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ABSTRACT Light Detection and Ranging (LiDAR) sensors generate accurate 3D representations of
real-world environments, which are essential for applications of 3D scene understanding. However, the
substantial volume of LiDAR data poses significant challenges for efficient compression and transmission.
Implicit neural representation (INR) has gained attention for its compact data representation, but its
capacity to accurately represent high-frequency details is insufficient when using small models. In this
paper, we propose a novel joint source-channel coding (JSCC) scheme that integrates INR with analog
residual transmission for high-quality and efficient point cloud transmission. This scheme is designed to
compensate for the limited high-frequency representation of INRs by transmitting the unmodeled details
as residuals via pseudo-analog modulation. This integrated approach enables continuous reconstruction
quality adaptation to varying wireless channel conditions and effectively mitigates the stair-case effect
inherent in conventional digital schemes. Evaluations on the KITTI dataset demonstrate that the proposed
scheme outperforms conventional and INR-based compression methods in terms of R-D performance and
detection quality at low bitrates.

INDEX TERMS LiDAR, point clouds, joint source-channel coding, pseudo-analog transmission, implicit

neural representation.

. INTRODUCTION
IGHT Detection and Ranging (LiDAR) sensors enable
accurate three-dimensional (3D) mapping of the sur-
rounding environment by emitting laser pulses and measuring
reflected signals. The resulting 3D point cloud data play a
critical role in various applications, such as digital archiving,
remote spatial sharing, and the development of digital
twins [1], [2], [3], [4]. However, with the advancement of
LiDAR sensor resolution, the amount of data generated per
scan has grown significantly, making efficient compression
and transmission essential for practical deployment [5].
Conventional compression methods for LiDAR point
clouds can be broadly categorized into geometry-based
approaches, which voxelize or partition the 3D space
hierarchically and assign bits to voxelized space [6], [7], [8],
and projection-based approaches, which convert 3D point
clouds into two-dimensional (2D) range image (RI) for

image-based processing [9], [10]. The RI-based methods
have gained attention as an effective way to reduce the
structural complexity of 3D point clouds, thereby facilitating
efficient compression and representation.

In view of compression, implicit neural representation
(INR)-based compression [11] has emerged as a promising
technology for compactly representing continuous spatial
signals. INR [12], [13], [14], [15] represents a signal as a
coordinate-to-value mapping using a small neural network,
achieving high compression ratios with a limited number
of parameters. Recent studies [16], [17] have used INR
for LiDAR point cloud compression and have shown that
it can reduce transmission traffic while achieving higher
reconstruction accuracy than conventional geometry-based
and Rl-based methods. While INR-based methods require
significant encoding time, they are efficient at the decoding
stage. Fig. 1 shows the trade-off between decoding latency

(© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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FIGURE 1. Rate-distortion performance (BD-CD) vs. decoding latency on KITTI
dataset.

and rate-distortion (R-D) performance (BD-CD [18]). It
suggests that INR-based approaches realize consistently low
decoding latency despite variations in R-D performance.

However, one of the key issues in INR-based compression
is its limited capacity to represent high-frequency compo-
nents under a small model. This limitation often leads to a
loss of fine structural details and degrades the performance
of downstream tasks such as 3D object detection. Prior
studies [13], [19] have proposed enhanced encoding schemes
to mitigate this issue, but the expressive capacity of compact
networks remains insufficient for capturing fine-grained
detail.

To address this limitation without significantly increas-
ing model complexity, we aim to integrate a power of
communication with INR-based compression to compensate
the high-frequency components that INR fails to model.
Specifically, we introduce residual-aided transmission which
is inspired by model-based compression [9], [20], [21]. These
residuals represent high-frequency components not modeled
by the INR, and are typically quantized, converted to binary,
channel encoded, and modulated for wireless transmission
to improve reconstruction fidelity. However, such digital
schemes generally rely on fixed quantization levels and
modulation formats, which do not adapt to time-varying
wireless channel conditions. As a result, reconstruction
quality improves only in discrete steps as channel conditions
change, leading to the stair-case [22].

To solve the limitation of high-frequency components in
a small INR and quality limitation of digital-based residual-
aided transmission in time-varying wireless channels, we
propose a novel scheme for efficient representation of LIDAR
point clouds. It combines an INR-based digital LiDAR
representation, RIC [17], with pseudo-analog residual trans-
mission inspired by joint source—channel coding (JSCC).
Specifically, the pseudo-analog modulation directly maps the
residuals onto transmission symbols, so that the resulting
reconstruction error scales smoothly with the instantaneous
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channel quality, i.e., gradual quality improvement under
channel quality variation. In addition, the proposed scheme
can control the ratio of digital and pseudo-analog symbols
to maximize the R-D performance under the available
bandwidth.

Evaluations on the KITTI dataset demonstrate that
the proposed scheme enables gradual improvement in
reconstruction quality under varying channel conditions,
effectively mitigating the stair-case effect and preserving
downstream task performance.

The major contributions of our study are three-fold:

o To the best of our knowledge, this is the first study
to introduce a JSCC framework that incorporates
INR-based representations for LiDAR point clouds,
effectively addressing the fundamental limitation of
modeling high-frequency components with compact
networks.

e We design a residual communication scheme that
enables smooth quality adaptation under varying chan-
nel conditions, mitigating the stair-case effect inherent
in conventional digital approaches.

« We conduct extensive experiments on the KITTI dataset,
covering both R-D performance and 3D object detection
accuracy, to comprehensively evaluate the effectiveness
of the proposed scheme.

Il. RELATED WORK

A. POINT CLOUD COMPRESSION

LiDAR sensors capture 3D point clouds, where each point
is defined by 3D coordinates, i.e., (X, Y,Z). Compression
methods for point clouds are categorized into 3D geometry-
based approaches and 2D projection-based approaches
using RlIs.

Geometry-based compression approaches are typically
divided into two types, known as graph-based and tree-based
methods. The graph-based methods model point clouds as
graph signals and apply the graph Fourier transform (GFT) to
reduce redundancy in the spectral domain [23], [24], [25]. In
addition, several studies have addressed graph signal recon-
struction to reduce storage and transmission costs [26], [27].
In contrast, the tree-based compression methods structure
point clouds by recursively subdividing the 3D space. A
typical approach employs octree-based representations, such
as point cloud library (PCL) and geometry-based point
cloud compression (G-PCC) [6], [28]. Some recent studies
have combined hierarchical tree structures with deep neural
network (DNN) to further improve the efficiency of geometry
compression [7], [29].

Projecting LiDAR measurements onto 2D Rls is a widely
used technique to compactly represent spatial distance
information. The RIs are typically generated either from raw
LiDAR packets [30] or from 3D point clouds [9], [20], [21].
The obtained RIs are then compressed using intra-frame cod-
ing to reduce spatial redundancy [9], or inter-frame coding
to exploit temporal coherence across frames [20], [21]. For
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example, R-PCC [9] applies lossless compression, such as
LZA4 and Deflate, to floating-point values.

Our study introduces INR-based compression for RIs to
reduce storage and transmission costs for 3D point clouds.
However, INRs often struggle to accurately represent fine-
grained details when learning RIs. To address this problem,
we define the residuals between the RI and the INR-based
reconstruction. These residuals are then transmitted using
pseudo-analog modulation, enabling the capture of high-
fidelity details at low transmission costs.

