u

) <

The University of Osaka
Institutional Knowledge Archive

Title Deciphering state-dependent immune features from
multi-layer omics data at single-cell resolution

Author (s) gfahirol Ryuya; Sato, Go; Naito, Tatsuhiko et

Citation |[Nature Genetics. 2025, 57(8), p. 1905-1921

Version Type|VoR

URL https://hdl. handle.net/11094/102930

This article is licensed under a Creative
rights Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



nature genetics

Article

https://doi.org/10.1038/s41588-025-02266-3

Deciphering state-dependentimmune
features from multi-layer omics dataat

single-cellresolution

Received: 18 May 2024

Accepted: 16 June 2025

A list of authors and their affiliations appears at the end of the paper

Published online: 28 July 2025

W Check for updates

Current molecular quantitative trait locus catalogs are mostly at bulk
resolution and centered on Europeans. Here, we constructed animmune
cell atlas with single-cell transcriptomics of >1.5 million peripheral

blood mononuclear cells, host genetics, plasma proteomics and gut
metagenomics from 235 Japanese persons, including patients with

coronavirus disease 2019 (COVID-19) and healthy individuals. We mapped
germline genetic effects on gene expression withinimmune cell types and
across cell states. We elucidated cell type- and context-specifichuman
leukocyte antigen (HLA) and genome-wide associations with T and B cell

receptor repertoires. Colocalization using dynamic genetic regulation
provided better understanding of genome-wide association signals.
Differential gene and protein expression analyses depicted cell type- and
context-specific effects of polygenic risks. Various somatic mutations
including mosaic chromosomal alterations, loss of Y chromosome and
mitochondrial DNA (mtDNA) heteroplasmy were projected into single-cell
resolution. We identified immune features specific to somatically

mutated cells. Overall,immune cells are dynamically regulated inacell
state-dependent manner characterized with multiomic profiles.

Human omic technologies project biological mechanisms and disease
pathophysiology into multi-layered matrix information with diverse
resolutions. Integrative omics analysis anchored by germline genetic
variants leveraged molecular quantitative trait locus (mQTL) cata-
logs'. Multi-layered mQTL catalogs synergistically answered functional
annotation of the variants and filled the path from large-scale human
disease genetics (that is, genome-wide association studies; GWASs)
to outcome clinical phenotypes® . Such efforts initially started with
bulk RNA expression profiles** and have expanded to include highly
diverse layers such as proteomics* and metagenomics’. Of these, recent
technological advancesin single-cell RNA sequencing (scRNA-seq) have
successfully elucidated cell state heterogeneity in a variety of tissues
and environments'?. Genetic association mapping with scRNA-seq
profiling could capture continuous genetic effects along cellular states
across discrete cell types and provide more granular insights into the

molecular mechanisms of human trait-associated genetic variants® .

Nevertheless, current single-cell expression QTL (sc-eQTL) resources
are mostly centered on European ancestry®®'®, which rationalizes the
need to construct multi-layered omics with single-cell resolution in
non-European ancestries.

Asacommon but overlooked human mQTL layer, we additionally
propose a value of using somatic genetic variations, which have been
studied mainly in the field of cancer. Clonally expanded blood cells
with somatic mutations or clonal hematopoiesis (CH) are common
in apparently healthy individuals* and increase the risk not only
for hematological malignancies'® ™ but for a variety of benign disor-
ders, including cardiovascular disease'*° and infectious diseases™*.
However, the biological mechanisms underlying the associations
between CH and benign disorders remain unknown. Refining somatic
mutation spectra with finer resolution, namely, single cells, should
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especially contribute to deciphering biological mechanisms and
driver-or-passenger discussions® 2, and there is definitely agrowing
interest in using multi-layer omics to elucidate the mechanisms of
phenotypic effects of somatic events.

To interpret cell state-dependent biological phenomena
by deconvoluting immune features from multi-layer human
omics into single-cell resolution, here we constructed a multiomic
immune cell atlas, the Osaka Atlas of Immune Cells (OASIS), from
235 Japanese persons including patients with COVID-19 and healthy
individuals. The 5’ single-cell transcriptomics data profiling over
1,500,000 peripheral blood mononuclear cells (PBMCs), which are
characterized by alarge number of cells per sample and the inclusion of
cells under in vivo immunological stimulation by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, resulted
in covering a variety of cell states. OASIS links these single-cell tran-
scriptomics data with host genetics, plasma proteomics and meta-
genomics data.

We mapped the germline genetic effects on gene expression
within cell types and across cell states. We also investigated HLA and
genome-wide associations with variable-diversity—joining (VD]) gene
usage according to clinical status and cell types. To interpret GWAS
results, we then conducted colocalization analysis of GWAS signals
and our eQTLs and differential gene and protein expression analysis
with polygenic risk scores (PRSs) across clinical status and cell types.
In addition, by leveraging whole-genome sequencing (WGS) and SNP
genotyping, we captured various somatic mutations such as mosaic
chromosomal alterations (mCAs), loss of the Y chromosome (LOY)
and heteroplasmy in mtDNA (mt-heteroplasmy) at single-cell resolu-
tion. We evaluated the immune features of somatically mutated cells,
which were characterized as cell type-specific clonal expansions. We
assessed the reactivity of clonally expanded mCAs in a patient with
COVID-19 against major SARS-CoV-2 antigens using B cell receptors
(BCRs). We also evaluated the effect of the gut microbiome on the dif-
ferential abundance of peripheral immune cells based on a cell-cell
similarity structure.

Theseintegrative analyses at single-cell resolution demonstrated
thatimmune cells were dynamically regulated ina cell state-dependent
manner defined by the features of multi-layer omics. Our non-European,
multi-layered and diversified immune single-cell atlas will contribute
to equity in global diversity of human genomics and will be a valuable
resource to understand complex human traits.

Results

The OASIS cohort with multi-layered single-cell omics

The OASIS cohort consists of 88 patients with COVID-19 and 147 healthy
individuals of Japanese ancestry with multiomics data ofimmune cells
(n=235;Fig.1a, Supplementary Fig.1a,b and Supplementary Table 1).
We performed scRNA-seq and single-cell VD) sequencing (scVDJ-seq)
on 2,059,141 PBMCs using the 10x Genomics Chromium platformand
obtained 1,506,953 high-quality cells (Methods and Supplementary
Fig.1c). We manually annotated cells based on RNA expression of known
marker genes”*', We first defined seven major cell types (L1) according
tothe Azimuth L1annotation (Fig. 1b)?. Next, we further identified 28
cellstates (L2) and annotated ten cell types (Lonei) for comparison with
OneKIK® (Fig. 1b, Extended Data Fig. 1aand Supplementary Table 2). We
verified our manual fine annotation using scPred® with the Azimuth
L2 annotation as aref. 27, which showed high concordance (Extended
DataFig.1b).

We generated WGS data for eQTL analysis and detecting
mt-heteroplasmy and SNP array data for detecting mCAs from all
samples (Methods). We measured the expression of 2,925 plasma
proteins with the Olink assay for 227 samples. We also performed
whole-genome shotgun sequencing analysis of 131 fecal DNA
samples from healthy individuals and obtained phylogenetic relative
abundances.

Immune cell type-specific single-cell cis-eQTL mapping

To evaluate the genetic regulation of gene expression in immune
cells, we first performed single-cell cis-eQTL analysis with WGS data
using the pseudobulk approach. We tested for association between
expressed genes and genetic variants located within 1 Mb of the tran-
scription start site in each of seven major cell types (L1) and 28 fine
celltypes (L2). We also mapped conditionally independent cis-eQTLs.

In total, we identified 23,443 and 34,297 eQTLs in L1 and L2, of
which 19,641 and 30,802 were primary cis-eQTLs (Fig. 2a and Supple-
mentary Table 3). We detected 488-4,901 (median = 3,176) genes with
significant cis-eQTL effects (eGenes) inL1and 93-4,062 (median = 862)
eGenesinL2,andthe number of eGenes varied widely across cell types.
We observed a strong association between the number of eGenes and
that of cells per sample of the corresponding cell types as previously
reported®® (Extended Data Fig. 2a). Primary significant eQTL effect
sizes were negatively correlated with the number of cells per sample
of the corresponding cell types (Fig. 2b). Surprisingly, the numbers
of primary eQTLs detected per cell type in this cohort were equal
to or greater than those of OneK1K®, which has about four times as
many samples as our cohort (Extended Data Fig. 2b and Supplemen-
tary Table 4). Therefore, we extensively evaluated the relationship
between sample size and cell counts per samplein cis-eQTL discovery
by downsamplingbothat L1. The number of discovered eQTLs showed
alinear decrease when downsampling the rate of cell counts per sam-
ple as well as sample sizes, and a similar relationship was observed in
OneK1K (Extended Data Fig. 2c,d). These observations imply that the
statistical power to detect eQTLs is highly dependent on the number
of cells profiled.

Next, we evaluated how much eGenes were shared across cell
types. We observed that 3,422 of 8,047 eGenes were cell type specific,
whereas 1,214 eGenes were shared by more than five cell types in L1
(Fig.2c and Supplementary Table 5).In L2, 2,613 of 7,386 eGenes were
significantinonly one cell type. We also compared eQTL effects among
cell types and observed a high level of eQTL sharing especially within
the same lineages (T and natural killer, B and myeloid cells; Fig. 2d
and Supplementary Table 6). We compared the effects of significant
eQTLstothe bulk eQTL dataset fromJapanese individuals*and found
high concordance (Supplementary Fig. 3 and Supplementary Table 7).

We compared cis-eQTLs from our cohort with those from
OneK1K® consisting of Europeans using the multivariate adaptive
shrinkage method** (Methods). The significant eQTLs in OneK1K
were more likely to be replicated in the corresponding cell types of
OASIS than those in OASIS (Extended Data Fig. 3a), which was more
pronounced in cell types, with a higher number of eGenes in OASIS
thanin OneKIK.In naive CD4" T (CD4,) cells, eQTLs that were not rep-
licated in the other cohort showed larger differences in minor allele
frequency (MAF) between East Asian and European populations than
replicated eQTLs (Extended Data Fig. 3b). The direction of significant
eQTL effects was almost the same in the other cohort across all cell
types (Extended DataFig.3c). The median proportions of shared eQTLs
by magnitude in the other cohort for ten cell type pairs were 34.3%
for OASIS eQTLs and 69.3% for OneK1K eQTLs when the factor was
set to 0.5 (Extended Data Fig. 3c and Supplementary Table 8). Similar
to the replication, eQTLs in CD4, cells that were not shared between
the two cohorts tended to show larger differences in MAF between
East Asian and European populations than shared eQTLs (Extended
Data Fig. 3d). These results suggest the importance of constructing
sc-eQTL resources from different populations with larger sample sizes.

