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ABSTRACT

Polyploid giant cancer cells (PGCCs) represent a unique and distinct subset of cancer cells, characterized by either an abnor-
mally large nucleus or the presence of multiple nuclei within a single cell. An increasing body of evidence indicates that PGCCs
are closely linked to cancer progression, therapeutic resistance, and poor clinical prognosis. However, despite their distinctive
morphology, no universal marker has been identified to reliably distinguish PGCCs from other cancer cell populations. This is
at least partly because PGCCs arise across various cancer types in diverse contexts, displaying considerable variability in their
gene expression profiles. Nevertheless, they share key features, most notably polyploidy and remarkable stress resilience. The
exceptional stress resilience of PGCCs arises from various mechanisms, including genome redundancy buffering against genetic
damage, dormancy induction for survival in harsh conditions, gene expression changes enhancing hypoxia resistance, and met-
abolic adaptations supporting growth in resource-limited environments. Collectively, these properties make PGCCs highly re-
silient to stress, facilitating their persistence and contributing to the progression and aggressiveness of cancer. In this review, we
provide a comprehensive discussion of the mechanisms underlying PGCC stress resilience and explore its broader implications
for cancer pathogenesis. Understanding these adaptive strategies may offer new insights into cancer biology and reveal potential
therapeutic targets to mitigate PGCC-driven malignancy.

1 | Introduction carcinoma and prostate cancer [3, 4], and their presence is

also linked to increased cancer metastasis and poor prognosis

Polyploid giant cancer cells (PGCCs) are distinctive cancer cells
that characteristically have a large nucleus or multiple nuclei.
The number of PGCCs increases following radiation and che-
motherapy, which are particularly associated with resistance to
these treatments. The increase of PGCCs correlates with poor
prognosis in diverse types of cancers, including breast, ovarian,
and colon cancers [1, 2]. PGCCs are also sometimes observed
in cancers without prior treatment [3], shown in hepatocellular

(Figure 1). Therefore, gaining insight into the role of PGCCs in
cancer progression and targeting them for therapy is expected to
drive advancements in cancer treatment.

Unfortunately, a universal marker for reliably identifying
PGCCs has yet to be established, posing a challenge for PGCC
research. One reason why it is difficult to determine markers
for PGCCs is that PGCCs emerge across various contexts, such

Abbreviation: PGCCs Polyploid giant cancer cells.
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FIGURE1 | H&E-stained image of a PGCC in human hepatocellular carcinoma without prior treatment. The left panels show HE-stained images
of diploid-predominant hepatocellular carcinoma at low magnification and polyploid-predominant hepatocellular carcinoma containing PGCCs.

Arrowheads indicate PGCCs. Higher-magnification views of the boxed areas are shown in the right panels. Scale bar, 20 um.

as in different cancer types and with or without prior treatment
history, and they may exhibit diverse gene expression patterns.
In addition, it is possible that multiple subsets of PGCCs coex-
ist within a cell population. Some PGCCs have been reported to
display characteristics such as cellular senescence or the expres-
sion of stem-cell features [5, 6], though these traits do not appear
to apply to all PGCCs. On the other hand, PGCCs do seem to
share some common characteristics. The most notable feature
is their strikingly large size, and at present, many studies detect
PGCCs based on their distinct morphology of having a nucleus
approximately three times larger than that of other cancer cells.
Moreover, PGCCs are polyploid by definition, with an increased
genomic content per cell, and typically exhibit strong resistance
to various stressors (Figure 2). In this review, we focus on these
common characteristics of PGCCs, particularly polyploidy
and stress resilience, and discuss their implications for cancer
pathogenesis.

2 | Cellular Dynamics Leading to PGCC Formation

Polyploidization is a critical process in PGCC formation. The
mechanisms underlying polyploidization, or whole-genome
doubling, primarily involve either cell fusion or abnormalities
in the cell cycle (Figure 3). Cell fusion, involving the merge of
cells from the same or different lineages, generates multinu-
cleated polyploid cells. A classic physiological example is myo-
blast fusion during skeletal muscle formation. Fusion can also
occur under pathological conditions, including viral infections
(e.g., cytomegalovirus) and tissue damage such as liver and lung
injury [7, 8]. Notably, polyploidization through cell fusion has
been reported in several cancers, including colorectal and pan-
creatic cancer [9, 10].