B. IMPLICIT NEURAL COMPRESSION

INR is a technique that represents multi-dimensional signals,
such as images and 3D point clouds, as continuous mappings
from coordinates to signal values by overfitting them
to a small neural network. A key limitation of INR is
its insufficient accuracy in reconstructing high-frequency
components. To address this issue, several methods have
been proposed, including the use of sinusoidal activations
in SIREN [13], positional encoding in NeRF [15], and its
extension within the Neural Tangent Kernel framework [19].
Based on the results of the INR work, its application has
been extended to image compression. In RI compression,
a typical approach is to directly encode the entire RI
using INR [11], [16], [31]. In contrast, RIC [17] improves
coding efficiency by decomposing each RI into struc-
turally distinct components and encoding them separately
using dedicated INR networks. However, these methods
suffer from insufficient representational capacity for high-
frequency components. Furthermore, they remain susceptible
to the stair-case effect caused by bit errors and irrecoverable
quantization noise.

Our paper addresses these challenges by calculating
residuals to compensate for high-frequency components.
In addition, by directly mapping power-assigned residuals
to transmission signals, we eliminate source and channel
coding. As a result, the RI is reconstructed with high fidelity,
adapting to instantaneous wireless channel conditions, and
avoiding the stair-case effect.

C. JOINT SOURCE-CHANNEL CODING
Several JSCC schemes have been proposed to mitigate the
stair-case effect caused by bit errors and to gradually improve
the reconstruction quality of transmitted content according
to the instantaneous wireless channel condition [22], [32],
[33], [34]. These schemes eliminate quantization and entropy
coding at the transmitter, and instead integrate decorrelation
techniques, such as discrete cosine transform (DCT) [32] and
discrete wavelet transform (DWT) [33], with pseudo-analog
modulation to enable flexible adaptation to channel quality.
The signal processing-based and deep learning-based
methods have been proposed to further improve the
adaptability and compression efficiency of JSCC. Signal
processing-based extensions include alternative decorrelation
techniques using fixed or adaptive block divisions [35], [36],

6354

as well as error protection strategies tailored to channel con-
ditions and downstream tasks [34], [37], [38]. In contrast,
recent studies have introduced DNN-based architectures,
leading to the development of deep JSCC [39], [40], [41],
[42], [43], [44]. These approaches employ convolutional neu-
ral networks (CNNs) [40], transformer networks [41], [42],
and graph neural networks (GNNs) [43], [44] to compress
image and video signals into feature vectors, which are then
directly mapped to pseudo-analog modulation formats for
transmission.

However, image signals generally exhibit a wide dynamic
range in pixel values, which causes a low reconstruction
quality through pseudo-analog modulation in each channel
condition. To address this issue, we compute and transmit
the residuals using a pseudo-analog modulation format.
Since the residual has a significantly smaller dynamic range
compared to the RI, the proposed scheme can provide higher
reconstruction quality and greater stability than conventional
JSCC methods, even under the same channel conditions.

lll. PROPOSED SCHEME

A. OVERVIEW

Fig. 2 shows an overview of the proposed scheme.
Fig. 2 (a) specifically illustrates the end-to-end architecture
of the proposed scheme. We consider that the LiDAR
measurement to be compressed is a 3D point cloud consisting
of N points, denoted as P = {p; = [x;, yi,zil | i=1,..., N},
where x;,y;,zi € R represent the Cartesian coordinates
of the i-th point. The proposed scheme first projects the
input point cloud onto a 2D image plane via spherical
coordinate transformation, resulting in a RI I € RW>*#_ The
RI is then decomposed into a binary mask image Iy €
{0, 1}W>H which indicates the presence or absence of valid
measurements at each pixel, and a depth image Ip € RW>#
that stores the corresponding distance values. The depth
image is further divided into rectangular patches.

Fig. 2 (b) shows the transceiver for the depth and mask
images and the RI synthesizer on the receiver side. At
the transmitter, the proposed scheme overfits two separate
INR models, ®(-; ¥) and V(-; w), to represent the mapping
from coordinates to pixel values for the mask and depth
images, respectively. The resulting parameters ¥ and o
are transmitted via digital modulation after channel coding.
To capture the high-frequency components not modeled
by the INRs, the proposed scheme computes residuals
as the difference between the original images and the
INR predictions. These residuals are scaled under a power
constraint and transmitted using analog modulation. At
the receiver, the INRs are reconstructed from the received
parameters 1/; and @. The received residuals are then added
to recover the mask and depth images, iM and iD, which are
combined to synthesize the final RIj .

Finally, the LiDAR point cloud P is reconstructed from
the synthesized RI 1 by back-projecting it from the 2D
image plane to 3D Cartesian coordinates via the spherical
coordinate system.

VOLUME 6, 2025
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FIGURE 2. Overview of the proposed scheme.

B. 3D-TO-2D PROJECTION

To reduce the computational complexity of point cloud
compression, the proposed scheme first transforms all 3D
points in the point cloud P into a 2D RI [ via coordinate
mapping. Specifically, the 3D-to-2D projection method
consists of two steps: 1) mapping the 3D point cloud in
their original 3D Cartesian coordinate system x-y-z to the
spherical coordinate p-¢-6, and 2) projecting these spherical
coordinates onto an image coordinate system u-v.

Each point p € P in the 3D point cloud is initially
represented in the Cartesian coordinate system as (x,y, z).
This Cartesian point is then converted into its corresponding
spherical coordinate p’ = (p, ¢, 0), where p denotes the
length, ¢ the pitch, and 0 the yaw of the coordinate system,
as defined below:

p=4/x2+y2+722 ¢= arcsin(£>, 0= arctan(z). ()
0 x

Subsequently, the spherical point is projected onto the 2D
image coordinate (u,v) to generate the RI [ using the
following transformation:

Y. (¢,

”—bX(#)J’

VZ{HXQ—M)J-
¢up+|¢down|

Here, ¢yp and ¢gown denote the upper and lower bounds
of the elevation angle ¢ observed in the dataset, |- | denotes
the absolute value, and |-]| denotes the floor function. Each
pixel value I(u,v) in the RI corresponds to the measured
distance p computed in Eq. (1), expressed in an arbitrary
physical unit. The parameters H and W in Eq. (2) represent
the vertical and horizontal resolution of the RI, respectively,
which are determined by the angular resolution of the LiDAR

2)
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sensor in the elevation and azimuth directions. In our work,
we set H =64 and W = 1024.

Due to the sparsity of LiDAR measurements, not all pixels
in the RI are necessarily assigned to a 3D point. Therefore,
if a pixel (&/,v) remains unassigned after the 3D-to-2D
mapping of all points, we assign I(«’, v') = pnun, where ppun
is an arbitrary value indicating that no 3D point corresponds
to that pixel. In practice, pnu is typically chosen to be
greater than the maximum p value in the LiDAR data, or a
negative number.

C. RANGE IMAGE DECOMPOSITION
Following the 3D-to-2D mapping, the RI is decomposed into
a binary mask image Ij; € {0, 1}"*# and a depth image
ID (S] RWXH.

The mask image Ij; indicates whether a 3D point is
assigned to each pixel in the RI, and is defined as follows:

1it I(u, v) = poulls
0 otherwise .

In(u,v) = { 3)

Based on the mask image, we construct a training dataset Dy,
for the mask INR ®(-; ¥), consisting of pixel coordinates
and their corresponding binary values.:

Dy = {(w,v), Iy, v)) [ue{l,....,W}vefl ... H}}.
“4)
The depth image Ip is derived from the RI by masking

out pixels with no assigned 3D point, which are treated as
invalid and excluded from training:

0 if I(u,v) = ppun,
I(u, v) otherwise .