We annotated significant eQTLs using chromatin state predic-
tions from eight immune cell types of the Roadmap Epigenomics pro-
ject®. Primary eQTLs were enriched in both promoter and enhancer
regions of Roadmap immune cells. However, enrichment of eQTLs
in promoter regions was shared among cell types, whereas that in
enhancer regions was more cell type specific (Fig. 2e and Supplemen-
tary Table 9). When primary eQTLs were stratified by effect sizes,
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Fig.1| Overview and scRNA-seq data of OASIS. a, Overview of the study design.
SLE, systemic lupus erythematosus. b, UMAP embedding of scRNA-seq data for
1,506,953 cells. Seven major cell types and 28 fine cell types were defined by RNA
expression of marker genes (Extended Data Fig. 1a). B, activated B cell; B .o,
memory B cell; By, type 1 naive B cell; By,, type 2 naive B cell; BIN, intermediate

B cell; CD4y,, CD4" cytotoxic T celle; CD4+cy, CD4" central memory T cell;
CD4+y, CD4" effector memory T cell; CD8y,, CD8" cytotoxic T cell; CD8y, naive

CDS8' T cell; CD8¢y, CD8* central memory T cell; CD8+y,, CD8" effector memory
T cell; cDC, conventional dendritic cell; cMono, classical monocyte; cMonolL1B,
IL1B cMono; cMonog;o4, SIO0A cMono; intMono, intermediate monocyte; MAIT,
mucosal-associated invariant T cell; Mono, monocyte; ncMono, non-classical
monocyte; NK, natural killer cell; NK.,,,, cytokine NK cell; pDC, plasmacytoid
dendritic cell; Pro_T, proliferating T cell; T,.,, regulatory T cell. Panel a created
with BioRender.com.
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Fig. 2| Germline genetic variants and the gut metagenome affect
transcriptional and phenotypic profiles ofimmune cells. a, Number of
significantindependent eQTLs in each cell type of L1and L2 levels. The bars are
colored by cluster resolution (L1 or L2 level) and shaded by independence of eQTL
mapping. DC, dendritic cell. b, Scatterplot depicting the correlation between
median number of cells per sample and median effect size of significant eQTLs
ineach cell type. The x axisis onalog,, scale.c, Number of significant eGenes
shared among cell typesin the L1level. eGenesidentified in only one cell type
are colored pink, and those in multiple cell types are connected by lines and
colored gray. d, Heatmap showing a pairwise comparison of eQTL effect size.
Only significant eQTLs in one cell type (reference) that could be evaluated in
other cell types (target) were analyzed. e, Heatmap depicting the enrichment
of primary significant eQTLs of L2 cell types in promoter or enhancer regions
of eight representative immune cells from the Roadmap project. f, Box plot

showing the enrichment of primary eQTLs in promoters or enhancers of the
corresponding cell types (n = 28) from the Roadmap project, according to effect
sizes (Methods). g, Graphical representation of neighborhoods identified by Milo
in healthy individuals (n =131). Nodes are neighborhoods, colored by log, (fold
change (FC)) by the relative abundance of R. gnavus adjusted for age, sex and
sequencing groups. Sizes correspond to the number of cells in aneighborhood.
Graph edges depict the number of cells shared between adjacent neighborhoods.
Nhood, neighborhood. h, Beeswarm plot and box plot showing the distribution
ofadjusted log, (FC) in neighborhoods (n = 43,089) by the relative abundance

of R.gnavus among L2 cell types. Colors are represented in the same way asin g.
Boxes denote theinterquartile range (IQR), medians are shown as horizontal bars,
and whiskers extend to 1.5 times the IQR in f,h. N, naive; TCM, central memory
Tcell; TEM, effector memory T cell; CTL, cytotoxic T cell; N1, type 1 naive;

N2, type 2 naive; IN, intermediate; Cyto, cytokine; Act, activated; corr, correlation.
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promoter enrichment was more predominant at larger effect sizes
of eQTLs, but enhancer enrichment was similar regardless of effect
sizes (Fig. 2f). Considering that more than 60% of causal variants in
autoimmune diseases map to immune cell enhancers?, this result
motivates us to identify more eQTLs in enhancer regions that do not
necessarily have large effect sizes.

Gut bacterial abundance is associated withimmune
cellabundance

To reveal the sets of immune cells that were differentially abundant
with bacterial abundance at finer resolution, we performed differential
abundance analysis using single-cell neighborhoods (Milo)¥. In this
analysis, we focused on the following three species, all of which had
significant associations with more than two cell types in the propor-
tional analysis (Supplementary Fig. 5a) and have been reported to be
involved in human diseases: Ruminococcusgnavus®, Prevotella copri®”
and Bacteroides vulgatus*®. We identified 43,089 neighborhoods among
PBMCs, none of which showed significant differential abundance with
R.gnavus abundance (Fig. 2g). However, the increase in R. gnavus was
accompanied by anincrease of rare cell types (that is, CD4" cytotoxic
T cells, activated B cells and plasmablasts (PBs)), along with an increase
incelltypes of the myeloid cluster (Fig. 2h). Similarly, differential abun-
dance analysis revealed that the increase in P. copri was associated
withanincreasein PBs and plasmacytoid dendritic cellsand adecrease
in CD4" cytotoxic T cells (Supplementary Fig. 5b,c). Such differential
abundances were consistent with results of the proportional analysis,
demonstrating robustness. These findings highlight that integrative
omicsanalyses anchored by single-cell data allow us to detect biological
phenomenathat could not be captured by conventional bulk analyses.

HLA and genome-wide associations with immune repertoires
We performed scVDJ-seq to construct a catalog of T cell receptor (TCR)
and BCRrepertoires, including usage of each gene across different cell
types (Supplementary Fig. 6). We explored the relationship between
HLA and the TCRrepertoire, characterized by specific cell types. We
assessed associations between HLA amino acid variantsand TCRV gene
usage, including TRAV and TRBV. We identified significant associations
between TRAV genes and HLA amino acid variants bothin HLA class |
andllgenes. Specifically, TRAV genes were associated with HLA class |
and llgene variants exclusively in CD8" T and CD4 cells, respectively
(P<1.1x107%Fig. 3a,b). These results align with the well-known pat-
tern of HLA restriction on TCRs according to T cell subpopulations**%,
Furthermore, in comparisons among CD4" T cell subpopulations,
the associations between TRAV genes and HLA class Il gene variants
appeared stronger in CD4, cells than in entire (that is, CD4" T) and
central memory CD4" T cells (Fig. 3b). This might reflect the stronger
HLA restriction on the TCR repertoire formed at the central level
(thatis, in the thymus) than that formed at the peripheral level*’.

We explored the impact of HLA variation on the TCR repertoire
in response to COVID-19. We observed significant interactions, par-
ticularly those for HLA class I gene variants and TRAV gene usage in
CDS8" T cells (P<2.1x107% Fig. 3¢). This may reflect the generation
of different TCR repertoire in SARS-CoV-2 infection according to
HLA classIvariationin CD8" T cells.

Additionally, we investigated the association of genome-wide
variants with the TCR repertoire, focusing on integrative features
representing repertoire variation (Methods). Furthermore, we
extended this analysis to TCR D and ] genes, as the genetic association
with these genes has been underexplored. We identified a significant
association between class IlHLA loci with principal component (PC)2
for TRAV gene usagein CD4'T cells as well as PC1for TRAV gene usage
in CD4, cells (P <2.0 x107%; Fig. 3d, Extended Data Fig. 4 and Supple-
mentary Table11).

Lastly, we conducted the same repertoire feature-wide association
analysis for BCRs. We detected significant associations between PCs for

severalimmunoglobulin gene usages and variantslocated within these
genes (P<1.3 x107%; Fig. 3e, Extended Data Fig. 4 and Supplementary
Table 12). Furthermore, somatic hypermutation (SHM)-related features
for K and L chains were significantly associated with variants in the
IGKV and IGLV genes (Fig. 3e and Extended Data Fig. 4). The stronger
associationsin naive B cells may be explained by the observation that
SHMsinmemory cells are more likely to be shaped by exposures, which
can weaken the genetic effects.

Dynamic eQTL effects across two immune-related
gene modules
To evaluate the dynamic genetic regulation of gene expression
along continuous cell states, we investigated the dynamic effects of
eQTLsinthe myeloid cluster across the two gene modules related to
immunity and COVID-19 severity'>**** (Fig. 4a). Module 1 was highly
correlated with uniform manifold approximation and projection
(UMAP)1and module 2 with UMAP2, representing different cell states.
To model dynamic eQTLs, the gene modules were divided into ten
bins, and the average expression profiles per individual in each bin
were reconstructed for each module (Fig. 4a and the Methods). We
evaluated dynamic eQTLs by testing the interaction between geno-
type and quantile rank using both linear and quadratic models for
the two modules, respectively®®. We identified 530 and 568 genes
with dynamic eQTL effects (deGenes) across modules 1and 2 from
robust candidates, respectively (Methods). Of these deGenes, 352
(66.4%) and 393 (69.1%) showed dynamic eQTL effectsin bothlinear
and quadratic models, and 134 (25.3%) and 117 (20.6%) did only in
the quadratic model for modules 1 and 2 (Extended Data Fig. 5a).
Moreover, more than half of deGenes (324 in module 1and 362 in
module 2) were module specific (Fig. 4b), and the enriched pathways
of module-specific deGenes were related to innate immunity in mod-
ule1and antigen presentation in module 2 (Fig. 4c). We confirmed
that the model was well calibrated by 1,000 permutations (Extended
Data Fig. 5b and the Methods).

