
provided better understanding of genome-wide association signals. 
Differential gene and protein expression analyses depicted cell type- and 
context-specific effects of polygenic risks. Various somatic mutations 
including mosaic chromosomal alterations, loss of Y chromosome and 
mitochondrial DNA (mtDNA) heteroplasmy were projected into single-cell 
resolution. We identified immune features specific to somatically 
mutated cells. Overall, immune cells are dynamically regulated in a cell 
state-dependent manner characterized with multiomic profiles.

Human omic technologies project biological mechanisms and disease 
pathophysiology into multi-layered matrix information with diverse 
resolutions. Integrative omics analysis anchored by germline genetic 
variants leveraged molecular quantitative trait locus (mQTL) cata-
logs1. Multi-layered mQTL catalogs synergistically answered functional 
annotation of the variants and filled the path from large-scale human 
disease genetics (that is, genome-wide association studies; GWASs) 
to outcome clinical phenotypes2–10. Such efforts initially started with 
bulk RNA expression profiles2,3 and have expanded to include highly 
diverse layers such as proteomics4 and metagenomics5. Of these, recent 
technological advances in single-cell RNA sequencing (scRNA-seq) have 
successfully elucidated cell state heterogeneity in a variety of tissues 
and environments11,12. Genetic association mapping with scRNA-seq 
profiling could capture continuous genetic effects along cellular states 
across discrete cell types and provide more granular insights into the 

molecular mechanisms of human trait-associated genetic variants6–10. 
Nevertheless, current single-cell expression QTL (sc-eQTL) resources 
are mostly centered on European ancestry6,8,13, which rationalizes the 
need to construct multi-layered omics with single-cell resolution in 
non-European ancestries.

As a common but overlooked human mQTL layer, we additionally 
propose a value of using somatic genetic variations, which have been 
studied mainly in the field of cancer. Clonally expanded blood cells 
with somatic mutations or clonal hematopoiesis (CH) are common 
in apparently healthy individuals14,15 and increase the risk not only 
for hematological malignancies16–18 but for a variety of benign disor-
ders, including cardiovascular disease19,20 and infectious diseases21,22. 
However, the biological mechanisms underlying the associations 
between CH and benign disorders remain unknown. Refining somatic 
mutation spectra with finer resolution, namely, single cells, should 

Received: 18 May 2024

Accepted: 16 June 2025

Published online: 28 July 2025

 Check for updates

 e-mail: r.edahiro@imed3.med.osaka-u.ac.jp; kumanogo@imed3.med.osaka-u.ac.jp; yuki-okada@m.u-tokyo.ac.jp

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02266-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-025-02266-3&domain=pdf
mailto:r.edahiro@imed3.med.osaka-u.ac.jp
mailto:kumanogo@imed3.med.osaka-u.ac.jp
mailto:yuki-okada@m.u-tokyo.ac.jp


Nature Genetics | Volume 57 | August 2025 | 1905–1921 1906

Article https://doi.org/10.1038/s41588-025-02266-3

Immune cell type-specific single-cell cis-eQTL mapping
To evaluate the genetic regulation of gene expression in immune  
cells, we first performed single-cell cis-eQTL analysis with WGS data 
using the pseudobulk approach. We tested for association between 
expressed genes and genetic variants located within 1 Mb of the tran-
scription start site in each of seven major cell types (L1) and 28 fine 
cell types (L2). We also mapped conditionally independent cis-eQTLs.

In total, we identified 23,443 and 34,297 eQTLs in L1 and L2, of 
which 19,641 and 30,802 were primary cis-eQTLs (Fig. 2a and Supple-
mentary Table 3). We detected 488–4,901 (median = 3,176) genes with 
significant cis-eQTL effects (eGenes) in L1 and 93–4,062 (median = 862) 
eGenes in L2, and the number of eGenes varied widely across cell types. 
We observed a strong association between the number of eGenes and 
that of cells per sample of the corresponding cell types as previously 
reported6,8 (Extended Data Fig. 2a). Primary significant eQTL effect 
sizes were negatively correlated with the number of cells per sample 
of the corresponding cell types (Fig. 2b). Surprisingly, the numbers  
of primary eQTLs detected per cell type in this cohort were equal  
to or greater than those of OneK1K6, which has about four times as 
many samples as our cohort (Extended Data Fig. 2b and Supplemen-
tary Table 4). Therefore, we extensively evaluated the relationship 
between sample size and cell counts per sample in cis-eQTL discovery 
by downsampling both at L1. The number of discovered eQTLs showed 
a linear decrease when downsampling the rate of cell counts per sam-
ple as well as sample sizes, and a similar relationship was observed in 
OneK1K (Extended Data Fig. 2c,d). These observations imply that the 
statistical power to detect eQTLs is highly dependent on the number 
of cells profiled.

Next, we evaluated how much eGenes were shared across cell 
types. We observed that 3,422 of 8,047 eGenes were cell type specific, 
whereas 1,214 eGenes were shared by more than five cell types in L1 
(Fig. 2c and Supplementary Table 5). In L2, 2,613 of 7,386 eGenes were 
significant in only one cell type. We also compared eQTL effects among 
cell types and observed a high level of eQTL sharing especially within 
the same lineages (T and natural killer, B and myeloid cells; Fig. 2d 
and Supplementary Table 6). We compared the effects of significant 
eQTLs to the bulk eQTL dataset from Japanese individuals33 and found 
high concordance (Supplementary Fig. 3 and Supplementary Table 7).

We compared cis-eQTLs from our cohort with those from  
OneK1K6 consisting of Europeans using the multivariate adaptive 
shrinkage method34 (Methods). The significant eQTLs in OneK1K  
were more likely to be replicated in the corresponding cell types of 
OASIS than those in OASIS (Extended Data Fig. 3a), which was more 
pronounced in cell types, with a higher number of eGenes in OASIS  
than in OneK1K. In naive CD4+ T (CD4N) cells, eQTLs that were not rep-
licated in the other cohort showed larger differences in minor allele 
frequency (MAF) between East Asian and European populations than 
replicated eQTLs (Extended Data Fig. 3b). The direction of significant 
eQTL effects was almost the same in the other cohort across all cell 
types (Extended Data Fig. 3c). The median proportions of shared eQTLs 
by magnitude in the other cohort for ten cell type pairs were 34.3% 
for OASIS eQTLs and 69.3% for OneK1K eQTLs when the factor was 
set to 0.5 (Extended Data Fig. 3c and Supplementary Table 8). Similar 
to the replication, eQTLs in CD4N cells that were not shared between 
the two cohorts tended to show larger differences in MAF between 
East Asian and European populations than shared eQTLs (Extended  
Data Fig. 3d). These results suggest the importance of constructing 
sc-eQTL resources from different populations with larger sample sizes.

We annotated significant eQTLs using chromatin state predic-
tions from eight immune cell types of the Roadmap Epigenomics pro-
ject35. Primary eQTLs were enriched in both promoter and enhancer  
regions of Roadmap immune cells. However, enrichment of eQTLs 
in promoter regions was shared among cell types, whereas that in 
enhancer regions was more cell type specific (Fig. 2e and Supplemen-
tary Table 9). When primary eQTLs were stratified by effect sizes, 

especially contribute to deciphering biological mechanisms and 
driver-or-passenger discussions22–26, and there is definitely a growing 
interest in using multi-layer omics to elucidate the mechanisms of 
phenotypic effects of somatic events.

To interpret cell state-dependent biological phenomena  
by deconvoluting immune features from multi-layer human  
omics into single-cell resolution, here we constructed a multiomic 
immune cell atlas, the Osaka Atlas of Immune Cells (OASIS), from 
235 Japanese persons including patients with COVID-19 and healthy 
individuals. The 5′ single-cell transcriptomics data profiling over 
1,500,000 peripheral blood mononuclear cells (PBMCs), which are 
characterized by a large number of cells per sample and the inclusion of  
cells under in vivo immunological stimulation by severe acute  
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, resulted  
in covering a variety of cell states. OASIS links these single-cell tran-
scriptomics data with host genetics, plasma proteomics and meta
genomics data.

We mapped the germline genetic effects on gene expression 
within cell types and across cell states. We also investigated HLA and 
genome-wide associations with variable–diversity–joining (VDJ) gene 
usage according to clinical status and cell types. To interpret GWAS 
results, we then conducted colocalization analysis of GWAS signals 
and our eQTLs and differential gene and protein expression analysis 
with polygenic risk scores (PRSs) across clinical status and cell types. 
In addition, by leveraging whole-genome sequencing (WGS) and SNP 
genotyping, we captured various somatic mutations such as mosaic 
chromosomal alterations (mCAs), loss of the Y chromosome (LOY) 
and heteroplasmy in mtDNA (mt-heteroplasmy) at single-cell resolu-
tion. We evaluated the immune features of somatically mutated cells, 
which were characterized as cell type-specific clonal expansions. We 
assessed the reactivity of clonally expanded mCAs in a patient with 
COVID-19 against major SARS-CoV-2 antigens using B cell receptors 
(BCRs). We also evaluated the effect of the gut microbiome on the dif-
ferential abundance of peripheral immune cells based on a cell–cell 
similarity structure.

These integrative analyses at single-cell resolution demonstrated 
that immune cells were dynamically regulated in a cell state-dependent 
manner defined by the features of multi-layer omics. Our non-European, 
multi-layered and diversified immune single-cell atlas will contribute 
to equity in global diversity of human genomics and will be a valuable 
resource to understand complex human traits.