Ip(u,v) = { (@)

To improve decoding performance and the quality of the
reconstructed depth image, we divide the depth image into
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FIGURE 3. The encoder and decoder architectures for the mask and depth INRs.

small rectangular patches, following [45]. Speciﬁcal%vy, tII}e
RI is uniformly partitioned into NI% patches I} (i) € RM N
where N, is a scaling factor and i =1, N,% Each pixel
in the patched RI is indexed as Ib(i, iy, Iy), where i is the
patch index and (i, i,) are the in-patch coordinates with
the origin at the top-left. Similar to the mask image, we
construct a training dataset Dp for the depth INR ¥ (-; @),
consisting of tuples of patch index, in-patch coordinates, and
the corresponding depth value, excluding pixels with :

Dp = {((, iy, iy), Ip(i, iy, i) | i€ {l,.. -,N,%},
ive{l,..., W/N,},
iy €{l,...,H/N,},
Ip(i, iy, iv) # 9}. (6)

D. TRANSMITTER

1) DIGITAL TRANSMITTER

The digital transmitter consists of the mask and depth INRs,
a channel encoder, and a digital modulator. It encodes the
mask and depth images into compact representations by
training the INRs, and then applying channel coding and
digital modulation for wireless transmission. Fig. 3 shows
the encoder and decoder architectures for the mask and depth
INRs.

For the mask INR, we define a target function ®; : R2 —
{0, 1} that maps each pixel coordinate to a binary value
indicating whether it is occupied by a projected LiDAR point.
To approximate this target function, we train ®(-; ¥) using
the dataset Djys, by minimizing the binary cross-entropy
(BCE) loss between the ground-truth values Ij;(u, v) and the
predicted values ®((u, v); ¥) as follows:

1 H W
Loce (W) = =72 D > [I(ae, v) log(@((a, v); )

+(1 = Iy (u, v) log(1 — @((u, v); ¥)]. (7)

Similar to the mask INR, we define a target function
Wp : R} — R for the depth INR, which maps each input
(i, iy, iy) to its corresponding depth value. To approximate
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this function, the depth INR W(:; w) is trained using the
dataset Dp, by minimizing the mean squared error (MSE)
between the ground-truth values Ip (i, iy, i,) and the predicted
values V¥ ((i, iy, iy); @), defined as:

) N; W/N, H/N,
Lusp(@) = o Z Z Z 1 (GG, s iv); @) — Ip(iy s i) 1%
i Iy iy
(8)

After training both mask and depth INRs, their parameters,
¥ and @, become effective compressed representations of the
depth and mask images. We then introduce model compres-
sion to these parameters to further reduce transmission and
storage costs. As an initial step in our model compression
procedure, the parameters are uniformly quantized to a bit
depth of Np. This quantization is layer-wise, meaning that
given a parameter set corresponding to each layer in the
depth and mask INRs as u € @, a quantized parameter set
g is obtained as follows:

M — Mmin
2N

Mmax — Mmin
2N

Rg = round( )s + Rmin, § = )

where round(-) is a rounding function to the nearest integer
and max and i are the maximum and minimum values
in p. To further minimize the bitrate, we then apply
Huffman coding to the quantized tensor u,. This lossless
entropy coding assigns variable-length codes based on the
frequency of each parameter value, resulting in a more
compact bitstream. The bitstream is processed by a channel
encoder to provide robustness against transmission errors.
We adopt a convolutional coding scheme with a rate of
1/2, and the encoded bits are mapped to transmission
symbols using digital modulation formats such as binary
phase shift keying (BPSK), quadrature phase shift keying
(QPSK), and quadrature amplitude modulation (QAM). In
the case of BPSK, the k-th transmission symbol, denoted

s,((d), is defined as:

s =y, bpeX={£1}. (10)
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2) ANALOG TRANSMITTER

The analog transmitter consists of an analog residual encoder,
a power scaler, and an analog modulator. This module
improves the reconstruction quality by transmitting residuals
that capture the high-frequency components not modeled by
the INRs.

Specifically, the residuals for the mask and depth images
are defined as the differences between the original images
and the INR predictions at each pixel. For a pixel coordinate
(u, v) in the mask image, the residual is

dy(u,v) = Iy (u, v) — ®((u, v); ¥), (11)

and for a patch index i and in-patch coordinate (iy, i,) in
the depth image, the residual is

dp(i, iy, iy) = Ip(, iy, i) — W((, iy, iv); @),  (12)

where Ijs(u,v) and Ip(i, iy, i,) are the ground-truth values,
and ©(-; ¥) and V(-; w) are the predictions from the mask
and depth INRs, respectively.

After calculating all residuals from the mask and depth
images, they are jointly flattened into a single residual
sequence {di}, where each dj represents a residual value from
either the mask image or the depth image. This sequence is
then fed into the analog encoder for transmission.

In contrast, analog transmitters directly map residuals to
transmission symbols, enabling the reconstruction quality
to improve progressively as the wireless channel condition
becomes better. To reduce the impact of channel noise, a
scaling operation is applied prior to analog modulation. This
operation, known as power allocation, aims to minimize
the mean squared error (MSE) between the original and
reconstructed residuals under a given transmission power
constraint.

Let d; denote the residual value at index k, and let gi
be the corresponding scaling factor. The analog-modulated
transmission symbol s,ia> is generated by scaling the residual
as follows:

s = grdy. (13)

The goal is to determine the optimal set of scaling factors
{gx} that minimize the mean squared error (MSE) between
the original and reconstructed residuals, subject to an average
transmission power constraint. This leads to the following
optimization problem:

N 2
1 oA
MSE:NE _

min , (14)
{8} — gihi+ 02
1 N
24
st > gtk =P, (15)

k=1

where A, = |dk|2 is the power of the k-th residual, o2 is the
noise power of the wireless channel, and P is the transmission
power budget.
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The optimal scaling factor for each residual is obtained
by solving the above problem, and is given by:

—1/4 P
ge=mi, ", m= | ———75 73
Zk:l )‘k

The proposed scheme utilizes the scaling factor irrespective
of the channel model, e.g., sub-optimal power allocation in
Rayleigh fading channels.

Finally, for wireless transmission, every two scaled resid-
uals s and 5@ are jointly mapped onto the in-phase
Sk k+1 J y pp p
(D) and quadrature (Q) components of a complex-valued

transmission symbol as follows:

X = slia> =+ Js;f:l.

(16)

A7)

When the available bandwidth is B, i.e., the available num-
ber of transmission symbols/second, the proposed scheme
can select and send up to 2B residuals/second, whose
absolute value is large, because the proposed scheme assigns
every two scaled residuals to the I and Q components
of a complex-valued transmission symbol. This selection
can reduce quality degradation even when the available
bandwidth is insufficient to send all the residuals.

E. RECEIVER

1) DIGITAL RECEIVER

The digital receiver consists of the digital demodulator, the
channel decoder, and the reconstructed mask and depth INRs.
The receiver demodulates the digitally modulated symbols
and decodes the channel-coded bitstreams to recover the
parameter sets ¥ and @, which correspond to the mask and
depth INRs, respectively. Using the recovered parameters,
the receiver reconstructs the mask INR & (-; ¥) and the depth
INR ¥(:; @).