Cancer cells proliferate through the cell cycle, and disruptions in
this process can lead to polyploidization via three main mecha-
nisms. First, cytokinesis failure produces binucleated polyploid
cells when nuclear division occurs without successful cyto-
plasmic separation. This can occur, for example, when lagging
chromosomes obstruct the contractile ring [11]. Second, mitotic
slippage occurs when cells fail chromosome segregation and exit
mitosis prematurely, often induced by microtubule-targeting
drugs such as taxanes and vinca alkaloids. Whether cells un-
dergo mitotic death, a form of cell death occurring during mi-
tosis due to prolonged spindle assembly checkpoint activation,
or mitotic slippage depends on spindle checkpoint activity and
cyclin B degradation [12]. Third, endoreduplication involves
repeated DNA replication without mitosis, generating mono-
nucleated polyploid cells, typically in response to DNA dam-
age blocking mitotic entry [13]. In this way, cancer cells often
undergo polyploidization through various pathways, especially
under stress from anticancer treatments.

Polyploid cancer cells may also be prone to further polyploid-
ization. Their high chromosome content often causes segrega-
tion errors, with lagging chromosomes leading to cytokinesis
failure. They also have difficulty aligning chromosomes at the
metaphase plate, increasing the risk of mitotic slippage. In addi-
tion, polyploid cells exhibit elevated replication stress and DNA
damage [14, 15], which may trigger G2 arrest and endoreduplica-
tion. Given the genomic instability that follows polyploidization,
polyploid cancer cells may be susceptible to further polyploid-
ization leading to PGCCs, which need to be investigated in fu-
ture studies.

Intriguingly, recent studies have shown that PGCCs can also
emerge through highly distinctive cellular transformations,
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FIGURE2 | Stressors that induce PGCC formation and the stress resilience exhibited by PGCCs. PGCC formation is induced by various stresses.

PGCCs survive these challenges through mechanisms such as genome redundancy, which buffers against genetic damage; dormancy induction,
which enables survival in harsh conditions; gene expression changes that enhance hypoxia resistance; and metabolic adaptations that support
growth in resource-limited environments. These traits enable PGCCs to persist and contribute to cancer progression.

differing not only from classic cell cycle deviations but also
from cell fusion. These transformations involve unique cellu-
lar dynamics, such as entosis and nuclear budding, and PGCCs
formed in this way accompany membrane-wrapped intracellular
cells, referred to as fecundity cells by Liu, et al. [16], which rep-
resent a form of cell-in-cell structure associated with PGCCs.
Intracellularly formed fecundity cells have also been observed to
exhibit unique dynamics, including decellularization, nuclear fu-
sion, and cell cycle synchronization with other nuclei. These cel-
lular dynamics during PGCC formation are reminiscent of those
seen in pre-embryogenesis [16].

Although a variety of cellular processes are thought to con-
tribute to the formation of PGCCs, the molecular mechanisms
underlying their development remain poorly understood.
Further investigation is needed to identify the primary path-
way of PGCC formation and to determine whether PGCCs
exhibit distinct characteristics depending on the formation
pathway.

3 | Stresses That Drive PGCC Formation

A wide range of cancer therapies has been shown to induce the
formation of PGCCs. Among these, exposure to chemotherapeu-
tic agents has been the most extensively studied and is considered
a major factor driving PGCC development. Alkylating agents,
platinum-based chemotherapies, and topoisomerase inhibitors
such as mitomycin C [17], cisplatin [18], and doxorubicin [19] have
been shown to induce PGCC formation in various cancer cell
lines. Chemotherapeutic agents that disrupt microtubule dynam-
ics, such as taxane-based agents and vincristine, are also known to
induce PGCC formation. In addition, recent molecularly targeted
therapies, such as PARP inhibitors which impair DNA damage re-
pair, have been shown to induce PGCC formation [20]. Radiation
therapy, which induces genomic damage in cancer cells, is also a
significant contributor to the formation of PGCCs. Overall, vari-
ous types of cancer therapies that induce genomic damage or dis-
ruption of mitosis in actively proliferating cancer cells can impede
cell cycle progression, leading to the formation of PGCCs.
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FIGURE 3 | The mechanism of PGCC formation. Cancer cells can form PGCCs via two main mechanisms: cell cycle aberrations within a single

cell (left) or fusion of multiple cancer cells (right). The first mechanism can be subdivided by the phase of abnormality: (i) endoreduplication, (ii) mi-

totic slippage, and (iii) cytokinesis failure. The second, involving multiple cells, includes (iv) cell fusion and (v) entosis.