Results
The OASIS cohort with multi-layered single-cell omics
The OASIS cohort consists of 88 patients with COVID-19 and 147 healthy 
individuals of Japanese ancestry with multiomics data of immune cells 
(n = 235; Fig. 1a, Supplementary Fig. 1a,b and Supplementary Table 1). 
We performed scRNA-seq and single-cell VDJ sequencing (scVDJ-seq) 
on 2,059,141 PBMCs using the 10x Genomics Chromium platform and 
obtained 1,506,953 high-quality cells (Methods and Supplementary 
Fig. 1c). We manually annotated cells based on RNA expression of known 
marker genes27–31. We first defined seven major cell types (L1) according 
to the Azimuth L1 annotation (Fig. 1b)27. Next, we further identified 28 
cell states (L2) and annotated ten cell types (LOneK1K) for comparison with 
OneK1K6 (Fig. 1b, Extended Data Fig. 1a and Supplementary Table 2). We 
verified our manual fine annotation using scPred32 with the Azimuth 
L2 annotation as a ref. 27, which showed high concordance (Extended 
Data Fig. 1b).

We generated WGS data for eQTL analysis and detecting 
mt-heteroplasmy and SNP array data for detecting mCAs from all 
samples (Methods). We measured the expression of 2,925 plasma  
proteins with the Olink assay for 227 samples. We also performed 
whole-genome shotgun sequencing analysis of 131 fecal DNA  
samples from healthy individuals and obtained phylogenetic relative 
abundances.

http://www.nature.com/naturegenetics
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Fig. 1 | Overview and scRNA-seq data of OASIS. a, Overview of the study design. 
SLE, systemic lupus erythematosus. b, UMAP embedding of scRNA-seq data for 
1,506,953 cells. Seven major cell types and 28 fine cell types were defined by RNA 
expression of marker genes (Extended Data Fig. 1a). Bact, activated B cell; Bmem, 
memory B cell; BN1, type 1 naive B cell; BN2, type 2 naive B cell; BIN, intermediate  
B cell; CD4CTL, CD4+ cytotoxic T celle; CD4TCM, CD4+ central memory T cell; 
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dendritic cell; Pro_T, proliferating T cell; Treg, regulatory T cell. Panel a created 
with BioRender.com.
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other cell types (target) were analyzed. e, Heatmap depicting the enrichment 
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showing the enrichment of primary eQTLs in promoters or enhancers of the 
corresponding cell types (n = 28) from the Roadmap project, according to effect 
sizes (Methods). g, Graphical representation of neighborhoods identified by Milo 
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promoter enrichment was more predominant at larger effect sizes 
of eQTLs, but enhancer enrichment was similar regardless of effect 
sizes (Fig. 2f). Considering that more than 60% of causal variants in 
autoimmune diseases map to immune cell enhancers36, this result 
motivates us to identify more eQTLs in enhancer regions that do not 
necessarily have large effect sizes.

Gut bacterial abundance is associated with immune  
cell abundance
To reveal the sets of immune cells that were differentially abundant 
with bacterial abundance at finer resolution, we performed differential 
abundance analysis using single-cell neighborhoods (Milo)37. In this 
analysis, we focused on the following three species, all of which had 
significant associations with more than two cell types in the propor-
tional analysis (Supplementary Fig. 5a) and have been reported to be 
involved in human diseases: Ruminococcus gnavus38, Prevotella copri39 
and Bacteroides vulgatus40. We identified 43,089 neighborhoods among 
PBMCs, none of which showed significant differential abundance with 
R. gnavus abundance (Fig. 2g). However, the increase in R. gnavus was 
accompanied by an increase of rare cell types (that is, CD4+ cytotoxic 
T cells, activated B cells and plasmablasts (PBs)), along with an increase 
in cell types of the myeloid cluster (Fig. 2h). Similarly, differential abun-
dance analysis revealed that the increase in P. copri was associated  
with an increase in PBs and plasmacytoid dendritic cells and a decrease 
in CD4+ cytotoxic T cells (Supplementary Fig. 5b,c). Such differential 
abundances were consistent with results of the proportional analysis, 
demonstrating robustness. These findings highlight that integrative 
omics analyses anchored by single-cell data allow us to detect biological 
phenomena that could not be captured by conventional bulk analyses.

HLA and genome-wide associations with immune repertoires
We performed scVDJ-seq to construct a catalog of T cell receptor (TCR) 
and BCR repertoires, including usage of each gene across different cell 
types (Supplementary Fig. 6). We explored the relationship between 
HLA and the TCR repertoire, characterized by specific cell types. We 
assessed associations between HLA amino acid variants and TCR V gene 
usage, including TRAV and TRBV. We identified significant associations 
between TRAV genes and HLA amino acid variants both in HLA class I 
and II genes. Specifically, TRAV genes were associated with HLA class I  
and II gene variants exclusively in CD8+ T and CD4N cells, respectively 
(P < 1.1 × 10−5; Fig. 3a,b). These results align with the well-known pat-
tern of HLA restriction on TCRs according to T cell subpopulations41,42.  
Furthermore, in comparisons among CD4+ T cell subpopulations, 
the associations between TRAV genes and HLA class II gene variants 
appeared stronger in CD4N cells than in entire (that is, CD4+ T) and 
central memory CD4+ T cells (Fig. 3b). This might reflect the stronger 
HLA restriction on the TCR repertoire formed at the central level  
(that is, in the thymus) than that formed at the peripheral level43.

We explored the impact of HLA variation on the TCR repertoire 
in response to COVID-19. We observed significant interactions, par-
ticularly those for HLA class I gene variants and TRAV gene usage in 
CD8+ T cells (P < 2.1 × 10−6; Fig. 3c). This may reflect the generation  
of different TCR repertoire in SARS-CoV-2 infection according to  
HLA class I variation in CD8+ T cells.

Additionally, we investigated the association of genome-wide 
variants with the TCR repertoire, focusing on integrative features  
representing repertoire variation (Methods). Furthermore, we 
extended this analysis to TCR D and J genes, as the genetic association 
with these genes has been underexplored. We identified a significant 
association between class II HLA loci with principal component (PC)2 
for TRAV gene usage in CD4+ T cells as well as PC1 for TRAV gene usage 
in CD4N cells (P < 2.0 × 10−9; Fig. 3d, Extended Data Fig. 4 and Supple-
mentary Table 11).

Lastly, we conducted the same repertoire feature-wide association 
analysis for BCRs. We detected significant associations between PCs for 

several immunoglobulin gene usages and variants located within these 
genes (P < 1.3 × 10−9; Fig. 3e, Extended Data Fig. 4 and Supplementary 
Table 12). Furthermore, somatic hypermutation (SHM)-related features 
for K and L chains were significantly associated with variants in the 
IGKV and IGLV genes (Fig. 3e and Extended Data Fig. 4). The stronger 
associations in naive B cells may be explained by the observation that 
SHMs in memory cells are more likely to be shaped by exposures, which 
can weaken the genetic effects.

Dynamic eQTL effects across two immune-related  
gene modules
To evaluate the dynamic genetic regulation of gene expression 
along continuous cell states, we investigated the dynamic effects of 
eQTLs in the myeloid cluster across the two gene modules related to 
immunity and COVID-19 severity12,30,44 (Fig. 4a). Module 1 was highly 
correlated with uniform manifold approximation and projection 
(UMAP)1 and module 2 with UMAP2, representing different cell states. 
To model dynamic eQTLs, the gene modules were divided into ten 
bins, and the average expression profiles per individual in each bin 
were reconstructed for each module (Fig. 4a and the Methods). We 
evaluated dynamic eQTLs by testing the interaction between geno-
type and quantile rank using both linear and quadratic models for 
the two modules, respectively6,8. We identified 530 and 568 genes 
with dynamic eQTL effects (deGenes) across modules 1 and 2 from 
robust candidates, respectively (Methods). Of these deGenes, 352 
(66.4%) and 393 (69.1%) showed dynamic eQTL effects in both linear 
and quadratic models, and 134 (25.3%) and 117 (20.6%) did only in 
the quadratic model for modules 1 and 2 (Extended Data Fig. 5a). 
Moreover, more than half of deGenes (324 in module 1 and 362 in 
module 2) were module specific (Fig. 4b), and the enriched pathways 
of module-specific deGenes were related to innate immunity in mod-
ule 1 and antigen presentation in module 2 (Fig. 4c). We confirmed 
that the model was well calibrated by 1,000 permutations (Extended 
Data Fig. 5b and the Methods).

We annotated dynamic eQTLs using the Roadmap data35 as we  
did for cis-eQTLs. Dynamic eQTLs showed monocyte-specific enrich-
ment in both promoters and enhancers (Fig. 4d and Supplementary 
Table 16) but distinctly from that of cis-eQTLs (Fig. 2e). Next, we  
compared enrichment of dynamic eQTLs and cis-eQTLs in monocytes 
(L1) in promoters and enhancers of monocytes. In both modules, 
dynamic eQTLs were more enriched for enhancers and less for pro-
moters than cis-eQTLs (Fig. 4e and Supplementary Table 17). Similar  
results were observed in the comparison of dynamic eQTLs and 
cis-eQTLs in subclusters (L2) of the myeloid cluster (for example, 
plasmacytoid dendritic cells; Extended Data Fig. 5c). We investi-
gated deGenes for which dynamic eQTLs were located in functional 
regions, but cis-eQTLs of any cell type of the myeloid cluster were not  
(Methods). Pathway enrichment analysis of such deGenes across 
modules and functional categories indicated that pathways related 
to Toll-like receptor were enriched in module 1 and those related to 
antigen presentation were enriched in module 2, and their enrich-
ment pattern varied between promoters and enhancers within each 
module (Fig. 4f).

Modeling dynamic eQTLs at single-cell resolution
We performed dynamic eQTL analysis at single-cell resolution 
(Fig. 4a and the Methods). As an example, we observed the strong cell 
state-dependent eQTL effect of rs11080327 for SLFN5 specifically at 
specific states within classical monocytes (cMono; Fig. 4g), capturing 
the gene regulatory mechanism with higher resolution than previ-
ously reported7. Among 15 hPCs, hPC14, which represented a cell state 
related to the type 1 interferon pathway, showed the most significant 
cell state interaction (Fig. 4g and Extended Data Fig. 5d), consistent with 
results in the dynamic eQTL analysis with the pseudobulk approach. 
Similarly, eQTLs for NFKBIZ and IFITM2 (rs9818678, rs741738) exhibited 
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significant cell state dependence, but their cell state interactions were 
different (Fig. 4g). Expanding eQTL mapping into single-cell resolution 
should yield a more granular picture of dynamic genetic regulation.