2) ANALOG RECEIVER

The analog receiver consists of the analog demodulator,
a denoising filter, and a decoder. The received symbols
represent the analog-modulated residual values transmitted
over the wireless channel. Specifically, each received symbol
Vi can be modeled as:

(18)

where x; is the transmitted analog symbol corresponding to
the scaled residuals dy and di+1, Ay is the channel gain, and
ng is additive noise with variance o' accounting for channel
distortion.

The goal of the receiver is to estimate the original residual
dy from the received symbol y,. To this end, the transmitter
provides the power of each residual component, defined
as Ax = |di|?, as metadata. This enables the receiver to
reconstruct the corresponding scaling factor gz and apply the
minimum mean squared error (MMSE) filter [32] as follows:

o IE[lup]
T I PE[l?] + 02

Yk = hpxi + ng,

* ks (19)
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where E[ |xk| ] = gk)\k + gk+1)\k+1 The estimates of the
individual residuals dy and dk+1 can be obtained by taking
the real and imaginary parts of Xz and scaling them back as
follows:

(20)

F. RANGE IMAGE SYNTHESIZER

The image synthesizer reconstructs the RI by applying the
estimated residuals to the outputs of the mask and depth
INRs. Specifically, the residuals are split into mask and depth
components, which are added to the outputs of the mask and
depth INRs, respectively. The reconstructed depth values are
then selectively assigned to valid pixels as indicated by the
mask image.

The mask image is reconstructed by feeding the coordinate
set {(u,v) | u e {l,....,W}, v € {l,...,H}} to the
mask INR @ (-; ¥), and adding the residuals EJM(u, v) to the
outputs. Formally, the binary mask is defined as:

1 if(b((u, W 1/}) + Ay, v) > 0.5,
0 otherwise .

T (u, v) = { (21

The depth image is reconstructed in a two-stage manner.
First, each patch is reconstructed by feeding the set of
tuples {(i, i, iv) | i € {1,...,N3}, iy € {1,..., W}, i, €
{1,...,H}} to the depth INR W(-;®), and adding the

corresponding residuals dp(i, iy, i). The reconstructed depth
values are defined as:

IpGy i, iv) = W((, iu, iv); @) +dp(i, iuy ). (22)

The reconstructed patches are subsequently assembled to
form the complete depth image Ip.

The final RI 7(u, v) is constructed by selectively assigning
the reconstructed depth values to valid pixels based on the
mask image. Let 7(u,v) = (i, iy, i,) denote the mapping
from a pixel coordinate (u, v) to the corresponding patch
index and in-patch coordinate in the depth domain. For each
pixel (u, v), if the mask value iM(u, v) is 0, the corresponding
depth value ?D(n(u, v)) is assigned. Otherwise, a null token
Pnull 18 used. Formally, the RI is defined as:

Ip((u, v)) if Iy (u, v) = 0,

. 23
Pnull otherwise . (23)

?(u, V) = {

G. 2D-TO-3D PROJECTION

The final stage of the decoding process reconstructs a 3D
point cloud via a 2D-to-3D projection based on the RI 1.
If i(u, V) # pnul, the corresponding spherical coordinate
p = (p, ¢, 0) is computed as:

p=1Iwv).

~ 1%

é = (1= =) @u + Ibaownl) — [Bounl.

A u

6 = _(2W — 1)71. 24)
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Finally, the spherical coordinate is converted to the Cartesian
coordinate p = (%, y, ) as follows:

%= pcosdcoshd pcospsind 2= psing. (25)
IV. EVALUATION
A. SETTINGS
Metric: We evaluate the decoded 3D point clouds using the

Chamfer Distance (CD), a standard metric in the community:

CD = § mml Pl2+ § min || —Allz},
{|P| p—p |P|AAPGPP p
peP
(26)

where P and P denote the original and decoded point
sets, respectively. For the R-D performance assessment, we
use the Bjgntegaard delta chamfer distance (BD-CD) [18]
for calculating average chamfer distance (CD) improvement
between R-D curves for the same bitrate. A higher BD-
CD value indicates better reconstruction performance, with
positive values representing improvements compared to the
baselines.

Dataset: We use the KITTI dataset [46] as the source of
3D point cloud data. For R-D performance evaluation, we
select five frames with frame indices 00, 25, 50, 75, and
100 from each sequence ranging from 00 to 06 in the KITTI
Odometry dataset. To assess the effect of compression on
downstream tasks, we perform 3D object detection using
frame 000002 from the KITTI 3D Object Detection dataset.

Baselines: We evaluate the proposed scheme by com-
paring it with existing baselines in geometric 3D point
cloud compression, 2D image compression, and INR-based
compression.

1) As a baseline for 3D point cloud compression, we
select G-PCC [6], a geometry-based method within
the point cloud compression (PCC) family. We use the
MPEG reference software TMC13-v14.0 for octree-
based geometry compression. The compression level
is adjusted by varying the positionQuantizationScale
parameter from 0.05 to 0.95.

2) We also include Draco [8] as a baseline method
for 3D point cloud compression within the PCC
family. We use the official implementation of the
Draco encoder, which applies KD-tree-based geometry
compression [47]. The quantization parameter qp is
varied from 5 to 13 to control the trade-off between
bitrate and reconstruction quality.

3) In addition, we evaluate OctAttention [7], an octree-
based autoencoder within the PCC family. This
method improves the conventional octree structure by
incorporating attention mechanisms for better context
modeling. To evaluate its performance across different
compression levels, we set the octree depth to values
from 8 to 13.

4) As conventional image compression baselines, we
select Joint Photographic Experts Group 2000
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TABLE 1. The list of average BD-CD 1t across the different LiDAR sequences for each SNR.

SNR JPEG2000 HEIF AVIF R-PCC(Deflate) R-PCC(LZ4) G-PCC Draco Octattention COIN RIC
5dB 0.591 0.366  0.232 0.033 0.139 0.062 0.086 -0.006 1.057  0.083
10 dB 0.812 0.502  0.270 0.065 0.183 0.110 0.145 0.026 1.157  0.115
15 dB 0.890 0.618 0.310 0.086 0.210 0.151 0.195 0.053 1.199  0.137
Average 0.764 0495 0.271 0.061 0.177 0.108 0.142 0.024 1.138  0.112

(JPEG2000), High-Efficiency Image File Format
(HEIF), and AV1 Image File Format (AVIF). To
apply these codecs, we first convert the floating-
point RI representations into 8-bit images. JPEG and
JPEG2000 results are obtained using Pillow 8.4.0,
while HEIF and AVIF results are obtained using
pillow-heif 0.11.1 and pillow-avif-plugin 1.3.1, respec-
tively.

5) R-PCC [9] is an RI based LiDAR compression
baseline. It maps LiDAR point clouds to RIs and
performs intra-coding using floating-point lossless
coding methods. We adopt a uniform quantization
framework and vary the accuracy parameter from O to 1
to control the degree of compression. For segmentation
and modeling, we use Farthest Point Sampling (FPS)
combined with plane fitting, setting the number of
clusters to 100. Additionally, we employ Deflate and
LZ4 compressors due to their better trade-off between
compression efficiency and decompression speed.

6) COmpression with Implicit Neural representations
(COIN) [11] is an INR-based image compression
baseline. Its network is trained to directly map pixel
coordinates to the corresponding pixel values of the
RI. Since COIN does not apply depth/mask separation
or JSCC scheme, we consider it a suitable reference
for evaluating the effectiveness of both strategies in
the proposed scheme.

7) We also include RIC [17] as a baseline method
for an INR-based image compression. RIC enhances
compression performance by decomposing the RI into
separate depth and mask images and training individual
INR models for each component. It further employs
patch-wise learning for depth images and applies
model compression techniques to reduce storage over-
head. Since RIC does not incorporate JSCC, it provides
a useful reference for evaluating the contribution of
JSCC in the proposed scheme.