In addition to being a consequence of cancer therapies, PGCCs
can also emerge in response to the stress that is inherently
associated with cancer itself. For example, hypoxic stress
[21, 22] or infection with oncogenic viruses such as hepatitis
B virus and Epstein-Barr virus [23] can promote PGCC for-
mation. This possibility highlights that PGCCs may emerge
endogenously, driven by cancer-associated stress factors in-
trinsic to the tumor environment and independent of therapy.
Indeed, PGCCs are observed in various types of cancers with
no prior history of treatment, such as ovarian cancer [24],
breast cancer [25], rectal cancer [26], liver cancer [3], and
glioma [27]. For example, hepatocellular carcinoma some-
times exhibits genome doubling, which is often accompanied
by PGCCs that may arise from intrinsic genomic instability
within cancer cells [3]. PGCC formation is driven by various
endogenous factors, including external stresses and intrinsic
mechanisms, and in any case contributes to stress resistance
as discussed below.

4 | Dormancy in PGCCs

PGCCs induced by stresses, including but not limited to chemo-
therapy [6], radiation therapy [28],and hypoxia [21] often undergo
cell cycle arrest when generated experimentally in vitro. These
cells were previously considered to be in a state of cellular senes-
cence, as they frequently express senescence-associated mark-
ers, such as senescence-associated beta-galactosidase [29, 30].
Cellular senescence is defined as an irreversible cell cycle arrest
and is characterized by features including proliferation arrest,
expression of anti-apoptotic genes, and the secretion of vari-
ous bioactive molecules [31, 32]. However, markers commonly
used to indicate senescence, including senescence-associated

beta-galactosidase, can also be present in non-senescent con-
texts [33]. Moreover, PGCCs induced under various conditions
have been reported to retain the ability to produce daughter
cells, thereby contributing to treatment resistance and tumor re-
lapse [1, 34, 35]. Because of this, perspectives on the relationship
between PGCCs and cellular senescence have shifted, and it is
now recognized that not all PGCCs necessarily exhibit a senes-
cent state [20, 29].

Although cell cycle arrest is not always irreversible, PGCCs
formed under severe stress often enter a temporary dormant
state, allowing them to evade anticancer mechanisms. Therapies
that induce PGCC formation often cause extensive genomic
damage and activate cell cycle suppressors such as p53, leading
to dormancy [18, 20]. Autophagy, activated by mitochondrial
damage via the AMPK-mTOR pathway, has also been reported
as a critical mechanism for the induction of dormant PGCCs,
although the detailed process by which autophagy directly in-
duces cell cycle arrest and dormancy remains to be fully eluci-
dated [36]. In addition, polyploidization itself can promote arrest
through p53 activation mediated by the PIDDosome and Hippo
pathways, which are triggered by centrosome amplification
[37, 38]. Notably, PGCCs can escape dormancy through ploidy
reduction, a process critically dependent on their prior polyploid
state [1, 19]. This suggests that polyploidy plays a crucial role
in maintaining the dormancy and survival of PGCCs, and that
ploidy status is an important factor in switching between dor-
mancy and a proliferative state.

Since many anticancer treatments act in a cell-cycle-dependent
manner, dormancy allows PGCCs to resist therapy and contrib-
utes to disease relapse [39, 40]. Dormancy of cancer cells is also
closely associated with their ability to evade immunosurveillance

4
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[40]. While PGCCs exhibit traits beyond dormancy, this state
likely serves as a key survival strategy supporting their long-
term persistence.