We annotated dynamic eQTLs using the Roadmap data® as we
did for cis-eQTLs. Dynamic eQTLs showed monocyte-specific enrich-
ment in both promoters and enhancers (Fig. 4d and Supplementary
Table 16) but distinctly from that of cis-eQTLs (Fig. 2e). Next, we
compared enrichment of dynamic eQTLs and cis-eQTLs inmonocytes
(L1) in promoters and enhancers of monocytes. In both modules,
dynamic eQTLs were more enriched for enhancers and less for pro-
moters than cis-eQTLs (Fig. 4e and Supplementary Table 17). Similar
results were observed in the comparison of dynamic eQTLs and
cis-eQTLs in subclusters (L2) of the myeloid cluster (for example,
plasmacytoid dendritic cells; Extended Data Fig. 5¢). We investi-
gated deGenes for which dynamic eQTLs were located in functional
regions, but cis-eQTLs of any cell type of the myeloid cluster were not
(Methods). Pathway enrichment analysis of such deGenes across
modules and functional categories indicated that pathways related
to Toll-like receptor were enriched in module 1 and those related to
antigen presentation were enriched in module 2, and their enrich-
ment pattern varied between promoters and enhancers within each
module (Fig. 4f).

Modeling dynamic eQTLs at single-cell resolution

We performed dynamic eQTL analysis at single-cell resolution
(Fig. 4aand the Methods). As an example, we observed the strong cell
state-dependent eQTL effect of rs11080327 for SLFNS5 specifically at
specific states within classical monocytes (cMono; Fig. 4g), capturing
the gene regulatory mechanism with higher resolution than previ-
ously reported’. Among 15 hPCs, hPC14, whichrepresented a cell state
related to the type 1interferon pathway, showed the most significant
cellstateinteraction (Fig. 4g and Extended Data Fig. 5d), consistent with
results in the dynamic eQTL analysis with the pseudobulk approach.
Similarly, eQTLs for NFKBIZ and IFITM2 (rs9818678, rs741738) exhibited
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Fig. 3| HLA and genome-wide association analysis with TCRand BCR
repertoires. a, Regional plots for HLA association with TRAV gene usage in CD4"
T (left), CD4y (center) and CD8* T (right) cells. In each plot, —log,, (P values) for
the association tests between amino acid variants of each HLA gene and all tested
TRAV gene usages are shown along with the horizontal axis representing amino
acid positions. The dashed red horizontal line represents the study-wide P-value
significance threshold. b,c, Quantile-quantile plots for the association (b) and
interaction (c) tests between HLA amino acid variants and TRAV gene usage in
HLA class | (left) and Il (right) genes in different cell types. Vertical and horizontal

axesindicate the observed and expected -log,, (P values) for the tests.

d,e, Heatmaps show the maximum values of —log,, (P values) for the association
tests for repertoire features (horizontal axes) within individual loci (vertical
axes) for TCR (d) and BCR (e) repertoires. The position range for each locus

is determined by the gene body for individual genes and the uppermost and
lowermost gene bodies for multiple genes or gene clusters. Only loci that
exhibited significant associations with a feature in at least one cell type are
displayed. Uncorrected Pvalues from two-sided tests are shownin a-e.

CV, coefficient of variation; freq, frequency; len, length.

significant cell state dependence, but their cell state interactions were
different (Fig. 4g). Expanding eQTL mappinginto single-cell resolution
should yield amore granular picture of dynamic genetic regulation.

Colocalization of GWAS variants and sc-eQTLs

To better understand the genetic regulatory mechanisms of GWAS
loci, we assessed colocalization of GWAS signals from 13 complex
traits in an East Asian population and our eQTL signals mapped per
cell typesin L1 and L2. We discovered GWAS-eQTL colocalization

events (PP.H4 (posterior probability of shared causal variant) > 0.8) at
121 GWAS loci and prioritized 179 candidate trait-associated genes
(Fig. 5a and Supplementary Table 19). About half of these GWAS loci
(55 of 121) showed colocalization within only one major cell type
(Fig.5a), and most prioritized trait-associated genes were trait specific
(Extended DataFig. 6a). Cell types that exhibited colocalization were
prominently specific to the traits (Fig. 5a and Extended Data Fig. 6b).

We nextjointly colocalized dynamic eQTLs with GWAS loci. Asan
example, rs2841281, the lead SNP for systemic lupus erythematosus
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GWAS in the PLD4locus, had dynamic eQTL effect only with module 1
(Fig. 5b). While this variant moderately colocalized with some
cis-eQTLs per cell type, it colocalized more strongly with dynamic
eQTLs in two bins of module 1 (posterior probability of shared causal
variant (PP.H4) = 0.95 for bin 6, 0.92 for bin 7; Fig. 5b,c). In addition,
single-cell-resolution eQTL modeling revealed the strongest cell
state-dependent eQTL effectsinthe boundary region between IL1B clas-
sicalmonocytes (cMono,, ;3) and S1I00A classical monocytes (Fig. 5d). As
another example, rs2836884, the lead SNP for ulcerative colitis GWAS
inthe ETS2locus, had amore dynamic eQTL effect with module 1than
module 2 (Fig. 5e). This variant showed nearly perfect colocalization
with dynamic eQTLs in bin 6 of module 1 (PP.H, = 0.99; Fig. 5e,f) and
had heterogeneous cell state-dependent eQTL effects even within
the cell types exhibiting significant colocalization (Fig. 5g). These
observations suggest the importance of considering dynamic eQTLs
tointerpret GWAS signals.

Context- and cell type-specific effects of polygenic risks
Beyond single variants, we exhibited dynamic gene regulation
in a genome-wide manner. We further studied how PRSs affect tran-
scriptomic and proteomic profiles across clinical status and/or cell
types. We constructed PRSs of hospitalized patients with COVID-19
using PRS-CSx*, combining the summary statistics of hospitalized
COVID-19 in Europeans*® and those in Japanese individuals***® as
the training data (Methods). The phenotypic variance (Nagelkerke’s
R?) explained by our PRS in OASIS was 4.1%, confirming that the PRS
had reasonable accuracy. We divided this PRS into four quantiles and
performed differential gene and protein expression analysis with
quantiles of PRSs across clinical status and cell types. We identified
differentially expressed genes (DEGs) in monocytes (n=21) and CD8"
T cells (n=2) from COVID-19 scRNA-seq and differentially expressed
proteins (DEPs) (n =184) from the COVID-19 proteome (P < 0.045
by 1,000 permutations), whereas no DEGs or DEPs were identified in
healthyindividuals (Fig. 5h and Extended Data Fig. 7a,b). We confirmed
that DEGs and DEPs specific to patients did not directly reflect the
DEGs and DEPs between patients and controls (Extended Data
Fig.7c,d). We also investigated the effect of PRSs derived from other
trait GWASs and found that their effects were context and cell type
specific (Extended DataFig. 7e). These findings indicate that PRSs, like
single germline variants, might affect transcriptional and proteomic
profiles in a context-specific and/or cell type-specific manner.

Single-cell profiling of mCAs

To expand our mQTL catalogs to somatic genetic variations, we con-
ducted single-cell deconvolution of avariety of somatic events detected
with genomics data (Fig. 6a). Using SNP array data'**’, we detected
eight copy number alterations (CNAs) and six copy-neutral losses
of heterozygosity (CN-LOHSs) in seven and six samples, respectively

(Supplementary Table 20). By using the individuals’ mCAs as prior
information and applying Numbat®® to the scRNA-seq data, we
could distinguish the mutant cells from their wild-type counterparts
in each sample, except for one patient with COVID-19 containing a
shorter CNA (CH12; Supplementary Table 20). Because the detection
of clone cells with CN-LOH depends on germline SNP alleles embed-
dedin the scRNA-seq raw reads, an increase of such scRNA-seq-based
SNP information improves the sensitivity. We thus performed deep
andlong sequencing by scaling target depths from 20,000 t0 100,000
reads per cell and extending aread 2 length from 90 to 270 bp. Conse-
quently, we profiled 1.8-fold SNPs and identified 2.1-fold more mutated
cells with CN-LOH than with normal sequencing conditions (Extended
Data Fig. 8a). While cells with CN-LOH were moderately enriched in
other T cells, strong cell type specificity of cells with CNA was observed
in two patients with COVID-19 (CHO1and CHOS; Fig. 6b, Extended Data
Fig. 8b and Supplementary Table 21). These two patients also showed
relatively larger fractions of mutant cells (median of 12.3% for three
CNAsin CHOland CHOS5 versus 3.06% for the other four CNAs; Extended
DataFig. 8a).

In CHOL, two clones with different CNAs were enriched in mono-
cytes (1p loss, odds ratio (OR) = 6.6 for monocytes; 15q gain, OR=7.2
for monocytes; Fig. 6b,c). To characterize these clones, we assessed
DEGs between mutant and normal cells in monocytes (Extended
Data Fig. 8c). Most of the downregulated genes in monocytes with
1p loss and the upregulated genes in monocytes with 15q gain were
located within the altered chromosomal regions themselves (that is,
cis), highlighting accurate detection of mutant cells. But some showed
trans-chromosomal DEGs including upregulation of TNFAIP3, one of
the elements of the COVID-19-specific immune response®, in mono-
cytes with 1p loss (Extended Data Fig. 8c). We further evaluated the
enriched pathways of DEGs between mutant and normal clones and
found that immune-related pathways, such as positive regulation of
cytokine production, were significant in mutant clones with 1p loss
(Fig. 6d and Extended Data Fig. 8d,e).