Network Architecture Details: The mask and depth INRs
are implemented as multi-layer perceptrons (MLPs) with
a fixed depth of L = 6 hidden layers and V nodes
per layer, where sine activation functions are applied in
all hidden layers. The mask INR takes a 2D coordinate
(u,v) as input and outputs a scalar value with a sigmoid
activation. To examine the effect of network complexity on
compression performance, the number of nodes V is varied
in {10, 20, 24, 28, 31, 34}. The depth INR takes a 3D input
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(@, iy, iy), where i is the patch index in a 16 x 16 grid and
(iy, iy) are in-patch coordinates. It outputs a scalar value
with an identity activation. To investigate the impact of
model capacity on reconstruction quality, V is varied in
{10, 20, 28, 31, 34, 37, 40, 42, 45}.

Hyperparameter Details: We use separate hyperparame-
ter settings for mask and depth INRs. The general settings
for both INRs include the Adam optimizer, an initial learning
rate of 1x 1073, 3,000 training epochs, and a batch size of 1.
For depth INR, we adopt the cosine annealing scheduler with
a warmup phase. The initial learning rate for the warmup
phase is set to 1 x 107, and the warmup period lasts for
300 epochs. During this period, the learning rate increases
linearly to 1 x 1073. The learning rate then decreases
according to a cosine curve for the remaining 2,700 epochs
up to the minimum learning rate of 1 x 10712,

Wireless Channel Settings: The transmitted digital and
analog symbols are impaired by the AWGN channels, which
are modeled with a channel gain of &; = 1, and the Rayleigh
fading channels, where h; follows a complex Gaussian
distribution h; ~ CN(0, 1). The wireless channel simulation
is conducted using scikit-commpy 0.8.0. We adopt digital
modulation schemes including BPSK, QPSK, and 16-QAM,
all combined with a 1/2-rate convolutional code with a
constraint length of 8.

Implementation Detail: All the evaluations exhibited in
this paper are performed with CPUs of Intel Core i9-10850K
and 19-13900KF and with GPUs of NVIDIA GeForce RTX
3080 and 4070. neural networks (NNs) for COIN and the
proposed scheme are implemented, trained, and evaluated
using PyTorch 2.2.0 with Python 3.10.

B. COMPARISON WITH BASELINES
1) RATE DISTORTION PERFORMANCE

We evaluate the R-D performance of the proposed scheme
under three wireless channel conditions with SNR levels
of 5 dB, 10 dB, and 15 dB. Table 1 lists the average BD-
CD performance across the different LiDAR sequences for
each SNR to evaluate the 3D reconstruction quality at
certain SNRs, as well as the average BD-CD performance
across SNRs. The results are averaged over 30 frames of
sequences ranging from 00 to 06 in the KITTI Odometry
dataset. At a low SNR of 5 dB, the proposed scheme
outperforms AVIF (+0.232 BD-CD) and RIC (4-0.083 BD-
CD). It also achieves comparable performance compared
to R-PCC (Deflate) (+0.033 BD-CD) and Octattention
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FIGURE 4. Snapshots of the reconstructed LiDAR point clouds obtained by the proposed and baseline methods under QPSK modulation and a 1/2-rate convolutional code,
with a wireless channel SNR of 10 dB. The results in (a)-(I) and (m)—(x) correspond to sequences 00-00 and 01-00, respectively.

(—0.006 BD-CD). At a high SNR of 15 dB, the proposed
scheme consistently surpasses all baseline methods, includ-
ing Octattention (+0.053 BD-CD). This result highlights its
superior reconstruction performance under favorable channel
conditions.

Figs. 4 (a)—(x) show snapshots of the original and recon-
structed LiDAR point clouds produced by each method at
an SNR of 10 dB. Specifically, Figs. 4 (a)—(1) and (m)—
(x) correspond to sequences 00-00 and 01-00, respectively.
Image compression-based methods suffer from noise-induced
structural degradation, which leads to visually noticeable
distortions in the reconstructed point clouds. R-PCC methods
exhibit persistent circular noise patterns. PCC methods
such as G-PCC and Draco tend to produce sparse recon-
structions with low point density, resulting in fragmented
and incomplete geometric representations. The point clouds
reconstructed by RIC accurately preserve the coarse object
structure but exhibit low precision in reconstructing fine-
grained geometric details. In contrast, the proposed scheme
preserves both structural fidelity and point density, while
reducing compression-induced distortions, thereby achieving
structurally faithful point cloud reconstructions.

2) DOWNSTREAM TASK

This section evaluates the impact of point cloud compression
methods on downstream task performance, using 3D object
detection as a representative example. The downstream task
performance of the proposed scheme is assessed under a
wireless channel SNR of 10dB. We use PointPillar [48] as the
3D object detector. The input point clouds are compressed
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using AVIF, R-PCC (Deflate), G-PCC, Octattention, RIC,
and the proposed scheme. The reflectance values of all point
clouds are set to zero, and the reconstructed point clouds are
used as input to PointPillar for inference. Each method is
evaluated under three model sizes determined by the number
of transmission symbols: approximately S0K (Low), 100K
(Middle), and 150K (High). Table 2 shows the detection
accuracy in terms of 2D IoU, Bird’s Eye View (BEV) IoU,
and 3D IoU for the object class “Car.” The detection accuracy
without compression (i.e., using the original point cloud)
is 0.879 for 2D IoU, 0.866 for BEV IoU, and 0.780 for
3D IoU.

In the Low and Middle settings, the proposed scheme
outperforms all baseline methods across all IoU metrics.
In particular, under the Low setting, it demonstrates clear
superiority even over high-performance approaches such as
Octattention and RIC, showing that it can reliably preserve
detection accuracy even under severe bitrate constraints. In
the High setting, RIC achieves the highest detection accuracy.

3) EFFECT OF CHANNEL QUALITY FLUCTUATION

This section evaluates how the reconstruction quality of
each method varies with wireless channel conditions, which
often fluctuate due to environmental noise. Figs. 5 (a) and
(b) show the reconstruction quality of the proposed and
baseline schemes as a function of wireless channel quality
under AWGN and Rayleigh fading channels, respectively. In
both figures, the number of transmitted symbols is adjusted
between 60K and 80K. All methods are considered adaptive
modulation, where the optimal modulation scheme (BPSK,
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TABLE 2. 3D object detection accuracy 1 for different model sizes. The best andthe second best resuits are denoted by pink and yellow.

Type Model AVIF R-PCC G-PCC Oct- RIC Proposed No
Size (Deflate) attention compression
Low 0.190 0.662 0.727 0.761 0.477 0.835
2D IoU Mid 0.411 0.710 0.737 0.782 0.771 0.837 0.879
High 0.723 0.722 0.751 0.775 0.848 0.847
Low - 0.602 0.747 0.753 0.183 0.846
BEV IoU Mid 0.246 0.778 0.763 0.801 0.765 0.851 0.866
High 0.801 0.807 0.806 0.805 0.854 0.840
Low - 0.446 0.615 0.646 0.173 0.739
3D IoU Mid 0.221 0.610 0.633 0.680 0.653 0.736 0.780
High 0.659 0.637 0.664 0.681 0.742 0.735
\\' --®- HEIF --®- HEIF
0.7 ‘.‘ G-PCC 0.7 G-PCC
--#- Octattention --#- Octattention
119::- 010250 --&- R-PCC(Deflate) 2 Feal s Brve el S s S s s | --&- R-PCC(Deflate)
0.6 —e- RIC 0.6 . | -e- RIC
—&— Proposed i —&— Proposed
05§ | SEE— -

Chamfer Distance

14 16 18 20

12
SNR [dB]

(a) AWGN channel.