Colocalization of GWAS variants and sc-eQTLs
To better understand the genetic regulatory mechanisms of GWAS  
loci, we assessed colocalization of GWAS signals from 13 complex  
traits in an East Asian population and our eQTL signals mapped per 
cell types in L1 and L2. We discovered GWAS–eQTL colocalization 

events (PP.H4 (posterior probability of shared causal variant) > 0.8) at  
121 GWAS loci and prioritized 179 candidate trait-associated genes 
(Fig. 5a and Supplementary Table 19). About half of these GWAS loci 
(55 of 121) showed colocalization within only one major cell type 
(Fig. 5a), and most prioritized trait-associated genes were trait specific 
(Extended Data Fig. 6a). Cell types that exhibited colocalization were 
prominently specific to the traits (Fig. 5a and Extended Data Fig. 6b).

We next jointly colocalized dynamic eQTLs with GWAS loci. As an 
example, rs2841281, the lead SNP for systemic lupus erythematosus 
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Fig. 3 | HLA and genome-wide association analysis with TCR and BCR 
repertoires. a, Regional plots for HLA association with TRAV gene usage in CD4+ 
T (left), CD4N (center) and CD8+ T (right) cells. In each plot, −log10 (P values) for 
the association tests between amino acid variants of each HLA gene and all tested 
TRAV gene usages are shown along with the horizontal axis representing amino 
acid positions. The dashed red horizontal line represents the study-wide P-value 
significance threshold. b,c, Quantile–quantile plots for the association (b) and 
interaction (c) tests between HLA amino acid variants and TRAV gene usage in 
HLA class I (left) and II (right) genes in different cell types. Vertical and horizontal 

axes indicate the observed and expected –log10 (P values) for the tests.  
d,e, Heatmaps show the maximum values of −log10 (P values) for the association 
tests for repertoire features (horizontal axes) within individual loci (vertical 
axes) for TCR (d) and BCR (e) repertoires. The position range for each locus 
is determined by the gene body for individual genes and the uppermost and 
lowermost gene bodies for multiple genes or gene clusters. Only loci that 
exhibited significant associations with a feature in at least one cell type are 
displayed. Uncorrected P values from two-sided tests are shown in a–e.  
CV, coefficient of variation; freq, frequency; len, length.
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GWAS in the PLD4 locus, had dynamic eQTL effect only with module 1  
(Fig. 5b). While this variant moderately colocalized with some 
cis-eQTLs per cell type, it colocalized more strongly with dynamic 
eQTLs in two bins of module 1 (posterior probability of shared causal 
variant (PP.H4) = 0.95 for bin 6, 0.92 for bin 7; Fig. 5b,c). In addition, 
single-cell-resolution eQTL modeling revealed the strongest cell 
state-dependent eQTL effects in the boundary region between IL1B clas-
sical monocytes (cMonoIL1B) and S100A classical monocytes (Fig. 5d). As 
another example, rs2836884, the lead SNP for ulcerative colitis GWAS 
in the ETS2 locus, had a more dynamic eQTL effect with module 1 than 
module 2 (Fig. 5e). This variant showed nearly perfect colocalization 
with dynamic eQTLs in bin 6 of module 1 (PP.H4 = 0.99; Fig. 5e,f) and 
had heterogeneous cell state-dependent eQTL effects even within 
the cell types exhibiting significant colocalization (Fig. 5g). These 
observations suggest the importance of considering dynamic eQTLs 
to interpret GWAS signals.

Context- and cell type-specific effects of polygenic risks
Beyond single variants, we exhibited dynamic gene regulation  
in a genome-wide manner. We further studied how PRSs affect tran-
scriptomic and proteomic profiles across clinical status and/or cell 
types. We constructed PRSs of hospitalized patients with COVID-19 
using PRS-CSx45, combining the summary statistics of hospitalized 
COVID-19 in Europeans46 and those in Japanese individuals47,48 as 
the training data (Methods). The phenotypic variance (Nagelkerke’s 
R2) explained by our PRS in OASIS was 4.1%, confirming that the PRS  
had reasonable accuracy. We divided this PRS into four quantiles and 
performed differential gene and protein expression analysis with  
quantiles of PRSs across clinical status and cell types. We identified 
differentially expressed genes (DEGs) in monocytes (n = 21) and CD8+ 
T cells (n = 2) from COVID-19 scRNA-seq and differentially expressed 
proteins (DEPs) (n = 184) from the COVID-19 proteome (P < 0.045  
by 1,000 permutations), whereas no DEGs or DEPs were identified in 
healthy individuals (Fig. 5h and Extended Data Fig. 7a,b). We confirmed 
that DEGs and DEPs specific to patients did not directly reflect the  
DEGs and DEPs between patients and controls (Extended Data 
Fig. 7c,d). We also investigated the effect of PRSs derived from other 
trait GWASs and found that their effects were context and cell type 
specific (Extended Data Fig. 7e). These findings indicate that PRSs, like 
single germline variants, might affect transcriptional and proteomic 
profiles in a context-specific and/or cell type-specific manner.

Single-cell profiling of mCAs
To expand our mQTL catalogs to somatic genetic variations, we con-
ducted single-cell deconvolution of a variety of somatic events detected 
with genomics data (Fig. 6a). Using SNP array data14,49, we detected 
eight copy number alterations (CNAs) and six copy-neutral losses 
of heterozygosity (CN-LOHs) in seven and six samples, respectively 

(Supplementary Table 20). By using the individuals’ mCAs as prior 
information and applying Numbat50 to the scRNA-seq data, we  
could distinguish the mutant cells from their wild-type counterparts 
in each sample, except for one patient with COVID-19 containing a 
shorter CNA (CH12; Supplementary Table 20). Because the detection 
of clone cells with CN-LOH depends on germline SNP alleles embed-
ded in the scRNA-seq raw reads, an increase of such scRNA-seq-based  
SNP information improves the sensitivity. We thus performed deep  
and long sequencing by scaling target depths from 20,000 to 100,000 
reads per cell and extending a read 2 length from 90 to 270 bp. Conse-
quently, we profiled 1.8-fold SNPs and identified 2.1-fold more mutated 
cells with CN-LOH than with normal sequencing conditions (Extended 
Data Fig. 8a). While cells with CN-LOH were moderately enriched in 
other T cells, strong cell type specificity of cells with CNA was observed 
in two patients with COVID-19 (CH01 and CH05; Fig. 6b, Extended Data 
Fig. 8b and Supplementary Table 21). These two patients also showed 
relatively larger fractions of mutant cells (median of 12.3% for three 
CNAs in CH01 and CH05 versus 3.06% for the other four CNAs; Extended 
Data Fig. 8a).

In CH01, two clones with different CNAs were enriched in mono-
cytes (1p loss, odds ratio (OR) = 6.6 for monocytes; 15q gain, OR = 7.2 
for monocytes; Fig. 6b,c). To characterize these clones, we assessed 
DEGs between mutant and normal cells in monocytes (Extended  
Data Fig. 8c). Most of the downregulated genes in monocytes with 
1p loss and the upregulated genes in monocytes with 15q gain were 
located within the altered chromosomal regions themselves (that is, 
cis), highlighting accurate detection of mutant cells. But some showed 
trans-chromosomal DEGs including upregulation of TNFAIP3, one of 
the elements of the COVID-19-specific immune response51, in mono-
cytes with 1p loss (Extended Data Fig. 8c). We further evaluated the 
enriched pathways of DEGs between mutant and normal clones and 
found that immune-related pathways, such as positive regulation of 
cytokine production, were significant in mutant clones with 1p loss 
(Fig. 6d and Extended Data Fig. 8d,e).

Mutant cells with 17q gain were strongly enriched in B cells in  
CH05 (OR = 350; Fig. 6b,e). Pathway enrichment analysis of DEGs 
between mutant and normal B cells showed upregulation of 
immune-related pathways and downregulation of response to ster-
oid hormones in mutant cells (Extended Data Fig. 8c,f,g). This sug-
gests that these mutant cells may reduce the effectiveness of systemic 
corticosteroid therapy and result in a worse prognosis. Furthermore, 
our integrated analysis of scVDJ-seq data identified a considerably 
large BCR clonotype with 17q gain in CH05 (clone size = 650; Fig. 6f). 
This BCR clonotype was the largest clonotype among all the samples 
(median of maximum clone size in each sample = 5) and was mainly 
composed of naive B cells, which differed from most expanded clono-
types composed of class-switched PBs (Extended Data Fig. 9a). Using 
recombinant antibodies derived from this expanded BCR clonotype, 