Mutant cells with 17q gain were strongly enriched in B cells in
CHOS5 (OR =350; Fig. 6b,e). Pathway enrichment analysis of DEGs
between mutant and normal B cells showed upregulation of
immune-related pathways and downregulation of response to ster-
oid hormones in mutant cells (Extended Data Fig. 8c,f,g). This sug-
gests that these mutant cells may reduce the effectiveness of systemic
corticosteroid therapy and result in a worse prognosis. Furthermore,
our integrated analysis of scVDJ-seq data identified a considerably
large BCR clonotype with 17q gain in CHOS (clone size = 650; Fig. 6f).
This BCR clonotype was the largest clonotype among all the samples
(median of maximum clone size in each sample = 5) and was mainly
composed of naive B cells, which differed from most expanded clono-
types composed of class-switched PBs (Extended Data Fig. 9a). Using
recombinant antibodies derived from this expanded BCR clonotype,

Fig. 4| Dynamic eQTL analysis in the myeloid cluster. a, Overview of dynamic
eQTL analysis. We calculated the two module scores using a gene set termed
‘HALLMARK_INFLAMMATORY _RESPONSE’ and ‘GOBP_RESPONSE_TO_
INTERFERON_GAMMA' (GO:0034341), respectively (left). Cells were splitinto
ten windows of equal cell numbers according to each module score (middle).
The figure design is based on a previous report®. A linear-and-quadratic mixed
model was applied to test for aninteraction between genotypes and module
scores by the pseudobulk approach. The single-cell negative binomial mixed-
effect (NBME) model was used to identify cell state-dependent regulatory effects
(right). Module 1, M1; module 2, M2. b, Number of eGenes with a significant
genotype-module interaction (thatis, dynamic eGenes) inalinear or quadratic
mixed model for the two modules. ¢, Top ten biological processes by gene
ontology (GO) enriched in dynamic eGenes are shown for each test. MHC,
major histocompatibility antigen; P,q;, adjusted Pvalue. d, Heatmap depicting
the enrichment of dynamic eQTLs in promoter or enhancer regions of eight
representative immune cells from the Roadmap project for each combination

of module and analysis model. e, Forest plots showing ORs of the overlap of
dynamic eQTLs (n =396-510; Supplementary Table 15) with functional regions in
monocytes from Roadmap compared to cis-eQTLs in monocytes at L1 (n = 3,175)
for each combination of functional region and analysis model in two modules.
Dots represent ORs, and bars represent 95% confidence intervals (Cls). f, Top four
biological processes by GO enriched in dynamic eGenes, where dynamic eQTLs,
butnot cis-eQTLs, are located in functional regions of monocytes from Roadmap,
are shown for each module-function combination (four tests in total). g, UMAPs
represent the cell state-dependent eQTL strength (B,...,) for each cell calculated
asasum of the effect sizes of genotype and genotype (G) x harmonized PCs
(hPCs). Labeled Pvalues are derived from NBME and pseudobulk analysis.
Heatmap showing Pvalues for each genotype-hPC interactionin the full

model of NBME analysis. Two-sided P values are uncorrected in e,g. Dot color
indicates statistical significance of the enrichment (adjusted Pvalues via the
Benjamini-Hochberg method), and dot size represents the gene ratio assigned
toeachterminc,f.
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we assessed their reactivity against SARS-CoV-2 major antigens. Of
interest, the BCR clonotype did not react with any tested antigens
(Fig. 6g and Extended Data Fig. 9b), not supporting clonal expansion
through normal antibody response to SARS-CoV-2 infection. These
clonally expanded mutant B cells may have reduced diversity of the
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BCRrepertoirein SARS-CoV-2infection, which could negatively impact
the antibody response of this patient. Our deconvolution of mCAs at
single-cell resolution has the potential to elucidate the impacts of
somatic mutations onimmune cell functions and the development of
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Fig. 5| Interpretation of GWAS results using OASIS data. a, Number of GWAS
locisignificantly colocalized with an eQTL for each cell type-trait combination
(left). Cell types of the major cell type (L1) are colored red. Number of GWAS
loci colocalized with an eQTL and how many times the colocalization was
shared among major cell types for each trait (right). GWAS abbreviations: CD,
Crohn’s disease; Hosp-COV, hospitalized COVID-19; HT, hyperthyroidism; IBD,
inflammatory bowel diseases; LYM, lymphocyte count; MON, monocyte count;
RA, rheumatoid arthritis; T1D, type 1 diabetes; UC, ulcerative colitis. b, Dynamic
eQTLsand cis-eQTLs per cell type of rs2841281 for PLD4. Dot size represents
PP.H4 of eQTL-GWAS colocalizations. ¢, Regional association plots of systemic
lupus erythematosus GWAS, cis-eQTL of monocytes (L1) and dynamic eQTLs
inbin 6 of module1for the PLD4locus. Chr,chromosome. d, UMAP represents

— Proteome (Olink)

~logio (Ppermutation)
(number of DEGs/DEPs)

o

cell state-dependent eQTL strength (8,,,) for each cell calculated as a sum of
the effect sizes of genotype and genotype x hPCs. Labeled P values are derived
from NBME analysis. e, Dynamic eQTLs and cis-eQTLs per cell type of rs2836884
for ETS2.f, Regional association plots of ulcerative colitis GWAS, cis-eQTL

of monocytes (L1) and dynamic eQTLin bin 6 of module 1for the ETS2locus.

g, UMAP represents cell state-dependent eQTL strength (B, for each cell.
Uncorrected Pvalues from two-sided tests are shown in b-g. h, The effect of
hospitalized COVID-19 PRS on transcriptomic and proteomic levels separately
in patients with COVID-19 and healthy individuals. One-sided P values were
calculated with 1,000 permutations for the number of differentially expressed
genes (DEGs) and differentially expressed proteins (DEPs).
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Fig. 6 | Single-cell deconvolution of mCAs. a, Schematic overview of single-

cell deconvolution of CH including mCAs and LOY by integrating SNP array

and scRNA-seq data. b, Heatmaps showing in-sample ORs of each cell type
containing cells with CNAs (left) and CN-LOHs (right). ¢, UMAP embedding of
CHO1scRNA-seq data colored by three clones. d, Top ten enriched biological
pathways of upregulated DEGs in monocytes of CHO1 with 1p loss. Dot color
indicates statistical significance of the enrichment (adjusted Pvalues viathe
Benjamini-Hochberg method), and dot size represents the gene count assigned
to each term. e, UMAP embedding of CHO5 scRNA-seq data colored by two

clones. f, Network plots showing the similarity of complementarity-determining
region 3 (CDR3) amino acid sequences in BCR heavy and light chains of CHO5
colored by clone (left) and isotype (right). Clonotype clusters with clonal size

>l areselected. g, Reactivity of antibodies against SARS-CoV-2 antigens (Ag) in
enzyme-linked immunosorbent assays. Dots denote mean, and error bars show
s.d. measured in triplicate. S309, anti-SARS-CoV-2 Simmunoglobulin G (12G)1;
CHOS, recombinant antibody derived from the CHO5 BCR clonotype with17q

gain; nCoV396, anti-SARS-CoV-2 N IgGl; 23B12, anti-Candida albicans1gGl;

OD,s, optical density at 450 nm. Panel a created with BioRender.com.
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Monocyte-specific accumulation of LOY

Next, we evaluated the biological effects of LOY on the immune
system. Using scCRNA-seq datafrommale samples (n =149), we defined
cells with LOY as cells without expression from the male-specific
region of the Y chromosome'®??, which enabled quantitative estima-
tion of the LOY status of each male. Older men showed larger frac-
tions of cells with LOY. Six male samples with LOY detected using
SNP array data (that is, genotype-based binary LOY estimation) con-
tained relatively more cells with LOY (median of 14.2% versus 3.3%;
Fig. 7a). The single-cell-based approach was thus more sensitive to
detect LOY and provide biological insights. For single-cell-based LOY,
all male samples were classified as LOY high (LOY cells > 5%; n=36) or
LOY low (LOY cells < 5%; n =113). Using this classification, we performed
aregression analysis to answer controversial discussions on whether
LOY is associated with COVID-19 risk?’. While genotype-based LOY did
not show an independent impact, single-cell-based LOY was signifi-
cantly associated with the risk of hospitalized COVID-19 (OR = 6.6, 95%
confidence interval =1.4-30.2 after age adjustment; Fig. 7b).

Cells with LOY were enriched in monocytes across patients with
COVID-19 (OR =4.0) and healthy individuals (OR =4.5; Fig. 7c,d and
Supplementary Table 22). Upregulated DEGs of cMono,; cells with
LOY weressignificantly enrichedin T cell-related pathways (Fig. 7e and
Extended DataFig.10a). Next, we performed a differential abundance
analysis between LOY-high (n =32) and LOY-low (n = 33) samples from
patients with COVID-19 using Milo®. We found an increase in monocytes
and dendriticcellsand a decrease in naive T cells for LOY-high samples
(Fig. 7f), and a similar trend was observed in healthy individuals
(Extended Data Fig. 10b). Comparison of cell proportions between
the two groups suggested that a decreasein naive T cells was prominent

inCD4" T cells (P=0.013) and the proportion of regulatory T cells was
significantly higher in LOY-high patients with COVID-19 (P=7.4 x107%;
Extended Data Fig. 10c¢). In aggregate, these data suggest that mono-
cytes with LOY might affect the immune response via compositional
changesinTcells.

Context-specific enrichment of mitochondrial heteroplasmy

Wealsoinvestigated the landscape of mt-heteroplasmy inimmune cells
by integrating our genomics and scRNA-seq data (Fig. 8a). The Genome
Analysis Toolkit (GATK)-based pipeline® detected 36 (40.9%) patients
with COVID-19 and 63 (42.9%) healthy individuals with mt-heteroplasmy
(variant allele frequency (VAF) > 0.1) using WGS data (Fig. 8b). Refer-
ring toallelicinformation of the predefined WGS-based heteroplasmy
embedded inthe scRNA-seq raw reads, we could successfully perform
clonal assignment of each cell for seven patients with COVID-19 and
fourhealthyindividuals. The proportionofcellswithmt-heteroplasmyin
scRNA-seq reads was strongly associated with VAFs of mt-heteroplasmy
in WGS data except for m.813A>G (Fig. 8c). We evaluated cell type
specificity of heteroplasmic cells for these samples, except for one
healthy samplein which almost all cells had mt-heteroplasmy. We found
that the cells with mt-heteroplasmy were enriched in monocytes and
dendritic cells specifically for patients with COVID-19 (Fig. 8d). Of note,
the heteroplasmy of m.813A>G, with alarge discrepancy between the
heteroplasmic cell fraction and VAF, showed stronger cell type specific-
ity (OR =13.3 for monocytes, OR = 6.8 for dendritic cells; Supplemen-
tary Table 23). Given its location in 12S ribosomal RNA, the mutation
hotspot for aminoglycoside ototoxicity that is implicated in human
disease®, this heteroplasmy might affect cell proliferation or viability in
acelltype-specific manner, causing abnormal mitochondrial function.
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This observation highlighted the advantage of our multi-layered omics
focusing on both the mutation itself (that is, genomics) and mutated
cells (that is, scRNA-seq). Although we did not detect any DEGs to
distinguish heteroplasmic cells from normal ones (false discovery
rate (FDR) < 0.05), COVID-19-specific enrichment suggested that
mt-heteroplasmy may underlie the biological mechanisms of COVID-19.