FIGURE 5. Reconstruction quality as a function of wireless channel quality.

TABLE 3. SNR thresholds (in dB) required for successful point cloud reconstruction
under various modulation schemes and wireless channel models, for the proposed
scheme and baseline methods.

Method ‘ AWGN ‘ Rayleigh fading
\ BPSK QPSK 16QAM \ BPSK QPSK 16QAM

HEIF 5 9 16 9 20 30
G-PCC 7 12 18 13 23 35
Octattention 5 9 14 10 19 33
R-PCC (Deflate) 5 8 15 10 20 30
RIC 5 10 15 10 20 31
Proposed 5 10 15 10 20 31

QPSK, or 16QAM) is selected according to the SNR and
combined with a 1/2-rate convolutional code of constraint
length 8. Table 3 lists the SNR thresholds used to switch
between modulation schemes.

In the baselines, the reconstruction quality exhibits the
stair-case effect, with improvements occurring only at
specific SNR thresholds. In contrast, the proposed scheme
achieves smooth and continuous changes in reconstruction
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(b) Rayleigh fading channel.

quality with respect to SNR, even under a fixed bitrate, and
demonstrates graceful degradation as the SNR decreases.
Moreover, it consistently outperforms the baselines across
a wide SNR range even though the power allocation is
suboptimal for Rayleigh fading channels, enabling robust
and high-fidelity reconstruction under fluctuating channel
conditions.

4) ENCODING LATENCY

Table 4 shows the average encoding latency of the proposed
and baseline methods for LiDAR sequence 00-00. Here,
the encoding latency for the RI-based schemes contains the
conversion time from the point cloud to the RI.

It shows that the INR-based compression, including
the proposed scheme, requires a significant encoding
latency compared with the 3D point cloud compression
and 2D image compression schemes. We note that the
INR-based compression achieves extremely low decoding
latency as shown in Fig. 1. It means the INR-based com-
pression is effective for on-demand and quality-sensitive
applications.
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TABLE 4. Average encoding latency |.

Method Latency per sequence
JPEG2000 10 ms
HEIF 55 ms
AVIF 94 ms
R-PCC (Deflate) 20 ms
R-PCC (LZ4) 60 ms
G-PCC 65 ms
Draco 10 ms
Octattention 130 ms
COIN 30 min
RIC 180 min
Proposed 90 min

TABLE 5. The list of BD-CD for KITTI dataset under different JSCC allocations to the
depth and mask images of the Rl. v indicates that the corresponding component is
transmitted with JSCC. Higher values indicate better reconstruction performance for
the proposed scheme.

Depth Mask | 5dB  10dB 15dB | Average
0.078 0.102 0.119 0.100

v 0.060 0.084 0.101 0.082

v 0.066 0.032 0.020 0.039

C. ABLATION STUDY

1) EFFECT OF JSCC ALLOCATION TO DEPTH AND MASK
IMAGES

This section evaluates the impact of selectively applying
JSCC to the depth and mask images of the RI, in order to
clarify the individual contribution of JSCC to reconstruction
quality. We compare four configurations: (i) JSCC is not
applied to either image (i.e., RIC), (ii) JSCC is applied only
to the mask image, (iii) JSCC is applied only to the depth
image, and (iv) JSCC is applied to both images (i.e., the
proposed scheme).

Table 5 shows the BD-CD for the KITTI dataset under
each configuration. Larger values indicate that the compared
configurations exhibit inferior performance compared to the
proposed scheme. Among the tested configurations, the
proposed scheme consistently achieves the best reconstruc-
tion performance across all SNR levels. Notably, applying
JSCC only to the depth image yields an average BD-CD of
0.039, whereas applying it only to the mask image results in
a higher BD-CD of 0.082. The configuration without JSCC
applied to either image exhibits the worst performance, with
an average BD-CD of 0.100. These results indicate that the
depth image contributes more significantly to reconstruction
quality when JSCC is applied to it, while the mask image
also provides a moderate benefit.

2) EFFECT OF DIGITAL-TO-ANALOG SYMBOL RATIO ON
RECONSTRUCTION PERFORMANCE

Each of the depth and mask images is transmitted using both
digitally encoded INR parameters and residuals transmitted
in analog form. This section investigates how the ratio
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FIGURE 6. Reconstruction quality across digital-to-analog symbol ratio r, in the
depth and mask images.

between digital and analog symbols affects reconstruction
performance, by independently varying the ratio for the depth
and mask images under a fixed total number of transmission
symbols. We define a parameter r; € [0, 1], which represents
the ratio of transmission symbols allocated to digital symbols
for INR. When r; = 1.0, only the INR parameters are
transmitted, and no residuals are sent. In contrast, ry = 0.0
corresponds to a pure JSCC scheme, where the entire RI is
transmitted using pseudo-analog modulation without relying
on INR-based encoding.

Fig. 6 shows how the reconstruction quality varies as
the ratio ry is changed, while keeping the total number of
transmission symbols fixed for either the depth or mask
image. Fig. 6 (a) shows the reconstruction quality as a
function of SNR when varying the ratio r; for the depth
image under an available bandwidth of 32 Ksymbols. To
evaluate the effect of r; on the depth image alone, the
mask image is kept identical across all configurations.
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TABLE 6. The list of BD-CD results for the KITTI dataset when using different image
compression schemes for Rl reconstruction in the residual transmission framework.
Higher values indicate better reconstruction performance for the proposed scheme.

Method 5dB  10dB 15dB | Average
JPEG2000 | 0.273 0.211 0.161 0.215
HEIF 0.211 0.177 0.150 | 0.179
AVIF 0.067 0.066 0.066 | 0.066
COIN 0.893 0.721 0.601 0.739

The best reconstruction quality is achieved when digital
INR parameters and analog residuals are transmitted in
combination. In particular, the configuration with r; = 0.33,
which corresponds to an digital-to-analog ratio of 1:2,
consistently yields the lowest chamfer distance across all
SNR levels. In contrast, the pure JSCC scheme (r; = 0.0)
shows limited improvement with increasing SNR and results
in overall inferior reconstruction quality. Fig. 6 (b) shows the
reconstruction quality as a function of r; for the mask image
under a wireless channel SNR of 10 dB and an available
bandwidth of 5 Ksymbols. To evaluate the effect of r; on
the mask image alone, the depth image is kept unchanged
across all configurations. The proposed hybrid scheme yields
better 3D reconstruction quality compared with the pure
digital and analog schemes under the limited bandwidth
conditions.

3) EFFECT OF INTEGRATED COMPRESSION METHODS
ON RESIDUAL TRANSMISSION

This section evaluates how different image compression
methods affect reconstruction quality when integrated into
the residual transmission framework. Specifically, we replace
the RI compression module in the pipeline with JPEG2000,
HEIF, AVIF, and COIN, respectively. In all configurations,
the residual is computed from the reconstructed RI and
transmitted using the same JSCC settings. Table 6 shows the
BD-CD for the KITTI dataset when using different image
compression schemes for RI reconstruction in the residual
transmission framework. These results demonstrate that the
proposed method outperforms all alternative approaches
across all SNR conditions.