5 | Polyploidization and Genomic Stress

Genomic damage is a major trigger of PGCC formation, arising
not only from anticancer therapies but also from persistent en-
dogenous stresses. Actively proliferating cancer cells experience
replication stress and mitotic errors, along with genomic insta-
bility such as global hypomethylation and activation of endoge-
nous retroelements [41, 42]. These intrinsic and therapy-induced
stresses likely drive PGCC formation.

PGCCs are polyploid and thus harbor increased genome con-
tent. Recent studies suggest that polyploidization itself can
exacerbate genomic damage. For example, it may impair DNA
replication fidelity by causing protein shortages during the G1/S
transition [14]. Polyploid cancer cells are also prone to chromo-
somal instability, with their high chromosome content increas-
ing the risk of segregation errors. Lagging chromosomes can
undergo extensive clustered rearrangements, a phenomenon
known as chromothripsis [43]. Such damaged lagging chromo-
somes can sometimes be reincorporated into the nucleus [44],
further contributing to genomic instability in polyploid cells.
Overall, polyploid cells accumulate disproportionately high lev-
els of genomic damage relative to their ploidy [15]. This excess
damage can, in turn, impair cell cycle progression and promote
further polyploidization, creating a self-reinforcing cycle.

Although polyploidization and genomic damage are closely
linked, PGCCs exhibit notable resistance to DNA-damaging
anticancer therapies. This resilience is partly due to genomic
redundancy, which buffers against gene loss. In diploid cells,
damage to one allele can disrupt gene expression and trigger
cell death, whereas polyploid cells retain multiple intact copies,
maintaining function despite partial damage. Consequently,
polyploid cancer cells better withstand treatment-induced cell
cycle arrest and apoptosis [15]. Polyploidization appears to en-
hance cell survival even in the face of substantial genomic dam-
age, and PGCCs, whether induced by therapy or endogenous
stress, act as durable reservoirs that survive despite extensive
genomic abnormalities.

6 | Resilience to Hypoxic Stress

Hypoxia, a hallmark of the tumor microenvironment, is among
the most extensively studied factors driving PGCC formation,
alongside radiation and chemotherapy. Studies have demon-
strated that treatment with cobalt chloride, a prolyl hydroxylase
inhibitor that stabilizes HIF-1a and mimics hypoxic conditions,
promotes PGCC formation across various cancer cell lines
[2, 21, 45]. The PGCC formation induced by hypoxia has been
shown to result from the downregulation of Cyclin D1 expres-
sion during the G2 phase of the cell cycle, coupled with the in-
hibition of subsequent cell cycle progression [21]. Importantly,
after treatment with cobalt chloride, PGCCs persist while dip-
loid cancer cells are eliminated, highlighting the enhanced re-
silience of PGCCs to hypoxic conditions [21].

Several mechanisms can explain the remarkable resistance of
PGCCsto hypoxic stress. One key factor is the acquisition of stem
cell-like properties by PGCCs. This phenomenon aligns with the
well-established concept that hypoxic conditions can induce
and maintain stemness in cancer cells [46, 47]. Indeed, PGCCs
induced by hypoxia have been shown to exhibit increased ex-
pression of stem cell-related genes such as OCT4, NANOG,
and SOX2 [22]. This cellular reprogramming enables PGCCs
to better withstand the harsh, oxygen-deprived tumor micro-
environment. Furthermore, the dormancy observed in PGCCs
significantly lowers their energy requirements, demonstrating
an important strategy in response to the extreme conditions of
hypoxia. In addition to reduction of metabolic demands, PGCCs
exhibit significant metabolic adaptability. Notably, the accumu-
lation of lipid droplets within PGCCs serves as an energy reser-
voir, enabling them to endure prolonged hypoxic stress [48]. At
the same time, an increase in mitochondrial content supports
sustained ATP production, even in oxygen-deprived environ-
ments, further enhancing their survival capacity under hypoxic
conditions [48]. Through these multifaceted mechanisms,
PGCCs not only enhance their resilience to hypoxic conditions
but also gain the capacity to promptly resume proliferation once
the hypoxic stress is alleviated [49].