Discussion

Here, we constructed asingle-cell data atlas of >1.5 million PBMCs with
multi-layer omics inJapanese individuals. Our integrative analyses of
single-cell datarevealed thatimmune cells were dynamically regulated
inacell state-dependent manner defined by multiomics profiles, lead-
ing to a better understanding of the pathogenesis of COVID-19 and
autoimmune diseases.

We comprehensively mapped germline genetic effects on gene
expressioninimmune cellsand observed thateQTLs were dynamically
regulated across continuous cell states. We also elucidated HLA and
genome-wide regulation of TCR and BCR repertoires in a cell type-
and context-specific manner. Thus, including cohorts of diseased
and healthy individuals contributes to including cells with a variety of
biological conditions. The epigenetic properties of dynamic eQTLs
were distinct fromthose of cis-eQTLs, and colocalization analysis high-
lighted the value of considering genetic regulation of gene expression
across continuous cell states to understand GWAS signals. In addition,
asinthe example of rs11080327 for SLFNS, single-cell resolution eQTL
modeling allowed us to interpret genetic regulatory mechanisms
at finer resolution than bulk and pseudobulk anlaysis”*. Moreover,
single-cell technology finely resolved associations between human
disease-related gut bacteria and peripheralimmune cell abundance.

We deconvoluted a variety of somatic events at single-cell resolu-
tion and showed their heterogeneous functional impacts onimmune
cells, whichincreased our insights into the underlying mechanisms of
COVID-19 severity. As in previous studies of a single gene mutationin
hematopoiesis®® or mCAsin the normal adrenal gland*, capturing the
mutational status of individual cells has enabled us to compare mutant
and normal cells within individuals, which is easier when the number
of cells per sample is large. Investigating apparently healthy samples
or tissues showing one or afew somatic mutations can directly reveal
the phenotypic effects of the mutation, and that is not the case for
cancer cells with a considerably higher burden of mutations. Of note,
some observations of mCAs and mt-heteroplasmy in this study may be
aresult of the immunologically strong stimulus (that is, SARS-CoV-2
infection), implying the need for a study design that takes context
intoaccount.

In conclusion, we demonstrate the importance of interpreting
biological phenomena by integrating features from multi-layer omics
atsingle-cell resolution. This resource inan East Asian population will
contribute to equity in global diversity of human genomics and help
researchers better understand complex human traits.
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Methods

Ethics and specimen collection of OASIS samples

Peripheral blood samples were obtained from patients with COVID-19
(n=88) and healthy controls (n =147) at Osaka University Hospital.
Patients with COVID-19 were further categorized into moderate (n=9)
and severe (n=79) groups according to disease severity based on the
highest score on the World Health Organization Ordinal Scale for
Clinical Improvement ever present’*. Detailed clinical dataare summa-
rizedin Supplementary Table 1. Some of the participants (ncoyip10 = 73,
Neonot = 75) are described elsewhere***”. There was one pair of blood
relatives among the healthy participants; therefore one of them was
excluded from the eQTL analysis. One patient with COVID-19 had a
karyotype abnormality and was excluded from the X chromosome
eQTL analysis and differential gene and protein expression analyses.
This study strictly follows the principles of the Declaration of Helsinki,
with written informed consent obtained from all participants before
sample collection according to regular principles. Ethical approvals
were obtained fromthe Ethics Committee of Osaka University (approval
no.734). There was no compensation for participants.

Sequencing, alignment, quantification and quality control of
sCRNA-seq

Single-cell suspensions were processed through the 10x Genomics
Chromium Controller. Droplet libraries were processed using
CellRanger 5.0.0 (10x Genomics). Sequencing reads were aligned with
STAR (version 2.7.2a)>* using the GRCh38 human reference genome.
Please see the Supplementary Methods for details.

Integration and manual annotation of scRNA-seq
Details are described in the Supplementary Methods.

Whole-genome sequencing data processing
DNAsamplesisolated from whole blood were sequenced at Macrogen
Japan. DNA quantity was measured by PicoGreen, and DNA degrada-
tion was assessed by gel electrophoresis. All libraries were constructed
using the TruSeq DNA PCR-Free Library Preparation Kit according to
the manufacturer’s protocols. Libraries were sequenced on the HiSeq X
or NovaSeq 6000 system (Illumina), producing paired-end reads
2x150 bpinlengthatanaverage depth of19.4x. Sequenced reads were
aligned against the Genome Reference Consortium human genome
build 38 using BWA-MEM with the ALT-aware mode (version 0.7.17).
For more details, please see the Supplementary Methods.

SNP array genotyping

GenomicDNAwasgenotypedwiththe use oftheInfinium AsianScreening
Array (Illumina). This genotyping array was built using an East Asian
reference panel including whole-genome sequences, designed for
effectively capturing genetic variation in East Asian populations. To
increase the sample size used for subsequent statistical haplotype
phasing, the accuracy of which determines the sensitivity for mCA
detection using MoChA (18 May 2022)"**’, we merged the publicly
available genotyping data of 54,405 Japanese individuals generated by
the BioBank Japan Project using the same genotyping array. For more
details, please see the Supplementary Methods.

Mapping of single-cell cis-eQTLs with the pseudobulk
approach

First, we performed single-cell-level normalization using scran (version
1.18.5)°* separately for each major cell type (L1). We only kept genes with
nonzero expression (unique molecular identifier (UMI) count > 0) in
morethan1% of cellsin each major cell type. In the analysis of subclus-
ters (L2) within each major cell type, the same genes were retained.
Gene expression per sample per cell type (that is, pseudobulk count)
was calculated as the mean of log,-transformed normalized expres-
sionacross cells and then normalized across samples using aninverse

normal transform in each cell type. Samples with more than ten cells
inacelltype were considered in the analysis of the corresponding cell
type (Supplementary Fig. 2b).

To identify cis-eQTLs, we used tensorQTL (version 1.0.7)*” to run
alinear regression for each SNP-gene pair. We restricted our search
to variants within 1 Mb of the transcription start site of each gene
and with MAF > 0.05. The top 15 gene expression PCs, the top two
genetic PCs, age, sex, 10x chemistry (version1or 2) and clinical status
(COVID-19 or healthy) were used as covariates for eQTL analysis. To cor-
rect for the number of association tests performed per gene, we used
a cis permutation pass per gene with 1,000 permutations. Finally, to
correctfor the number of genes tested and identify significant eGenes,
we performed agenome-wide g-value correction for the top associated
SNP-gene pair, setting a q-value threshold of 0.05. We subsequently
mapped conditionally independent cis-QTLs using the stepwise regres-
sion procedure with tensorQTL. Details on downsampling sample
sizes and cell counts per sample ineQTL mapping are describedinthe
Supplementary Methods.

Generation of genotypes and single-cell eQTL mapping in
OneK1K
Details are described in the Supplementary Methods.

Comparison with cis-eQTLs of OneK1K

We assessed eQTL overlaps and sharing between our cohort and
OneK1K°® using the multivariate adaptive shrinkage method**. For
more details, please see the Supplementary Methods.

Epigenetic marker enrichment analysis for cis-eQTLs

To reveal the functional characterization of cis-eQTLs, we evaluated
the enrichment of significant eQTLs to epigenome marks (that is,
Roadmap annotation)®. The chromatin state datawere obtained from
the Roadmap Epigenomics project. We used 18-state models. We con-
sidered TssA, TssFInk, TssFInkU and TssFInkD as promoter regions
and EnhAl, EnhA2, EnhGl1, EnhG2 and EnhWk as enhancer regions. For
analysis of enhancer or promoter enrichment, we used eightimmune
cell subsets from peripheral blood in Roadmap project data (that is,
primary monocytes (Roadmap ID E029), primary B cells (E032), pri-
mary helper T memory cells (E037), primary naive helper T cells (E038),
primary regulatory T cells (E044), primary natural killer cells (E046),
primary CD8" naive T cells (EO47) and primary CD8" T memory cells
(E048)). Toassess the enrichment of primary cis-eQTLs in epigenome
marks, we compared the overlap with epigenome marks between
primary significant cis-eQTLs of each cell type and all the variants
used in the analysis for that cell type. For more details, please see the
Supplementary Methods.

Metagenomics analysis

Phenol-chloroform DNA extraction and subsequent metagenome
shotgun sequencing were newly performed (dataset 3) or performed
in previous studies (datasets 1and 2)°*%. Details on metagenomics
analysis are described in the Supplementary Methods.

TCRand BCR repertoire analysis

Droplet-based sequencing data for TCR sequences and BCR sequences
were aligned and quantified using 5.0.0 (10x Genomics) against the
GRCh38 human VDJ reference genome. Filtered annotated contigs for
TCRsequences and BCR sequences were analyzed using Scirpy (version
0.10.0)°°. For more details, please see the Supplementary Methods.

HLA and genome-wide association analysis with TCR and BCR
repertoires

For HLA association analysis, we performed HLA imputation for geno-
typed SNPs in the MHC region with the HLA reference panel of the
Japanese population (n=1,118) constructed in a previous study® using
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DEEP*HLA®**, We targeted the amino acid variants of class land IIHLA
genes (class I, HLA-A, HLA-C and HLA-B; class Il, HLA-DRBI1, HLA-DQAI,
HLA-DQBI1, HLA-DPAI and HLA-DPBI). Variants imputed with an R?
imputation quality score in tenfold cross-validation >0.7 and
MAF > 0.05 were used for the analyses.

We explored the association between HLA variants and TRAV and
TRBV gene usage ineach cell type. We only used productive clones for
which all the TCR genes were identified. We calculated the usage fre-
quency ofeachTCRV geneineach cell type by summing up clones that
were derived from that gene. We summed up clones regardless of the
clonesize, unless otherwise specified, to sensitively capture the central
restriction between HLA and TCR*’. We only targeted TCRV genes that
were observed in more than 80% of samplesin cell types of interest.