Fig. 4 | Dynamic eQTL analysis in the myeloid cluster. a, Overview of dynamic 
eQTL analysis. We calculated the two module scores using a gene set termed 
‘HALLMARK_INFLAMMATORY_RESPONSE’ and ‘GOBP_RESPONSE_TO_ 
INTERFERON_GAMMA’ (GO:0034341), respectively (left). Cells were split into 
ten windows of equal cell numbers according to each module score (middle). 
The figure design is based on a previous report8. A linear-and-quadratic mixed 
model was applied to test for an interaction between genotypes and module 
scores by the pseudobulk approach. The single-cell negative binomial mixed-
effect (NBME) model was used to identify cell state-dependent regulatory effects 
(right). Module 1, M1; module 2, M2. b, Number of eGenes with a significant 
genotype–module interaction (that is, dynamic eGenes) in a linear or quadratic 
mixed model for the two modules. c, Top ten biological processes by gene 
ontology (GO) enriched in dynamic eGenes are shown for each test. MHC, 
major histocompatibility antigen; Padj, adjusted P value. d, Heatmap depicting 
the enrichment of dynamic eQTLs in promoter or enhancer regions of eight 
representative immune cells from the Roadmap project for each combination 

of module and analysis model. e, Forest plots showing ORs of the overlap of 
dynamic eQTLs (n = 396–510; Supplementary Table 15) with functional regions in 
monocytes from Roadmap compared to cis-eQTLs in monocytes at L1 (n = 3,175) 
for each combination of functional region and analysis model in two modules. 
Dots represent ORs, and bars represent 95% confidence intervals (CIs). f, Top four 
biological processes by GO enriched in dynamic eGenes, where dynamic eQTLs, 
but not cis-eQTLs, are located in functional regions of monocytes from Roadmap, 
are shown for each module-function combination (four tests in total). g, UMAPs 
represent the cell state-dependent eQTL strength (βtotal) for each cell calculated 
as a sum of the effect sizes of genotype and genotype (G) × harmonized PCs 
(hPCs). Labeled P values are derived from NBME and pseudobulk analysis. 
Heatmap showing P values for each genotype–hPC interaction in the full  
model of NBME analysis. Two-sided P values are uncorrected in e,g. Dot color 
indicates statistical significance of the enrichment (adjusted P values via the 
Benjamini–Hochberg method), and dot size represents the gene ratio assigned  
to each term in c,f.
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we assessed their reactivity against SARS-CoV-2 major antigens. Of 
interest, the BCR clonotype did not react with any tested antigens 
(Fig. 6g and Extended Data Fig. 9b), not supporting clonal expansion 
through normal antibody response to SARS-CoV-2 infection. These 
clonally expanded mutant B cells may have reduced diversity of the 

BCR repertoire in SARS-CoV-2 infection, which could negatively impact 
the antibody response of this patient. Our deconvolution of mCAs at 
single-cell resolution has the potential to elucidate the impacts of 
somatic mutations on immune cell functions and the development of 
severe infections.
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Monocyte-specific accumulation of LOY
Next, we evaluated the biological effects of LOY on the immune  
system. Using scRNA-seq data from male samples (n = 149), we defined 
cells with LOY as cells without expression from the male-specific  
region of the Y chromosome15,22, which enabled quantitative estima-
tion of the LOY status of each male. Older men showed larger frac-
tions of cells with LOY. Six male samples with LOY detected using  
SNP array data (that is, genotype-based binary LOY estimation) con-
tained relatively more cells with LOY (median of 14.2% versus 3.3%; 
Fig. 7a). The single-cell-based approach was thus more sensitive to 
detect LOY and provide biological insights. For single-cell-based LOY, 
all male samples were classified as LOY high (LOY cells > 5%; n = 36) or 
LOY low (LOY cells < 5%; n = 113). Using this classification, we performed 
a regression analysis to answer controversial discussions on whether 
LOY is associated with COVID-19 risk22. While genotype-based LOY did 
not show an independent impact, single-cell-based LOY was signifi-
cantly associated with the risk of hospitalized COVID-19 (OR = 6.6, 95% 
confidence interval = 1.4–30.2 after age adjustment; Fig. 7b).

Cells with LOY were enriched in monocytes across patients with 
COVID-19 (OR = 4.0) and healthy individuals (OR = 4.5; Fig. 7c,d and 
Supplementary Table 22). Upregulated DEGs of cMonoIL1B cells with 
LOY were significantly enriched in T cell-related pathways (Fig. 7e and 
Extended Data Fig. 10a). Next, we performed a differential abundance 
analysis between LOY-high (n = 32) and LOY-low (n = 33) samples from 
patients with COVID-19 using Milo37. We found an increase in monocytes 
and dendritic cells and a decrease in naive T cells for LOY-high samples  
(Fig. 7f), and a similar trend was observed in healthy individuals 
(Extended Data Fig. 10b). Comparison of cell proportions between 
the two groups suggested that a decrease in naive T cells was prominent 

in CD4+ T cells (P = 0.013) and the proportion of regulatory T cells was 
significantly higher in LOY-high patients with COVID-19 (P = 7.4 × 10−4; 
Extended Data Fig. 10c). In aggregate, these data suggest that mono-
cytes with LOY might affect the immune response via compositional 
changes in T cells.

Context-specific enrichment of mitochondrial heteroplasmy
We also investigated the landscape of mt-heteroplasmy in immune cells 
by integrating our genomics and scRNA-seq data (Fig. 8a). The Genome 
Analysis Toolkit (GATK)-based pipeline52 detected 36 (40.9%) patients 
with COVID-19 and 63 (42.9%) healthy individuals with mt-heteroplasmy 
(variant allele frequency (VAF) > 0.1) using WGS data (Fig. 8b). Refer-
ring to allelic information of the predefined WGS-based heteroplasmy 
embedded in the scRNA-seq raw reads, we could successfully perform 
clonal assignment of each cell for seven patients with COVID-19 and  
four healthy individuals. The proportion of cells with mt-heteroplasmy in 
scRNA-seq reads was strongly associated with VAFs of mt-heteroplasmy 
in WGS data except for m.813A>G (Fig. 8c). We evaluated cell type 
specificity of heteroplasmic cells for these samples, except for one 
healthy sample in which almost all cells had mt-heteroplasmy. We found 
that the cells with mt-heteroplasmy were enriched in monocytes and  
dendritic cells specifically for patients with COVID-19 (Fig. 8d). Of note, 
the heteroplasmy of m.813A>G, with a large discrepancy between the 
heteroplasmic cell fraction and VAF, showed stronger cell type specific-
ity (OR = 13.3 for monocytes, OR = 6.8 for dendritic cells; Supplemen-
tary Table 23). Given its location in 12S ribosomal RNA, the mutation 
hotspot for aminoglycoside ototoxicity that is implicated in human 
disease53, this heteroplasmy might affect cell proliferation or viability in 
a cell type-specific manner, causing abnormal mitochondrial function. 
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This observation highlighted the advantage of our multi-layered omics 
focusing on both the mutation itself (that is, genomics) and mutated 
cells (that is, scRNA-seq). Although we did not detect any DEGs to 
distinguish heteroplasmic cells from normal ones (false discovery 
rate (FDR) < 0.05), COVID-19-specific enrichment suggested that 
mt-heteroplasmy may underlie the biological mechanisms of COVID-19.

Discussion
Here, we constructed a single-cell data atlas of >1.5 million PBMCs with 
multi-layer omics in Japanese individuals. Our integrative analyses of 
single-cell data revealed that immune cells were dynamically regulated 
in a cell state-dependent manner defined by multiomics profiles, lead-
ing to a better understanding of the pathogenesis of COVID-19 and 
autoimmune diseases.

We comprehensively mapped germline genetic effects on gene 
expression in immune cells and observed that eQTLs were dynamically 
regulated across continuous cell states. We also elucidated HLA and 
genome-wide regulation of TCR and BCR repertoires in a cell type- 
and context-specific manner. Thus, including cohorts of diseased 
and healthy individuals contributes to including cells with a variety of 
biological conditions. The epigenetic properties of dynamic eQTLs 
were distinct from those of cis-eQTLs, and colocalization analysis high-
lighted the value of considering genetic regulation of gene expression 
across continuous cell states to understand GWAS signals. In addition, 
as in the example of rs11080327 for SLFN5, single-cell resolution eQTL 
modeling allowed us to interpret genetic regulatory mechanisms 
at finer resolution than bulk and pseudobulk anlaysis7,33. Moreover, 
single-cell technology finely resolved associations between human 
disease-related gut bacteria and peripheral immune cell abundance.

We deconvoluted a variety of somatic events at single-cell resolu-
tion and showed their heterogeneous functional impacts on immune 
cells, which increased our insights into the underlying mechanisms of 
COVID-19 severity. As in previous studies of a single gene mutation in 
hematopoiesis23 or mCAs in the normal adrenal gland24, capturing the 
mutational status of individual cells has enabled us to compare mutant 
and normal cells within individuals, which is easier when the number 
of cells per sample is large. Investigating apparently healthy samples 
or tissues showing one or a few somatic mutations can directly reveal 
the phenotypic effects of the mutation, and that is not the case for 
cancer cells with a considerably higher burden of mutations. Of note, 
some observations of mCAs and mt-heteroplasmy in this study may be 
a result of the immunologically strong stimulus (that is, SARS-CoV-2 
infection), implying the need for a study design that takes context 
into account.

In conclusion, we demonstrate the importance of interpreting 
biological phenomena by integrating features from multi-layer omics 
at single-cell resolution. This resource in an East Asian population will 
contribute to equity in global diversity of human genomics and help 
researchers better understand complex human traits.
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Methods
Ethics and specimen collection of OASIS samples
Peripheral blood samples were obtained from patients with COVID-19 
(n = 88) and healthy controls (n = 147) at Osaka University Hospital. 
Patients with COVID-19 were further categorized into moderate (n = 9) 
and severe (n = 79) groups according to disease severity based on the 
highest score on the World Health Organization Ordinal Scale for 
Clinical Improvement ever present54. Detailed clinical data are summa-
rized in Supplementary Table 1. Some of the participants (nCOVID-19 = 73, 
ncontrol = 75) are described elsewhere44,47. There was one pair of blood 
relatives among the healthy participants; therefore one of them was 
excluded from the eQTL analysis. One patient with COVID-19 had a 
karyotype abnormality and was excluded from the X chromosome 
eQTL analysis and differential gene and protein expression analyses. 
This study strictly follows the principles of the Declaration of Helsinki, 
with written informed consent obtained from all participants before 
sample collection according to regular principles. Ethical approvals  
were obtained from the Ethics Committee of Osaka University (approval 
no. 734). There was no compensation for participants.