7 | Metabolic Adaptation as a Key to Survival

Another hallmark of cancer is altered metabolism. Cancer cells
have a preference for glycolysis over oxidative phosphorylation
to generate ATP even in the presence of oxygen, a phenomenon
termed the Warburg effect [50]. Actively proliferating cancer
cells also demonstrate upregulated lipid biosynthesis to pro-
vide essential components for membrane construction, energy
storage, and signaling molecules [51]. Furthermore, cancer cells
exhibit unique amino acid metabolic adaptations, particularly
a heavy dependence on glutaminolysis, where glutamine func-
tions as a vital metabolic fuel [52]. Notably, PGCCs have been
found to display even more pronounced and distinctive meta-
bolic alterations compared to other cancer cells with these met-
abolic traits.

In cancer cells, lipid metabolism is characterized by increased
fatty acid synthesis and uptake, often leading to the accumu-
lation of lipid droplets [51]. These lipid droplets play a pivotal
role in promoting cancer cell survival and treatment resistance
by sequestering free fatty acids to prevent cellular damage or
absorbing lipophilic anticancer drugs, thereby lowering their
intracellular concentrations [53]. Hypoxic conditions can in-
duce lipid droplet formation, which is also thought to contrib-
ute to cancer cell resistance to hypoxia [54]. Notably, PGCCs
exhibit a markedly higher degree of lipid droplet formation
compared to other cancer cells [55]. In PGCCs, the elevated
expression of the PLIN4 gene, which stabilizes lipid drop-
lets, is implicated in treatment resistance in triple-negative
breast cancer and may represent a potential therapeutic tar-
get [56]. Another study investigating cholesterol dynamics in
radiation-induced PGCCs revealed that PGCCs have an in-
creased cholesterol demand and rely on it for both survival
and progeny formation [57]. Inhibitors of ASAH1, which dis-
rupt ceramide and cholesterol homeostasis, and simvastatin, a
cholesterol synthesis inhibitor, have been shown to suppress
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the generation of progeny from PGCCs, suggesting that tar-
geting cholesterol metabolism may hinder PGCC-driven can-
cer progression [57, 58]. Together, these insights underscore
the role of altered lipid metabolism as a key contributor to the
stress resistance of PGCCs.

Alterations in mitochondrial dynamics have also been observed
in PGCCs. Studies using human cancer cells and mouse xeno-
graft models have reported increased mitochondrial content in
PGCCs induced by paclitaxel or cisplatin treatment [36, 48]. The
accumulation of damaged mitochondria activates autophagy via
the AMPK-mTOR pathway, which has been shown to be essen-
tial for PGCC formation [36]. Similarly, research using bladder
cancer cell lines has demonstrated increased mitochondrial
density, elevated ROS levels, and lipid droplet accumulation in
cisplatin-induced PGCCs [48]. Notably, zoledronic acid, a drug
widely used for treating osteoporosis, has been shown to sup-
press these mitochondrial changes and reduce PGCC survival
(Table 1) [48]. These findings show the importance of altered
mitochondrial characteristics in sustaining PGCC viability.

In summary, PGCCs undergo dynamic metabolic reprogram-
ming, particularly in lipid metabolism, which appears to be
crucial to their remarkable stress resilience. Targeting these
metabolic changes offers a promising avenue for developing
novel therapeutic strategies against PGCCs.

8 | Unique Strategies of PGCCs to Evade Immune
Attacks

In recent years, immune checkpoint inhibitors have emerged as
a key class of cancer therapeutics. Despite their remarkable effi-
cacy in certain cases, many patients fail to respond adequately
[62]. Elucidating how cancers evade antitumor immunity is crit-
ical for improving current therapeutic strategies.