We investigated the association between HLA variants and
TCRV gene usage based on the Wald test for a negative binomial
regression model using DESeq2 (version 1.30.1)* for each cell type.
Weincluded the same covariates as those used in the cis-eQTL analysis,
excluding PCs for gene expression, in the model. For the HLA associa-
tion analysis, we empirically calculated the study-wide significance
threshold using a permutation procedure® and obtained study-wide
significance thresholdsof P=1.1x10and 1.2 x 107 for TRAV and TRBV
genes, respectively. We also investigated the change in TCR V genes
according to each variant under the condition of COVID-19 by adding
aninteraction termbetween COVID-19 status and each variantinto the
model. In this interaction analysis, we used the usage of TCR V genes
weighted by their clone sizes to consider the effect of clonal expansion.
We performed these analyses only for entire (that is, CD4* T at L1),
naive (CD4y) and CD4¢y and entire CD8" (thatis, CD8" T at L1) T cells
due to the sparsity of TCR V genes (Supplementary Fig. 8). Please see
the Supplementary Methods for details on the significance threshold.

Additionally, we performed genome-wide association analysis
for integrative features representing repertoire variation for TCRs
and BCRs. Integrative featuresincluded the top five PCs for V(D)) gene
usage and mean and coefficient of variation for the length of CDR3
sequences and the frequency of SHM. SHM was calculated using the
R package SHazaM (version 1.1.0)°°. As potential biases in measur-
ing SHM due to the complex structure of germline variants in VD)
genes could not be excluded, GWAS results of SHM should be inter-
preted carefully. For TRBD genes, we used TRBDI gene usage instead of
PCs because they only have TRBD1 and TRBD2. For BCRJ genes, we
used the top two PCs, as the number of these genes is fewer than
six. The analysis was conducted based on a liner regression model
for each feature normalized by rank-based inverse normal transfor-
mation with the same covariates using PLINK (version 2.00). For this
analysis, we used P=2.0 x107° and 1.3 x 10”? for the significance
thresholds of the TCR and BCR repertoires, respectively, on the basis
of Bonferroni correction onthe number of features for agenome-wide
significance threshold of P=5.0 x 1078, Due to sparsity, this analysis was
applied only to CD4" T, CD4, and CD4.yand CD8" T cells for TCRs and
entire, type1naive, type 2 naive and memory B cells for BCRs.

Dynamic eQTL analysis with the pseudobulk approach

Toidentify dynamic genetic regulation of gene expression along contin-
uous cell states, we investigated dynamic eQTLs in the myeloid cluster
(that is, monocytes and dendritic cells) across the two gene modules
‘HALLMARK_INFLAMMATORY_RESPONSE’ and ‘GOBP_RESPONSE_
TO_INTERFERON_GAMMA'. We downloaded the two gene sets from
MSigDB. Module scores were evaluated at the single-cell level using
the AddModuleScore() function implemented in Seurat with default
parameters. We divided the gene modules into ten windows contain-
ing roughly equal numbers of cells and averaged the expression of
eachgene persample withineach window separately for the two gene
modules (Fig. 4a). Pseudobulk matrices per sample withineachwindow
with more than ten cells were retained in the analysis. Next, the aver-
aged expression was normalized using inverse normal transformation,

and gene expression PCs were calculated. To account for the higher
correlation in expression values derived from the same individual at
multiple gene module windows, we applied (1) linear and (2) quadratic
mixed models, with individuals modeled as random intercepts as
previously described®®. We used these models to test for a significant
interaction between genotypes and module categories as follows:

Exp = By + B x genotype + B, x age + B, x sex + B, x version
2 15
+Pstarus X Status + 21 Bgpc, X 8PC; + 21 Bepc, % €PC; )
i= Jj=

+Bm x module + Bgm X genotype x module + (1sample)

Exp = Bo + Bg x genotype + B, x age + Byex X sex

+B, x version + Bus X Status

2 15
+ 2 Bepc, X 8PC; + Zﬁepcj x ePC; + B, x module
i=1 j=1

2)

2
+B2 x module

+Bgxm X genotype x module
+Bgxmz X genotype

xmodule’ + (1jsample).

gPC represents the genotype PC and ePC represents the gene
expression PC. In both cases, the null model was computed using
the same parameters while excluding the interaction terms of the
genotype x module category and the genotype x module category?.
Pvalues were calculated by comparing each model to its respective
null model using alikelihood ratio test. Allmodels were implemented
in R using the Imer() function. To minimize multiple-testing burden
and focus on more robust candidates, we only applied this approach
to SNP-gene pairs identified as significant lead eQTL variants by
tensorQTL in at least one module window separately for the two
gene modules. Next, we determined the top SNP per gene for each
model and module. Finally, to correct for the number of genes tested
and identify significant dynamic eGenes (deGenes), the FDR was calcu-
lated via the Benjamini-Hochberg method for the top associated SNP-
gene pairs, setting an FDR threshold of 0.05. We also performed the
same analysis across ‘the type1ISG signature score (ISG score)’ (ref. 7).

To find enriched pathways of module-shared and module-specific
deGenes, we used the compareCluster function (fun =‘enrichGO’,
pvalueCutoff = 0.05, pAdjustMethod = ‘BH’, OrgDb = ‘org.Hs.eg.db’,
ont =‘BP’) of clusterProfiler (version 3.14.3)%".

Epigenetic marker enrichment analysis for dynamic eQTLs

We evaluated the enrichment of significant dynamic eQTLs to epi-
genome marks® as we did for cis-eQTLs. We compared the enrichment
of significant dynamic eQTLs and cis-eQTLs of the myeloid cluster
(L1and L2) in promoters and enhancers of monocytes in Roadmap
separately for each model and module. For dynamic eQTLs, we only
considered the top associated SNPs per gene analyzed in dynamic
eQTLs for each model and module, and, for cis-eQTLs, we considered
the top associated SNPs per gene in each cell type.

We selected the genes with significant dynamic eQTLs located in
promoters or enhancers of monocytes in Roadmap for each module
and also selected the genes with significant cis-eQTLs located in
promoters and enhancers of monocytes among any cell type of the
myeloid cluster (L1 and L2). Next, we identified genes with eQTLs
locatedin functional regions specifically for dynamic eQTLs. To evalu-
ate the enriched pathways of these genes for each module and func-
tional region, we used the compareCluster function (fun = ‘enrichGO’,
pvalueCutoff = 0.2, pAdjustMethod = ‘BH’, OrgDb = ‘org.Hs.eg.db’,
ont =‘BP’) of clusterProfiler (version 3.14.3)*".
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Dynamic eQTL analysis at single-cell resolution

We performed eQTL mapping at single-cell resolution using the NBME
model®, To represent the continuous cell state of each cell, we used
hPCs calculated with Harmony (version 0.1)*’ from the top 30 original
PCs in the myeloid cluster. The negative binomial model was fitted
with the following formula using the glmer.nb() function in the Ime4
Rlibrary (version1.1.32):

Exp (UMI) = B, + B5 x genotype + S,
Xage + Pex X S€X + Py X version + Byars X Status
+ABUMI X IOg UMI +BMT x MT

2 15 15 3
+ zlﬁgpci X gPC[ + Zlﬁepcj X ePCJ + kzlﬁhpck X hPCk
i= J= =

15
+ Y] Baxnec, X genotype x hPC, + (1sample).
k=1

MT represents percent mitochondrial genes, and ePCrepresents
the gene expression PC of the raw data. To assess whether the eQTL is
cell state dependent, we compared the full model (equation (3)) to the
nullmodel withoutinteraction terms using the likelihood ratio test. To
calculate eQTL strength across cell states, we combined the genotype
main effect (8,) with the interaction effects of each hPC, weighted by
each cell’s position along each hPC (equation (4)).

15
ﬁtota[ = ﬂg + ZﬁthPCk X hPCk. 4)
k=1

To assess which hPCs had a strong interaction effect with geno-
type, we calculated P values of interaction terms in the full model.
To understand which cell state each PC represents, we investigated
a loading of each gene along each PC in the SCT assay using the
Loadings() functionimplementedin Seuratand determined the genes
that showed strong correlation (>0.1 absolute value) for each PC. We
performed pathway enrichment analysis of PC-associated genes using
the compareCluster function (fun =‘enrichGO, pvalueCutoff=0.05,
pAdjustMethod = ‘BH’, OrgDb = ‘org.Hs.eg.db’, ont = ‘BP’) of cluster-
Profiler (version 3.14.3)".

Colocalization analysis

We download GWAS summary statistics in an East Asian population of
13 complex immune traits’®”* except that of hospitalized COVID-19,
which was obtained through collaboration with the Japan COVID-19
Task Force (JCTF)***® (Supplementary Table 18). GWAS summary sta-
tisticsin hg37 were converted to hg38 ones using LiftOver. For evalua-
tionof eQTL signal colocalization with GWAS signals, we applied coloc
(version5.2.3)”. We tested for 500-kb windows centered onssignificant
GWAS lead variants (P value < 5 x 107®) outside the MHC region and
considered PP.H4 > 0.8 as significant colocalization. If the GWAS lead
variants were listed in the paper, we used them, and, if not, we manu-
ally defined them by clumping using PLINK version 1.9 software. In a
heatmap (Extended Data Fig. 6b), the gene with the highest number
of PP.H4 > 0.8 or, in case of a tie, the gene with the higher PP.H4 was
presented.

Plasma protein expression measurements

We measured the expression of 2,925 plasma proteins using the
Olink Explore 3072 platform for 227 samples (83 patients with
COVID-19 and 144 healthy individuals) through collaboration with the
JCTF**8, The Olink Explore 3072 platform quantifies the expression
of each protein in a normalized scale (normalized protein expres-
sion). Because the protein measurements were separated into three
batches for logistical reasons, we bridge-normalized the norma-
lized protein expression values using the OlinkAnalyze R package

(version 3.4.1), using 16 intersecting samples as bridging samples. We
excluded proteins with measurements below the detection limit in
more than 10% of samples. As a result, 2,852 proteins were included
inthe analysis.