Sequencing, alignment, quantification and quality control of 
scRNA-seq
Single-cell suspensions were processed through the 10x Genomics  
Chromium Controller. Droplet libraries were processed using  
Cell Ranger 5.0.0 (10x Genomics). Sequencing reads were aligned with 
STAR (version 2.7.2a)55 using the GRCh38 human reference genome. 
Please see the Supplementary Methods for details.

Integration and manual annotation of scRNA-seq
Details are described in the Supplementary Methods.

Whole-genome sequencing data processing
DNA samples isolated from whole blood were sequenced at Macrogen 
Japan. DNA quantity was measured by PicoGreen, and DNA degrada-
tion was assessed by gel electrophoresis. All libraries were constructed 
using the TruSeq DNA PCR-Free Library Preparation Kit according to 
the manufacturer’s protocols. Libraries were sequenced on the HiSeq X  
or NovaSeq 6000 system (Illumina), producing paired-end reads 
2 × 150 bp in length at an average depth of 19.4×. Sequenced reads were 
aligned against the Genome Reference Consortium human genome 
build 38 using BWA-MEM with the ALT-aware mode (version 0.7.17). 
For more details, please see the Supplementary Methods.

SNP array genotyping
Genomic DNA was genotyped with the use of the Infinium Asian Screening  
Array (Illumina). This genotyping array was built using an East Asian 
reference panel including whole-genome sequences, designed for 
effectively capturing genetic variation in East Asian populations. To 
increase the sample size used for subsequent statistical haplotype 
phasing, the accuracy of which determines the sensitivity for mCA 
detection using MoChA (18 May 2022)14,49, we merged the publicly 
available genotyping data of 54,405 Japanese individuals generated by 
the BioBank Japan Project using the same genotyping array. For more 
details, please see the Supplementary Methods.

Mapping of single-cell cis-eQTLs with the pseudobulk 
approach
First, we performed single-cell-level normalization using scran (version 
1.18.5)56 separately for each major cell type (L1). We only kept genes with 
nonzero expression (unique molecular identifier (UMI) count > 0) in 
more than 1% of cells in each major cell type. In the analysis of subclus-
ters (L2) within each major cell type, the same genes were retained. 
Gene expression per sample per cell type (that is, pseudobulk count) 
was calculated as the mean of log2-transformed normalized expres-
sion across cells and then normalized across samples using an inverse 

normal transform in each cell type. Samples with more than ten cells 
in a cell type were considered in the analysis of the corresponding cell 
type (Supplementary Fig. 2b).

To identify cis-eQTLs, we used tensorQTL (version 1.0.7)57 to run 
a linear regression for each SNP–gene pair. We restricted our search 
to variants within 1 Mb of the transcription start site of each gene  
and with MAF > 0.05. The top 15 gene expression PCs, the top two 
genetic PCs, age, sex, 10x chemistry (version 1 or 2) and clinical status 
(COVID-19 or healthy) were used as covariates for eQTL analysis. To cor-
rect for the number of association tests performed per gene, we used 
a cis permutation pass per gene with 1,000 permutations. Finally, to 
correct for the number of genes tested and identify significant eGenes, 
we performed a genome-wide q-value correction for the top associated 
SNP–gene pair, setting a q-value threshold of 0.05. We subsequently 
mapped conditionally independent cis-QTLs using the stepwise regres-
sion procedure with tensorQTL. Details on downsampling sample 
sizes and cell counts per sample in eQTL mapping are described in the 
Supplementary Methods.

Generation of genotypes and single-cell eQTL mapping in 
OneK1K
Details are described in the Supplementary Methods.

Comparison with cis-eQTLs of OneK1K
We assessed eQTL overlaps and sharing between our cohort and 
OneK1K6 using the multivariate adaptive shrinkage method34. For 
more details, please see the Supplementary Methods.

Epigenetic marker enrichment analysis for cis-eQTLs
To reveal the functional characterization of cis-eQTLs, we evaluated 
the enrichment of significant eQTLs to epigenome marks (that is, 
Roadmap annotation)35. The chromatin state data were obtained from 
the Roadmap Epigenomics project. We used 18-state models. We con-
sidered TssA, TssFlnk, TssFlnkU and TssFlnkD as promoter regions 
and EnhA1, EnhA2, EnhG1, EnhG2 and EnhWk as enhancer regions. For 
analysis of enhancer or promoter enrichment, we used eight immune 
cell subsets from peripheral blood in Roadmap project data (that is, 
primary monocytes (Roadmap ID E029), primary B cells (E032), pri-
mary helper T memory cells (E037), primary naive helper T cells (E038), 
primary regulatory T cells (E044), primary natural killer cells (E046), 
primary CD8+ naive T cells (E047) and primary CD8+ T memory cells 
(E048)). To assess the enrichment of primary cis-eQTLs in epigenome 
marks, we compared the overlap with epigenome marks between 
primary significant cis-eQTLs of each cell type and all the variants 
used in the analysis for that cell type. For more details, please see the 
Supplementary Methods.

Metagenomics analysis
Phenol–chloroform DNA extraction and subsequent metagenome 
shotgun sequencing were newly performed (dataset 3) or performed 
in previous studies (datasets 1 and 2)58,59. Details on metagenomics 
analysis are described in the Supplementary Methods.

TCR and BCR repertoire analysis
Droplet-based sequencing data for TCR sequences and BCR sequences 
were aligned and quantified using 5.0.0 (10x Genomics) against the 
GRCh38 human VDJ reference genome. Filtered annotated contigs for 
TCR sequences and BCR sequences were analyzed using Scirpy (version 
0.10.0)60. For more details, please see the Supplementary Methods.

HLA and genome-wide association analysis with TCR and BCR 
repertoires
For HLA association analysis, we performed HLA imputation for geno-
typed SNPs in the MHC region with the HLA reference panel of the 
Japanese population (n = 1,118) constructed in a previous study61 using 
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DEEP*HLA62,63. We targeted the amino acid variants of class I and II HLA 
genes (class I, HLA-A, HLA-C and HLA-B; class II, HLA-DRB1, HLA-DQA1, 
HLA-DQB1, HLA-DPA1 and HLA-DPB1). Variants imputed with an R2  
imputation quality score in tenfold cross-validation >0.7 and 
MAF > 0.05 were used for the analyses.

We explored the association between HLA variants and TRAV and 
TRBV gene usage in each cell type. We only used productive clones for 
which all the TCR genes were identified. We calculated the usage fre-
quency of each TCR V gene in each cell type by summing up clones that 
were derived from that gene. We summed up clones regardless of the 
clone size, unless otherwise specified, to sensitively capture the central 
restriction between HLA and TCR43. We only targeted TCR V genes that 
were observed in more than 80% of samples in cell types of interest.

We investigated the association between HLA variants and  
TCR V gene usage based on the Wald test for a negative binomial 
regression model using DESeq2 (version 1.30.1)64 for each cell type. 
We included the same covariates as those used in the cis-eQTL analysis, 
excluding PCs for gene expression, in the model. For the HLA associa-
tion analysis, we empirically calculated the study-wide significance 
threshold using a permutation procedure65 and obtained study-wide 
significance thresholds of P = 1.1 × 10−5 and 1.2 × 10−5 for TRAV and TRBV 
genes, respectively. We also investigated the change in TCR V genes 
according to each variant under the condition of COVID-19 by adding 
an interaction term between COVID-19 status and each variant into the 
model. In this interaction analysis, we used the usage of TCR V genes 
weighted by their clone sizes to consider the effect of clonal expansion. 
We performed these analyses only for entire (that is, CD4+ T at L1), 
naive (CD4N) and CD4TCM and entire CD8+ (that is, CD8+ T at L1) T cells 
due to the sparsity of TCR V genes (Supplementary Fig. 8). Please see 
the Supplementary Methods for details on the significance threshold.

Additionally, we performed genome-wide association analysis 
for integrative features representing repertoire variation for TCRs 
and BCRs. Integrative features included the top five PCs for V(D)J gene 
usage and mean and coefficient of variation for the length of CDR3 
sequences and the frequency of SHM. SHM was calculated using the 
R package SHazaM (version 1.1.0)66. As potential biases in measur-
ing SHM due to the complex structure of germline variants in VDJ 
genes could not be excluded, GWAS results of SHM should be inter-
preted carefully. For TRBD genes, we used TRBD1 gene usage instead of  
PCs because they only have TRBD1 and TRBD2. For BCR J genes, we 
used the top two PCs, as the number of these genes is fewer than  
six. The analysis was conducted based on a liner regression model  
for each feature normalized by rank-based inverse normal transfor-
mation with the same covariates using PLINK (version 2.00). For this  
analysis, we used P = 2.0 × 10−9 and 1.3 × 10−9 for the significance 
thresholds of the TCR and BCR repertoires, respectively, on the basis 
of Bonferroni correction on the number of features for a genome-wide 
significance threshold of P = 5.0 × 10−8. Due to sparsity, this analysis was 
applied only to CD4+ T, CD4N and CD4TCM and CD8+ T cells for TCRs and 
entire, type 1 naive, type 2 naive and memory B cells for BCRs.