4) EFFECT OF NETWORK ARCHITECTURE

This section discusses the effect of the configurations for the
depth INR architecture, specifically the patch size N, and
layer size L, on the quality of the reconstructed LiDAR point
cloud. Here, a small patch size increases the complexity of
intra-patch learning, while a large patch size increases the
complexity of inter-patch learning.

Fig. 7 shows the 3D reconstruction quality of the proposed
scheme under the different patch division sizes N,. The
evaluation results demonstrated that the patch size of
N, = 16 yields the best CD performance. However, either
larger or smaller patch sizes degrade the 3D reconstruction
quality under the same bitrate.
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Similarly, Fig. 8 shows the 3D reconstruction quality of
the proposed scheme for different layer sizes L. The results
indicate that a layer size of L = 6 is the most effective for
CD performance.

5) EFFECT OF RESIDUAL SELECTION STRATEGY

This section evaluates the effect of the residual prioritization
and available bandwidth on the 3D reconstruction quality.
To discuss the effectiveness of residual transmission in the
proposed scheme, we prepare two alternative strategies for
sending residuals in band-limited conditions: (i) random
selection and (ii) sequential selection. The random selection
randomly chooses the transmission residuals, and the sequen-
tial selection sequentially chooses residuals from the top-left
to the bottom-right of the RI to fit the available bandwidth.
Here, we consider a retention ratio R, whose range is [0, 1].
For example, a retention ratio of 1 indicates that the available
bandwidth is sufficient for sending all the residuals, whereas
a retention ratio of 0.7 means that 30% of the residuals
cannot be transmitted due to bandwidth limitations.

Fig. 9 shows the 3D reconstruction quality as a function of
the retention ratio R of the residuals for three methods at the
wireless channel SNR of 15 dB. It shows that the absolute
value-based residual transmission in the proposed scheme
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TABLE 7. The list of BD-CD 1 for KITTI dataset at the wireless channel SNR of 5 dB.

Seq. JZ':)LOOG HEIF  AVIF (I'}:;IEZ) '(‘ELC“C) GPCC  Draco ‘:e)::ion COIN  RIC
00-00 0486 0330 0235 0.051 0.130 0.064 0.081 0.003 1020 0.057
00-25 0.564 0342 0216 0.056 0.174 0.055 0.080 -0.006 099  0.067
00-50 0.674 0372 0232 0.061 0.153 0.053 0.058 -0.007 1146 0.063
00-75 0.744 0402 0237 0.015 0.099 0.050 0.055 -0.006 0989 0058
00-100 0.500 0325 0219 0.015 0.107 0.061 0.075 -0.005 1139 0.064
01-00 0.568 0369 0238 0.042 0.174 0.091 0.140 0.000 L142 0109
01-25 0.510 0368 0286 0.055 0.150 0.097 0.167 0.022 1117 0.097
01-50 0537 0362 0264 0.060 0.161 0.089 0.136 0018 1136 0.087
01-75 0.601 0369 0235 0.044 0.146 0.081 0.089 0012 099 0071
01-100 0.653 0397 0241 0.060 0.186 0.072 0.095 0.009 1130 0073
0200 0.591 0368 0223 0.033 0.189 0.056 0.091 -0.020 1026 0.098
0225 0.476 0329 0239 0.052 0.139 0.069 0.119 0.003 1024 0.085
02-50 0.493 0337 0250 0.045 0.129 0.085 0.126 0.001 1.048 0.091
0275 0.506 0345 0248 0.030 0.128 0.067 0.117 0.002 0999 0077
02-100 0.470 0315 0235 0.036 0.131 0.074 0.099 0.008 LIS0 0.061
03-00 0.602 0342 0210 0.057 0.168 0.049 0.060 -0.007 1026 0.062
03-25 0.741 0428 0228 0.022 0.119 0.040 0.044 0.016 0.968 0.080
03-50 0.583 0363 0231 0011 0.115 0.054 0.069 -0.017 1120 0.093
0375 0.468 0325 0217 0.003 0.098 0.065 0.087 0.013 0964 0.095
03-100 0.472 0329 0224 0.009 0.112 0.068 0.105 -0.007 1139 0088
04-00 0.508 0350 0235 0.061 0.183 0.075 0.109 -0.010 1125 0.104
04-25 0.661 039 0230 0.022 0.130 0.060 0.081 0.015 1076 0.106
04-50 0.647 0380 0234 0.038 0.146 0.059 0077 -0.001 L116 0071
04-75 0577 0348 0225 0.021 0.133 0.051 0.064 <0.011 0971 0.082
04-100 0.502 0328 0239 0.034 0.123 0.067 0.080 0.009 1.148 0.059
05-00 0.507 0324 0235 0.067 0.186 0.062 0.087 -0.008 1049 0076
0525 0.520 0327 0228 0.016 0.105 0.064 0.080 -0.002 1030 0.060
05-50 0.767 0427 0233 0.012 0.105 0.043 0.055 0,017 1.021 0.077
0575 0.813 0466 0240 0011 0.114 0.041 0.048 0.022 0960 0.091
05-100 0.642 0383 0242 0.018 0.110 0.050 0.063 -0.009 1132 0068
06-00 0.575 0351 0.209 0.046 0.184 0.054 0.077 -0.026 1002 0.105
06-25 0.690 0385 0210 0.014 0.151 0.046 0.070 0.022 1.008 0.109
06-50 0.672 0391 0211 0.012 0.133 0.047 0.065 0.022 1Lo11 0.112
0675 0.814 0477 0217 0.018 0.134 0.039 0.056 -0.026 0.957 0.109
06-100 0.536 0349 0224 0.007 0.107 0.069 0.103 0,012 L117 0.106
Average | 0.591 0366 0232 0.033 0.139 0.062 0.086 -0.006 1.057 0.083
TABLE 8. The list of BD-CD 1 for KITTI dataset at the wireless channel SNR of 10 dB.
Seq. J;Sg’ HEIF  AVIF (ge';‘;fe) ‘gzc‘g GPCC  Draco lgﬂi(’n COIN  RIC
00-00 0.673 0424 0275 0.082 0.172 0.109 0.134 0.027 1122 0089
00-25 0.768 0463 0256 0.082 0211 0.096 0.136 0.022 1.067 0.095
00-50 0.964 0536 0266 0.085 0.197 0.084 0.099 0.014 1.291 0.087
00-75 1.061 0586 0271 0.039 0.128 0.080 0.094 0.014 1064 0079
00-100 0.688 0418 0257 0.044 0.143 0.100 0.123 0.022 1279 0.094
01-00 0.757 0496 0288 0.080 0.297 0.160 0232 0.049 123 0151
0125 0.670 0454 0319 0.079 0.189 0.156 0.256 0.063 1206 0133
01-50 0.688 0464 0298 0.082 0.185 0.139 0.201 0.052 1217 0.115
01-75 0.806 0518 0266 0.075 0.170 0.123 0.136 0.046 1.065 0.098
01-100 0.907 0574 0267 0.099 0.234 0.119 0.157 0.041 1277 0.097
0200 0811 0517 0266 0.068 0253 0.117 0.168 0.021 L0 0137
0225 0.624 0416 0273 0.078 0.177 0.114 0.180 0.036 1.108 0.117
02-50 0.619 0421 0.285 0.072 0.156 0.137 0.189 0.034 LIl4 0120
0275 0.688 0439 0287 0.064 0.165 0.112 0.185 0.035 1.085 0.105
02-100 0.626 0400 0264 0.063 0.163 0.116 0.152 0.036 1276 0.084
03-00 0.870 0485 0243 0.080 0216 0.083 0.109 0.018 1124 0089
03-25 1.030 0613 0272 0.054 0.162 0.077 0.090 0.014 102 0113
03-50 0.807 0490 0269 0.046 0.164 0.101 0.138 0.017 1266 0128
03-75 0.626 0416 0259 0.039 0.141 0.124 0.148 0.024 1.048 0.135
03-100 0612 0421 0267 0.043 0.150 0.122 0.175 0.029 1276 0.126
04-00 0.665 0451 0.279 0.096 0243 0.135 0.172 0.031 1214 0144
0425 0.897 0558 0273 0.058 0.178 0.115 0.143 0.022 1.167 0.146
04-50 0.908 0554 0265 0.069 0.185 0.096 0.128 0.027 1211 0.096
04-75 0.808 0491 0.258 0.055 0.181 0.097 0.122 0.020 102 0113
04-100 0.699 0.421 0.264 0.063 0.156 0.104 0.130 0.034 1289 0.081
05-00 0.688 0417 0271 0.096 0237 0.112 0.141 0.022 1127 0.108
0525 0.704 0424 0265 0.045 0.136 0.109 0.128 0.026 L1113 0.087
05-50 1.144 0659 0268 0.045 0.154 0.082 0.108 0.011 L1113 0.107
0575 1.167 0700 0276 0.043 0.166 0.080 0.096 0.007 1044 0123
05-100 0.939 0561 0.272 0.049 0.157 0.088 0.115 0.018 1.283 0.093
06-00 0.778 0494 0260 0.083 0.234 0.118 0.141 0.017 1.088 0.147
06-25 0.977 0566 0254 0.055 0.197 0.106 0.144 0.016 1.107 0.152
06-50 0.930 0569 0255 0052 0.172 0.106 0.124 0017 1.097 0.154
06-75 1112 0698 0268 0053 0.174 0.089 0.116 0.009 1.041 0.147
06-100 0.724 0466 0270 0.045 0.150 0.135 0.169 0.028 1271 0.152
Average | 0812 0502 0270 0.065 0.183 0.110 0.145 0.026 1.157 0.115