Polygenicrisk score
We constructed multipopulation PRSs of hospitalized COVID-19
using PRS-CSx*, combining the summary statistics of hospitalized
COVID-19 (B2, ., = 32,519) in Europeans from COVID-19 HGI (round 7)*°
and those of hospitalized COVID-19 (n,. = 2,948) in Japanese indi-
viduals from the JCTF*"*® as the training data. We excluded the
MHC region and set the ¢ value to 10*. Next, we calculated PRSs for
OASIS samples and evaluated PRS performance with Nagelkerke’s R2.
To construct multipopulation PRSs of systemic lupus erythe-
matosus’”®, monocyte count’”” and lymphocyte count’”’, we per-
formed the same procedure as described for COVID-19. For rheumatoid
arthritis’®, inflammatory bowel diseases’?, Crohn’s disease’” and
ulcerative colitis”, we used the publicly available multipopulation
PRSs. We could not evaluate PRS performance in the OASIS cohort
except for the COVID-19 PRS.

Differential gene and protein expression analysis with
polygenicrisk score

Wedivided each PRSinto four quantilesin the OASIS cohort and treated
themasordinal variables1(lowest risk) to 4 (highestrisk). DEG analysis
among four quantiles of PRS was performed using the pseudobulk
approach separately for patients with COVID-19 and healthy indivi-
duals. Pseudobulk matrices were created by aggregating gene counts
for each cell type (L1) in each sample. Genes were considered for
the analysis if they were expressed in more than 10% of cells per cell
type. This analysis was performed using edgeR (version 3.32.0)%. We
included age, sex, 10x chemistry and severity (severity was included
only in patients with COVID-19) inthe model as covariates. DEP analysis
among four quantiles of PRSs was performed using alinear regression
model with age, sex, batches and severity (severity was included only
in patients with COVID-19) as covariates. Statistically significant DEGs
and DEPs were defined with FDR < 0.1.

We permuted four quantiles of PRSs across samples 1,000 times
in each cell type of scRNA-seq and proteomics data and assessed how
often the observed number of DEGs and DEPs would be detected.

To investigate whether DEGs and DEPs between patients with
COVID-19 and healthy individuals reflected those of PRSs specific to
patients with COVID-19, DEG and DEP analysis between cases and con-
trols were performed with the same method described above except
that statistically significant DEGs were defined with FDR < 0.05 and
absolute fold change > 2.

Detection of somatic events using genomics data

For the detection of mCAs and LOY from SNP array data, we used the
MoChA pipeline (18 May 2022)"**. In brief, IDAT genotype intensity data
were converted to GTC genotype files and then transformed into VCF
files with log, (R ratio) and B allele frequency values to estimate total
and relative allelic intensities, respectively. Using the phase informa-
tion and log, (R ratio) and B allele frequency values, MoChA was used
to detect mCAs and LOY. From the resulting candidates, calls flagged
as germline copy number polymorphisms and calls that were likely
germline duplications were removed. For the LOY candidates, XXY and
XXX samples were filtered out. We additionally removed unclassifiable
calls and calls with lower cell fraction (<0.01).

We used a previously reported GATK-based pipeline* to detect
mt-heteroplasmy from WGS data. To callhomoplasmic and heteroplas-
mic variants in mtDNA (the circular genome including 16,569 bp), we
used a mitochondrial mode implemented in GATK Mutect2. Variants
with VAF > 0.9 were defined as homoplasmic, and we analyzed
mt-heteroplasmy satisfying VAF > 0.1.
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Single-cell deconvolution of somatic events

We applied Numbat (version1.3.0)°° to scRNA-seq data to detect clones
with mCAs found in SNP array data. Numbat integrated haplotype
information with allele and expression signals from scRNA-seq data
to enhance detection of mCAs including CN-LOHs. Expression refer-
ences of the COVID-19 and healthy samples were generated from our
scRNA-seq data. We specified the profiles of the genotype-based mCAs
and ran Numbat with parameters init_k =10 and max_entropy =1.0.

Using scRNA-seq data from all male samples, we defined cells
with LOY as cells without expression from the male-specific region
of the Y chromosome?®. As single-cell-based LOY, we then classified
the male samples as LOY high (cells with LOY > 5%) or LOY low (cells
with LOY < 5%). The association between LOY and COVID-19 risk was
evaluated using univariate logistic regression and multivariate logistic
regression adjusted for age.

For mt-heteroplasmy detected in WGS data, we piled up raw reads
fromthe scRNA-seq BAM files and generated SNP-by-cell matrices using
cellSNP-lite (version1.2.2)”°. Next, we performed clonal assignment of
eachcellusing the BinomMixtureVB function (binomial mixture model)
implemented in vireoSNP (version 0.5.8)%°. We included samples in
which more than 80% of cells showed posterior clonal assignment
probability > 0.8.

DEG analysis between somatically mutated and normal cells
DEG analysis for CNAs was conducted for mutated and normal
cellsfromthe same samplesin CHO1and CHOS. We used MAST (version
1.20.0)* implemented in Seurat, and DEGs were considered significant
if they satisfied FDR (adjusted P values via the Benjamini-Hochberg
method) < 0.05andlog, (fold change) > 0.25 (in CHO1) or 0.5 (in CHOS).
For significant DEGs, pathway enrichment analysis was performed
using the enrichGO function of clusterProfiler®” with parameters
OrgDb = ‘org.Hs.eg.db’, ont = ‘BP’, pvalueCutoff = 0.05 and pAdjust-
Method = ‘BH’. In the CHOS5 analysis, immunoglobulin genes were
excluded from the pathway analysis.

DEG analysis between cells with LOY and normal cells was per-
formed using a pseudobulk approach. Pseudobulk matrices were
created by aggregating gene counts for each cell type within cells
with LOY or normal cells in each sample. Genes were included if they
were expressed in more than 10% of cells. We included samples with
more than nine cells with LOY and more than nine normal cells in the
cell type. This analysis was performed using a linear mixed model
implemented in the Ime4 R library (version 1.1.32) with fixed effects
for age and 10x chemistry and random effects for sample. DEGs were
considered significantif they satisfied FDR (adjusted Pvalues viathe
Benjamini-Hochberg method) < 0.01 and log, (fold change) > 0.25.
Pathway analysis was performed using the same procedure as
for mCAs.

Differential abundance analysis of LOY

We used Milo (version1.2.0)* to test for the differential abundance of
cells within defined neighborhoods between LOY-high and LOY-low
samples. This analysis was performed in the same manner as the
metagenomic analysis. Comparisons of cell proportions between
LOY-high and LOY-low samples were carried out using two-sided
Wilcoxon rank-sum test.

Statistics and reproducibility

No statistical methods were used to predetermine sample sizes. Data
distribution was assumed to be normal, but this was not formally tested.
No data were excluded from the analyses. We did not use any study
design that required randomization or blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw sequencing data of scRNA-seq and the protein expression matrix
are available at the Japanese Genotype-phenotype Archive (JGA)
withaccession codesJGAS000783 andJGAD000925. A part of the raw
scRNA-seq data (Ncoyip.10 = 73, Neonrro = 75)***” has already been deposited
and is available under controlled access at JGA with accession codes
JGAS000593, JGAS000543, JGAD000662 and JGAD0O00722. All raw
scRNA-seq data can also be accessed by applying at the NBDC with
the accession code humO0197. Participant genotype data are available
at the European Genome-Phenome Archive with the accession code
EGAS00001008016. sc-eQTL summary statistics are available at the
NBDC under accession ID hum0197 and are also available in an inter-
active browser at https://japan-omics.jp/. OneK1K genotype data were
obtained from the Gene Expression Omnibus (GSE196830). Processed
OneK1K scRNA-seq data (h5ad file) were obtained from the Human Cell
Atlas (https://explore.data.humancellatlas.org/projects/f2078d5f-
2e7d-4844-8552-f7c41a231e52). OneK1K eQTL summary statistics were
obtained from https://oneklk.org/.

Code availability

The codes used in this study are shared on GitHub (https://github.
com/REdahiro/OASIS_project and https://github.com/tatsuhikonaito/
OASIS_HLATCR) and have been deposited at Zenodo (https://doi.
org/10.5281/zenodo.15877644 (ref. 82) and https://doi.org/10.5281/
zenodo.14991132 (ref. 83)).
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Extended DataFig. 2| The effect of sample sizes and cell counts per sample on
eQTL discovery in OASIS and OneKIK. (a) Scatter plot depicting the correlation
between median number of cells per sample and number of detected significant
eGenesin each cell type of OASIS. Both x-axis and y-axis are on log,, scale.

(b) Co-plots of the number of eGenes between OASIS and OneKIK® in
corresponding cell types. (c,d) The number of eGenes by down-sampling for
combinations of sample sizes and cell counts per sample in OASIS (c¢) and OneK1K

(d) atL1level.
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Extended DataFig. 7 | The effects of polygenic risk score on transcriptome
and proteome. (a) The differential gene expression analysis with 4 quantiles

of hospitalized COVID-19 polygenic risk score (PRS) in monocytes separately

for COVID-19 patients and healthy subjects. Differentially expressed genes
(DEGs; FDR < 0.1) are colored in light blue and labeled by gene symbols if
Pvalues < 1x10™*. (b) The differential protein expression analysis with 4 quantiles
of hospitalized COVID-19 PRS in plasma proteome separately for COVID-19
patients and healthy subjects. Differentially expressed proteins (DEPs; FDR < 0.1)
are colored in light blue. (c) The differential gene expression analysis with

4 quantiles of hospitalized COVID-19 PRS in monocytes for all samples. DEGs
between patients and healthy controls (FDR < 0.05 and absolute fold change

o NNNEEEENE . oo

(FC) >2) are colored inred. (d) The differential protein expression analysis with

4 quantiles of hospitalized COVID-19 PRS in plasma proteome for all samples.
Top 250 significant DEPs between patients and healthy controls (FDR < 4.0x107%)
are coloredinred. Uncorrected Pvalues are shown in (a-d). (e) The effect of PRS
for 7 autoimmune and blood-related traits on transcriptomics and proteomics
levels separately in patients with COVID-19 and healthy subjects. One-sided
Pvalues were calculated with 1,000 permutations for number of DEGs and DEPs.
GWAS abbreviations: CD, Crohn’s disease; IBD, inflammatory bowel diseases;
LYM, lymphocyte count; MON, monocyte count; RA, rheumatoid arthritis;