Dynamic eQTL analysis with the pseudobulk approach
To identify dynamic genetic regulation of gene expression along contin-
uous cell states, we investigated dynamic eQTLs in the myeloid cluster 
(that is, monocytes and dendritic cells) across the two gene modules 
‘HALLMARK_INFLAMMATORY_RESPONSE’ and ‘GOBP_RESPONSE_
TO_ INTERFERON_GAMMA’. We downloaded the two gene sets from 
MSigDB. Module scores were evaluated at the single-cell level using 
the AddModuleScore() function implemented in Seurat with default 
parameters. We divided the gene modules into ten windows contain-
ing roughly equal numbers of cells and averaged the expression of  
each gene per sample within each window separately for the two gene 
modules (Fig. 4a). Pseudobulk matrices per sample within each window 
with more than ten cells were retained in the analysis. Next, the aver-
aged expression was normalized using inverse normal transformation, 

and gene expression PCs were calculated. To account for the higher 
correlation in expression values derived from the same individual at 
multiple gene module windows, we applied (1) linear and (2) quadratic  
mixed models, with individuals modeled as random intercepts as 
previously described6,8. We used these models to test for a significant 
interaction between genotypes and module categories as follows:

Exp = β0 + βg × genotype + βa × age + βsex × sex + βv × version

+βstatus × status +
2
∑
i=1

βgPCi
× gPCi +

15
∑
j=1

βePCj × ePCj

+βm ×module + βg×m × genotype ×module + (1|sample)

(1)

Exp = β0 + βg × genotype + βa × age + βsex × sex

+βv × version + βstatus × status

+
2
∑
i=1

βgPCi
× gPCi +

15
∑
j=1

βePCj × ePCj + βm ×module

+βm2 ×module2

+βg×m × genotype ×module

+βg×m2 × genotype

×module2 + (1|sample) .

(2)

gPC represents the genotype PC and ePC represents the gene 
expression PC. In both cases, the null model was computed using 
the same parameters while excluding the interaction terms of the 
genotype × module category and the genotype × module category2. 
P values were calculated by comparing each model to its respective 
null model using a likelihood ratio test. All models were implemented 
in R using the lmer() function. To minimize multiple-testing burden 
and focus on more robust candidates, we only applied this approach 
to SNP–gene pairs identified as significant lead eQTL variants by  
tensorQTL in at least one module window separately for the two  
gene modules. Next, we determined the top SNP per gene for each 
model and module. Finally, to correct for the number of genes tested 
and identify significant dynamic eGenes (deGenes), the FDR was calcu-
lated via the Benjamini–Hochberg method for the top associated SNP–
gene pairs, setting an FDR threshold of 0.05. We also performed the 
same analysis across ‘the type 1 ISG signature score (ISG score)’ (ref. 7).

To find enriched pathways of module-shared and module-specific 
deGenes, we used the compareCluster function (fun = ‘enrichGO’, 
pvalueCutoff = 0.05, pAdjustMethod = ‘BH’, OrgDb = ‘org.Hs.eg.db’, 
ont = ‘BP’) of clusterProfiler (version 3.14.3)67.

Epigenetic marker enrichment analysis for dynamic eQTLs
We evaluated the enrichment of significant dynamic eQTLs to epi
genome marks35 as we did for cis-eQTLs. We compared the enrichment 
of significant dynamic eQTLs and cis-eQTLs of the myeloid cluster 
(L1 and L2) in promoters and enhancers of monocytes in Roadmap 
separately for each model and module. For dynamic eQTLs, we only 
considered the top associated SNPs per gene analyzed in dynamic 
eQTLs for each model and module, and, for cis-eQTLs, we considered 
the top associated SNPs per gene in each cell type.

We selected the genes with significant dynamic eQTLs located in 
promoters or enhancers of monocytes in Roadmap for each module  
and also selected the genes with significant cis-eQTLs located in  
promoters and enhancers of monocytes among any cell type of the 
myeloid cluster (L1 and L2). Next, we identified genes with eQTLs 
located in functional regions specifically for dynamic eQTLs. To evalu-
ate the enriched pathways of these genes for each module and func-
tional region, we used the compareCluster function (fun = ‘enrichGO’, 
pvalueCutoff = 0.2, pAdjustMethod = ‘BH’, OrgDb = ‘org.Hs.eg.db’, 
ont = ‘BP’) of clusterProfiler (version 3.14.3)67.
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Dynamic eQTL analysis at single-cell resolution
We performed eQTL mapping at single-cell resolution using the NBME 
model68. To represent the continuous cell state of each cell, we used 
hPCs calculated with Harmony (version 0.1)69 from the top 30 original 
PCs in the myeloid cluster. The negative binomial model was fitted 
with the following formula using the glmer.nb() function in the lme4 
R library (version 1.1.32):

Exp (UMI) = β0 + βg × genotype + βa

×age + βsex × sex + βv × version + βstatus × status

+βUMI × logUMI + βMT ×MT

+
2
∑
i=1

βgPCi
× gPCi +

15
∑
j=1

βePCj × ePCj +
15
∑
k=1

βhPCk × hPCk

+
15
∑
k=1

βg×hPCk × genotype × hPCk + (1|sample) .

(3)

MT represents percent mitochondrial genes, and ePC represents 
the gene expression PC of the raw data. To assess whether the eQTL is 
cell state dependent, we compared the full model (equation (3)) to the 
null model without interaction terms using the likelihood ratio test. To 
calculate eQTL strength across cell states, we combined the genotype 
main effect (βg) with the interaction effects of each hPC, weighted by 
each cell’s position along each hPC (equation (4)).

βtotal = βg +
15
∑
k=1

βg×hPCk × hPCk. (4)

To assess which hPCs had a strong interaction effect with geno-
type, we calculated P values of interaction terms in the full model. 
To understand which cell state each PC represents, we investigated  
a loading of each gene along each PC in the SCT assay using the  
Loadings() function implemented in Seurat and determined the genes 
that showed strong correlation (>0.1 absolute value) for each PC. We 
performed pathway enrichment analysis of PC-associated genes using 
the compareCluster function (fun = ‘enrichGO,’ pvalueCutoff = 0.05, 
pAdjustMethod = ‘BH’, OrgDb = ‘org.Hs.eg.db’, ont = ‘BP’) of cluster-
Profiler (version 3.14.3)67.

Colocalization analysis
We download GWAS summary statistics in an East Asian population of 
13 complex immune traits70–74 except that of hospitalized COVID-19, 
which was obtained through collaboration with the Japan COVID-19 
Task Force ( JCTF)47,48 (Supplementary Table 18). GWAS summary sta-
tistics in hg37 were converted to hg38 ones using LiftOver. For evalua-
tion of eQTL signal colocalization with GWAS signals, we applied coloc 
(version 5.2.3)75. We tested for 500-kb windows centered on significant 
GWAS lead variants (P value < 5 × 10−8) outside the MHC region and 
considered PP.H4 > 0.8 as significant colocalization. If the GWAS lead 
variants were listed in the paper, we used them, and, if not, we manu-
ally defined them by clumping using PLINK version 1.9 software. In a 
heatmap (Extended Data Fig. 6b), the gene with the highest number 
of PP.H4 > 0.8 or, in case of a tie, the gene with the higher PP.H4 was 
presented.

Plasma protein expression measurements
We measured the expression of 2,925 plasma proteins using the  
Olink Explore 3072 platform for 227 samples (83 patients with  
COVID-19 and 144 healthy individuals) through collaboration with the 
JCTF47,48. The Olink Explore 3072 platform quantifies the expression 
of each protein in a normalized scale (normalized protein expres-
sion). Because the protein measurements were separated into three  
batches for logistical reasons, we bridge-normalized the norma
lized protein expression values using the OlinkAnalyze R package  

(version 3.4.1), using 16 intersecting samples as bridging samples. We 
excluded proteins with measurements below the detection limit in 
more than 10% of samples. As a result, 2,852 proteins were included 
in the analysis.

Polygenic risk score
We constructed multipopulation PRSs of hospitalized COVID-19  
using PRS-CSx45, combining the summary statistics of hospitalized  
COVID-19 (B2, ncase = 32,519) in Europeans from COVID-19 HGI (round 7)46  
and those of hospitalized COVID-19 (ncase = 2,948) in Japanese indi-
viduals from the JCTF47,48 as the training data. We excluded the  
MHC region and set the φ value to 10−4. Next, we calculated PRSs for 
OASIS samples and evaluated PRS performance with Nagelkerke’s R2.

To construct multipopulation PRSs of systemic lupus erythe-
matosus71,76, monocyte count73,77 and lymphocyte count73,77, we per-
formed the same procedure as described for COVID-19. For rheumatoid 
arthritis70, inflammatory bowel diseases72, Crohn’s disease72 and  
ulcerative colitis72, we used the publicly available multipopulation 
PRSs. We could not evaluate PRS performance in the OASIS cohort 
except for the COVID-19 PRS.

Differential gene and protein expression analysis with 
polygenic risk score
We divided each PRS into four quantiles in the OASIS cohort and treated 
them as ordinal variables 1 (lowest risk) to 4 (highest risk). DEG analysis 
among four quantiles of PRS was performed using the pseudobulk 
approach separately for patients with COVID-19 and healthy indivi
duals. Pseudobulk matrices were created by aggregating gene counts 
for each cell type (L1) in each sample. Genes were considered for 
the analysis if they were expressed in more than 10% of cells per cell 
type. This analysis was performed using edgeR (version 3.32.0)78. We 
included age, sex, 10x chemistry and severity (severity was included 
only in patients with COVID-19) in the model as covariates. DEP analysis 
among four quantiles of PRSs was performed using a linear regression 
model with age, sex, batches and severity (severity was included only 
in patients with COVID-19) as covariates. Statistically significant DEGs 
and DEPs were defined with FDR < 0.1.

We permuted four quantiles of PRSs across samples 1,000 times 
in each cell type of scRNA-seq and proteomics data and assessed how 
often the observed number of DEGs and DEPs would be detected.

To investigate whether DEGs and DEPs between patients with 
COVID-19 and healthy individuals reflected those of PRSs specific to 
patients with COVID-19, DEG and DEP analysis between cases and con-
trols were performed with the same method described above except 
that statistically significant DEGs were defined with FDR < 0.05 and 
absolute fold change > 2.