outperforms both random and sequential selection for any
retention ratio. This result confirms that the absolute value-
based strategy is an intuitive but highly effective and practical
method for maintaining 3D reconstruction quality under the
same available bandwidth. It also shows that degradation of

6364

3D reconstruction quality in the proposed scheme is slight
at a retention ratio of approximately 0.6 and becomes more
significant at 0.5. It means that, to preserve 3D reconstruction
quality, more than 60% of the residuals with larger absolute
values should be transmitted using the proposed scheme. We
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TABLE 9. The list of BD-CD 1 for KITTI dataset at the wireless channel SNR of 15 dB.

Seq. JZ':)LOOG HEIF  AVIF (II){:,;I(;Z) '(‘ELC“C) GPCC  Draco ‘::::ion COIN  RIC
00-00 0735 0515 0307 009 0198 0151 0172 0,050 L1622 0108
0025 0811 0563 0288 0095 0229 0129 0172 0.042 1092 0110
00-50 1045 0688 0303 0097 0219 0110 0133 0.032 1335 0101
0075 1176 0724 0303 0054 0149 0102 0128 0030 1098 0.093
00100 | 0748 0509 0288 0.062 0164 0135 0.159 0.043 1327 0112
01-00 0849 0625 0337 0110 0340 0207 0327 0.088 1287 081
0125 0741 0552 035 0102 0408 0195 0344 0,096 1254 0160
01-50 0803 0601 0328 0.1l 0221 0204 0281 0.086 1286 0142
0175 0860 0638 0297 0.091 0119 0162 0169 0071 1093 0113
01100 | 0981 0709 029 0121 0257 0155 0200 0.067 1322 0112
02-00 0835 0620 0315 0086 0265 0166 0217 0051 L2 0157
0225 0667 0494 0312 0.09% 0.191 0153 0233 0.065 L1430 0138
02-50 0664 0486 0319 0.087 0175 0178 0240 0.060 146 0139
0275 0757 0547 0318 0.087 0185 0154 0243 0.064 1126 0125
02100 | 0684 0482 0292 0082 0186 0154 0.9 0.060 1327 009
03-00 0937 0620 0278 0092 0.261 015 0147 0,038 LIS 0.105
0325 L1400 0742 0317 0075 0205 0111 0127 0037 1092 0134
03-50 0877 0611 0318 0.068 0197 0145 0.9 0048 1317 051
0375 0672 0499 0302 0.061 0163 0168 0208 0054 1082 0158
03100 | 0661 0501 0307 0065 0172 0163 0230 0059 1325 051
04-00 0726 0551 0323 0117 0272 0178 025 0,065 1259 0172
0425 1000 0701 0326 0086 0311 0174 0.198 0,056 1215 0178
04-50 0989 0684 0301 0.089 019 013 0.166 0,049 1248 0112
0475 0881 0608 0295 0077 0200 0137 0170 0.044 1088 0133
04100 | 0758 0520 0285 0078 0175 0132 0.169 0052 1334 0094
05-00 0758 0521 0310 0114 0268 0162 0.91 0050 LI67  0.131
05-25 0755 0517 029 0062 0153 0144 0.166 0.048 1147 0.103
05-50 1225 0759 0306 0.063 0176 0114 0148 0032 1143 0125
0575 1280 0823 0313 0067 0204 0117 0143 0032 1084 0146
05-100 1019 0676 0311 0.068 0185 0121 0155 0,040 1330 0108
06-00 0860 0621 0323 0113 0264 0170 0193 0.053 L2 0177
0625 1092 0721 0313 0086 0180 0162 0210 0053 L162 0184
06-50 1016 0694 0310 0079 019 0155 0171 0050 1139 0.183
06-75 1338 0919 0316 0092 0060 0147 0.184 0041 1106 0.85
06100 | 0785 0578 0323 0.069 0175 0190 0220 0.062 1324 0182
Avege | 0890 0618 0310 0086 0210 0151 0.195 0053 1199 0137

—¥— Random
+— Sequential
—e— Proposed

Chamfer Distance

0.01

0.0 0.2 0.4 0.6 0.8 1.0

R

FIGURE 9. Reconstruction quality as a function of the retention ratio R of the
residuals at the wireless channel SNR of 15 dB.

note that a similar trend was observed for different LiDAR
sequences and various SNR regimes.

V. CONCLUSION

We proposed a novel scheme for LIDAR point cloud repre-
sentation that combines an INR-based digital representation
with pseudo-analog residual transmission. The proposed
scheme is designed to efficiently represent high-frequency
components in a small INR via residual transmission
and to improve reconstruction quality under time-varying
wireless channels by incorporating JSCC. Experiments on the
KITTT dataset show that the proposed scheme outperforms
existing methods for point cloud, image, RI, and INR-based

VOLUME 6, 2025

compression in terms of R-D performance, achieving a BD-
CD improvement of up to 1.199. In addition, it preserves
3D object detection accuracy even under severe bitrate
constraints, demonstrating its effectiveness for downstream
perception tasks.

In future work, we will develop a quantitative metric to
measure the smoothness of quality adaptation across SNR
regimes, i.e., gracefulness, of the baselines.

APPENDIX
This appendix provides further details for Table 1.
Tables 7, 8, and 9 show the detailed BD-CD performance
across the different LiDAR sequences for each SNR,
respectively.
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