SLE, systemic lupus erythematosus; UC, ulcerative colitis.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-025-02266-3

a b .
Normal in-sample l
0.204 ” 0.20 4 = Deep & long odds ratio o
o = 100,000 reads / cell CHO1
2 o R2 =270 bp Mono DC
2 0.154 5 0.151 IL1B S100A intono ncMono  cDC  pDC
5 2 I
5 3 - . »
5 c I
© 0.10- % 0.10- [ 150+
pel
5 5 CHO5
© b3 B cell
L 0.054 © 0.05 N Act
. . :
0.00- 0.00-
1p- 15g+ 13g- 15q+ 16p+ 17q+ 21qg+ 11p 14q 22q 9p 14q 14q
CHO1 CHO02 CH03 CHO04 CH05 CHO06 CHO7 CHO08 CHO04 CH09 CH10 CH11
[
CHO01 Mono CHO01 Mono CHO5 B cell
RPL1 1 300
©® DEG up ©® DEG up © DEG up *
sHasoRLS © DEG down o BESAV © DEG down © DEG down [ervat
200+ @ DEG down on 1p 200+ @ DEG up on 15q @® DEG upon 17q
/GH\/4:59
150 | Extended. Fig. 8d [ Fig. 6d | 150 | Extended. Fig. 8e | [No pathways| 2004 |Extended. Fig. 8 |  [Extended. Fig. 8g
2 °
[a] RPL22
L= SLC25A6
e .
8 100 . 100 RPLP1 ATy LINCO1857 EMP3
I > : . UT/‘F MT-ND2
Sy RPL22L1 MT-ATPO~Zop1 3 * RHOB
cDC42 52/\/-1 100 CD6T:53/NP1 DNAJC5B W! NG
TCF4 G2
50 CAPZBJ PGD, TMEM176B ?SGRZ 50 DDX3Y RPS17 ;‘?PL4 COX5A IGHAT * 178, . VPREB’;RMD? VQCLAZ;KHAH
CD52 JHMGN. CTSD SELL @FOLM SRP1W I6LC2 JFCER2 §ELL‘ %cow@
ATP5V/EFHD2 OXCR RYECL242 GOS2 CD99_LINCO1578 & SECT1A oK ST i AC092821.3
° oo ° . > % P08 HsPB1
AGTRARfIc v ,A e EGR1 CFD ‘af @3 MZB1= 5 e ) ]
0 PARK7 ACOO79524 SORL1 L 1p2™ IL1B b ccL3 THB DMXLzPSTP’P7 0 °l6LVe=57 IGHGT segy
T T T T T T T T T T
-0 -05 00 05 1.0 20 15 -10 05 00 05 10 15 20 4 3 2 1 0 1 2 3 a4
log, fold change <4— log, fold change —> <— log, fold change
down in 1p_Loss up in 1p_Loss down in 15g_Gain up in 15g_Gain down in 17g_Gain up in 17q_Gain
d e
regulation of protein catabolic process [ biological process involved in symbiotic interaction
regulation of actin cytoskeleton organization [ ] viral process
Count
regulation of supramolecular fiber organization O .ou; T cell activation 00”;:)
o4 LR
regulation of actin filament-based process [ ] : g viral entry into host cell o : gg
35
regulation of leukocyte mediated immunity [ ) : g entry into host [ ] : 4.0
negative regulation of protein catabolic process p.adjust movement in host environment [ ] p-adjust
response to interferon-gamma g:gis biological process involved in interaction with host [ 0.020
cytoplasmic translation g'gli complement activation, alternative pathway {e
regulation of stress fiber assembly ) regulation of macrophage migration {e
negative regulation of ubiquitin-protein transferase activity | ¢ regulation of viral entry into host cell 1o
0.075 0.100 0.125 0.150 0.15 0.20 0.25
GeneRatio GeneRatio
f g
positive regulation of cellular catabolic process [ ] lymphocyte differentiation ®
calcium ion homeostasis [ ] count mononuclear cell differentiation o
o ’ ; Count
positive regulation of catabolic process [ ] ; g cytokine-mediated signaling pathway ;"ug
intrinsic apoptotic signaling pathway o : g immune response-regulating cell surface receptor PY ° g
@ signaling pathway @9
response to steroid hormone ® ® 10 grial cell differentiation ° : 10
11 11
response to glucocorticoid Y * immune response-activating cell surface receptor ° §
p.adjust signaling pathway p-adjust
response to corticosteroid L] 00020  immune response-activating signal transduction ) 0.018
o 0.0015 0.016
response to endoplasmic reticulum stress [ ] g.gggg gliogenesis Y 0.014
intrinsic apoptotic signaling pathway in response to : .
DNA damage o regulation of cell shape ®
intrinsic apoptotic 5|gn:rl]ggp$:sﬂr1nv=/: )rlé{;cﬁf,ﬁ?gieeg b2 positive regulation of actin filament polymeriztion - e
0.06 008 0.10 0.12 0.14 0.06 0.07 008 009 0.10
GeneRatio GeneRatio

Extended Data Fig. 8 | See next page for caption.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-025-02266-3

Extended Data Fig. 8| Characterization of the cells carrying mCAs.

(a) Fractions of the mutant cells carrying each copy number alterations (CNA)
event (left) and those of the mutant cells carrying each copy-neutral loss of
heterozygosity (CN-LOH) event colored by setting of sequencing (right).

(b) Heatmaps showing the in-sample odds ratios of each subcluster (L2)
containing the CNA cells in CHO1 (top) and CHO5 (bottom). (c) Differential gene
expression (DEG) analysis between the somatically mutant and normal cells for
1p_Loss monocytes (left), 15q_Gain monocytes (middle), and 17q_Gain B cells
(right). DEGs are colored in light blue (downregulated) or pink (upregulated),

and DEGs on the corresponding chromosomal regions are colored in navy or red.
DEGs were significant if they satisfied FDR (adjusted P values via the Benjamini-
Hochberg method) <0.05 and log2 fold change > 0.25 (in CHO1) or 0.5 (in CHO5).
(d-g) Top ten enriched biological pathways of the downregulated DEGs in
1p_Loss monocytes (d), the downregulated DEGs in 15q_Gain monocytes (e),

the downregulated DEGs in 17q_Gain B cells (f), and the upregulated DEGs in
17q_Gain B cells (g). Dot color indicates the statistical significance of the
enrichment (adjusted P values via the Benjamini-Hochberg method), and

dot size represents gene count annotated to each term.
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Extended Data Fig. 9| BCR clonotype of the somatically mutant cells in CHOS.
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type (middle), and isotype (right). The somatically mutated CHOS5 clonotype
was surrounded by a plink dotted line. Clonotype clusters with clonal size > 10

areselected. (b) Reactivity of antibodies against SARS-CoV-2 antigens in ELISA.
The dots denote the mean and error bars do standard deviation measured in
triplicate. S309, anti-SARS-CoV-2 S IgG1; CHOS, recombinant antibody derived
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high and LOY low healthy controls in neighborhoods from 28 cell types (L2).
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other socially relevant and the Biobank Japan project samples using the genotyping array data.
groupings
Population characteristics COVID-19 patients (n = 88) are Japanese, the mean age was 64, 73.9% were male, and all of them were tested positive for

PCR test. COVID-19 patients were further categorized into groups of moderate (n = 9) and severe (n = 79) according to
disease severity based on WHO guidelines. Healthy controls (n = 147) are of Japanese, the mean age was 37, 57.1% were
male. Detailed cohort demographics are available in Supplementary Table 1.

Recruitment We recruited the hospitalized cases diagnosed as COVID-19 by physicians using the clinical manifestation and PCR test
results, who were recruited from July 2020 to February 2022 at Osaka University. We included all COVID-19 cases treated at

Osaka University who gave consent for the study. Thus, there is little selection bias. All healthy subjects were recruited at
Osaka University.
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Data exclusions  Low quality cells:
Cells that had fewer than 1st percentile of UMIs or greater than 99th percentile of UMIs in each sample, as well as cells that contained greater
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Red blood cells and platelets:
Cells manually annotated as red blood cells or platelets were excluded from the analysis.

Replication sc-eQTL of our cohort were compared with previously published bulk datasets in Japanese (i.e., InmuNexUT) and sc-eQTL resources in
European (i.e., OneK1K) for each corresponding cell type independently.

Randomization  We investigated two major groups; "COVID-19 patients" and "Healthy subjects".
COVID-19 patients were further categorized into groups of moderate and severe according to disease severity based on WHO guidelines.

Randomization was not applicable to this study.

Blinding We did not apply blinding of the samples because no intervention was conducted in our study and our study was not case-control one.
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Antibodies

Antibodies used The following antibodies were used in ELISA:
- Recombinant monoclonal antibody reconstituted from the BCR of a 17q gain B cell clone from a COVID-19 patient (in this study,
detailed in Methods)
- anti-SARS-CoV-2 S protein, clone S309 (Pinto et al., Nature 2020, doi:10.1038/s41586-020-2349-y)
- anti-SARS-CoV-2 N protein, clone nCoV396 (Kang et al., Nat Commun. 2021, doi:10.1038/s41467-021-23036-9)
- anti-Candida albicans, clone 23B12 (Takeda et al., J Allergy Clin Immunol. 2019, doi: 10.1016/j.jaci.2018.07.006)
- Goat anti-human IgG-HRP (Southern Biotech, cat. no. 2040-05)

Validation The high purify of in-house recombinant antibodies was validated by SDS-PAGE.

Monoclonal antibodies, S309, nCoV396 and 23B12 were validated by previous publications for specificity.
Goat anti-human IgG-HRP antibody (Southern Biotech, cat. no. 2040-05) was validated by the manufacturers for specificity by each
production lot.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Expi293F (Thermo Fisher)
Authentication None.
Mycoplasma contamination Cell lines were negative for mycoplasma contamination.

Commonly misidentified lines  None.
(See ICLAC register)
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
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assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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