Detection of somatic events using genomics data
For the detection of mCAs and LOY from SNP array data, we used the 
MoChA pipeline (18 May 2022)14,49. In brief, IDAT genotype intensity data 
were converted to GTC genotype files and then transformed into VCF 
files with log2 (R ratio) and B allele frequency values to estimate total 
and relative allelic intensities, respectively. Using the phase informa-
tion and log2 (R ratio) and B allele frequency values, MoChA was used 
to detect mCAs and LOY. From the resulting candidates, calls flagged 
as germline copy number polymorphisms and calls that were likely 
germline duplications were removed. For the LOY candidates, XXY and 
XXX samples were filtered out. We additionally removed unclassifiable 
calls and calls with lower cell fraction (<0.01).

We used a previously reported GATK-based pipeline52 to detect 
mt-heteroplasmy from WGS data. To call homoplasmic and heteroplas-
mic variants in mtDNA (the circular genome including 16,569 bp), we 
used a mitochondrial mode implemented in GATK Mutect2. Variants  
with VAF > 0.9 were defined as homoplasmic, and we analyzed 
mt-heteroplasmy satisfying VAF > 0.1.
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Single-cell deconvolution of somatic events
We applied Numbat (version 1.3.0)50 to scRNA-seq data to detect clones 
with mCAs found in SNP array data. Numbat integrated haplotype 
information with allele and expression signals from scRNA-seq data 
to enhance detection of mCAs including CN-LOHs. Expression refer-
ences of the COVID-19 and healthy samples were generated from our 
scRNA-seq data. We specified the profiles of the genotype-based mCAs 
and ran Numbat with parameters init_k = 10 and max_entropy = 1.0.

Using scRNA-seq data from all male samples, we defined cells 
with LOY as cells without expression from the male-specific region 
of the Y chromosome22. As single-cell-based LOY, we then classified 
the male samples as LOY high (cells with LOY > 5%) or LOY low (cells 
with LOY < 5%). The association between LOY and COVID-19 risk was 
evaluated using univariate logistic regression and multivariate logistic 
regression adjusted for age.

For mt-heteroplasmy detected in WGS data, we piled up raw reads 
from the scRNA-seq BAM files and generated SNP-by-cell matrices using 
cellSNP-lite (version 1.2.2)79. Next, we performed clonal assignment of 
each cell using the BinomMixtureVB function (binomial mixture model) 
implemented in vireoSNP (version 0.5.8)80. We included samples in 
which more than 80% of cells showed posterior clonal assignment 
probability > 0.8.

DEG analysis between somatically mutated and normal cells
DEG analysis for CNAs was conducted for mutated and normal  
cells from the same samples in CH01 and CH05. We used MAST (version 
1.20.0)81 implemented in Seurat, and DEGs were considered significant 
if they satisfied FDR (adjusted P values via the Benjamini–Hochberg 
method) < 0.05 and log2 (fold change) > 0.25 (in CH01) or 0.5 (in CH05). 
For significant DEGs, pathway enrichment analysis was performed 
using the enrichGO function of clusterProfiler67 with parameters 
OrgDb = ‘org.Hs.eg.db’, ont = ‘BP’, pvalueCutoff = 0.05 and pAdjust-
Method = ‘BH’. In the CH05 analysis, immunoglobulin genes were 
excluded from the pathway analysis.

DEG analysis between cells with LOY and normal cells was per-
formed using a pseudobulk approach. Pseudobulk matrices were 
created by aggregating gene counts for each cell type within cells 
with LOY or normal cells in each sample. Genes were included if they 
were expressed in more than 10% of cells. We included samples with 
more than nine cells with LOY and more than nine normal cells in the 
cell type. This analysis was performed using a linear mixed model 
implemented in the lme4 R library (version 1.1.32) with fixed effects 
for age and 10x chemistry and random effects for sample. DEGs were 
considered significant if they satisfied FDR (adjusted P values via the 
Benjamini–Hochberg method) < 0.01 and log2 (fold change) > 0.25. 
Pathway analysis was performed using the same procedure as  
for mCAs.

Differential abundance analysis of LOY
We used Milo (version 1.2.0)37 to test for the differential abundance of 
cells within defined neighborhoods between LOY-high and LOY-low 
samples. This analysis was performed in the same manner as the 
metagenomic analysis. Comparisons of cell proportions between  
LOY-high and LOY-low samples were carried out using two-sided  
Wilcoxon rank-sum test.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes. Data 
distribution was assumed to be normal, but this was not formally tested. 
No data were excluded from the analyses. We did not use any study 
design that required randomization or blinding.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data of scRNA-seq and the protein expression matrix 
are available at the Japanese Genotype–phenotype Archive ( JGA) 
with accession codes JGAS000783 and JGAD000925. A part of the raw 
scRNA-seq data (nCOVID-19 = 73, ncontrol = 75)44,47 has already been deposited 
and is available under controlled access at JGA with accession codes 
JGAS000593, JGAS000543, JGAD000662 and JGAD000722. All raw 
scRNA-seq data can also be accessed by applying at the NBDC with 
the accession code hum0197. Participant genotype data are available 
at the European Genome–Phenome Archive with the accession code 
EGAS00001008016. sc-eQTL summary statistics are available at the 
NBDC under accession ID hum0197 and are also available in an inter
active browser at https://japan-omics.jp/. OneK1K genotype data were 
obtained from the Gene Expression Omnibus (GSE196830). Processed 
OneK1K scRNA-seq data (h5ad file) were obtained from the Human Cell 
Atlas (https://explore.data.humancellatlas.org/projects/f2078d5f-
2e7d-4844-8552-f7c41a231e52). OneK1K eQTL summary statistics were 
obtained from https://onek1k.org/.

Code availability
The codes used in this study are shared on GitHub (https://github.
com/REdahiro/OASIS_project and https://github.com/tatsuhikonaito/
OASIS_HLATCR) and have been deposited at Zenodo (https://doi.
org/10.5281/zenodo.15877644 (ref. 82) and https://doi.org/10.5281/
zenodo.14991132 (ref. 83)).
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Extended Data Fig. 1 | Expression of cell type marker genes and reference-based annotation. (a) Dotplot showing the RNA expression of marker genes of L2 cell 
types. (b) Comparison of our manual PBMC annotation (L2 cell types) vs an automated annotation performed by scPred32 with Azimuth27 (L2) as a reference.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02266-3

Extended Data Fig. 2 | The effect of sample sizes and cell counts per sample on 
eQTL discovery in OASIS and OneK1K. (a) Scatter plot depicting the correlation 
between median number of cells per sample and number of detected significant 
eGenes in each cell type of OASIS. Both x-axis and y-axis are on log10 scale.  

(b) Co-plots of the number of eGenes between OASIS and OneK1K6 in 
corresponding cell types. (c,d) The number of eGenes by down-sampling for 
combinations of sample sizes and cell counts per sample in OASIS (c) and OneK1K 
(d) at L1 level.
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Extended Data Fig. 3 | Comparison of cis-eQTLs between OASIS and OneK1K 
in the corresponding 10 cell type pairs. (a) The replicated ratio of eQTLs 
between the two cohorts in the corresponding 10 cell type pairs. (b) Distribution 
of difference of minor allele frequency (MAF) between East Asian (EAS) and 
European (EUR) of cis-eQTLs according to with/without cross-population 
eQTL replication for each cohort in naive CD4+ T cells. (c) Pairwise sharing by 

magnitude of eQTLs between the two cohorts in the corresponding 10 cell type 
pairs according to four thresholds of factor. (d) Distribution of difference of MAF 
between EAS and EUR of cis-eQTLs according to with/without cross-population 
eQTL sharing for each cohort in naive CD4+ T cells. MAF from both ancestries was 
calculated from high-coverage 1000 Genome Project phase 3 in (b) and (d).
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Extended Data Fig. 4 | Genome-wide association analysis for TCR/BCR 
repertoire features. Manhattan plots for the representative results for genome-
wide association analysis for TCR/BCR repertoire features, including PC2 for 
TRAV gene usage (a), PC1 for TRBV gene usage (b), TRBD1/2 usage (c), and PC1 for 
TRBJ gene usage (d) as TCR features in CD4+ T cells and PC2 for IGHV gene usage 
(e), PC1 for IGHD gene usage (f), PC1 for IGKV PC1 (g), and PC1 for IGLJ gene usage 

(h) in entire B cells and mean of somatic hypermutation (SHM) in IGK (i) and CV 
of SHM in IGL (J) in naive1 B cells as BCR features. The red horizontal line indicates 
the study-wide significance threshold (P = 2.0 × 10−9 and 1.6 × 10−9 for TCR and 
BCR repertoire features, respectively). Uncorrected P values from the GWAS 
analysis are shown in (a-j).
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Extended Data Fig. 5 | Properties of dynamic eQTLs and pathways 
representing cell-state of each PC. (a) Number of genes with a significant or 
non-significant genotype-module interaction in a linear or quadratic mixed 
model for the two gene modules. (b) Distribution of the number of significant 
dynamic eGenes in 1,000 times permuted data for each combination of modules 
and analysis models. Pink dotted line represents the number of dynamic eGenes 
observed. (c) Forest plots showing odds ratios of overlap of dynamic eQTLs with 
functional regions in Monocytes from Roadmap project35 compared to cis-eQTLs 

in L2 cell types of myeloid cluster for each combination of functional region 
and analysis model. Dots represent the odds ratios and bars represent the 95% 
confidence intervals. Two-sided P values are uncorrected. (d) The top 3 enriched 
pathways of the genes which were correlated with each PCs ( > 0.1 absolute 
value). Dot color indicates the statistical significance of the enrichment (adjusted 
P values via the Benjamini–Hochberg method), and dot size represents gene ratio 
annotated to each term.
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Extended Data Fig. 6 | Colocalizations of GWASs in East Asian population and 
cis-eQTLs in OASIS. (a) Number of colocalizing eGenes shared among different 
autoimmune and blood-related traits. Bar plots indicating the number of genes  
in each set. eGenes colocalizing in only one trait are colored by pink, and those  
in multiple traits are connected by lines and colored by gray. (b) Colocalizations 
of GWAS variants in East Asian population and cis-eQTLs in OASIS for 6 traits  

with more than 10 colocalizations. Heatmap depicting PP.H4 from coloc75.  
Cell types of major cell type (L1) are colored by red. GWAS abbreviations:  
CD, Crohn’s disease; Hosp-COV, hospitalized COVID-19; HT, hyperthyroidism; 
IBD, inflammatory bowel diseases; LYM, lymphocyte count; MON, monocyte 
count; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, type 1 
diabetes; UC, ulcerative colitis.
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Extended Data Fig. 7 | The effects of polygenic risk score on transcriptome  
and proteome. (a) The differential gene expression analysis with 4 quantiles  
of hospitalized COVID-19 polygenic risk score (PRS) in monocytes separately  
for COVID-19 patients and healthy subjects. Differentially expressed genes 
(DEGs; FDR < 0.1) are colored in light blue and labeled by gene symbols if  
P values < 1×10−4. (b) The differential protein expression analysis with 4 quantiles  
of hospitalized COVID-19 PRS in plasma proteome separately for COVID-19 
patients and healthy subjects. Differentially expressed proteins (DEPs; FDR < 0.1) 
are colored in light blue. (c) The differential gene expression analysis with  
4 quantiles of hospitalized COVID-19 PRS in monocytes for all samples. DEGs 
between patients and healthy controls (FDR < 0.05 and absolute fold change 