The impact of PGCCs on antitumor immunity remains largely
unclear. However, their reported gene expression profiles sug-
gest that they may influence the surrounding immune micro-
environment. For example, PGCCs sometimes display features
of cellular senescence with high expression of senescence-
associated secretory phenotype factors, such as IL-13 and IL-8
[63]. PGCCs induced by docetaxel or cisplatin treatment have
also been reported to show elevated TNFRSF9 expression, a re-
ceptor upstream of NF-xB signaling [64]. These gene expression
patterns suggest that PGCCs may secrete cytokines, thereby
modulating their surrounding microenvironment. Some PGCCs
have also been shown to express high levels of PD-L1, a key mol-
ecule in immune evasion that inactivates T cells [65]. In addi-
tion, IL-33 secreted by tumor cells induces PGCC formation and
promotes the expansion of ST2-expressing type 2 innate lym-
phoid cells, contributing to immune exhaustion [66]. Although it
remains unclear whether PGCCs themselves overexpress IL-33,
an IL-33-enriched microenvironment surrounding PGCCs may
enhance their immune evasion. Furthermore, hypoxia-induced
PGCCs and their progeny in glioma have been shown to pro-
mote the induction of immunosuppressive M2 tumor-associated
macrophages [49]. Collectively, these findings suggest that
PGCCs play a key role in shaping an immunosuppressive tumor
microenvironment.

In addition to altered expression profiles of PGCCs and their mi-
croenvironment, fecundity cells [16] may also contribute to im-
mune evasion. When cancer cells are engulfed by adjacent host
cells to form cell-in-cell structures, they may evade immune sur-
veillance because immune cells cannot directly recognize these
formations. Although the mechanisms underlying cancer cell
engulfment to form PGCCs remain unclear, this cannibalistic
process may protect cancer cells from both anticancer drugs and
immune responses.

Furthermore, PGCCs may uniquely express neoantigens com-
pared to other cancer cells. Neoantigens, arising from genomic
alterations, are recognized by the immune system as cancer-
specific antigens [67]. Since PGCCs harbor numerous genomic
abnormalities [15], they may express a broader range of neoanti-
gens. However, the coexistence of multiple normal alleles along-
side mutated ones could reduce overall neoantigen presentation,
potentially aiding immune evasion.

Thus, PGCCs are thought to affect antitumor immunity by alter-
ing both their intrinsic properties and their influence on the sur-
rounding microenvironment, although the precise mechanisms
remain unclear. PGCC formation may represent a key strategy
for cancer cells to evade immune attacks. Further studies are
needed to clarify whether PGCC presence affects the efficacy of
immunotherapies.

9 | Conclusion

In this review, we have discussed the stress resilience of PGCCs
from multiple perspectives. Rather than being mere byproducts
of cellular damage, PGCCs represent a critical survival strat-
egy that enables cancer cells to endure various stressors, in-
cluding anticancer therapies. PGCCs also contribute to cancer
progression by promoting regrowth after cell cycle arrest and
acquiring stem cell-like properties, as highlighted in other re-
views [2, 68, 69]. Therapeutic strategies targeting PGCCs are
under investigation, with compounds such as zoledronic acid,
mifepristone, and carfilzomib showing promising potential
[20, 48, 59-61].

Although significant progress has been made in characterizing
PGCCs, inconsistencies in their reported features remain. These
discrepancies likely arise from differences in experimental ap-
proaches, including cell line selection and induction protocols.
While stress resilience is emerging as a defining feature, it re-
mains unclear whether PGCCs share common traits across can-
cer types or exhibit context-specific variations. In addition, the
similarities and differences between PGCCs and polyaneuploid
cells with lower ploidy levels remain unclear. When PGCCs are
defined as cells with extremely high ploidy, such as octaploid
or higher, this high ploidy may provide greater resilience to ge-
nomic damage through increased genomic redundancy. It may
also improve tolerance to other stresses, including hypoxia and
metabolic stress, although this has yet to be studied. Moreover,
most current knowledge is derived from in vitro studies and clin-
ical samples, while in vivo data remain limited but are gradually
increasing in some model organisms [18, 20, 36]. This emerg-
ing in vivo evidence points to PGCCs as a fascinating yet still
largely unexplored area of cancer biology. Experimental systems
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that more accurately recapitulate the tumor microenvironment
will help elucidate how PGCCs interact with their surroundings
and contribute to cancer progression. New approaches, such as
PGCC detection using recent advances in Al-based image rec-
ognition, may also provide valuable tools for studying PGCCs,
especially given the current lack of reliable markers [34, 70].
Ultimately, such advances will inform the development of novel
therapeutic strategies targeting these resilient and elusive cells.
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