(FC) > 2) are colored in red. (d) The differential protein expression analysis with  
4 quantiles of hospitalized COVID-19 PRS in plasma proteome for all samples.  
Top 250 significant DEPs between patients and healthy controls (FDR < 4.0×10−22) 
are colored in red. Uncorrected P values are shown in (a-d). (e) The effect of PRS 
for 7 autoimmune and blood-related traits on transcriptomics and proteomics 
levels separately in patients with COVID-19 and healthy subjects. One-sided  
P values were calculated with 1,000 permutations for number of DEGs and DEPs. 
GWAS abbreviations: CD, Crohn’s disease; IBD, inflammatory bowel diseases; 
LYM, lymphocyte count; MON, monocyte count; RA, rheumatoid arthritis;  
SLE, systemic lupus erythematosus; UC, ulcerative colitis.
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Extended Data Fig. 8 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02266-3

Extended Data Fig. 8 | Characterization of the cells carrying mCAs.  
(a) Fractions of the mutant cells carrying each copy number alterations (CNA) 
event (left) and those of the mutant cells carrying each copy-neutral loss of 
heterozygosity (CN-LOH) event colored by setting of sequencing (right).  
(b) Heatmaps showing the in-sample odds ratios of each subcluster (L2) 
containing the CNA cells in CH01 (top) and CH05 (bottom). (c) Differential gene 
expression (DEG) analysis between the somatically mutant and normal cells for 
1p_Loss monocytes (left), 15q_Gain monocytes (middle), and 17q_Gain B cells 
(right). DEGs are colored in light blue (downregulated) or pink (upregulated), 

and DEGs on the corresponding chromosomal regions are colored in navy or red. 
DEGs were significant if they satisfied FDR (adjusted P values via the Benjamini-
Hochberg method) < 0.05 and log2 fold change > 0.25 (in CH01) or 0.5 (in CH05). 
(d-g) Top ten enriched biological pathways of the downregulated DEGs in  
1p_Loss monocytes (d), the downregulated DEGs in 15q_Gain monocytes (e),  
the downregulated DEGs in 17q_Gain B cells (f), and the upregulated DEGs in  
17q_Gain B cells (g). Dot color indicates the statistical significance of the 
enrichment (adjusted P values via the Benjamini-Hochberg method), and  
dot size represents gene count annotated to each term.
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Extended Data Fig. 9 | BCR clonotype of the somatically mutant cells in CH05. 
(a) Network plots showing the similarity of CDR3 amino acid sequence in BCR 
heavy and light chain from all the samples (n = 235), colored by sample (left), cell 
type (middle), and isotype (right). The somatically mutated CH05 clonotype 
was surrounded by a plink dotted line. Clonotype clusters with clonal size ≥ 10 

are selected. (b) Reactivity of antibodies against SARS-CoV-2 antigens in ELISA. 
The dots denote the mean and error bars do standard deviation measured in 
triplicate. S309, anti-SARS-CoV-2 S IgG1; CH05, recombinant antibody derived 
from the CH05 BCR clone; nCoV396, anti-SARS-CoV-2 N IgG1; 23B12, anti-Candida 
albicans IgG1.
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Extended Data Fig. 10 | Characterization of the LOY cells. (a) Differential 
expression gene (DEG) analysis between the loss of the Y chromosome (LOY)  
and normal cMonoIL1B. DEGs were significant if they satisfied FDR (adjusted  
P values via the Benjamini-Hochberg method) < 0.01 and beta > 0.25 and colored 
in light blue (downregulated) or pink (upregulated). (b) Beeswarm plot and box 
plot describing the distribution of adjusted log2 fold change between the LOY 
high and LOY low healthy controls in neighborhoods from 28 cell types (L2). 

Nodes are neighborhoods, colored by their log2 fold change adjusted by age and 
sequencing group. (c) Box plots showing the proportions of each cell type in the 
LOY high and LOY low COVID-19 patients. Wilcoxon two-sided uncorrected  
P values are shown if they satisfied < 0.05. The boxes denote the interquartile 
range (IQR), the median is shown as the vertical bars, and the whiskers extend to  
1.5 times the IQR in (b,c).
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 Raw sequencing data of scRNA-seq and the protein expression matrix are available at the Japanese Genotype-phenotype Archive (JGA) with accession codes 
JGAS000783 (https://ddbj.nig.ac.jp/search/entry/jga-study/JGAS000783)/JGAD000925 (https://ddbj.nig.ac.jp/search/entry/jga-dataset/JGAD000925). A part of the 
raw scRNA-seq data (nCOVID-19 = 73, nControl = 75) has already been deposited and is available under controlled access at JGA with accession codes JGAS000593/
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the accession code EGAS00001008016 (https://ega-archive.org/studies/EGAS00001008016). The sc-eQTL summary statistics are available at NBDC accession ID 
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were obtained from Gene Expression Omnibus (GSE196830). The processed OneK1K scRNA-seq data (h5ad file) was obtained from Human Cell Atlas (HCA) (https://
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Reporting on sex and gender We estimated genotype-based sex for all 235 samples. Out of these, 149 were male, and 86 were female, which were 
consistent with self-reported gender.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We estimated all 235 samples were Japanese, based on the principal component analysis with the HapMap project samples 
and the Biobank Japan project samples using the genotyping array data.

Population characteristics COVID-19 patients (n = 88) are Japanese, the mean age was 64, 73.9% were male, and all of them were tested positive for 
PCR test. COVID-19 patients were further categorized into groups of moderate (n = 9) and severe (n = 79) according to 
disease severity based on WHO guidelines. Healthy controls (n = 147) are of Japanese, the mean age was 37, 57.1% were 
male. Detailed cohort demographics are available in Supplementary Table 1.

Recruitment We recruited the hospitalized cases diagnosed as COVID-19 by physicians using the clinical manifestation and PCR test 
results, who were recruited from July 2020 to February 2022 at Osaka University. We included all COVID-19 cases treated at 
Osaka University who gave consent for the study. Thus, there is little selection bias. All healthy subjects were recruited at 
Osaka University.

Ethics oversight This study was approved by the ethical committee of Osaka University Graduate School of Medicine. 
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Sample size The sample size was not predetermined and all samples that were available were processed. We recruited 88 COVID-19 cases and 147 healthy 
controls.

Data exclusions Low quality cells: 
Cells that had fewer than 1st percentile of UMIs or greater than 99th percentile of UMIs in each sample, as well as cells that contained greater 
than 10% of reads from mitochondrial genes or Hemoglobin genes, were considered low quality and removed from further analysis.  
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Cells labeled as doublets by Scrublet or scds were excluded from the analysis. 
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Red blood cells and platelets: 
Cells manually annotated as red blood cells or platelets were excluded from the analysis.

Replication sc-eQTL of our cohort were compared with previously published bulk datasets in Japanese (i.e., ImmuNexUT) and sc-eQTL resources in 
European (i.e., OneK1K) for each corresponding cell type independently. 

Randomization We investigated two major groups; "COVID-19 patients" and "Healthy subjects". 
COVID-19 patients were further categorized into groups of moderate and severe according to disease severity based on WHO guidelines. 
Randomization was not applicable to this study.

Blinding We did not apply blinding of the samples because no intervention was conducted in our study and our study was not case-control one.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The following antibodies were used in ELISA: 

- Recombinant monoclonal antibody reconstituted from the BCR of a 17q gain B cell clone from a COVID-19 patient (in this study, 
detailed in Methods)  
- anti-SARS-CoV-2 S protein, clone S309 (Pinto et al., Nature 2020, doi:10.1038/s41586-020-2349-y) 
- anti-SARS-CoV-2 N protein, clone nCoV396 (Kang et al., Nat Commun. 2021, doi:10.1038/s41467-021-23036-9) 
- anti-Candida albicans, clone 23B12 (Takeda et al., J Allergy Clin Immunol. 2019, doi: 10.1016/j.jaci.2018.07.006) 
- Goat anti-human IgG-HRP (Southern Biotech, cat. no. 2040-05)

Validation The high purify of in-house recombinant antibodies was validated by SDS-PAGE. 
Monoclonal antibodies, S309, nCoV396 and 23B12 were validated by previous publications for specificity.  
Goat anti-human IgG-HRP antibody (Southern Biotech, cat. no. 2040-05) was validated by the manufacturers for specificity by each 
production lot. 

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Expi293F (Thermo Fisher)

Authentication None.

Mycoplasma contamination Cell lines were negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

None.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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